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COHOMOLOGY OPERATIONS AND THE DELIGNE CONJECTURE

MARTIN MARKL

Abstract. The aim of this note, which raises more questions than it answers, is to study
natural operations acting on the cohomology of various types of algebras. It contains a lot of
very surprising partial results and examples.

Introduction

In this note, all algebraic objects will be defined over a fixed field k of characteristic zero.

An algebra means an algebra over a quadratic Koszul operad P [26, II.3.3]. This generality covers

all “reasonable” algebras – associative, Lie, commutative associative, Poisson, Gerstenhaber,

Leibniz, &c.

By the cohomology of a P-algebra A we mean the operadic cohomology H ∗
P
(A;A) of A with

coefficients in itself [26, II.3.100], defined as the cohomology of the cochain complex C∗
P
(A;A) =

(C∗
P
(A;A), dP) recalled in A.6 of the appendix to this note. The complex C∗

P
(A;A) generalizes the

“standard constructions” and H∗
P
(A;A) the “classical” cohomology (Hochschild for associative al-

gebras, Chevalley-Eilenberg for Lie algebras, Harrison for associative commutative algebras, &c.)

In general, H∗
P
(A;A) agrees with the triple cohomology [8, Proposition 8.6] and governs defor-

mations of A in the category of P-algebras.

By a natural operation we mean a multilinear operation on H∗
P
(A;A) induced by a natural

multilinear cochain operation on C∗
P
(A;A). Naturality means being defined using data that do

not depend on a concrete algebra A only. An example is the classical cup product f, g 7→ f ∪ g

of Hochschild cochains, resp. the induced graded commutative associative multiplication on the

Hochschild cohomology of associative algebras [9]. Our definition excludes some operations that

are also “natural” in some sense, such as the degree zero unary operation defined as the projection

πn : H∗
P
(A;A) → Hn

P
(A;A), n ≥ 0, because this operation is not induced by any natural cochain

map. A precise definition of natural operations is given in Section 7. Our aim is to describe the

homotopy type of the dg operad BP = {BP(n)}n≥0 of all these natural operations, see Problem 1

and its baby version Problem 20. The reward would be an ultimate understanding of the structure

of the cohomology of a given type of algebras.

Our original hope was that the homotopy type of BP would be that of another Koszul quadratic

operad QP determined by P in an explicit and simple manner. Examples we had the in mind

were P = Ass for which probably QP = Ger , the operad for Gerstenhaber algebras, and P = Lie

for which probably QP = Lie, the operad for Lie algebras. Calculations presented in this note

however show that the homotopy type of BP is in general more complicated, therefore the property
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2 M. MARKL

that makes the homotopy type of BP for P = Ass or P = Lie so nice must be finer than just the

Koszulity of P. We have no idea what this property is.

We feel that our formulations are somehow unsatisfactory – we would certainly prefer a concept

that would not depend on a “representation” of the cohomology by a concrete cochain complex.

In an ideal world, we should be working with natural operations in an appropriate “derived”

category in which the cohomology is the hom-functor. The possibility of such a more conceptual

approach for associative algebras and their Hochschild cohomology was indicated by [19], see

also [15, 16].

Another possibility could be to consider H∗
P
(A;A) as the cohomology of the cotangent complex

of a suitable suitably derived stack of the variety of structure constants of P-algebras, see [3, 4, 23],

and study automorphisms of the point of this stack representing the algebra A. Our feeling is,

however, that these fancier approaches, despite their beauty and generality, are still not developed

enough to give concrete answers to concrete questions.

Let us explain the title of this note. In his famous letter [5], P. Deligne asked whether the

Gerstenhaber algebra structure on the Hochschild cohomology of an associative algebra given by

the cup product and the intrinsic bracket is induced by a natural action of singular chains on the

little discs operad. There are several proofs of this so-called Deligne conjecture today [17, 20, 28,

29, 33, 14]. Assume one can prove that the operad of all natural operations on the Hochschild

complex (that is, BAss in our notation) has the homotopy type of the operad for Gerstenhaber

algebras. The formality of the little discs operad [34] would then immediately imply the Deligne

conjecture by simple homological considerations.

In fact, most of the proofs of the Deligne conjecture we are aware of [17, 20, 28, 29], involve a

conveniently chosen suboperad of BAss whose homotopy type is detected by Fiedorowicz’ recog-

nition principle for E2-operads [7]. We will discuss these proofs in Section 6. Other proofs based

on the Etingof-Kazhdan (de)quantization were given in [33, 14]. Several attempts have also been

made to find a suitable filtration of the Fulton-MacPherson compactification of the configuration

space of points in the plane to prove the conjecture [12, 36]. The Deligne conjecture has surprising

implications for the existence of the deformation quantization of Poisson manifolds [14, 33].

Acknowledgments. I would like to express my thanks to F. Chapoton, E. Getzler, V. Hinich

M. Livernet, P. Somberg and A.A. Voronov for many useful comments and remarks. My special

thanks are due to D. Tamarkin for inspiring discussions during my stay at the Northwestern

University in April 2004.

1. Formulation of the problem

In this section we state the problems sketched out in the introduction more concretely and

formulate also some conjectures. Let BP = (BP, δP) be the dg-operad of all natural multilinear

operations on the cochain complex C∗
P
(A;A) = (C∗

P
(A;A), dP). The n-th component BP(n) of BP

is the space of all n-linear natural operations C∗
P
(A;A)⊗n → C∗

P
(A;A) with the grading induced

by the grading of C∗
P
(A;A): U ∈ BP(n) has degree d if

U(f1, . . . , fn) ∈ Cm1+···+mn+d
P

(A;A),

whenever fi ∈ Cmi

P
(A;A) for 1 ≤ i ≤ n. In this case we write U ∈ Bd

P
(n). Each BP(n) is equipped

with the degree +1 differential δP induced by the differential dP of C∗
P
(A;A) in the usual way.
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A precise definition of the operad BP is given in Section 7. Here we emphasize only that

Bd
P
(n) = 0 for d < 0 and that BP(0) 6= 0 for any nontrivial P. The central problem of the paper

reads:

Problem 1. Describe the homotopy type (in the non-abelian derived category) of the dg operad

BP. In particular, calculate the cohomology of BP.

A baby-version of this problem is Problem 20 of Section 3. Closely related is:

Problem 2. Find a property characterizing operads P for which BP is formal and has the ho-

motopy type of some Koszul quadratic operad.

We will see, in Example 15, a simple quadratic Koszul operad D such that H∗(BD(0), δD) 6= 0.

This clearly means that BD does not have the homotopy type of a quadratic Koszul operad,

therefore the property answering Problem 2 must be stronger than Koszulness of P.

Suppose that P is the symmetrization of a non-Σ operad P [26, Remark II.1.15]. In this case

there exists a dg-suboperad BP of BP consisting of natural operations that preserve the order of

inputs of P-cochains. For example, the classical cup product f ∪ g ∈ C1
Ass(A;A) ∼= Lin(A⊗2, A)

of Hochschild cochains f, g ∈ C0
Ass(A;A) ∼= Lin(A,A) defined as

(f ∪ g)(a⊗ b) := f(a) · g(b) for a⊗ b ∈ A⊗ A,

with · denoting the associative multiplication of A, belongs to BAss , while the operation

U(f, g) := f(b) · g(a) for a⊗ b ∈ A⊗ A,

does not, see Definition 34 of Section 7 for details.

Since BP(n) is a Σn-closed subspace of BP(n), n ≥ 0, BP is a usual, not only a non-Σ, operad.

We will see in Example 17 that, surprisingly, the homotopy type of BP in general differs from

the homotopy type of BP. We therefore formulate:

Problem 3. Let P a non-Σ quadratic Koszul operad. Describe the homotopy type of the dg

operad BP. In particular, calculate the cohomology of BP.

