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NONNEGATIVE SOLUTIONS OF THE CHARACTERISTIC
INITIAL VALUE PROBLEM FOR LINEAR PARTIAL
FUNCTIONAL-DIFFERENTIAL EQUATIONS OF
HYPERBOLIC TYPE

A. Lomtatidze, S. Mukhigulashvili, and J. Sremr

ABSTRACT. On the rectangle D = [a, b] X [c, d], the problem on the existence and
uniqueness of a nonnegative solution of the characteristic initial value problem for the
equation

O%u(t, x)
ot Ox
is considered, where ¢ : C(D;R) — L(D;R) is a linear bounded operator and ¢ €
L(D;Ry).

= £(u)(t, ) + q(t, z)

1. INTRODUCTION

On the rectangle D, we consider the linear partial functional-differential equation
of hyperbolic type
0?u(t, x)
Ot Ox
where £ : C(D;R) — L(D;R) is a linear bounded operator and ¢ € L(D;]R). By
a solution of the equation (1.1) is understood a function v € C*(D;R)! satisfying
the equality (1.1) almost everywhere on the set D.

Various initial value problems for the equation (1.1) are studied in literature
(see, e.g., [2,4,7,8] and references therein). We will consider so—called characteristic
initial value problem. In this case, the values of the solution u of (1.1) are prescribed
on both characteristics t = a and = = ¢, i.e., the initial conditions are

= L(u)(t,x) + q(t, x), (1.1)

u(t,c) = p(t) for t € la,b, (1.2)
P(x) for =z € [e,d],

u(a, x)

where ¢ : [a,b] — R and 9 : [¢,d] — R are absolutely continuous functions such that
p(a) = 1p(c).

In this paper, we suggest a new approach to the problem considered which al-
lows us to establish results guaranteeing that the problem (1.1)—(1.3) has a unique
solution and this solution is nonnegative whenever the function ¢ is nonnegative and
the functions ¢, ¥ are nonnegative and nondecreasing. In other words, we will give
some efficient conditions under which every solution of the problem

0?u(t, x)

— > ()t x 14

S > o) 1, ), (14)
2000 Mathematics Subject Classification: 35110, 35L15.

Key words and phrases: Functional differential equation of hyperbolic type, characteristic initial

value problem, nonnegative solution.
'For definition of the set C* (D; R), see Section 2.
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u(a,c) >0, (1.5)
Bugft, ) >0 for almost all ¢ € [a,b], (1.6)
ou(a, )
0 >0 for almost all =z € [c,d] (1.7)
x

is nonnegative. Recall here that by a solution of the problem (1.4)—(1.7) we under-
stand a function v € C* (D; R) satisfying the inequality (1.4) almost everywhere on
the set D and verifying also the conditions (1.5)—(1.7). The results obtained in this
paper will be further used in the study of the question on the unique solvability of
the problem (1.1)—(1.3).

Note also that some analogous results for the first and second order “ordinary”
functional-differential equations are established in [1] and [6], respectively.

To simplify the formulation of the main results we introduce the following defi-
nition.

Definition 1.1. We will say that an operator ¢ € £(D) belongs to the set Sg.(D)
if every solution of the problem (1.4)—(1.7) is nonnegative.

It is well-known that the problem (1.1)-(1.3) has so—called Fredholm property,
i.e., the following theorem is true (see, e.g., [5]).

Theorem 1.1. The problem (1.1)—(1.3) has a unique solution if and only if the
corresponding homogeneous problem

Q*u(t,x)

“ton ((u)(t, ), (1.1o)
u(t,c) =0 for te]a,b], (1.20)
u(a,x) =0 for z € e d] (1.3p)

has only the trivial solution.

Remark 1.1. Let £ € S4e(D). Then it is clear that the homogeneous problem
(1.19)—(1.3p) has only the trivial solution. Therefore, the problem (1.1)—(1.3) is
uniquely solvable for every ¢, ¢, and ¥. Moreover, if the function ¢ is nonnegative
and the functions ¢, 1 are nonnegative and nondecreasing then the solution of the
problem (1.1)-(1.3) is nonnegative.

2. NOTATION AND DEFINITIONS

The following notation and definitions are used throughout the paper.
R is the set of all real numbers, Ry = [0, +o00].
N is the set of all natural numbers.

If z € R then
+ 2 ) T 2 *

D = [a,b] X [¢,d], where —o0 < a < b < +00 and —o0 < ¢ < d < +00.
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C(D; R) is the Banach space of continuous functions u : D — R equipped with
the norm
lullc = max{|u(t, x)| : (t,z) € D}.
C(D;A) = {ue C(D;R) : u(t,z) € Afor (t,x) € D}, where A C R.
L(D;R) is the Banach space of Lebesgue integrable functions p : D — R
equipped with the norm

lele/ Ip(t, )| dtdz.
D

L(D; A) = {p € L(D;R) : p(t,x) € A for almost all (¢t,z) € D}, where A C R.

L(D ) is the set of linear bounded operators ¢ : C(D;R) — L(D;R).

C ([a, B]; A), where A C R, is the set of absolutely continuous functions v :
[a, 5] — A.

C* (D; A) , where A C R, is the set of functions u : D — A admitting the
representation

u(t, z) = vi(t) + vo(z // (s,m)dnds for (t,z)e D,

where v; € C([a,b];R), va € C([c,d];R), and h € L(D;R).
Ct . (la, b[x[c,d[; A) , where A C R, is the set of function u € C(D; A) such that

u € C*([a, bo] x [c,dol; A) for every by €la,b| and dy €]c,d|.

Remark 2.1. One can verify that v € C* (D; R) if and only if v satisfies the following
conditions:

(a) v(t,) € C([e,d];R) for every t € [a,b], v(-,z) € 5([a, b]; R) for every x € [c,d];

(b) ve(t,-) € C([ d};R) for almost all t € [a,b], v,(-,z) € C~'([a,b];R) for almost
all z € [c,d];

(¢) viw € L(D;R).

We should note here that the set C* (D; R) coincide with the class of absolutely
continuous functions of two variables presented, e.g., in [3,7].

Definition 2.1. An operator ¢ € L£(D) is said to be nondecreasing if it maps the
set C(D; R+) into the set L(D; R+). The set of nondecreasing operators we denote
by P(D). We say that an operator ¢ € £(D) is nonincreasing if —¢ € P(D).

Definition 2.2. An operator ¢ € £(D) is called to be an (a, ¢)-Volterra operator if,
for arbitrary rectangle [a,to] x [c, zo] C D and function v € C(D;R) such that

v(t,z) =0 for (t,x) € [a,to] X [c, z0],
the relation
L(v)(t,z) =0 for almost all (t,z) € [a, to] X [c, x0]
holds.

