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ON THE CHARACTERISTIC INITIAL VALUE PROBLEM
FOR LINEAR PARTIAL FUNCTIONAL-DIFFERENTIAL
EQUATIONS OF HYPERBOLIC TYPE

Jif{ Sremr

ABSTRACT. Theorems on the Fredholm alternative and well-posedness of the
characteristic initial value problem

TAED)  du o) +g(t,),
u(t,c) = p(t) for t€ [a,b], u(a,z) = ¢(x) for =z € c,d]

are established, where ¢ : C(D;R) — L(D;R) is a linear bounded operator, ¢ €
L(D;R), ¢ : [a,b] :— R, ¢ : [¢,d] :— R are absolutely continuous functions such that
o(a) =1¢(c), and D = [a,b] X [¢,d]. Moreover, it is proved that if ¢ is a nonincreasing
operator and a certain theorem on functional differential inequalities holds for the
problem considered then the operator indicated is necessarilly an (a, c)—Volterra one.

1. INTRODUCTION

On the rectangle D = [a, b] X [c, d], we consider the characteristic initial value problem

2u(t,z
aﬁt(g:v) = l(u)(t,z) + q(t, ), (1.1)
u(t,c) = @(t) for t € [a,b, u(a,z) =(z) for =z € e d, (1.2)

where ¢ : C(D;R) — L(D;R) is a linear bounded operator, ¢ € L(D;R), and ¢ :
[a,b] — R, 4 : [¢,d] — R are absolutely continuous functions such that ¢(a) = ¢ (c).
As usual, C(D;R) and L(D;R) denote the Banach spaces of continuous and Lebesgue
integrable functions, respectively, equipped with the standard norms.

Under a solution of the problem (1.1), (1.2) is understood a function u €
C*(D;R)! which satisfies the equation (1.1) almost everywhere on the set D and
verifies also the condition (1.2).

The aim of the paper is to prove the Fredholm alternative and well-posedness
of the problem (1.1), (1.2) (see Sections 3 and 5). Moreover, some conditions are
given in Section 4 under which the problem (1.1), (1.2) has a unique solution. The
results obtained are concretized for the equation with deviating arguments

2’LL X
a(%(gx) =p(t, fﬂ)“(T(t, ), u(t, fc)) +q(t, z), (1.1)

where p,q € L(D;R) and 7 : D — [a,b], u : D — [c,d] are measurable functions. Fi-
nally, there is proved in Section 6 that if a certain theorem on differential inequalities
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holds for the problem (1.1), (1.2) with a nonincreasing operator ¢ then the operator
indicated is necessarily an (a, c)—Volterra one.

We should note here that some solvability conditions and theorems on the well-
posedness of the other boundary value problems for linear and nonlinear partial
differential equations of hyperbolic type are given, e.g., in [3,5,6,9, 10] (see also
references therein).

2. NOTATIONS AND DEFINITIONS

The following notation and definitions are used throughout the paper.

N is the set of all natural numbers.

R is the set of all real numbers, R = [0, +o0].

Ent(z) denotes the entire part of the number z € R.

D = [a,b] X [c,d], where —00 < a < b < 400 and —o0 < ¢ < d < +00.

C(D;R) is the Banach space of continuous functions v : D — R equipped with
the norm

o]l = max {|v(t,z)| : (t,z) € D}.

C(D;Ry) ={v e C(D;R) : v(t,z) > 0 for (t,z) € D}.

5([a,ﬂ];R), where —00 < a < 3 < 400, is the set of absolutely continuous
functions u : [a, ] — R.

C*(D;R) is the set of functions v : D — R admitting the representation

v(t,x) = v1(t) + va(x) + //h(s,n)dnds for (t,x) € D,

where v € C([a,b],R), va € C([c,d],R), and h € L(D;R).

C?(D;R) is the set of functions v : D — R which have continuous derivatives up
to the second order.

L(D;R) is the Banach space of Lebesgue integrable functions p : D — R equipped

with the norm
Ipllz = // p(t, z)|dtdz.
D

L(D;Ry) ={p € L(D;R) : p(t,z) > 0 for almost all (¢t,x) € D}.