In Section 6(i) we give some indications that the operad BAss has the homotopy type of the

operad Ger for Gerstenhaber algebras, see A.4 for a definition of Ger .

One may consider also strongly homotopy versions of the above problems. Recall that a

strongly homotopy P-algebra is, by [24], an algebra over the minimal model shP of the operad

P. Let us denote by shBP = BshP the dg-operad of natural operations on the cochain complex

C∗
shP

(A,A) for the cohomology of a strongly homotopy algebra A with coefficients in itself. An

example of this type of operad is the “minimal operad” M considered in [20], which is a certain

suboperad of BshAss , see Section 6(iii).

It is clear that there exists a canonical map BP → BshP, but simple examples show that, again

rather surprisingly, this map is in general not a homotopy equivalence. Let us formulate:

Problem 4. Describe the homotopy type of the dg-operad BshP of natural operations on the

cohomology of strongly homotopy P-algebras.

Other problems formulated in this paper are Problem 16 of Section 2 and Problems 20,21 of

Section 3.
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Let us finally formulate also some conjectures. Although the operads BP and BP! are not

isomorphic (see Section 7), computational evidences together with an equivalence between the

derived category of P algebras and the derived category of P!-algebras lead us to believe in:

Conjecture 5. The homotopy type of the operad BP is the same as the homotopy type of BP!.

The following two conjectures concern the homotopy type of BP for P = Ass and P = Lie.

Conjecture 6. The operad BAss has the homotopy type of the operad Ger for Gerstenhaber

algebras.

Some results which may be helpful in the proof of the above conjecture are recalled in Section 6.

Conjecture 7. The operad BLie has the homotopy type of the operad Lie.

According to a formality theorem [24, Proposition 3.4], it is enough to prove that

H∗(BLie , δLie) ∼= Lie.

Since H0(BLie , δLie) ∼= Lie (see Section 4), Conjecture 7 is equivalent to the acyclicity of BLie in

positive degrees. Another conjecture, Conjecture 22, is given in Section 4.

Let us finish this section with one exceptional example. The trivial operad 1 is a Koszul

quadratic self-dual operad. A 1-algebra is a vector space A with no operations. Clearly C∗
1
(A;A)

is just the space Lin(A,A) of linear maps f : A → A concentrated in degree zero with trivial

differential, thus H∗
1
(A;A) = Lin(A,A). It is also clear that all natural operations on Lin(A,A)

are the identity 11A ∈ Lin(A,A) considered as a degree zero constant, and iterated compositions

Lin(A,A) 3 f1, f2, . . . , fn 7→ f1 ◦ f2 ◦ · · · ◦ fn ∈ Lin(A,A), n ≥ 1.

Therefore

B1
∼= UAss,

the operad for unital associative algebras. This example is pathological in that the canonical

element introduced in Definition 8 equals zero. Therefore, from now on all quadratic Koszul

operads in this note will be nontrivial in the sense that P 6= 1.

2. The constants BP(0) – soul without body

This section, as well as the rest of the paper, relies on terminology and notation recalled

in the Appendix. The main result of this part is Proposition 9 which describes the dg-vector

space BP(0) = (BP(0), δP) of “constants.” It is not difficult to see (compare also Example 35 of

Section 7) that

Bm−1
P

(0) ∼= s(P(m) ⊗ P
!(m))Σm , m ≥ 1,

with the action Bm−1
P

(0) → Cm−1
P

(A;A) given as the composition

s(P(m) ⊗ P
!(m))Σm

∼=
−→ (sP(m) ⊗ P

!(m))Σm
sα⊗11
−→ (sEndA(m) ⊗ P

!(m))Σm(1)

∼= (End↓A(m) ⊗ P
!(m))Σm =

[
Lin((↓A)⊗m, ↓A) ⊗ P

!(m)
]Σm

= Cm−1
P

(A;A).

Since composition (1) is monic for all “generic” P-algebras A, (B∗
P
(0), δP) is “morally” the

subcomplex of natural elements in (C∗
P
(A;A), dP). Before going further, we must recall the

following general construction. Let T be an operad. It is well-known that the formula

[f, g] := f ◦ g − (−1)(m−1)(n−1)g ◦ f,
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where f ◦ g is, for f ∈ T(m) and g ∈ T(n), defined by

f ◦ g :=
∑

1≤i≤m

(−1)(n−1)(i−1)f ◦i g,

makes the direct sum T∗ =
⊕

m≥0 T∗, with

Tm−1 := ↑m−1
T(m) = sT(m),

a graded Lie algebra. Another standard fact is that each element ω ∈ T1 = sT(2) satisfying

[ω, ω] = 0 defines a degree +1 differential δω : T∗ → T∗+1 by

δω(t) := [t, ω], for t ∈ T∗.

It is helpful to observe that the condition [ω, ω] = 0 means the associativity:

(2) ω ◦1 ω = ω ◦2 ω

and that the differential δω in terms of ◦i-operations equals

δω(t) = t ◦1 ω − t ◦2 ω + · · · − (−1)mt ◦m ω + (−1)mω ◦1 t− ω ◦2 t, for t ∈ T(m).

As proved in [35], the graded Lie algebra structure (T∗, [−,−]) descents to the space of coin-

variants therefore it induces, via the canonical isomorphism between invariants and coinvariants,

a Lie bracket, denoted again [−,−], on the graded vector space TΣ
∗ =

⊕
m≥0 TΣ

m with pieces

T
Σ
m−1 := ↑m−1 (T(m) ⊗ sgnm)Σm = sT(m)Σm .

As usual, an element φ ∈ TΣ
1 = sT(2)Σ2 satisfying [φ, φ] = 0 induces a degree +1 differential

δΣ
φ : TΣ

∗ → TΣ
∗+1 by

(3) δΣ
φ t := [φ, t], for t ∈ T

Σ
∗ .

In Proposition 9 below we put T := (P⊗P!) and define the differential (3) by taking as φ the

canonical element χ introduced in the following definition in which # denotes the linear dual.

Definition 8. Let P be a quadratic Koszul operad. The canonical element χ is the element of

s(P ⊗ P!)(2)Σ2 corresponding, under the standard identification

s(P ⊗ P
!)(2) ∼= ↑(P ⊗ P

#)(2) ∼= ↑(P(2) ⊗ P(2)#) ∼= ↑Lin(P(2),P(2)),

to the suspension of the identity map ↑11P(2) ∈ ↑Lin(P(2),P(2)).

Observe that χ is symmetric,

(4) χτ = χ for τ ∈ Σ2,

therefore indeed χ ∈ s(P ⊗ P!)(2)Σ2. The condition [χ, χ] = 0 is equivalent to the Jacobi

identity (17) for χ which follows from [13, Corollary 2.2.9(b)], see also the proof of Proposition 26.

Proposition 9. There is a natural isomorphism of cochain complexes

(B∗
P(0), δP) ∼= ((P ⊗ P

!)Σ
∗ , δ

Σ
χ ).
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If P is the symmetrization of a non-Σ operad P [26, Remark II.1.15], then there is a similar

description of the chain complex (B∗
P
(0), δP) obtained as follows. The definition of the graded

Lie algebra (T∗, [−,−]) given above clearly makes sense also when T is a non-Σ operad. Observe

also that there exists the non-Σ quadratic dual P
! of P and that one may introduce the non-Σ

canonical element χ ∈ s(P ⊗ P
!)(2) in exactly the same manner as its symmetric version. The

element χ obviously satisfies the associativity condition (2):

χ ◦1 χ = χ ◦2 χ.

Our non-Σ version of Proposition 9 reads:

Proposition 10. Let P be the symmetrization of a quadratic Koszul non-Σ operad P. Then

(B∗
P
(0), δP) ∼= ((P ⊗ P

!)∗, δχ).