In what follows, the equalities and inequalities with integrable functions are
understood to hold almost everywhere.
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3. MAIN RESULTS

In this section, we establish some efficient conditions for the inclusion ¢ € Su.(D).
Theorems formulated below can be reffered to as theorems on functional—differential
inequalities. One can say also that ¢ € S,.(D) if and only if some kind of maximum
principle holds for the problem (1.1)—(1.3).

Theorem 3.1. Let ¢ € P(D). Then { € Suc(D) if and only if there exists a function
v € C*(D; ]0,400[) such that

62
D) s i) ta) for () eD (3.)
and either
8’yétt, ) >0 for tea,b] (3.2)
or
57(8‘;’ D50 for zeled (3.3)

By a suitable choice of the function v in Theorem 3.1 we can derive several
sufficient conditions under which the inclusion ¢ € S,.(D) is true.

Corollary 3.1. If ¢ € P(D) then each of the following statements guarantees the
inclusion { € Sqe(D):

a) there exist k,m € N and a €0, 1] such that m >k and

pm(t,x) < apg(t,z) for (t,z)e D, (3.4)
where
p1 =1, Piv1 = G(pl) for i€ N, (35)
and .
v)(t,x) e //E(v)(s,n)dnds for (t,z) € D; (3.6)

b) there exists { € P(D) such that

/b/dg(l)(s 1) exp /b/dg 1) (&1, &2)déadéy | dnds < 1 (3.7)
a e ;

s

and the inequality

E(H(v))(t,a:) — L) (t,z)0(v)(t,x) < L(v)(t,z) for (t,xz)€ D (3.8)

holds on the set {v € C(D;R+) cv(-,e0) =0, v(a,-) = 0}, where 0 is defined
by (3.6).

Remark 3.1. The assumption o €]0,1] in Corollary 3.1 a) cannot be replaced by
the assumption a €10, 1] (see Example 7.1).
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Remark 3.2. It follows from Corollary 3.1 a) (for £k = 1 and m = 2) that £ € S,(D)

provided that ¢ € P(D) and
b d
//E(l)(s,n)dnds <1

Proposition 3.1. Let ¢ € P(D) be such that

/b /d (1) (s, m)dnds = 1. (3.9)

Then ¢ € Sqc(D) if and only if the homogeneous problem (1.19)—(1.30) has only the
trivial solution.

Proposition 3.2. Let ¢ € P(D) be an (a,c)—Volterra operator. Then £ € Sgc(D).

Theorem 3.2. Let —¢ € P(D), £ be an (a,c)-Volterra operator, and let there exist
a function v € C}, ([a, b[x[c, d[; Ry satisfying

loc
9*(t, )

BTy <Ul(y)(t,x) for (t,x)€ D, (3.10)
y(t,z) >0 for (t,z) € [a,b]x[e,d[, (3.11)
3’7(%7;,0) <0 for te€/a,b], (3.12)
and
87((9“3; Y20 for zeled (3.13)

Then the operator £ belongs to the set Suc(D).

Remark 3.3. The assumption (3.11) in Theorem 3.2 is essential and cannot be
omitted. Indeed, if there exists a function v € Cf ([a,b[x[c,d[;R;) such that

the conditions (3.10), (3.12), and (3.13) hold and ~(to, o) = 0 for some (to,x0) €
la,b[ x]e,d[, then it can happen that ¢ & S,.(D) (see Example 7.2).

Corollary 3.2. Let —¢ € P(D), ¢ be an (a, c)-Volterra operator, and

b

d
//Iﬁ(l)(s,n)ldnds <1 (3.14)

Then € € Suc(D).

Remark 3.4. The inequality (3.14) in Corollary 3.2 cannot be replaced by the

inequality
b

d
[ [ 1. midnds <1+ (3.15)

a

no matter haw small € > 0 would be (see Example 7.2).
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Theorem 3.3. Let ¢ = ly — {1, where o, 01 € P(D) and {1 is an (a,c)—Volterra
operator. If
60 € Sac(D)v *gl € Sac(D)v (3'16)

then the operator £ belongs to the set Suc(D).

Remark 3.5. The assumption (3.16) in Theorem 3.3 cannot be replaced neither by

the assumption
(1 — 6)50 c Sac('D), —51 c Sac('D)

nor by the assumption
lo € Sue(D), —(1 =€)ty € S4e(D),
no matter haw small ¢ > 0 would be (see Examples 7.3 and 7.4).

Remark 3.6. There is proved in [5] that if a nonincreasing operator belongs to
the set S,c(D) then it is necessarily an (a,c)—Volterra operator. Therefore, in The-
orems 3.2 and 3.3, the assumptions on the operators £ and ¢, respectively, to be
(a, c)-Volterra ones are necessary.

4. PROOFS OF THE MAIN RESULTS

To prove the statements established in Section 3 we will need the following lemmata.
Lemma 4.1. Letv e C* (D;R) and a <t; <ty <b, c<x1 <x0<d. Then

to

2
ov(s,c) ds+/8v(a,77) dnt

’U(tg,l’g) — v(tl,:cl) :/ 85 877

t1 1

t1 xo ta w2

9v(s,n) &v(s,n)

a x1 t1 ¢

to T2

B ov(s,c) ov(a,n)
—/ 95 ds—i—/ an dn+

t1 1
[ ORI Y Y
(s, (s,
+// 95 0n dnder// 35 01 dnds. (4.1)
a x1 t1 ¢

Proof. Since v € C* (D; ]R), the function v admits the representation

t T t x
_ du(s, c) dv(a,n) // 9%v(s,n)
v(t,z) = v(a,c) +/ s ds +/ n dn + 95 dn dnds

a

for (t,z) € D. Therefore,

to to 2

2
v(ta, x2) — v(t1, x2) = /&)gi’c)ds +/ a(;;(g’:)dnds.

t1 t1 ¢
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On the other hand,

T2 t1 w2
[ 9v(a,n) d%v(s,m)
oltraz) — oty = [ Ly [ [ S s
a x1

1

Consequently, the first equality in (4.1) holds. The second equality in (4.1) can be
proved analogously. ]

Lemma 4.2. Let (tg,z9) € D, —¢ € P(D), £ be an (a,c)—Volterra operator, and let
u be a solution of the problem (1.4)—(1.7) satisfying

u(to,a}[)) < 0. (4.2)

Then
max {u(t,z) : (t,z) € [a,to] x [c,z0]} > 0. (4.3)

Proof. Obviously, t9 # a and xy # c. Assume that, on the contrary, (4.3) is not
true. Then
u(t,z) <0 for (t,z) € Do,

where Dy = [a, to] X [¢, o). Since ¢ is an (a, c)—Volterra operator and —¢ € P(D), it
follows from (1.4) that

U (t,x) > L(u)(t,x) >0 for (t,x) € Dy.
Consequently, according to (1.5)—(1.7) and Lemma 4.1, we get
u(to, zo) > u(a,c) >0,
which contradicts (4.2). O

Lemma 4.3. Let £ € P(D). Then { € Sqc(D) if and only if the problem

2o(t, x
a@t(gx) < L(v)(t, ), (4.4)
v(t,e) =0 for té€[a,bl, v(a,z) =0 for x € |c,d] (4.5)

has no nontrivial nonnegative solution?.