L(D) is the set of linear bounded operators ¢ : C(D;R) — L(D;R).

mes A denotes the Lebesgue measure of the set A C R?.

If X, Y are some normed spaces and 7' : X — Y is a linear bounded operator
then ||T|| denotes the norm of the operator T, i.e.,

7]l = sup {IT(2)ly : 2 € X, |lzllx <1}

Definition 2.1. An operator ¢ € £(D) is said to be nondecreasing if it maps the set
C(D;Ry) into the set L(D;R4). In the sequel, the set of nondecreasing operators is
denoted by P(D). We say that an operator ¢ € £(D) is nonincreasing if —¢ € P(D).
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Definition 2.2. An operator ¢ € L£(D) is said to be an (a, c)—Volterra operator if,
for arbitrary rectangle [a,to] X [c,z0] C D and function v € C(D;R) such that

v(t,z) =0 for (t,z) € [a,to] X [c, 0],
the relation
Lw)(t,z) =0 fora.a. (t,x) € [a,to] X [c, o]

holds.

Analogously, we say that an operator 2 : L(D; R) — C(D; R) is an (a, ¢)—Volterra
operator if, for arbitrary rectangle [a, to] X [¢, o] € D and function p € L(D; R) such
that

p(t,z) =0 fora.a. (t,x) € [a,to] X [c, zol,
we have

Qp)(t,z) =0 for (t,z) € [a,to] X [c,x0].

Remark 2.1. One can verify that v € C*(D;R) if and only if the following condi-
tions are satisfied:
(a) v(t,-) € C([c,d],R) for every t € [a,b], v(-,z) € C([a,b],R) for every z € [c, d];

(b) w(t,-) € C(le,d],R) for almost all ¢ € [a,b], ve(-,z) € C([a,b],R) for almost
all z € [c,d];

[
(¢) v € L(D;R).

Moreover, it is clear that C?(D;R) C C*(D;R).
We should also note here that the set C*(D;R) coincide with the class of abso-
lutely continuous functions of two variables presented, e.g., in [4,9].

In what follows, the equalities and inequalities with integrable functions are
understood to hold almost everywhere.

3. FREDHOLM PROPERTY

The main result of this section is the following statement.

Theorem 3.1. For the unique solvability of the problem (1.1), (1.2) is sufficient
and necessary that the homogeneous problem

Pu(t,z)
510 (u)(t, z), (1.1p)
u(t,c) =0 for te€[a,b], u(a,x) =0 for z€|ed] (1.29)

has only the trivial solution.

Definition 3.1. Let the problem (1.1p), (1.29) have only the trivial solution. An
operator Q2 : L(D;R) — C(D;R) which assigns to everey ¢ € L(D;R) the solution
u of the problem (1.1), (1.2¢) is reffered to as the Darboux operator of the problem
(1.1p), (1.209).
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Remark 3.1. It follows from Theorem 3.1 that the operator €2 is well-defined.
Obviously, the operator €2 is linear.

If the homogeneous problem (1.1y), (1.29) has a nontrivial solution then, by
virtue of Theorem 3.1, there exist functions ¢, ¢, and v such that the problem (1.1),
(1.2) has either no solution or infinitely many solutions. However, as it follows from
the proof of Theorem 3.1, a stronger assertion can be shown in this case.

Proposition 3.1. Let the problem (1.1y), (1.20) have a nontrivial solution. Then,
for arbitrary ¢ € C([a,b],R) and ¢ € C([c,d],R) satisfying p(a) = 1(c), there exists
a function q € L(D;R) such that the problem (1.1), (1.2) has no solution.

To prove Theorem 3.1 we need several notions and statements from functional
analysis.

Definition 3.2. Let X be a Banach space, X* be its dual space.

We say that a sequence {x,,}12] C X is weakly convergent if there exists x € X
such that f(x) = ngrfm f(zy,) for every f € X*. The element z is said to be a weak
limit of this sequence.

A set M C X is reffer to be weakly relatively compact if every sequence of
elements from M contains a subsequence which is weakly convergent in X.

A sequence {x,};1>] of elements fom X is said to be weakly fundamental if the
sequence {f(x,)}125 is fundamental in R for every f € X*.