Let us make a comment on the meaning of the cohomology H∗(BP(0), δP). The natural

morphism

M : H∗(BP(0), δP) → H∗
P(A;A)

induced by action (1) is monic for any “generic” P-algebra A, therefore elements H ∗(BP(0), δP)

represent natural generically nontrivial homology classes in the cohomology of P-algebras. This

leads one to believe that H∗(BP(0), δP) = 0 for all well-behaved operads, since otherwise people

would stumble upon nontrivial natural classes – compare the Casimir element in the cohomology

of simple Lie algebras. Example 15 however contradict this reasonable assumption. We believe

that H∗(BP(0), δP) is an important invariant of the operad P that deserves its own name:

Definition 11. We call the graded vector space H∗(BP(0), δP) described in Proposition 9 the soul

of the cohomology of P-algebras.

It is easy to prove that H0(BP(0), δP) is always trivial.

Example 12. Let us describe the complex calculating the soul H∗(BAss(0), δAss) of the Hochs-

child cohomology. Clearly

(P ⊗ P
!)Σ

m−1 = (Ass ⊗Ass)Σ
m−1

∼= s(Ass ⊗Ass)(m)Σm ∼= sAss(m),

therefore the complex ((Ass ⊗Ass)Σ, δΣ
χ ) has the form

(5) k
δΣ
χ

−→ k[Σ2]
δΣ
χ

−→ k[Σ3]
δΣ
χ

−→ k[Σ4]
δΣ
χ

−→ · · ·

Is also easy to describe the differential δΣ
χ ; on a permutation σ ∈ Σm it acts as

δΣ
χ (σ) := d0(σ) − d1(σ) + d2(σ) − · · · + (−1)m+1dm+1(σ) ∈ k[Σm+1],

where d0(σ) := 11 × σ, dm+1(σ) := σ × 11 and di(σ) ∈ Σm+1 is the permutation obtained by

doubling the ith input of σ. In Theorem 13 below we prove that (5) is acyclic.

Since Ass is the symmetrization of the non-Σ operad Ass, it makes sense to consider also

the subcomplex (B∗
Ass(0), δAss) of (B∗

Ass(0), δAss) described in Proposition 10. This subcomplex

is obviously isomorphic to the acyclic complex

(6) k
d0−→ k

d1−→ k
d2−→ k

d3−→ · · ·

in which d2i = 11k and d2i+1 = 0, i ≥ 0. The inclusion (B∗
Ass(0), δAss) ↪→ (B∗

Ass(0), δAss) sends

the generator 1 ∈ k of the nth piece of (6) into the identity permutation 11n−1 ∈ k[Σn−1] in

complex (5).
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Figure 1. Left: Examples of elements of Σ4 of grade 0 (first line), grade 1 (second
line), grade 2 (third line) and grade 3 (fourth line). Right: the corresponding
primitive elements.

Theorem 13. The soul H∗(BAss(0), δAss) of the Hochschild cohomology is trivial.

Proof. We must prove that (5) is an acyclic complex. The idea will be to show that it decomposes

into a direct sum of acyclic subcomplexes indexed by primitive, in the sense introduced below,

permutations.

We define first, for each σ ∈ Σn, a natural number g(σ), 0 ≤ g(σ) ≤ n, which we call the

grade of σ, as follows. The grade of the unit 11n ∈ Σn is n− 1, g(11n) := n− 1. For σ 6= 11n, let

a(σ) := max{i; σ = 11i × τ for some τ ∈ Σn−i}, and

c(σ) := max{j; σ = λ× 11j for some λ ∈ Σn−i}.

There clearly exists a unique ω = ω(σ) ∈ Σn−a(σ)−c(σ) such that σ = 11a(σ) × ω(σ) × 11c(σ). Let,

finally, b(σ) be the number of “doubled strings” in ω(σ),

b(σ) := {1 ≤ s < k; ω(s+ 1) = ω(s) + 1}.

The grade of σ is then defined by

g(σ) := a(σ) + b(σ) + c(σ),

see Figure 1 for examples. Observe that the differential δΣ
χ of (5) raises the grade by +1.

Let us call χ ∈ Σk, k ≥ 1, primitive if g(σ) = 0. Observe that, according to our definitions,

11n ∈ Σn is primitive if and only if n = 1. For each σ ∈ Σn, σ 6= 11n, we define a unique primitive

κ = κ(σ) ∈ Σk, k = n − g(σ), by contracting all “multiple strings” of ω(σ) into “simple” ones,

see Figure 1. We put χ(11n) := 111.

For a primitive χ, let P ∗(χ) be the graded subspace of (5) spanned by all permutations σ with

χ = κ(σ). The following statements can be easily verified:

(i) Each P ∗(χ) is a subcomplex of (5).

(ii) Complex (5) decomposes as the summation
⊕

χ P
∗(χ) over all primitive permutations χ.



8 M. MARKL

d2

d2

d2
d1d1d1

· · ·

...

Lin(A⊗4, A)

Lin(A⊗4, A)

Lin(A⊗3, A)

Lin(A⊗2, A)

Lin(A⊗2, A)

Lin(A⊗2, A)

Lin(A,A)

6

6

6

---

Figure 2. The “meager” bicomplex describing the cohomology of D-algebras.

(iii) For each primitive χ ∈ Σn,

P ∗(χ) ∼= P ∗(111) ⊗ · · · ⊗ P ∗(111) (n+ 2 times).

The proof is finished by observing that P ∗(111) is isomorphic to the acyclic complex (6) and

applying the Künneth formula.

Example 14. In this example we describe the soul of the Chevalley-Eilenberg cohomology of

Lie algebras which is, due to the obvious self-duality of Proposition 9, the same as the soul of

the Harrison cohomology of commutative associative algebras. In both cases

(P ⊗ P
!)Σ

m−1 = (Com ⊗ Lie)Σ
m−1

∼= sLie(m)Σm = ↑m−1 (Lie(m) ⊗ sgnm)Σm ∼= k

(see [18]) and one may identify ((Com ⊗ Lie)Σ, δΣ
χ ) with the acyclic complex (6). Therefore the

souls of both the Chevalley-Eilenberg cohomology and the Harrison cohomology are trivial.

Example 15. This example presents a Koszul quadratic operad with a nontrivial soul. Let

D := Ass ∗Ass be the free product of two copies of the associative operad. Operad D is a Koszul

quadratic operad, whose quadratic dual D! equals the coproduct Ass ∨ Ass defined by

(Ass ∨ Ass)(m) :=

{
k, if m = 1 and
Ass(m) ⊕Ass(m), if m ≥ 2.

Obviously, D-algebras are triples A = (A, µ1, µ2) consisting of two independent associative mul-

tiplications µ1, µ2 : A⊗A → A. The cohomology of these algebras is the cohomology of the total

complex (C∗
D(A;A), dD) of the “meager” bicomplex in Figure 2. The horizontal line is the Hochs-

child cochain complex of the associative algebra A1 := (A, µ1), the vertical line the Hochschild

complex of A2 := (A, µ2).

Let e denote the identity 11 ∈ Lin(A,A) considered as a natural element of C0
D(A;A). Clearly

dD(d1e) = dD(d2e) = 0

therefore both d1e and d2e are natural cochains in C1
D(A;A) thus representing δD-cochains in

B1
D(0). The equality

dDe = d1e + d2e
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implies that d1e+ d2e is δD-homologous to zero in B1
D(0). We conclude that

H1(BD(0), δD) ∼= Span([d1e]) ∼= Span([d2e]) ∼= k.