Proof. If £ € 8,.(D), then it is clear that the problem (4.4), (4.5) has no nontrivial
nonnegative solution.

Now suppose that the problem (4.4), (4.5) has no nontrivial nonnegative solution
and let u be a solution of the problem (1.4)—-(1.7). We will show that the function
u is nonnegative. Put

t x
a(t,x)://ﬁ([u])(s,n)dnds for (t,z) € D.

?Recall here that by a solution of the problem (4.4), (4.5) is understood a function v € C* (D; R)
satisfying the inequality (4.4) almost everywhere on the set D and verifying also the conditions
(4.5).
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It is clear that o € C* (D;R),

g (t,x) = ([u]-)(t,z) for (t,x) €D, (4.6)
a(t,e)=0 for t¢€ la,bl, ala,z) =0 for =z € e d, (4.7)

and
a(t,z) >0 for (t,z)eD.

By virtue of (1.4), (1.6), (1.7), (4.6), (4.7), and the assumption ¢ € P(D), we get

Wiz (t, ) > (u+ [u]-)(t,x) = l([u]4)(t,z) >0 for (t,z) € D,
we(t,c) >0 for t € J[a,bl, wg(a,z) >0 for z€lcd],

where
w(t,z) =u(t,z) +a(t,x) for (t,x) € D.

Consequently, in view of (1.5), Lemma 4.1 yields
w(t,z) > w(a,c) >0 for (t,x) €D

and thus
[u(t,z)]- < a(t,x) for (t,x) €D (4.8)

because the function « is nonnegative. Now, from (4.6) we get
g (t,x) < l(a)(t,xz) for (t,x) € D.

We have proved that « is a nonnegative solution of the problem (4.4), (4.5). There-
fore, « = 0 and the condition (4.8) yields u(t,z) > 0 for (t,x) € D. Hence
0 € Sue(D). O

Lemma 4.4. Let f € L(D;R+) be such that

b d
//f(s,n)dnds <1. (4.9)
a c
Then there exists (bo,do) € ]a,b]x |c,d] such that
t
[ [ ssminds <1 for (05 € Do, (1) £ Guode), (410)

and

f(t,x) =0 for (t,z) € D\ Dy, (4.11)
where Dy = [a, bp] X [c, dp].
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Proof. If the inequality (4.9) is strict, then the assertion of lemma holds for by = b
and dy = d. Therefore suppose that

b d
//f(s,n)dnds =1. (4.12)
a c
Put
b «z
dp =min < z € [¢,d] : //f(s,n)dnds =1
It is clear that dy > ¢ and
b do b =z
//f(s,n)dndS: 1, //f(s,n)dnds <1 for z € e, dof.
Further, we put
t do
bp =min< t € [a,b] : //f(s,n)dnds =1
Obviously, bg > a and
by do t do

//f(s,n)dnds: 1, //f(s,n)dnds <1 for te€la,byl.

Let Dy = [a, bo] X [¢,dp]. It is easy to verify that the condition (4.10) holds and
// f(t,x)dtdz = 0.
D\Do

Hence (4.11) is also satisfied because the function f is supposed to be nonnegative.
O

Now we are in position to prove the main results given in Section 3.

Proof of Theorem 3.1. First suppose that there exists v € C* (D; 10, —|—c>o[) satisfy-
ing the conditions (3.1) and (3.2) (resp. (3.1) and (3.3)). Let u be a solution of the
problem (1.4)—(1.7). We will show that the function u is nonnegative. Put

A={XeRy: M(t,x) +u(t,z) >0 for (t,z) € D}. (4.13)
Since + is a positive function, we have A # &. Let

Ao = inf A. (4.14)
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Now we put
U)(t, JI) - AOV(L 1’) + U(t,

It is clear that \g > 0, w € C* (D; ]R), and

w(t,z) >0 for

Therefore, by virtue of (1.4), (3.1), and the assumption ¢ € P(D), we get

Wi (t, ) > L(w)(t,z) >

Assume that

xz) for (t,x) € D.

(t,z) € D.

0 for (t,x) € D.

)\() > 0.
Then, it follows from (1.5)—(1.7), (3.2) (resp. (3.3)), and (4.18) that

w(a,z) >0 for =z € led],

(resp. w(t,c) >0 for te€ la,bl], wg(a,z) >0 for =z €lc, d])

Hence, in view of (4.17), Lemma 4.1 yields

w(t,x) > w(a,x) >0

we(t,c) >0 for

for (t,x) € D

t € la,b]

<resp. w(t,z) > w(t,e) >0 for (t ) eD).

Consequently, there exists € € ]0, Ag] such that

w(t,x) > ey(t,x) for (t,x)e D,

ie.,

(Ao —e)y(t,x) +u(t,x) >0 for

(t,x) € D.
Hence, by virtue of (4.13), we get A\g — ¢ € A, which contradicts (4.14).

(4.15)

(4.16)

(4.17)

(4.18)

The contradiction obtained proves that Ao = 0. Consequently, (4.15) and (4.16)

yield
u(t,z) =w(t,z) >0

and thus £ € S,.(D).

for (t,x) eD

Now suppose that £ € S,.(D). Then, according to Remark 1.1, the problem

?y(t, x)
ot ox

v(t,e) =1 for t € [a,b],

=/

has a unique solution v and

~v(t,x) >0 for

(), ),

v(a,z) =1 for

(t,z) € D.

x € [c,d]

By virtue of the assumption ¢ € P(D), the equation (4.19) implies

Yew(t,x) >0 for

(t,z) € D.

(4.19)

(4.20)
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Therefore, in view of (4.20) and Lemma 4.1, we get
v(t,z) > ~v(a,c) =1 for (t,z) € D.