We say that the space X is weakly complete if every weakly fundamental sequence
of elements from X possesses a weak limit in X.

Definition 3.3. Let X and Y be some Banach spaces, T : X — Y be a linear
bounded operator. The operator T is said to be weakly completely continuous if it
maps a unit ball of X into a weakly relatively compact subset of Y.

Definition 3.4. We say that a set M C L(D;R) has a property of absolutely
continuous integral if, for every € > 0, there exists § > 0 such that the relation

//p(t,x)dtda: <e forevery pe M
E

is true whenever a measurable set £ C D is such that mes F < 4.
The following three lemmata can be found in [2].
Lemma 3.1 (Theorem IV.8.6). The space L(D;R) is weakly complete.

Lemma 3.2 (Theorem VI.7.6). A linear bounded operator mapping the space
C(D;R) into a weakly complete Banach space is weakly completely continuous.

Lemma 3.3 (Theorem IV.8.11). If a set M C L(D;R) is weakly relatively com-
pact then it has a property of absolutely continuous integral.

Now we will establish a proposition which plays a crucial role in the proof of
Theorem 3.1 as well as in the proofs of statements given in Section 5.
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Proposition 3.2. Let ¢ € L(D). Then the operator T : C(D;R) — C(D;R) defined
by

)(t, ) // (s,m)dnds for (t,x) e D, ve C(D;R) (3.1)

1s completely continuous.

Proof. Let M C C(D;R) be a bounded set. We will show that the set T'(M) =

{T'(v) : v € M} is relatively compact in C(D;R). According to Arzela—Ascoli

lemma, it is sufficient to show that the set T'(M) is bounded and equicontinuous.
Boundedness. It is clear that

IT(0)(t, 2)] < / / 100) (s, mldnds < ()] < 1]l ollc

for (t,z) € D and every v € M. Therefore, the set T'(M) is bounded in the space
C(D;R).

FEquicontinuity. Let € > 0 be arbitrary but fixed. Lemmata 3.1 and 3.2 yield
that the operator ¢ is weakly completely continuous, that is, the set £(M) = {{(v) :
v € M} is weakly relatively compact subset of L(D;R). Therefore, Lemma 3.3
guarantees that there exists § > 0 such that the relation

//ﬁ(v)(t,x)dtdm < g for veM (3.2)

holds for every measurable set E' C D satisfying mes E < max{b — a,d — c}J.
On the other hand, for (¢1,21), (t2,z2) € D and v € M, we have

T (v)(t2, x2) — T(v)(t1, 21)| =

ty T3 t1 1

//E sndnds—//f (s,m)dnds| <
// sndsd77+// )(s,m)dsdn| ,

where measurable sets Eq, EFs C D are such that mes By < (d — ¢)|ta — 1] and
mes Fy < (b— a)|ra — x1|. Hence, by virtue of (3.2), we get

|T(v)(ta, z2) — T'(v)(t1,21)| < €
for (tl,.ili‘l), (tQ,iL‘Q) eD, ‘tg — t1| + ‘l’Q — l'l’ <4, and v € M,

i.e., the set T'(M) is equicontinuous in the space C(D;R). O
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Proof of Theorem 3.1. Let u be a solution of the problem (1.1), (1.2). It is clear
that w is a solution of the equation

v="T()+ f (3.3)

in the space C(D;R), where the operator T is given by (3.1) and

flt,x) = —p(a) + p(t) + P(x) + //q(s,n)dnds for (t,x) € D. (3.4)

Conversely, if v € C(D;R) is a solution of the equation (3.3) with f given by (3.4)
then v € C*(D;R) and v is a solution of the problem (1.1), (1.2). Hence, the problem
(1.1), (1.2) and the equation (3.3) are equivalent in this sense.

Note also that u is a solution of the homogeneous problem (1.1p), (1.2¢) if and
only if u is a solution of the homogeneous equation

v="T(v) (3.5)

in the space C(D;R).