We saw that the souls of the Hochschild (P = Ass), Chevalley-Eilenberg (P = Lie) and

Harrison (P = Ass) cohomologies were trivial, while the soul of the cohomology for D-algebras

analyzed in Example 15 was not. This leads us to formulate:

Problem 16. Which property of a quadratic Koszul operad P implies the triviality of the soul

H∗((P ⊗ P!)Σ, δΣ
χ ) of the P-cohomology?

Example 17. In this example we describe a non-Σ quadratic Koszul operad with the property

that (B∗
P
(0), δP) is acyclic but the soul (B∗

P
(0), δP) is not. This shows that the homotopy type of

BP is in general different from the homotopy type of BP.

Let Mag be the free non-Σ operad generated by one bilinear operation, Mag := Γ(µ), and

Mag its symmetrization. The corresponding cochain complex C∗
Mag(A;A) is the truncation

Lin(A,A)
d

−→ Lin(A⊗2, A)

of the Hochschild complex. The complex (B∗
Mag(0), δMag) defining the soul of Mag is the trunca-

tion

k
δΣ
χ

−→ k[Σ2]

of (5), and is manifestly not acyclic. On the other hand, (B∗
Mag(0), δMag) is acyclic, isomorphic

to the truncation k
d0−→ k of (6). We conclude that H∗(B∗

Mag(0), δMag) = 0 while

H∗(B∗
Mag(0), δMag) = H1(B∗

Mag(0), δMag) ∼= k.

3. Homotopy type of B(1) – surprises continue

In this section we study, as a next step toward the understanding of BP, the homotopy type

of the associative dg-algebra BP(1) = (B∗
P
(1), δP). Since the operad P! is a module, in the sense

of [24], over itself, it makes sense to consider the space EndP!(P!) of all P!-module endomorphisms

α : P! → P!. Very crucially,

(7) EndP!(P!) ∼= k,

because each α ∈ EndP!(P!) is uniquely determined by the value α1(1) ∈ P!(1) ∼= k and, con-

versely, for each ϕ ∈ k the homomorphism α := ϕ · 11P! is such that α1(1) = ϕ.

Proposition 18. There is a canonical identification of associative unital algebras

(8) H0(B∗
P
(1), δP) ∼= EndP!(P!) ∼= k.

Proof. Since there are no elements in negative degrees,

H0(BP(1)) = Ker
(
δ : B0

P
(1) → B1

P
(1)

)
.

By definition, elements of the kernel Ker(δ) are natural chain maps

{ϕm : Cm
P (A;A) → Cm

P (A;A)}m≥0.

As explained in Example 36, the naturality of ϕm means that it is induced by a Σm+1-equivariant

map αm+1 : P!(m + 1) → P!(m + 1) . It is easy to verify that the collection {αm} determines a
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chain map if and only if it assembles into a P!-module endomorphism α : P! → P!.

The following example shows that the dg-associative algebra BP(1) might in general have

nontrivial cohomology in positive degrees.

Example 19. Let Sym be the operad describing algebras with one commutative bilinear multi-

plication and no axioms. Explicitly, Sym is the free operad generated by the trivial representation

of Σ2 placed in arity two. It is a Koszul quadratic operad whose quadratic dual Sym ! is given by

Sym !(1) = k, Sym !(2) = sgn2 (the signum representation of Σ2), and Sym !(m) = 0 for m ≥ 3.

The cohomology of a Sym-algebra A = (A, · ) is the cohomology of the two-term complex

(which should be interpreted as a truncation of the Harrison complex)

Lin(A,A)
d

−→ Lin(S2A,A),

where S2A is the second symmetric power of A. The differential d is given by the usual formula

(dφ)(a, b) := a · φ(b) − φ(a · b) + φ(b) · a,

for φ ∈ Lin(A,A) and a, b ∈ A.

We are going to describe the dg-algebra B∗
Sym(1). Let α be the projection of Lin(A,A) ⊕

Lin(S2A,A) onto Lin(A,A) and β the projection onto Lin(S2A,A). Let u and v be degree +1

operations given by

u(φ)(a, b) := a · φ(b) + φ(a) · b and v(φ)(a, b) := φ(a · b),

for φ ∈ Lin(A,A) and a, b ∈ A. Then clearly B0
Sym(1) is the semisimple algebra k⊕k spanned by

α and β, and the space B1
Sym(1) is two-dimensional, spanned by u and v. The higher Bi

Sym(1) are,

for i ≥ 2, trivial. To describe the multiplication in B∗
Sym(1), it is enough to specify how B0

Sym(1)

acts on B1
Sym(1). This action is given by

αb = 0 = bβ and bα = b = βb, for b ∈ B1
Sym(1).

The differential δSym of B∗
Sym(1) acts by

δα = −δβ = u− v, δu = δv = 0.

The cohomology of (B∗
Sym(1), δSym) can be easily calculated,

H∗(B∗
Sym(1)) ∼= k ⊕W,

where W is the vector space spanned by the class [u]. We leave as a simple exercise to prove that

there exist a quasi-isomorphism H∗(B∗
Sym(1)) → B∗

Sym(1). The dg-associative algebra BSym(1) is

therefore formal .

Here is a baby version of Problem 1:

Problem 20. Describe the homotopy type of the unital differential graded associative algebra

BP(1) = (B∗
P
(1), δP). In particular, calculate the cohomology of BP(1).

We expect that the homotopy type of BP(1) is that of k for all “reasonable” operads, though

we do not know what “reasonable” means – the operad Sym of Example 19 seems reasonable

enough, yet the homotopy type of BSym(1) is nontrivial. Let us close this section by formulating:

Problem 21. Which property of the operad P implies that the dg associative algebra (B∗
P
(1), δP)

has the homotopy type of k?
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4. The operad H0(BP) and the intrinsic bracket

It is well-known [25, 31] that the chain complex C∗
P
(A;A) always carries a natural dg Lie

algebra structure given by the intrinsic bracket . The easiest way to construct such a bracket is to

identify C∗
P
(A;A) with the dg Lie algebra Coder ∗(F c

P!(↓A)) of coderivations of the cofree nilpotent

P!-coalgebra cogenerated by the desuspension ↓A as it was done in [26, Definition II.3.99]. In

this way we obtain a natural homomorphism

(9) I : (Lie, 0) → (BP, δP)

of dg operads. If P is the symmetrization of a non-Σ operad P, then Im(I) ⊂ BP, therefore

the map I of (9) factorizes through the natural inclusion (BP, δP) ↪→ (BP, δP). Computational

evidences lead us to:

Conjecture 22. The natural homomorphism I : (Lie, 0) → (BP, δP) induces an isomorphism of

operads

H0(BP) ∼= Lie,

for an arbitrary nontrivial quadratic Koszul P.

We were able to verify Conjecture 22 for P = Lie, that is, to prove

(10) H0(BLie) ∼= Lie.

This isomorphism turned out to be related to a certain characterization of free Lie algebras inside

free pre-Lie algebras. More precisely, let preL(X) denote the free pre-Lie algebra generated by

a set X. The commutator of the pre-Lie product makes preL(X) a Lie algebra. Let L(X) ⊂

preL(X) be the Lie algebra generated by X in preL(X). It is not hard to see that L(X) is in

fact isomorphic to the free Lie algebra on X, see also [6]. Then (10) is implied by a very explicit

characterization of the subspace L(X) of preL(X).

Similarly, the conjectured isomorphism H0(BAss) ∼= Lie can be translated into a certain

characterization of free Lie algebras inside free brace algebras. We were also able to prove that,

for an arbitrary quadratic Koszul operad

(11) H0(BP(2)) ∼= sgn2,

the signum representation of Σ2, by describing H0(BP(2)) in terms of suitably defined pairings

P! ⊗ P! → P!.