Consequently, v € C*(D; ]0, +00[ ) and it satisfies the inequalities (3.1), (3.2), and
(3.3). O

Proof of Corollary 3.1. a) It is not difficult to verify that the function
m k
z) = pilt,w)—a) pj(t,z) for (t,x)eD
j=1 j=1

belongs to the set C*(D; ]0,+o0c[) and satisfies (3.1), (3.2), and (3.3). Therefore,
Theorem 3.1 guarantees ¢ € S,.(D).

b) According to (3.7), there exists € > 0 such that

d

€ exp //E (s,nm)dnds | +

b d b d
+//€(1)(8,77)€Xp //E 51,52 dfzdfl dnd8§ 1. (4.21)
n

S

Put

~v(t,z) = eexp /t/xﬁ(l)(s,n)dnds +

t x t x
—l—//f(l)(s,n) exp //5(1)(51,52)6152(151 dnds for (t,x) € D.
a c s n

It is not difficult to verify that v € C* (D;RQ and, in view of the assumption
¢ € P(D), we get

Ya(t,x) > L(1)(t,2)y(t, ) + L(1)(t,2) =0 for (¢ ) € D, (4.22)
v(t,c) =¢ for tE€Ja,b], Y(a,z) =¢ for =z € [e,d]. (4.23)

Hence, by virtue of (4.21)—(4.23), Lemma 4.1 yields
0 <~(a,e) <A(t,z) <vy(b,d) <1 for (t,x)eD.
Now from (4.22) we get
Yew(t, ) > 0(1)(t, 2)y(t, z) + (y)(t,z) for (t,z) € D,
and thus, by virtue of Theorem 3.1, we find
{ € Sue(D), (4.24)
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where

Uw)(t, ) o) (¢, 2)w(t, z) + L(w)(t,z) for (t,z) € D. (4.25)

According to Lemma 4.3, to prove corollary it is sufficient to show that the
problem (4.4), (4.5) has no nontrivial nonnegative solution. Let v be a nonnegative
solution of the problem (4.4), (4.5). We will show that v = 0. Put

u(t,z) = 0(v)(t,xz) for (t,x)e D, (4.26)
where 0 is defined by (3.6). Obviously,

uz(t, ) = L(v)(t,x) > vig(t,x) for (t,x) € D,
u(t,e) =0 for t€a,b], u(a,z) =0 for =z € [e,d]. (4.27)

Consequently, in view of (4.5), Lemma 4.1 yields

u(t,z) >v(t,x) >0 for (t,z)eD. (4.28)
On the other hand, by virtue of (3.8), (4.25)—(4.28), and the assumptions /, ¢ €
P(D), we get

g (t, x) = L(v) (L, 2) < L) z)u(t, ) + L(u)(t, 2) = (1) (¢ )ult, x) =
(D)t z)ult, z) + £(0(v)) (t,2) — L(1)(E,2)0(v) (¢, @) <
)t 2)ult, ) + £v)(t, ) < L)t 2)ult, z) + Lu)(t,z) =
= ((u)(t,z) for (t,x)€ D.
Now, by (4.24), (4.27), (4.28), and Lemma 4.3, we obtain v = 0. Consequently,

(4.28) implies v = 0, i.e., the problem (4.4), (4.5) has no nontrivial nonnegative
solution. O

<1

Proof of Proposition 3.1. Suppose that (3.9) holds and the homogeneous problem
(1.19)-(1.3p) has only the trivial solution. We will show that ¢ € Su(D). According
to Theorem 1.1, the problem (4.19), (4.20) has a unique solution . Put

Yo = min{~(t,x) : (t,x) € D} (4.29)

and choose (to, o) € D such that v(tg, xo) = Yo.
Assume that

Y < 0. (4.30)
Then, in view of (4.20), Lemma 4.1 yields
to o
Y(to, xo) =1 +//5(’Y)(Sa77)dnd3-

Therefore, on account of (3.9), (4.29), (4.30), and the assumption ¢ € P(D), we get

b d
7021+70//€ (s,m)dnds =1+,
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a contradiction.

The contradiction obtained proves that o > 0. Consequently, Theorem 3.1
guarantees the inclusion ¢ € S,.(D).

The converse implication is trivial. O

Proof of Proposition 3.2. 1t is not difficult to verify that the assumptions of Corol-
lary 3.1 b) are satisfied with £ = 0 because the operator ¢ is supposed to be an
(@, ¢)-Volterra one. O

Proof of Theorem 3.2. Let u be a solution of the problem (1.4)—(1.7). We will show
that the function u is nonnegative. Assume that, on the contrary,

min{u(t,z) : (t,z) € D} <O0. (4.31)
Then there exists (tg, zo) €]a,b] x |¢,d] such that
u(to, zo) < 0. (4.32)
Put Dy = [a, to] X [¢, zg] and
A={XeR; : \y(t,z) —u(t,z) >0 for (t,z) € Dy}. (4.33)

Since the function + is positive on Dy, we have A # . Let

Ao = inf A. (4.34)
Now we put
w(t,z) = Xoy(t, ) —u(t,z) for (t,z)e D. (4.35)
It is clear that w € C* (DO; R) and
w(t,z) >0 for (¢,x) € Dy. (4.36)

Moreover, according to (4.32)—(4.34) and Lemma 4.2, we get
Ao > 0. (4.37)
From (1.4), (3.10), (4.35), and (4.37) we obtain
wi(t, ) < L(w)(t,z) for (t,z) € D.
Since / is an (a, ¢)—Volterra operator, —¢ € P(D), and (4.36) holds, the last inequal-

ity implies
wig(t,x) <0 for (t,z) € Dy. (4.38)

Further, from (1.6), (1.7), (3.12), (3.13), (4.35), and (4.37) we get
we(t,c) <0 for t € [a,to], wy(a,x) <0 for =z € [, z). (4.39)
Hence, by virtue of (4.32), Lemma 4.1 yields

w(t,z) > w(ty,z9) >0 for (¢, z) € Dy.
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Consequently, there exists € € ]0, Ag] such that
w(t,z) > ey(t,z) for (t,x) € Dy,

i.e.,
(Ao —e)v(t,x) —u(t,x) >0 for (t,z)€ Dy.

Hence, in view of (4.33), we get Ao — ¢ € A, which contradicts (4.34). O

Proof of Corollary 3.2. According to Lemma 4.4, there exists a point (bg,dy) €
la, b]x Jc, d] such that

//w(1)(s,n)\dnds< | for (£,2) € Do, () £ (b, do),

and
((1)(t,x) =0 for (t,x) €D\ Dy, (4.40)

where Dy = [a, by] X [, dp]. Put

y(t,x)=1— //\E(l)(s,nﬂdnds for (t,x) € Dy.

Since / is a nonincreasing (a, ¢)—Volterra operator, by Theorem 3.2 we get
by € Sac(Do), (4.41)

where ¢y is the restriction of £ to the space C’(Dg; ]R).
Now let u be a solution of the problem (1.4)—(1.7). We will show that the function
u is nonnegative. In view of (4.41), we find

u(t,z) >0 for (t,z) € Dy. (4.42)
On the other hand, the assumption —¢ € P(D) guarantees that the relations

(1) (t, x) max{u(s,n) : (s,n) € D} < l(u)(t,z) <
< L(1)(t,z) min{u(s,n) : (s,n) € D}

hold for (¢,x) € D and thus, by virtue of (4.40), we get

l(u)(t,x) =0 for (t,z)e D\ Dy.
Consequently, (1.4) implies

uz(t,z) >0 for (t,2) € D\ Dy. (4.43)
Let (to,z0) € D\ Dy be an arbitrary point. Put

t1 = min{tg, by}, x1 = min{z, do},
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and
D* = [a,to] X [c,x0] \ [a,t1] X [c, x1].