According to Proposition 3.2, the operator T' is completely continuous. It follows
from the Riesz—Schauder theory that the equation (3.3) is uniquely solvable for every
f € C(D;R) if and only if the homogeneous equation (3.5) has only the trivial
solution. Therefore, the assertion of theorem is true. ]

Proof of Proposition 3.1. Let ug be a nontrivial solution of the problem (1.1p),
(1.20), and let ¢ € C([a,b],R) and ¢ € C([¢, d],R) be such that p(a) = ¥(c).

It follows from the proof of Theorem 3.1 that ug is also nontrivial solution of the
homogeneous equation (3.5). Therefore, by the Riesz—Schauder theory, there exists
f € C(D;R) such that the equation (3.3) has no solution.

Then the problem (1.1), (1.2) has no solution for ¢ = ¢(z), where

z(t,x) = f(t,x) + p(a) — (t) —(x) for (t,x) e D.

Indeed, if the problem indicated has a solution w then the function u+ z is a solution
of the equation (3.3), which is a contradiction. O

4. EXISTENCE AND UNIQUENESS THEOREMS

In this section, we will establish some conditions guaranteeing the unique solvability
of the problems (1.1), (1.2) and (1.1’), (1.2). We will prove, in particular, that
the problem (1.1), (1.2) has a unique solution provided that the operator ¢ is an
(a, c)-Volterra one. We first introduce the following notation.

Notation 4.1. Let ¢ € £(D). Define operators ¥ : C(D;R) — C(D;R), k =
0,1,2,..., by setting

Po(v) =v, Ip(v) =T (Ip-1(v)) for ve C(D;R), k€N, (4.1)

where the operator 7' is given by (3.1).
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Theorem 4.1. Let there exist m € N and o € [0, 1] such that the inequality

[m(u)llc < allullc (4.2)

is satisfied for every solution u of the homogeneous problem (1.1p), (1.2¢). Then the
problem (1.1), (1.2) is uniquely solvable.

Remark 4.1. The assumption « € [0, 1] in the previous theorem cannot be replaced
by the assumption « € [0,1] (see Example 7.1).

Corollary 4.1. Let there exist a number j € N such that

//pj(t,:c)dtdx <1, (4.3)
D
where p1 = |p| and
prr1(t,x) = |p(t, x)| / / (s,n)dnds for (t,xz)e€ D, ke N. (4.4)

Then the problem (1.1'), (1.2) is uniquely solvable.

Remark 4.2. Example 7.1 shows that the strict inequality (4.3) in Corollary 4.1
cannot be replaced by the nonstrict one.

Theorem 4.2. Let ¢ be an (a,c)-Volterra operator. Then the problem (1.1), (1.2)
has a unique solution.

Corollary 4.2. Let
p(t, z)|(T(t,x) —t) <0 for (t,x) €D (4.5)

and
Ip(t, )| (u(t,z) —x) <0 for (t,z)€ D. (4.6)
Then the problem (1.1'), (1.2) has a unique solution.

Proof of Theorem 4.1. According to Theorem 3.1, it is sufficient to show that the
homogeneous problem (1.1p), (1.2p) has only the trivial solution.
Let u be a solution of the problem (1.1¢), (1.2p). Then it is clear that

u(t, ) // (s,n)dnds = T(u)(t,z) = I1(u)(t,x) for (t,x) € D.

Using the last relation, we get
u(t,x) = T(Q91 (u))(t,:ﬁ) =Y9(u)(t,z) for (t,z) € D,
and thus, u = Y (u) for every k € N. Therefore, (4.2) implies

lulle = 19m(w)llc < allulle,

which guarantees u = 0 because we have supposed that o € [0,1]. O
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Proof of Corollary 4.1. Let £ € L(D) be defined by

K(v)(t,x):p(t,:v)z}(T(t,x), ,u(t,x)) for (t,2) € D. (4.7)

It is clear that

[94(0) (8, )| < / / 105, 1) 951 (0) (7 (5, 7). (s, 7)) | ds <

t x
< ||v\|c//pk(s,n)d7]ds for (t,x) €D, ke N, ve C(D;R).

Therefore, the assumptions of Theorem 4.1 are satisfied for m = j and

a= 4/pj(t, x)dtdz.