Let us close this section by a couple of remarks which will be useful in the proof of Propo-

sition 26. As we recalled at the beginning of this section, there is a canonical isomorphism

C∗
P
(A;A) ∼= Coder∗(F c

P!(↓A)). It is well-known that coderivations of a cofree nilpotent algebra

form a natural pre-Lie algebra [26, II.3.9], therefore one has a natural homomorphism of non-dg

operads

(12) preI : preLie → BP.

The map (9) is then the composition

Lie −→ preLie
preI
−→ BP

of preI with the anti-symmetrization map Lie → preLie.
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Figure 3. Equation (15) for n = 3.

5. The cup products

The central statement of this section is Theorem 23 that claims that the suspension s(P⊗P!)

(see A.3) of the operad (P ⊗ P!) acts on C∗
P
(A;A), and Theorem 24 that characterizes which

elements of s(P ⊗ P!) act via chain maps. Observe that the operad s(P ⊗ P!) need not be

quadratic even when P is.

Theorem 23. There is a canonical action of the operad s(P ⊗ P!) on the graded vector space

C∗
P
(A;A), via natural operations. This action can be interpreted as an inclusion of non-differential

graded operads

(13) cup : s(P ⊗ P
!) ↪→ BP.

Proof. The proof relies on the notation introduced/recalled in A.6 and A.5. The “tautological”

action of the endomorphism operad EndA on A tensored with the action of P! on itself makes the

graded vector space C̃∗
P
(A;A) =

⊕
m≥0 C̃

m
P

(A;A) an s(EndA ⊗ P!)-algebra. It is straightforward

to prove that this action induces, via

(14) t(f1, . . . , fn) := Aver
(
t(ι(f1), . . . , ι(fn))

)
,

for t ∈ s(EndA ⊗P!)(n) and f1, . . . , fn ∈ C∗
P
(A;A), an action of s(EndA ⊗P!) on the graded vec-

tor space C∗
P
(A;A). Suppose that A is a P-algebra, with the structure given by α : P → EndA.

Action (13) is obtained by composing action (14) with the homomorphism s(α⊗11) : s(P⊗P!) →

s(EndA ⊗ P!). An alternative description of (13) is given in Example 38 of Section 7.

We use inclusion (13) to view s(P⊗P!) as a suboperad of BP. Elements of s(P⊗P!) need not

be δP-closed in BP; let ZP ⊂ s(P ⊗ P!) denote the suboperad of δP-cocycles. In Proposition 24,

which describes ZP explicitly, we use the canonical element χ introduced in Definition 8.

Theorem 24. The suboperad ZP of δP-closed elements in s(P ⊗ P!) is characterized as follows:

t ∈ s(P ⊗ P!)(n) belongs to ZP(n) if and only if

(15) χ ◦2 t + t ◦1 χ+ (t ◦2 χ)(12) + (t ◦3 χ)(123) + · · · + (t ◦n χ)(123 · · ·n) = 0,

where (123 · · ·k) ∈ Σn+1 is the cycle
(

1 2 3 · · · k k + 1 · · · n + 1
2 3 4 · · · 1 k + 1 · · · n + 1

)
.

The proof is a completely straightforward calculation. We recommend as an exercise to verify

that solutions of (15) are indeed closed under operadic composition. The meaning of equation (15)

should be clear from Figure 3. The importance of the operad ZP is explained by
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Corollary 25. The map cup of (13) induces a canonical map (denoted again cup)

(16) cup : ZP → H∗(BP, δP),

therefore H∗
P
(A;A) is a natural ZP-algebra.

From reasons which become clear later we call operations induced by elements of ZP the cup

products. The following proposition in which Lie is the operad for Lie algebras (see A.2) shows

that the operad ZP is always nontrivial (provided P 6= 1) while the map (16) is never monic.

Proposition 26. The operad ZP contains the canonical element χ. There exists a unique map

L : sLie → ZP that sends the generator sλ ∈ sLie(2) into χ ∈ ZP(2). All elements in the image

of this map are δP-cohomologous to zero in BP.

Proof. Recall [13, Corollary 2.2.9(b)] that, for each quadratic operad P, there exits a morphism

of operads Lie → P ⊗ P! that takes the generator λ ∈ Lie(2) into the identity operator in

P(2)⊗P(2)# ∼= P(2)⊗P!(2). Let L : sLie → s(P⊗P!) be the suspension of this morphism. Let

us prove, using Theorem 24, that χ ∈ ZP(2). Equation (15) for t = χ reads

χ ◦2 χ + χ ◦1 χ + (χ ◦2 χ)(12) = 0,

which can be written, due to the symmetry (4) of χ, as the Jacobi identity for a degree 1

“multiplication” χ:

(17) χ ◦1 χ+ (χ ◦1 χ)(123) + (χ ◦1 χ)(132) = 0,

or, pictorially,

+ + = 0

3 1 21 2 32 3 1

χχχ
χχχ

•••
• • •
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But (17) is satisfied, because χ = L(sλ) by definition, and sλ ∈ sLie(2) satisfies the same

condition in sLie. The inclusion Im(L) ⊂ ZP follows from the fact that Im(L) is generated by

χ and that ZP is a suboperad of s(P ⊗ P!).

Let us prove that all elements in the image of L are δP-cohomologous to zero. Let ` ∈ preLie(2)

be the generator of the quadratic operad preLie for pre-Lie algebras and let ◦ := preI(`) ∈ B0
P
(2),

where preI : preLie → BP is the map considered in (12) at the end of Section 4. It is easy to

verify that then χ = δP(◦). This finishes the proof of Proposition 26, because Im(L) is generated

by χ.

Suppose that P is the symmetrization of a non-Σ operad P. Given t ∈ s(P ⊗ P!)(n) as

in Theorem 24, cup(t) ∈ BP(n) if and only if t belongs to the Σn-closure of s(P ⊗ P
!)(n) in

s(P ⊗ P!)(n), that is, if t = tσ for some t ∈ s(P ⊗ P
!)(n) and σ ∈ Σn. In the following non-Σ

version of Theorem 24, χ ∈ s(P⊗P
!)(2) is the non-Σ canonical element introduced in Section 2.

Theorem 27. An element t ∈ s(P ⊗ P
!)(n) ⊂ s(P ⊗ P!)(n) belongs to ZP(n) if and only if

(18) χ ◦2 t = t ◦1 χ = t ◦2 χ = · · · = t ◦n χ = χ ◦1 t,

see Figure 4.
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Figure 4. Equation (18) for n = 3.

Proof of Theorem 27 is a straightforward verification. The proof of the following proposition

is similar to that of Proposition 26.

Proposition 28. Let P be the symmetrization of a non-Σ operad P. Then χ ∈ ZP and there

exists a unique map A : sAss → ZP defined by A(sµ) := χ, where sµ ∈ sAss(2) is the suspension

of the generator µ (see A.2). Moreover, the diagram

sLie ZP

sAss

-

? �������*

L

A

where L is as in Proposition 26, with the vertical map given by the anti-commutator of the

associative product, commutes.

Example 29. – Hochschild cohomology. Let P = Ass be the operad for associative algebras.

Then s(P⊗P!) = s(Ass⊗Ass) and a simple calculation reveals that the map A of Proposition 28

is the suspended diagonal s∆ : sAss → s(Ass ⊗Ass) and that ZAss = Im(A). Therefore

ZAss
∼= sAss.

The generator sµ ∈ sAss(2) is mapped to the “classical” cup product f, g 7→ f ∪g of Hochschild

cochains [9], and the generator sλ ∈ sLie(2) to the anti-commutator of this cup product:

f, g 7→ f ∪ g + (−1)|f ||g|g ∪ f

which cohomologous to zero, because the cup product of Hochschild cochains is homotopy com-

mutative [9, Theorem 3].