Clearly, (t1,x1) € Dy and D* C D\ Dy. Then, in view of (1.6), (1.7), (4.42), (4.43),
o, 0) = ultra) + [

and Lemma 4.1, we get
/ / Quls,m) ;oS
0s On =
t1 D*

Therefore, we have proved that wu(t,x) > 0 for (t,x) € D\ Dy, which together
with (4.42) ensures that the function u is nonnegative on the set D. Consequently,
{e Sac(D). ]

to a
0uls,9) 4o+

S

Proof of Theorem 3.3. Let u be a solution of the problem (1.4)—(1.7). We will show
that the function w is nonnegative. According to the inclusion —¢; € S,.(D) and
Remark 1.1, the problem

TL) ) (t) — to( [ ) (4.44)
w(t,c) =0 for tE€ [a,b], w(a,z) =0 for =z € [c,d] (4.45)
has a unique solution w and
w(t,x) <0 for (t,x)€D. (4.46)
In view of (1.4)—(1.7), (4.44), (4.45), and the assumption ¢y € P(D) we get

2
ataax (“(t’ z) = w(t, @) > 01 (u— w)(t, ) + Lo([u]4) (¢, ) >

> —l1(u—w)(t,x) for (t,x)€ D,
t( ) 0 for telab],

)
ot
gx(( ) — w(a, ))>o for z € [c,d,

and
u(a,c) —w(a,c) > 0.
Consequently, the inclusion —¢; € S4.(D) yields

u(t,x) > w(t,z) for (t,z)e D. (4.47)
Now, (4.46) and (4.47) imply
—[u(t,z)]- >w(t,z) for (t,z)e D. (4.48)

On the other hand, by virtue of (4.44), (4.46), (4.48), and the assumptions ¢y, {1 €
P (D), we obtain

Wi (t, ) > Lo(w)(t, x) — b1(w)(t, x) > bo(w)(t,x) for (t,x) € D.
Hence, the inclusion ¢y € Sqc(D), on account of (4.45), implies
w(t,z) >0 for (t,x)€ D,
which, together with (4.47), guarantees u(t,z) > 0 for (¢t,x) € D. O
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5. OPERATORS WITH DEVIATING ARGUMENTS

In this section, we will establish some consequences of the main results for the
operators with deviating arguments, i.e., for the case when the operator ¢ is given
by one of the following formulae:

()t z) Ep(t, 2)v(r0(t, 2), po(t, ) for (t,z) € D, (5.1)
L(v)(t, x) of —g(t,z)v(n(t,z), m(t,z)) for (t,z) €D, (5.2)
£(v)(t2) Ep(t,)o(ro(t, ), uo(t 7))~

—g(t,x)v(mi(t, z), pa(t,z)) for (t,z)€D. (5.3)

Here we suppose that p,g € L(D,R+) and 7; : D — [a,b], p; : D — [e,d] are
measurable functions (i = 0, 1).
Throughout this section, the following notation will be used:

75 = ess sup {7o(t,z) : (t,x) € D}, puf = ess sup {po(t,z) : (t,x) € D}.
At first we formulate all the statements, the proofs are given later.
Theorem 5.1. Let at least one of the following items be fulfilled:
a) there exists o €10, 1] such that

(8,m) po(s,m)

// pls:m) T/ /p(fhéz)d&d& dnds <

t
<a//p(s,n)dnds for (t,x) € D; (5.4)
b)

b d
//psn f1(s,pmo(s,m)) + fa(s, 77))

b d
X exp / / p(E1, E0)dEadsy | dnds < 1, (5.5)
s n

where, for (t,z) € D,

def 1

filt,a) &2 (1 + sgn(mo(t, ) — t))

d

falt ) 2 (14 sen(iuo(t,2) — )
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b od
//pSTI f1(s,m) + f2(7o(s, ), 77)))

d

17

X exp //P(ihf?)dfzd& dnds <1, (5.8)
s n

where the functions f1 and fa are defined by (5.6) and (5.7), respectively.

Then the operator £ given by (5.1) belongs to the set Sae(D).

Remark 5.1. The assumption « €]0,1[ in Theorem 5.1 a) cannot be replaced by

the assumption a €10, 1] (see Example 7.1).

Theorem 5.2. Let one of the following item be fulfilled:

a)

* *
To Ho

/p(sm)dnds <1

b)

* *

To Ho

/p(s,n)dnds > 1

and

T0(t,z) z 70(t,z) po(t,x)

ess sup / /p(s,n)dnds + / / p(s,n)dnds : (t,x) € D ) < w*,

t c a T

where

Y

0 Mo
exp(yff sndnds)—l

1
Ww'=sup —In|y+ cy >0
Yy

Then the operator ¢ given by (5.1) belongs to the set Sqc(D).

Theorem 5.3. Let

* *
To Mo

//p(s,n)dnds = 1.

(5.10)

(5.11)

(5.12)

(5.13)
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Then the operator £ given by (5.1) belongs to the set Suc(D) if and only if

T Mo 70(8,m) po(s,m)
//p(s,n) / / p(&1, &2)dEadEy | dnds # 1. (5.14)

Theorems 5.1-5.3 contain some integral conditions for the operator £ defined by
(5.1) to belong to the set Sgc(D). The following theorem gives a different kind of
conditions.

Theorem 5.4. Let the function p be essentially bounded and
ess sup {p(t,x) (ro(t,z) — a) (po(t,z) —¢) : (t,z) € D} <L (5.15)

Then the operator £ given by (5.1) belongs to the set Sqae(D).

Remark 5.2. The strict inequality (5.15) in the previous theorem cannot be re-
placed by the nonstrict one (see Example 7.5).

Theorem 5.5. Let

g(t,x)(mi(t,z) —t) <0 for (t,z)€ D, (5.16)
g(t,z)(pa(t,z) —x) <0 for (t,z) €D, (5.17)
and
b d
//g(s,n)dnds <1. (5.18)

Then the operator £ given by (5.2) belongs to the set Sue(D).

Remark 5.3. The constant 1 on the right-hand side of the inequality (5.18) can-
not be replaced by the constant 1 4+ ¢, no matter how small € > 0 would be (see
Example 7.2).

Theorem 5.6. Let the conditions (5.16) and (5.17) be satisfied and let

ess sup {g(t,w)’y(ﬁ(t, z), m(t,z)) : (t,x) € D} <1, (5.19)

where

y(t,x)=(b—a)(d—c)—(t—a)(x—c) for (t,x)€D. (5.20)
Then the operator £ given by (5.2) belongs to the set Sue(D).