O
To prove Theorem 4.2 we need the following lemma.
Lemma 4.1. Let ¢ € L(D) be an (a,c)-Volterra operator. Then
li Il =0 4.8
L [[9l =0, (4.8)

where the operators Uy are defined by (4.1).

Proof. Let € €]0,1][. According to Proposition 3.2, the operator ¥, is completely
continuous. Therefore, by virtue of Arzela—Ascoli lemma, there exists § > 0 such
that

ffﬁ(w)(s,n)dnds—77€(w)(s,n)dnds < ellwlle

for (t1,$1), (tg,aj‘Q) S D, ‘tg — t1| + |$2 — ZL‘1| < 5, w € C(D;R). (4.9)

Let
2(b — 2(d —
n = max ¢ Ent M ,Ent (d=c) ,
0 )
b— d—
ti=a-+1 a’ T, =c+1 ¢ for i=0,1,...,n+1,
n+1 n +
D; =la,t;] x [e,z;] for i=1,2,...,n+ 1.
It is clear that, for any j,r» =0,1,...,n, we have

o —t1| + |2 —F1| <6 for (f1,21), (f2,32) € [tj,tj41] X [2r, 2rs1].  (4.10)
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If w € C(D;R) then we denote
|wli = lwllemp,r) for i=1,2,...,n+1.
Let v € C(D;R) be arbitrary but fixed. We will show that the relation
[9x(v)]li < ai(k)e¥|jvllc for k€N (4.11)

holds for every i = 1,2,...,n+ 1, where

ai(k) = k™1 for k€N, i=1,2,...,n+1, (4.12)

ar=1, a1 =i+14+ia; for i=1,2,...,n. (4.13)
By virtue of (4.9) and (4.10), it is easy to verify that, for any w € C(D;R), we have

tj Ty
/E(w)(s,n)dnds <min{j,r}elw||lc for jr=0,1,....n+1.  (4.14)

a ¢

Firstly, note that
|91 ()i <ielvlle for i=1,2,...,n+1. (4.15)

Indeed, according to (4.9), (4.10), and (4.14), it is obvious that

[91(0)]l: =

= max // )(s,m)dnds| : (t,z) € // )(s,m)dnds| <

tjg Trg

tjo @rg
//E sndnds—//Z sndnd8+//£ (s,n)dnds| <

<el|llc+@E—-1e|v|lc =de|v|lc for i=1,2,...,n+1,

where (t*,2*) € D; and

t*—t t*—t *_ . *_
s tl—tg -1 if t1—t8 €N _ §1 ig -1 d i1—§g 4.16
Jo = t*—t , To= z*—z0 . : ( . )
Ent ( o tg) otherwise Ent ( xo) otherwise

Further, on account of (4.9) and the fact that ¢ is an (a,c)-Volterra operator, we
get

esa (0)(t, 2)] = // (94(0)) (s, )dnds| < 2|04 (v)]s

for (t,2) € Dy and k € N. Hence, by virtue of (4.15), we have

[0k (v)]1 < ek lv[|lc for k€N,
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i.e., (4.11) is true for i = 1.

Now suppose that the relation (4.11) holds for some i € {1,2,...,n}. We will
show that the relation indicated is true also for i + 1. With respect to (4.9), (4.10),
(4.14), and the fact that ¢ is an (a, c)—Volterra operator, we obtain

|9%+1(v)]]i+1 = max // U(v))(s,m)dnds| : (t,z) € Dip1 p =

// ﬁk sndnds<

t* x* Ljo Trg
< //ﬁ(ﬁk(v) s ndnds—// (Uk(v)) (s, n)dnds| +
tjg Trg
+| [ [ o)) ts.mnas| <

< e [[0k()llir +ie k) < e [0r(o) i1 +iai(k) e ollc for k€N,

where (t*,2*) € D,y and jo, 7o are given by (4.16). Whence we get

19ps1 @)1 < 2 (e 10k1 ()i + i @ik = 1) lollc) +
+iai(k) e |jv]|c for keN.