Example 30. – Chevalley-Eilenberg cohomology. If P = Lie is the operad for Lie algebras, then

s(P ⊗ P!) = s(Lie ⊗ Com) ∼= sLie and we see immediately that

(19) ZLie
∼= sLie = Im(L).

The generator sλ ∈ Lie(2) is mapped to the product f, g 7→ {f, g}, which is cohomologous to

zero, see [22, Exercise 7].

Example 31. – Harrison cohomology. Here P = Com is the operad for commutative associative

algebras and s(P ⊗ P!) = s(Com ⊗ Lie) ∼= sLie, therefore, as in Example 30,

(20) ZCom
∼= sLie = Im(L).

Equations (19) and (20) illustrate the obvious self-duality of the space of cup products:

ZP!
∼= ZP,

compare Conjecture 5.
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Example 32. If D = Ass ∗ Ass is as in Example 15, then

ZD = sAss ∨ sAss.

Let us describe products corresponding to the generators of the 4-dimensional vector space

(sAss ∨ sAss)(2) = sAss(2) ⊕ sAss(2) ∼= ↑ k[Σ2]⊕ ↑ k[Σ2].

Recall that C∗
D(A;A) is the total complex of the meager bicomplex in Figure 2. Let ∪1

(resp. ∪2) be the cup product in the horizontal (resp. vertical) subcomplex in Figure 2. Let π1

(resp. π2) be the projection of C∗
D(A;A) onto the horizontal (vertical) subcomplex. Likewise,

let ι1 (resp. ι2) be the inclusion. Although neither πi, ιi nor ∪i are chain maps (i = 1, 2), the

compositions

f ∪1 g := ι1(π1f ∪1 π1g) and f ∪2 g := ι2(π2f ∪2 π2g)

are chain operations. The generators of sAss(2)⊕sAss(2) then correspond to the four operations

f, g 7→ f ∪1 g, f, g 7→ f ∪2 g, f, g 7→ g ∪1 f and f, g 7→ g ∪2 f.

The combination

(f ∪1 g + f ∪2 g) + (−1)|f ||g|(g ∪1 f + g ∪2 f)

is cohomologous to zero and the image T (ZD(2)) of ZD in H1(BD(2)) is easily seen to be 3-

dimensional.

6. Operad BAss and the Deligne conjecture

In this section we recall some results related to BAss and the Deligne conjecture. Let us make

a necessary comment about our degree convention. We use the grading such that the intrinsic

bracket of Section 4 has degree 0 in B∗
P
(2), while the n-fold cup products of Section 5 are of

degree n− 1 in B∗
P
(n). In the literature related to the Deligne conjecture, the convention under

which the intrinsic bracket has degree 1 and the n-fold cup products are of degree 0 is often used.

These two conventions are tied by the following regrading operator:

Reg(B∗
P
(n)) := Bn−1−∗

P
(n).

In what follows we identify operads that differ only by the above regrading. In particular,

the operad Ger for Gerstenhaber algebras becomes identified with the operad Braid for braid

algebras (also called 1-algebras), see A.4.

Let us recall that a topological operad A is an E2-operad if it has the homotopy type of

the little discs operad D2 [27]. According to the Formality Theorem [34], the operad S∗(A) of

singular chains on such an operad has the homotopy type of the operad Braid for braid algebras.

(i) D. Tamarkin and B. Tsygan studied in [32, Section 3] a certain operad F = {F (n)}n≥1

of natural operations on the cosimplicial Hochschild complex C•(X,X) of a topological unital

monoid X. The n-th space of this cosimplicial set is the space Cont(X×n, X) of continuous maps

from the n-th cartesian power of X to X. For each n ≥ 1, F (n) is a functor (∆op)n ×∆ → Sets.

They then considered a topological operad E = {E(n)}n≥1 whose pieces are the topological

realizations of these functors and claimed that E is an E2-operad.
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It is not difficult to see that the operad CN ∗(F ) of normalized chains of F coincides with the

operad {BAss(n)}n≥1 (our BAss without constants). Since (B∗
Ass(0), δAss) is acyclic (see Exam-

ple 12), we could conclude that BAss has the homotopy type of Ger , but we must bear in mind

that the arguments in [32] were merely sketched.

(ii) J.E. McClure and J.H. Smith considered in [29] a dg-suboperad S2 of their “sequence”

operad S and proved that S2 naturally acts on the Hochschild cochain complex of an associative

algebra. In our terminology this means that they constructed a canonical map S2 → BAss . They

then verified the Deligne conjecture by showing, using a result of [1], that S2 has the homotopy

type of the singular chain complex S∗(D2) of the little discs operad. Their proof is a very reliable

one.

(iii) M. Kontsevich and Y. Soibelman [20] introduced a “minimal operad” M naturally acting

on the Hochschild cochain complex of an A∞-algebra. In our terminology, M was a suboperad of

BshAss generated by braces and cup products. They then argued that M has the homotopy type

of the operad of suitably defined piecewise algebraic chains on the operad FM2 of the Fulton-

MacPherson compactification of the configuration space of points in R
2. Since FM2 is, by [30,

Proposition 3.9], an E2-operad, they concluded that M has the homotopy type of Ger .

(iv) R.M. Kaufmann realized in [17] that the cellular chains CC ∗(Cact
1) on his operad-up-

to-homotopy Cact 1 of spineless normalized cacti is a honest operad which naturally acts on the

Hochschild cochain complex, via braces and cup products. By comparing Cact 1 to the operad

Cact of spineless (non-normalized) cacti, he concluded that CC∗(Cact
1) is a model for chains on

the little discs operad D2.

All the proofs of the Deligne conjecture mentioned above use some special features of asso-

ciative algebras and E2-operads, such as the cosimplicial structure of the Hochschild cochain

complex, Fiedorowicz’ detection principle, or a relation to the Fulton-MacPherson and cacti

operads. None of these features are available for a general operad P, we therefore think that

the analysis of the homotopy type of BP for a general Koszul quadratic P is substantially more

difficult than the analysis of BAss .

Let us mention that there are other approaches to the Deligne conjecture, as D. Tamarkin’s

proofs that use the Etingof-Kazhdan quantization [14, 33], or those based on a suitable filtra-

tion of the Fulton-MacPherson compactification FM2, see E. Getzler and J.D.S. Jones [12] or

A.A. Voronov [36].

7. Natural operations

Let use recall the following definitions which can be found for example in [26, Section II.1.5].

By a tree we mean a connected graph T without loops. A valence of a vertex v of T is the

number of edges adjacent to v. A leg or leaf of T is an edge adjacent to a vertex of valence one,

other edges of T are interior . We in fact discard vertices of valence one at the endpoints of the

legs, therefore the legs become “half-edges” having only one vertex. By a rooted or directed tree

we mean a tree with a distinguished output leg called the root . The remaining legs are called

the input legs of the tree. A tree with a input legs labelled by elements of the set {1, 2, . . . , a} is

called an a-tree. A rooted tree is automatically oriented , each edge pointing towards the root.

The edges pointing towards a given vertex v are called the input edges of v, the number of these
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input edges is then the arity of v denoted ar(v). Vertices of arity one are called unary, vertices

of arity two binary, vertices of arity three ternary, etc.

Notation. Let n,m and m1, . . . , mn be non-negative integers. In the rest of this section, i will

always denote an integer between 0 and n, a := m+1 and ai := mi +1. We will also assume the

notation introduced in A.6.

An n-linear natural operation

U : Cm1

P
(A;A) ⊗ · · · ⊗ Cmn

P
(A;A) → Cm

P
(A;A)

is given by the following data.

(i) A rooted a-tree T with n white vertices w1, . . . , wn of arities a1, . . . , an, and k at least

binary black vertices, k ≥ 0.

(ii) A linear order on the set of input edges of each white vertex of T .

(iii) A decoration of black vertices of T by elements of P.