Remark 5.4. The inequality (5.19) in the previous theorem cannot be replaced by
the inequality

ess sup {g(t,x)’y(n(t, z), m(t,z)) : (t,x) € D} <l+e,

no matter how small ¢ > 0 would be (see Example 7.6).
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Theorem 5.7. Let the functions p, 1o, po satisfy one of the items a)—c) in Theo-
rem 5.1 or the assumptions of Theorems 5.2 or 5.4 or the conditions (5.13) and
(5.14), while the functions g, 71, p1 satisfy the conditions (5.16), (5.17), and either
the inequality (5.18) or (5.19) is fulfilled. Then the operator ¢ given by (5.3) belongs
to the set Sqe(D).

Proof of Theorem 5.1. Let the operator ¢ be defined by (5.1). Obviously, ¢ € P(D).
a) According to (5.4), we have
ps3(t,x) < aps(t,x) for (t,x) € D,

where py and ps are given by (3.5). Therefore, the assumptions of Corollary 3.1 a)
are satisfied.
b) For (t,z) € D, we put

I(v)(t,z) &
) 7o(t,) po .2)
—plta) [ (1 senlnta) 1) [ [ p(smo(ro(s.n) s, m)dnds
+1(1 + sgn(po(t, ) — x))/t “O/(t’””)p(s mv(ro(s,m); to(s,n))dnds
2 ’ a T 7 ’ | |

It is clear that £ € P(D) and

((O()) (t,z) — L(1)(t,2)0(v) (¢, ) =

T()(t,d}) MO(WC)
:p(t7$) / / p(sa77)1)(7—0(8777)7///0(8777))d77d8_

t x
//p v(10(s,n), po(s,n))dnds =
70 (t,) po(t
/ / mv(7o(s,m), po(s,n))dnds+
t c

t /J'O(tvx)
+/ / p(s 7'0 $,m), to(s, n))dnds <
<L(v)(t,z) for (t,z) €D, veC(D;Ry),

where 6 is given by (3.6). On the other hand, by virtue of (5.5), the inequality (3.7)
holds. Hence, the assumptions of Corollary 3.1 b) are satisfied.
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c¢) The proof is similar to the previous case but the operator ¢ should be defined

T0(t,z) =z
1
= p(t, x) 5(1 + sgn(7(t,x) — t)) / /p(s, ’I’])U(T()(S, n), po(s, n))dnds—i—
t c
To(t,x) /J'O(tvx)

+%(1 +sgn(,uo(t,x) - $)) / / p(S,ﬁ)U(TO(S:n)aMO(SaU))dﬁds

for (t,z) € D. O

Proof of Theorem 5.2. Let the operator ¢ be defined by (5.1). Obviously, ¢ € P(D).
First suppose that (5.9) holds. Let

*(v)(t, x) def p(t,x)v(10(t, ), po(t,z)) for (t,z) € D¥, (5.21)

where D* = [a, 73] % [c, pu5]. In other words, £* is the restriction of ¢ to the space
C(D*,R). According to (5.9) and Remark 3.2, it is clear that £* € S,.(D*). However,
by Lemma 4.1, it can be easily verified that ¢ € S,.(D), as well.

Now suppose that (5.10) and (5.11) are satisfied, where the number w* is given
by (5.12). Then there exist yo > 0 and € € [0, 1] such that

To(t,x) z 70(t,z) po(t,z)
/ /p(s,n)dnds + / / p(s,n)dnds <
t c a x
1 YoE
< y— In | yo + - for (t,x) € D.
0 To Mo
exp (yo I p(s,n)dnd8> —c

Consequently, the inequality

7o (t,x) po(t,z) t =z
/ / p(s,n)dnds—//p(sm)dndSS
a C a C
m0(t,x) po(t,x)
Yo exp (yo [ f p(sm)dnd5>
<Lt © (5.22)

- yo TO(t’m) .U‘O(t’m)
explyo [ [ p(s,n)dnds | —e
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holds for (¢,x) € D. Put

v(t,x) = exp yo//p(s,n)dnds —¢ for (t,z)eD.

Obviously, v € C*(D; ]0,+o0[) and, in view of (5.22),  satisfies the inequalities
(3.1), (3.2), and (3.3). Therefore by virtue of Theorem 3.1, we get £ € Sue(D). O

To prove Theorem 5.3 we need the following lemma.

Lemma 5.1. Let D* = [a, 73] % [, pu§], p € L(D*;Ry) be such that (5.13) holds,
and let u € C* (D*;R) be a function satisfying

u(t, ) = p(t, 2)u(ro(t, z), po(t,z)) for (t,z) € D, (5.23)
u(t,c) =0 for t€Ja,75], u(a,z) =0 for =€ [e, pp) (5.24)
Then the function u does not change its sign.
Proof. Assume that, on the contrary, v changes its sign. Put
M = max{u(t,z): (t,x) € D*}, m = —min{u(t,z): (t,x) € D*}, (5.25)
and choose (tar, zar), (tm, Tm) € D* such that
u(tar, xpr) = M, W(tm, Tm) = —m. (5.26)
Obviously,
M >0, m > 0, (5.27)

and without loss of generality we can assume that ¢,, < t;;. It is also clear that
either
Tm < TM (5.28)

or
T > T (5.29)

First suppose that (5.28) holds. According to (5.23) and (5.24), Lemma 4.1
yields

tm T
utar,oas) ~ ults o) = [ [ plsn)ulrols,n) ol ) dnds+
o tar
+ [ [ plsmutrats,n). pols. ) duds.
tm ¢
Hence, in view of (5.25)-(5.27), we get
tm T tvr T 7—0 NO

M—I—m<M// sndnds—i—M// sndnds<M// (s,m)dnds,

a Tm tm cC
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which, on account of (5.13), contradicts (5.27).
Now suppose that (5.29) is satisfied. According to (5.23) and (5.24), Lemma 4.1
implies

tvr T

u(tar, xar) — w(tm, xar) = / /p(s,n)u(ro(s,n),uo(s,n))dnds,

tm Tm

u(tmal‘m)_u(tmaxM) ://p(sa77)“(7—0(5777)?/‘0(&n))dnds'

a )

Hence, in view of (5.25)-(5.27), we get

tar Ty
M — u(tm,zn) < M/ /p(s,n)dnds,
tm €
tm T
W(tm, zar) +m < m/ /p(s,n)dnds.
a
Therefore
tm Tm tar s
M 4+ m < max{M,m} //p(s,n)dnds+//p(s,n)dnds <
a o bt c
o o
< max{M,m}//p(s,n)dnds,
a ¢
which, on account of (5.13), contradicts (5.27). O

Proof of Theorem 5.3. Let D* = [a, 73] % [c, p15] and the operator £ € L(D) be defined
by (5.1). Let, moreover, £* be the restriction of ¢ to the space C(D*,R), ie., £*is
given by (5.21). Since

(To(t,l'),uo(t,aﬁ)) € D* for almost all (¢t,z) € D,

it is easy to verify that £ € S,.(D) if and only if £* € S,.(D*). However, according to
Proposition 3.1, £* € S,.(D*) if and only if the homogeneous problem (5.23), (5.24)
has only the trivial solution. Consequently, to prove Theorem 5.3 it is sufficient to
show that the problem (5.23), (5.24) has only the trivial solution if and only if the
condition (5.14) is satisfied.