To continue this procedure, on account of (4.15), we obtain

[0k+1(0) i1 <
< (2 14 (oa(1) 4+ ai(k;))> e olle for keN. (4.17)

With respect to (4.12) and (4.13), it is easy to verify that

i+14i((1)+ - +ai(k) =i+ 14+iq(17 4+ + k) <

<it+l+iqkk ™ =i+1l+iqk' <
<(i4+1+ia)k =1 k' < aiqq (K+1).
Therefore, (4.15) and (4.17) imply
[9%(0)lli+1 < Qi1 (k)" o]l for keN.

Thus, by induction, we have proved that the relation (4.11) is true for every i =
1,2,...,n+1.
Now it is already clear that, for any k& € N, the estimate

19k ()llc = [90(0) lnt1 < an1 k" vl for ve C(D;R)
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holds. Therefore,
9] < anyr k™e® for keN.

Since we suppose that € €]0, 1], the last relation yields (4.8). O

Proof of Theorem 4.2. According to Lemma 4.1, there exists mg € N such that
|9m, || < 1. Moreover, it is clear that

[Ome (W)llc < [[mol[[v]lc for v e C(D;R)

because the operator ¥,,, is bounded. Therefore, the assumptions of Theorem 4.1
are satisfied for m = mg and a = ||, || O

Proof of Corollary 4.2. The assumptions (4.5) and (4.6) guarantee that the operator
¢ given by (4.7) is an (a, ¢)-Volterra one. Therefore, the validity of corollary follows
immediately from Theorem 4.2. O

5. WELL—POSEDNESS

In this part, the well-posedness of the problems (1.1), (1.2) and (1.1"), (1.2) is
investigated.

For any k € N, along with the problem (1.1), (1.2) we consider the perturbed
problem

2
8811(;’;) = Lr(u)(t, z) + gn(t, @), (1.13)
u(t,c) = g(t) for tefa,b],  ula,z)=yy(x) for x&led, (1.2¢)

where £, € L(D), qi € L(D;R), and ¢y, € C([a,b];R), ¢y € C([c,d];R) are such that
er(a) = Pr(c).

Notation 5.1. Let £ € £(D). Denote by M (¢) the set of all functions y € C*(D;R)
admitting the representation

y(t,z) = —z(a,c) + //E(z)(s,n)dnds for (t,x) € D,

where z € C(D;R) and ||z||c = 1.
Theorem 5.1. Let the problem (1.1), (1.2) have a unique solution u,

lim A =0 5.1

where, for any k € N,

we=sup § | [ [ (ula)(svn) = ) (s,m) dnds s 1) € D,y € M6 ¢
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and let
t x
Jim (el [ [ (600)60) - ) (sn) )dnds =0
uniformly on D for every y € C*(D;R). (5.2)
Let, moreover,
t x

khrf (1+ Wk”)// <qk(s,77) — q(s,n))dnds =0 uniformly on D (5.3)
and

Jm (1 [Dller —ele =0, lim (1+[[&l)¢r ~¥lc = 0. (5.4)

Then there exists ko € N such that, for every k > ko, the problem (1.1y), (1.2x) has
a unique solution uxp and
lim |ug —ullc =0. (5.5)
k—4o00

If we suppose that the operators /; are “uniformly bounded” in the sense of the
relation (5.6) then we obtain the following assertion.

Corollary 5.1. Let the problem (1.1), (1.2) have a unique solution u, there erist
a function w € L(D;Ry) such that

[ (y)(t, )| <w(t,z)|ly|lc for (t,x) €D, ye C(D;R), k €N, (5.6)

and let

kgrfoo// (ﬁk(y)(s,n) - K(y)(s,n))dnds =0 uniformly on D (5.7)

for every y € C*(D;R). Let, moreover,

t x
klim //(qk(s,n)—q(s,n))dndS—O uniformly on D, (5.8)
— 400
a C
and
li — =0 li — =0. 5.9
Jm flor—elle=0,  lim |lvr—dle (5.9)

Then the conclusion of Theorem 5.1 is true.

Remark 5.1. The assumption (5.6) in the previous corollary is essential and cannot
be omitted (see Example 7.2).

From Corollary 5.1, it immediately follows
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Corollary 5.2. Let the homogeneous problem (1.1p), (1.29) have only the trivial
solution. Then the Darbouz operator® of the problem (1.1g), (1.20) is continuous.