(iv) A linear map Φ : sP!(a1) ⊗ · · · ⊗ sP!(an) → sP!(a).

Given the above data and fi ∈ Cmi

P
(A;A), the value U(f1, . . . , fn) ∈ Cm

P
(A;A) is defined as

follows. Let us decompose

fi =
∑

κi

φκi

i ⊗ qi
κi
∈ [Lin(A⊗ai , A) ⊗ sP

!(ai)]
Σai ∼= Cmi

P
(A;A),

where φκi

i ∈ Lin(A⊗ai , A), qi
κi

∈ sP!(ai) and κi is a summation index. Since the inputs of

white vertices are linearly ordered, each φκi

i determines a decoration of the white vertex wi

by an element of Lin(A⊗ai , A) = EndA(ai). Recall that A is a P-algebra with the structure

homomorphism α : P → EndA. Applying α to the decorations of the black vertices we decorate

also black vertices with elements of EndA. So T is now a tree with all vertices decorated by EndA.

The composition in the operad EndV along T [13] determines, for each k1, . . . , kn, the element

T (φκ1

1 , . . . , φ
κn

n ) ∈ Lin(A⊗a, A).

Let

Ũ(f1, . . . , fn) :=
∑

κ1,...,κn

T (φκ1

1 , . . . , φ
κn

n ) ⊗ Φ(q1
κ1
, . . . , qn

κn
) ∈ Lin(A⊗a, A) ⊗ sP

!(a) ∼= C̃m
P

(A;A).

Finally, let U(f1, . . . , fn) := Aver(Ũ(f1, . . . , fn)) ∈ Cm
P

(A;A). It follows from an elementary

combinatorics of trees that

deg(U) = ar(b1) + · · · + ar(bk) − k,

therefore deg(U) is always non-negative and deg(U) = 0 if and only if T has no black vertex.

Definition 33. Let BP := {BP(n)}n≥0 be the operad spanned by all natural operations U = U(T,Φ)

in the above sense. Since the differential dP of C∗
P
(A;A) is itself a natural operation living in

B1
P
(1), it induces a differential δP on BP by the standard formula

δP(U)(f1, . . . , fn) := dPU(f1, . . . , fn) − (−1)|U |
∑

1≤i≤n

(−1)|f1|+···+|fi−1|U(f1, . . . , dPfi, . . . , fn),

making BP = (B∗
P
, δP) a dg-operad.
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Figure 5. The tree defining a constant in Bm
P

(0) (left) and a unary operation in
B0

P
(1) (right), where m = a+ 1 as always.

Heuristically, the value U(T,Φ)(f1, . . . , fn) is given by inserting fi at the vertex wi of T , 1 ≤ i ≤

n, and then performing the composition along Φ. The operadic composition of BP is the vertex

insertion similar to that of [2] and the symmetric group permutes the labels of white vertices. In

the following definition we introduce a non-Σ version of BP.

Definition 34. Suppose P is the symmetrization of a non-Σ operad P. Let BP be the dg-suboperad

of BP spanned by natural operations U(T,Φ) as in Definition 33 such that the tree T is planar, with

black vertices decorated by elements of P, and the map Φ such that

Φ(sP
!(a1) ⊗ · · · ⊗ sP

!(an)) ⊂ sP
!(a).

Example 35. – Constants. Let us see what happens if T is the a-corolla with one black vertex

decorated by p ∈ P(a) and no white vertices as in Figure 5. The map Φ : k → sP!(a) is given

by specifying an element ϕ := Φ(1) ∈ sP!(a) and Ũ determined by this Φ equals α(p) ⊗ ϕ ∈

C̃m
P

(A;A). Since α is equivariant,

Aver(α(p) ⊗ ϕ) = (α⊗ 11)(Aver(p⊗ ϕ))

therefore U := Aver(α(p) ⊗ ϕ) ∈ Cm
P

(A;A) is parametrized by an element in the image of the

averaging map

Aver : P(a) ⊗ sP
!(a) → (P(a) ⊗ sP

!(a))Σa,

in other words,

Bm
P (0) ∼= s(P ⊗ P

!)(a)Σa, m ≥ 0.

It is equally easy to see that, for a quadratic Koszul non-Σ operad P,

Bm
P (0) ∼= s(P ⊗ P

!)(a), m ≥ 0.

Example 36. – Unary operations of degree 0. Now T is an a-corolla with one white planar

vertex and no black vertices, with input legs labelled σ(1), . . . , σ(a), σ ∈ Σa, as shown in Figure 5,

and Φ : sP!(a) → sP!(a) is a linear map. If

f =
∑

κ

φκ ⊗ qκ ∈ [Lin(A⊗a, A) ⊗ sP
!(a)]Σa ∼= Cm

P (A;A),

then U(f) = Aver(
∑

κ φ
κσ−1 ⊗ Φ(qκ)). Since f =

∑
φκ ⊗ qκ is Σa-stable,

U(f) =
∑

φκ ⊗ Aver(Φκ)(qκ).

Therefore U(f) is given by a Σa-equivariant map Ψ :=↓a−1 Aver(Φ) : P!(a) → P!(a), thus

(21) B0
P
(1) ∼= LinΣ(P!,P!),
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Figure 6. The tree defining the cup product.

the space of all collections {ψn : P!(n) → P!(n)}n≥0 of equivariant maps. We leave as an exercise

to verify that, for a non-Σ quadratic Koszul operad P,

B0
P
(1) ∼= Lin(P!,P!).

Example 37. – Projections. Let pm ∈ B0
P
(1) be given, in identification (21), by Ψ ∈ LinΣ(P!,P!)

defined as

Ψ|P!(a) =

{
11P!(a), for a = m+ 1 and
0, othewise.

Clearly, pm is the projection C∗
P
(A;A) →→ Cm

P
(A;A). The system of all these projections makes

BP an Z
≥0-colored operad, where Z

≥0 is the set of non-negative integers. Since these projections

do not commute with dP (that is δP(pm) 6= 0 for a generic P), (BP, δP) is not a dg Z
≥0-colored

operad.

Example 38. – Cup products. In this example we explain how an element

t = p⊗ sq ∈ P(n) ⊗ sP
!(n) ∼= s(P ⊗ P

!)(n)

determines a natural operation in Bn−1
P

(n). Let T be as in Figure 6, with the black vertex

decorated by p ∈ P(n), and let the linear map Φ : sP!(a1) ⊗ · · · ⊗ sP!(an) → sP!(a) be given by

the operadic composition in sP!:

Φ(sq1, . . . , sqn) := sq(sq1, . . . , sqn), qi ∈ P
!(ai), 1 ≤ i ≤ n.

It is more or less clear that the natural operation U(T,Φ) determined by the above data agrees with

the cup product cup(t) of Theorem 23. We recommend as another exercise to verify that also

the intrinsic bracket described in (9) is given by natural operations in the sense of this section.

Example 39. Let us describe all natural operations C1
P
(A;A)⊗C1

P
(A;A) → C2

P
(A;A) for some

particular choices of P.

(i) Hochschild cohomology. For P = Ass, C1
P
(A;A) = Lin(A⊗2, A), C2

P
(A;A) = Lin(A⊗3, A),

and the only natural operations C1
P
(A;A) ⊗ C1

P
(A;A) → C2

P
(A;A) are linear combinations of

f, g → (f ◦1 g)σ, f, g → (f ◦2 g)σ, f, g → (g ◦1 f)σ, f, g → (g ◦2 f)σ, σ ∈ Σ3,

where ◦1, ◦2 are Gerstenhaber-type products [9] given by

(22) (u ◦1 v)(a, b, c) := u(v(a, b), c)), (u ◦2 v)(a, b, c) := u(a, v(b, c)),

for u, v ∈ C2
P
(A;A), a, b, c ∈ A, and σ ∈ Σ3 permutes the factors of A⊗3 in the usual way.