Let u be a solution of the problem (5.23), (5.24). By virtue of Lemma 5.1, we
can assume that

u(t,z) >0 for (t,x)e D (5.30)
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Put
t x
f(t,x) déf//p(s,n)dnds for (t,x) € D*.
Since u satisfies (5.23) and (5.24), Lemma 4.1 yields

o Mo
w(r s 1) — u(t, z) = / / p(s,m)u(mo(s, 7). o(s,m)) dnds-+

*

23

-l—//p(s,n)u(m(s,n),ug(s,n))dnds for (t,z) € D*.

Therefore, in view of (5.30), we get
ult,2) < (g, ) for (t,3) € D"
and

* * *
To Ho To

(1) — ulty @) < ulrg 1) / / p(s, n)dnds + / / p(s, n)dnds | =
a x t ¢

Zu(TS,MS)<f(TS,/~LE§)—f(t,$)> for (t,2) € D".

From (5.13) and (5.32) we obtain

u(Tg, o) £ (t, ) < (g, o) (f(TS‘, Ho) — 1) +ult,r) =

=u(t,z) for (t,z)e D*.

On the other hand, on account of (5.23), (5.24), and (5.31), we get

ult, z) = / / p(s, myu(ro(s,m), pio(s, m)) dnds <

< u(r pp)f(ta) for (L)€ D".

Now, it follows from (5.33) and (5.34) that

t x
u(t.o) = (s ) [ [ plondnds for (1) € "

Finally, on account of the relation (5.35), we obtain

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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u(t, x) = / / p(s, m)u(ro(s,m), (s, m)) dds =

T0(8m) po(s,m)

:]jp(&ﬁ) u(Tq, 1o) / /p(&,@)d@d& dnds

a c

for (¢,z) € D* and thus,

7o KO T0(s,m) po(s,n)
u(rg i) |1 - / / p(s,m) / / D61, &)dende | dnds| =0, (5.36)

We have proved that every solution u of the problem (5.23), (5.24) admits the
representation (5.35) and, moreover, u(7y, 1) satisfies (5.36). Therefore, if (5.14)
holds, then the problem (5.23), (5.24) has only the trivial solution.

It remains to show that if (5.14) is not satisfied, i.e.,

* *
To Mo

/ / p(s,m) f (ro(5,), po(s,m))dyds = 1, (5.37)

then the problem (5.23), (5.24) has a nontrivial solution. Indeed, since

Fro(t, ), po(t, x)) < f(75,p5) for (t,z) € D",

in view of (5.13) and (5.37), we get

0< /t/xp(sm) (f(Té‘,MS) - f(To(s,n),uo(s,n))>dnds <

* *
To Ho

< [ ot <f(76‘,u3) - f(m<s,n>,uo<s,n>))dnds -

* *
To Mo

=1- //p(s,n)f(To(S,n),uo(s,n))dnds =0 for (t,z)e D"

Consequently,

/] p(s,m(f(na*,uz;)f<m<s,n>,uo<s,n>)>dnds=o for (t,2) € D",
f(t, ) = / / p(s,m)f (ro(s,m), o, m))dnds for  (t,x) € D,

Thus f is a nontrivial solution of the problem (5.23), (5.24). O
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Proof of Theorem 5.4. Let the operator ¢ be defined by (5.1). Obviously, ¢ € P(D).
According to (5.15), there exists € > 0 such that

p(t, ) ((To(t,x) —a)(po(t,z) —c) + 8) <1 for (t,z)eD. (5.38)

Put
v(t,x) =(t—a)(x—c)+¢e for (t,x) € D.

Obviously, v € C* (D; ]O,+oo[) and, in view of (5.38), 7 satisfies the inequalities
(3.1)—(3.3). Therefore, by virtue of Theorem 3.1, we get £ € Suc(D). O

Proof of Theorem 5.5. Let the operator ¢ be defined by (5.2). It is clear that, in
view of the assumptions (5.16) and (5.17), the operator ¢ is an (a, c)—Volterra one.
Therefore, the validity of theorem follows immediately from Corollary 3.2. O

Proof of Theorem 5.6. Let the operator ¢ be defined by (5.2). It is clear that, in
view of the assumptions (5.16) and (5.17), the operator ¢ is an (a, c)—Volterra one.
Moreover, by virtue of the assumption (5.19), the function « given by (5.20) satisfies
the inequalities (3.10)—(3.13). Hence, Theorem 3.2 guarantees the inclusion ¢ €
Suc(D). O

Proof of Theorem 5.7. The validity of theorem follows from Theorem 3.3 and The-
orems 5.1-5.6. O

6. FURTHER REMARKS

We have investigated the characteristic initial value problem for the equation (1.1)
when the values of the solution u of (1.1) are prescribed on both characteristics t = a
and x = c¢. However it is clear that the values of the solution can be prescribed on
characteristicst = aand z =d,t =band x = cort =b and x = d. Then we
obtain the other three problems, which have the same properties as the problem
(1.1)—(1.3). Let us introduce the following definition.

Definition 6.1. We say that an operator ¢ € L(D) belongs to the set Su4(D), if
every solution of the problem

O*u(t,z)
20 <
u(a,d) > 0,
Ju(t,d) Ju(a, )
> —= <
T >0 for t¢€]la,bl], 5 <0 for z€lcd]

is nonnegative.
An operator ¢ € L(D) is said to belong to the set Sp.(D), if every solution of the
problem

O*u(t,z)

“otor < L(u)(t,z),
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U(b, C) > 07

ou(t, c) ou(b, x)
< >
T 0 for tE€|a,bl, o 0 for =z €lc,d]

is nonnegative.

We say that an operator £ € £(D) belongs to the set Spq(D), if every solution of
the problem

0?u(t, x)
LA
8D 5 e, ),
u(b,d) =0,

8u((9tt’ 9) <0 for te€la,b], Pu(b, 2)

<0 for z€lcd]
T

is nonnegative.

Now we can follow the same ideas and steps presented above and we can obtain

results concerning the sets Syq(D), Sp.(D), and Sp(D). However, these results can

be immediately derived from the above—proved ones using the following transforma-
tions.

Let the operators ®, ¥, : L(D; ]R) — L(D; R) be defined by

O (w)(t, z) & w(t,c+d—=x) for (t,x)€ D,

-

U (w)(t,x) o w(a+b—t,x) for (t,x)e€ D,
Q(w)(t, ) def wla+b—t,c+d—2x) for (t,x)e€D.