Now, we will establish a theorem on the well-posedness of the problem (1.1"),
(1.2). For any k € N, along with the equation (1.1") we consider the perturbed
equation

O?ult
D) (et ), el ) + ), (1.1})
where pg, qx € L(D;R) and 74, : D — [a,b], ux : D — [c, d] are measurable functions.

Theorem 5.2. Let the problem (1.1'), (1.2) have a unique solution w, there exist
a function w € L(D;Ry) such that

Ipp(t, )| < w(t,z) for (t,z) €D, k€N, (5.10)
and let

klit}rl // (pk(s, n) —p(s,n))dnds =0 wuniformly on D. (5.11)

Let, moreover, the conditions (5.8) and (5.9) be satisfied, and

khrf ess sup {‘Tk (t,z) — 7(t, :1:)‘ ((t,x) € D} =0, (5.12)
khr+n ess sup {‘Mk (t, ) — u(t,z)| : (t,z) € D} =0. (5.13)

Then there exists ko € N such that, for every k > ko, the problem (1.1}), (1.2;) has
a unique solution uy and the relation (5.5) is true.

Remark 5.2. The assumption (5.10) in the previous theorem is essential and cannot
be omitted (see Example 7.2).

To prove Theorem 5.1 we need the following lemma.

Lemma 5.1. Let the problem (1.1¢), (1.29) have only the trivial solution and let the
condition (5.1) be satisfied. Then there exist ko € N and ro > 0 such that

lzllc < ropr(z)  for k> ko, z€ C*(D;R), (5.14)

where
pi(z) = |z(a, o) + (1 + [|€]]) IT%(2) (5.15)

and

Th(2)(t7) = 2(t,¢) + 2(a, 2) //< 8827;7 0 (2) (s, ))dnds (5.16)

for (t,z) € D.

2The notion of Darboux operator is introduced in Definition 3.1.



14 JIRT SREMR
Proof. Let T, Ty, : C(D;R) — C(D;R) be operators defined by (3.1) and

Ty (v) (¢, z) C‘éf//ek(u)(s,n)dnds for (t,z) €D, k€N, (5.17)

Obviously,
ITWlle < el llylle,  [Tk@lle < Ml llylle  for y e C(D;R), keN.
Therefore, the operators T, T, (k € N) are linear bounded ones and the relation
1Tkl < |||l for keN (5.18)

holds. The condition (5.1) can be rewritten in the form

sup {HTk(y) Ty € M(Ek)} —0 as k— 4oo. (5.19)

Assume that, on the contrary, the lemma is not true. Then there exist an in-

creasing sequence {ky, } 7> of natural numbers and a sequence {zp, };-%° of functions
from C*(D;R) such that

lzmllc > mpx,, (zm) for meN. (5.20)

For any m € N and (¢, z) € D, we put

Ym(t,x) = Z,’,Z:”"Z) : (5.21)
Um(t, x) = ym (t C) + Ym(a, ©)+
Yom (t, ) = ym(t, x) — v (t, ), (5.23)
Wi (t, %) = Ty, (Yom ) (t, ) = T (yom) (L, ) + T, (vm) (L, 7). (5.24)
Obviously,
lymllc =1 for meN, (5.25)
Yom(t, ) = —ym(a,c) + T, (ym)(t,x) for (t,z) € D, m €N, (5.26)
and
Yom (t,2) = —ym(a, c) + T (yom)(t, ) + wm(t, z)
for (t,z) € D, m e N. (5.27)

On the other hand, from (5.15), (5.16), (5.18), (5.21), and (5.22), by virtue of (5.20),
we get

Pk:m(zm) 1
Unl|lc < <
lomlle < e+ 1) < ma@ = Ton)

for meN, (5.28)
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1€k | 1
Ty (v < | Te. |l |lv <——"ml__ ~— for meN, 5.29
and
1
|ym (a, c)| < Pl (21m) < — for meN. (5.30)
[zmllc~ m

The relations (5.25) and (5.26) guarantee that yo,, € M(l, ) for m € N, and
therefoere, in view of (5.19), we obtain

m—-+00

According to (5.29) and (5.31), it follows from (5.24) that

lim ||wp|c =0, (5.32)
e}

m—-+

and, by virtue of (5.25) and (5.28), the equality (5.23) implies
[Yomllc < llymlle + lvmllc <2 for meN.