Operations belonging to B0
Ass(2) are linear combinations of the operations (22) with σ = 113, the

unit of Σ3.
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(ii) Chevalley-Eilenberg cohomology. If P = Lie, then C1
P
(A;A) = Lin(∧2, A), C2

P
(A;A) =

Lin(∧3A,A), where ∧nA denotes the n-th exterior power. The only natural operations C1
P
(A;A)⊗

C1
P
(A;A) → C2

P
(A;A) are linear combinations of

f, g → f ◦ g and f, g → g ◦ f,

where

(u ◦ v)(a, b, c) := u(v(a, b), c) + u(v(b, c), a) + u(v(c, a), b)

for u, v ∈ C2
P
(A;A) and a, b, c ∈ A.

(iii) Harrison cohomology. If P = Com, then

C1
P(A;A) = {u ∈ Lin(A⊗2, A); u(a, b) − u(b, a) = 0}

and C2
P
(A;A) consists of all w ∈ Lin(A⊗3, A) such that

w(a, b, c) − w(b, a, c) + w(b, c, a) = w(a, b, c) − w(a, c, b) + w(c, a, b) = 0,

for a, b, c ∈ A. Natural operations C1
P
(A;A) ⊗ C1

P
(A;A) → C2

P
(A;A) are linear combinations of

f, g → f ◦ g and f, g → g ◦ f,

where

u ◦ v := u(v(a, b)c) − u(v(b, c), a),

for u, v ∈ C2
P
(A;A) and a, b, c ∈ A.

Appendix: Notations, conventions and background material

A.1. In this note, an operad means an operad in the category of differential graded (dg) vector

spaces, that is, a sequence P = {P(n)}n≥0 of right Σn-modules with structure operations

γ : P(n) ⊗ P(k1) ⊗ · · · ⊗ P(kn) → P(k1 + · · · + kn),

for n ≥ 1 and k1, . . . , kn ≥ 0, and a unit map η : k → P(1) that satisfy the usual axioms [27, 21].

Instead of γ(p ⊗ p1 ⊗ . . . ⊗ pn) we will often write γ(p, p1, . . . , pn) or p(p1, . . . , pn). Recall [24]

that operads can be equivalently defined using the ◦i-operations

◦i : P(m) ⊗ P(n) → P(m+ n− 1)

defined, for m,n ≥ 0, 1 ≤ i ≤ m, by

p ◦i q := γ(p⊗ e⊗(i−1) ⊗ q ⊗ e⊗m−i),

where e := η(1).

If we remove from the above definition all references to the symmetric group actions, we get

a definition of a non-Σ operad . Each non-Σ operad P generates a unique (usual) operad P such

that P(n) ∼= P(n) ⊗ k[Σn], n ≥ 0.

A.2. For each set of operations E, there exists the free operad Γ(E) generated by E [26, Proposi-

tion II.1.92]. Let µ denote a bilinear operation placed in degree 0. The operad Ass for associative

algebras is the quotient

Ass := Γ(µ)/(µ ◦1 µ− µ ◦2 µ),

where (µ ◦1 µ− µ ◦2 µ) denotes the operadic ideal generated by the associativity axiom for µ.
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If λ is a skew-symmetric bilinear operation, then the operad for Lie algebras is the quotient

Lie := Γ(λ)/(Jacobi(λ)),

where

Jacobi(λ) :=
∑

σ∈C3

(λ ◦1 λ)σ

with the summation taken over the order 3 cyclic subgroup C3 of Σ3, denotes the Jacobi identity

for λ.

Finally, for an arbitrary differential graded vector space V , there is the endomorphism operad

EndV = {Lin(V ⊗n, V )}n≥0, with structure operations given as the usual composition of multi-

linear maps. A P-algebra is then a homomorphism α : P → EndV . We sometimes call α also an

action of P on V .

A.3. The suspension sA = {sA(n)}n≥0 of a Σ-module A = {A(n)}n≥0 is defined by

sA(n) := ↑n−1A(n) ⊗ sgnn,

where sgnn denotes the signum representation of Σn, see [26, Definition II.3.15]. If P is an operad,

then the collection sP carries a canonical induced operad structure and the operad sP is called

the operadic suspension of P. For any two operads P and Q,

s(P ⊗ Q) ∼= sP ⊗ Q ∼= P ⊗ sQ.

A.4. An (m,n)-algebra is [8, Example 9.4] a graded vector space A together with two bilinear

maps, −∪− : A⊗A → A of degree m, and [−,−] : A⊗A → A of degree n (m and n are natural

numbers), such that, for any homogeneous a, b, c ∈ A,

(i) a ∪ b = (−1)|a|·|b|+m · b ∪ a,

(ii) [a, b] = −(−1)|a|·|b|+n · [b, a],

(iii) − ∪− is associative in the sense that

a ∪ (b ∪ c) = (−1)m·(|a|+1) · (a ∪ b) ∪ c,

(iv) [−,−] satisfies the following form of the Jacobi identity:

(−1)|a|·(|c|+n) · [a, [b, c]] + (−1)|b|·(|a|+n) · [b, [c, a]] + (−1)|c|·(|b|+n) · [c, [a, b]] = 0,

(v) the operations − ∪ − and [−,−] are compatible in the sense that

(−1)m·|a|[a, b ∪ c] = [a, b] ∪ c+ (−1)(|b|·|c|+m)[a, c] ∪ b.

(0, 1)-algebras were considered in [12] under the name 2-algebras or braid algebras. The cor-

responding operad Braid is isomorphic to the homology of the little discs operad D2, Braid ∼=
H∗(D2). Following [11, Section 10], we call (1, 0)-algebras Gerstenhaber algebras, though the ter-

minology is not unique, compare for instance [10, Subsection 10.2] where a Gerstenhaber algebra

means a (0,−1)-algebra.

A.5. Let M be a right module over a finite group G. We denote, as usual

MG := {m ∈M ; mg = g for all g ∈ G} and MG :=
M

(m−mg; m ∈M, g ∈ G)
.
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Let Aver : M →MG be the “averaging” map given by

Aver(m) :=
1

|G|

∑

g∈G

mg.

It is a standard fact that the composition πι of the projection π : M →→ MG with the inclusion

ι : MG ↪→M is the identity and that Aver is a right inverse to ι.

A.6. Let us recall the operadic cochain complex and introduce some useful notations. As a

graded vector space, the operadic cochain complex is defined by [26, Definition II.3.99]:

(23) Cn−1
P

(A;A) =
[
Lin((↓A)⊗n, ↓A) ⊗ P

!(n)
]Σn
, n ≥ 1,

where ↓ A denotes the desuspension of the graded vector space A. It will be convenient to denote

C̃n−1
P

(A;A) := Lin((↓A)⊗n, ↓A) ⊗ P
!(n),

so that Cn−1
P

(A;A) ∼= C̃n−1
P

(A;A)Σn . The averaging over the Σn-action defines an epimorphism

Aver : C̃n−1
P

(A;A) →→ Cn−1
P

(A;A)

of graded modules which is a left inverse to the inclusion

ι : Cn−1
P

(A;A) ↪→ C̃n−1
P

(A;A).

We will often use the following canonical isomorphisms of graded Σn-modules:

C̃n−1
P

(A;A) = Lin((↓A)⊗n, ↓A) ⊗ P
!(n) ∼= ↑⊗n−1 (Lin(A⊗n, A) ⊗ P

!(n) ⊗ sgnn)

∼= s(Lin(A⊗n, A) ⊗ P
!(n)) ∼= sEndA(n) ⊗ P

!(n)

∼= EndA(n) ⊗ sP
!(n) ∼= End↓A(n) ⊗ P

!(n).
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