Let, moreover, ®q, ¥g, Q : C(D; R) — C(D; R) be the restrictions of ®, ¥, ) to the
space C'(D;R). Now, for any ¢ € L(D), we put

Co(w)(t, z) L —®(0(Do(w)))(t,z) for (t,z) € D,
x)

—®(£(Po(w))) (¢
g (w)(t,2) &~ (0(Wo(w)))(t,2) for (t,2) €D,
t

Lo(w)(t,z) € Qo)) (t,z) for (t,z)€D.

Then it is not difficult to verify that the following implications are true:
{e SaC(D) <= fcp S Sad(D) <= f\p € Sbc(D) <= ZQ S de(D)

7. COUNTER—EXAMPLES

Example 7.1. Let the operator ¢ be defined by (5.1), where 79 = b, pp = d, and

pE L(D; R+) is such that
b d
//p(s,n)dnds =1
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Obviously, ¢ € P(D) and, for any m > k (m,k € N), the condition (3.4) holds with
a = 1, where the functions p; (i € N) are defined by (3.5) and (3.6). Moreover, the
condition (5.4) is satisfied with o = 1.

On the other hand, the function

t x
u(t, z) ://p(s,n)dnds for (t,z) € D
a ¢
is a nontrivial solution of the problem (1.19)—(1.3p). Therefore, by virtue of Re-
mark 1.1, we find ¢ & Sac(D).

Example 7.2. Let (to,x0) €Ja,b] x |c,d] and € > 0. Put Dy = [to,b] X [zo,d],

)

(t.2) a for (t,z) €e D\ Dy
7 (t,x) =
! 0 for (t,x) € Dy

and

c for (t,x) €e D\ Dy
H1 (ta 1:) = :
xo for (t,z) € Dy
Let the operator ¢ be defined by (5.2), where g € L(D; R+) is such that

to xo

b d 9
g 9
= — = 1
//g(s,n)dnds e //g(s,n)dnds tirz

to xo

g(t,z) =0 for (t,z) € [a,to] X [z0,d] U [to,b] X [c, o).

Obviously, ¢ is an (a, c)-Volterra operator and the condition (3.15) holds. Further,
it is not difficult to verify that the function v € C* (D; R+), defined by

t x
= — [ [9(s,m)dnds  for (t,x) € D\Dy
0 for (t,x) €Dy

7(t>$) =

)

satisfies the conditions (3.10), (3.12), (3.13), and ~(to, o) = 0.
On the other hand, the function

t x
1— [ [g(s,n)dnds for (t,z) e D\ D
u(tv x) = ‘ t x
(1 — 1L+a) <1 -/ fg(s,n)dnds) for (t,z) € Dy
to o
is a solution of the problem (1.4)—(1.7) with u(b,d) = —ﬁ < 0, and thus ¢ ¢

Suc(D).
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Example 7.3. Let ¢ €]0,1[ and let p,g € L(D;R+) be such that

b d b d
//p(s,n)dnds: 1+e, //g s,m)dnds < 1. (7.1)

Let £ = £y — £1, where

lo(v)(t, x) & p(t, z)v(b,d), 1 (v)(t, x) & g(t,x)v(a,c). (7.2)

According to Remark 3.2 and Corollary 3.2, we find
(1 —e)ly € Suc(D), —l1 € Sue(D).

Note also that the homogeneous problem (1.15)—(1.3p) has only the trivial solution.
Indeed, if ug is a solution of the problem (1.19)—(1.3¢p) then Lemma 4.1 yields

uo(b,d) — up(a,c) =

b d b d
:uo(b,d)//p(s,n)dnds—uo(a,c)//g(s,n)dnds. (7.3)

Consequently, in view of (1.2p) and (7.1), we get ug(b,d) = 0. Now, (1.1p) implies
%uo(t, xz) = 0 for (t,x) € D and thus, ug = 0. Therefore, the problem (1.1p),
(1.2), (1.3) with ¢ =1 and ¥ = 1 has a unique solution u.

On the other hand, by virtue of (7.1), Lemma 4.1 yields

b d
u(b,d) —u(a,c) = (1 +e)u(b,d) — ac//gsndnds

ie.,

b d
eu(b,d) = //g(s,n)dnds 1.

Hence, u is a solution of the problem (1.4)—(1.7) with u(b,d) < 0, and thus ¢ ¢
Suc(D).

Example 7.4. Let € €]0,1[ and let p,g € L(D;R+) be such that

b d b d
//p(s,n)dnds <1, //g(s,n)dnds =1+e. (7.4)

Let ¢ = £y — 1, where ¢y and ¢; are defined by (7.2). According to Remark 3.2 and
Corollary 3.2, we find

lo € Sac(D),  —(1— )ty € Sue(D).
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Note also that the homogeneous problem (1.19)—(1.3p) has only the trivial solution.
Indeed, if ug is a solution of the problem (1.19)—(1.3p) then Lemma 4.1 yields (7.3).
Consequently, in view of (1.2p) and (7.4), we get ug(b,d) = 0. Now, (1.1p) implies
%uo(t,x) = 0 for (t,x) € D and thus, ug = 0. Therefore, the problem (1.1y),
(1.2), (1.3) with ¢ =1 and ¥ = 1 has a unique solution u.

On the other hand, by virtue of (7.4), Lemma 4.1 yields

b d
u(b, d) — u(a,c) = u(b,d) //p(s,n)dnds—(1+€)u(a,c),

ie.,

b d
u(b, d) 1—//p(s,n)d77ds = —¢.

Hence, u is a solution of the problem (1.4)—(1.7) with u(b,d) < 0, and thus ¢ ¢
Suc(D).

Example 7.5. Let the operator ¢ be defined by (5.1), where 79 = b, py = d, and
p=[(b—a)(d-s)] ~'. Tt is clear that

ess sup {p(t,x)(m(t, z) —a)(po(t,z) —c) : (t,x) € D} =
However the function
u(t,z) = (t —a)(z —c)for(t,z) € D
is a nontrivial solution of the problem (1.1)—(1.3p) and thus ¢ & S,(D).

Example 7.6. Let ¢ > 0 and let the operator ¢ be defined by (5.2), where 71 = a,
p1=c and g = (1+¢)[(b—a)(d—s)] ~' Tt is clear that the conditions (5.16) and
(5.17) are satisfied, and

ess sup {g(t, x) [(b —a)(d—c)— (ri(t,z) —a)(pm(t,z) — c)] ((t,x) € D} =1+e.
On the other hand, the function
u(t,z) =(b—a)(d—c)—(1+¢e)(t —a)(x—c) for (t,x) €D

is a solution of the problem (1.1p), (1.2), (1.3) with ¢ = (b —a)(d — ¢) and ¢ =
(b—a)(d—c). Since u(b,d) = —e(b—a)(d — ¢) < 0 we get £ &€ Sqc(D).
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