Since the sequence {||yom||c },-> is bounded and the operator T is completely contin-
uous (see Proposition 3.2), there exists a subsequence of {T(yom)},52% which is con-
vergent. Without loss of generality we can assume that the sequence {T (yom)}>;
is convergent, i.e., there exists yo € C(D;R) such that

lim ||T(yom) — %ollc = 0.

m—-+00

Then it is clear that
o |yom — vollc =0 (5.33)

because the functions yo,, admit the representation (5.27) and the relations (5.30)
and (5.32) are satisfied.
However, the estimate (5.28) holds for v, and thus, the equality (5.23) yields

lim Hym - yO”C = 0:

m——+o0

which, together with (5.25), guarantees

Iolle = 1.

Since the operator T is continuous and the conditions (5.30), (5.32), and (5.33) are
fulfilled, the representation (5.27) of yo,, results in

yo(t,x) = T(yo)(t,z) for (t,z) € D.

Consequently, yo € C*(D;R) and yo is a nontrivial solution of the problem (1.1p),
(1.29). But this is a contradiction because, according to our assumption, the problem
indicated has no nontrivial solution. O
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Proof of Theorem 5.1. Let rg > 0 and kg € N be numbers appearing in Lemma 5.1.
If, for some k € N, ug is a solution of the equation

2U xr
THED) _ peuyit, ) (5.345)

satisfying (1.2p) then pg(ug) = 0, where py, is given by (5.15) and (5.16). Therefore,
Lemma 5.1 guarantees that, for every k > ko, the homogeneous problem (5.34),
(1.29) has only the trivial solution. Hence, for every k > kg, the problem (1.1j),
(1.2%) has a unique solution u;. We will show that the relation (5.5) is satisfied,
where u is a solution of the problem (1.1), (1.2).

For any k > kg, we put

vp(t, ) = up(t,z) —u(t,z) for (t,z) € D.
Then it is clear that vy € C*(D;R) for k > ko and

v (t, )

5w Li(vg)(t, ) + q(t,x) for (t,x) € D, k> ko, (5.35)
vi(t,c) = pp(t) for t € la,b], k> ko,

k(t,0) NSOk( ) [a, b] 0 (5.36)

vp(a,x) = Yp(z) for =z € e, d], k> ko,

where

ar(t,x) = Lp(u)(t,x) — (u)(t,x) + qr(t,z) — q(t,z) for (t,x) €D, k> ko,
oK(t) = or(t) —(t) for te€ |a,b], k> ko,

Jk(x) =Yp(z) —Y(z) for =z €lcd], k> ko.

For any k > kg, we put

t z
G = (L 1al) max § | Z(®) + Gu(a) + [ [ Gulompinds|: (2) € D
The assumptions (5.2), (5.3), and (5.4) yield
li = li = 0. .
LJm 0, =0 and R |vg(a,c)] =0 (5.37)
On the other hand, by Lemma 5.1, we get
lvelle < ropk(vi) = ro(Juk(a, c)| + o) for k> ko. (5.38)

Therefore, (5.37) and (5.38) result in
li =0
ot [velle =0,

i.e., the relation (5.5) is satisfied. O
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Proof of Corollary 5.1. We will show that the assumptions of Theorem 5.1 are sat-
isfied. Indeed, the relation (5.6) yields

k|| < ||w|l for ke€N.

Therefore, it is clear that, by virtue of (5.7)—(5.9), the assumptions (5.2)—(5.4) of
Theorem 5.1 are fulfilled. It remains to show that the condition (5.1) is true.
Assume that, on the contrary, the condition (5.1) does not hold. Then there

exist €g > 0, an increasing sequence {km};‘fl of natural numbers, and a sequence

{ym},-2, of functions such that
Ym € M(l,,) for meN (5.39)

and

max // <€km(ym)(s,n) - €(ym)(s,77)>dnds ((t,x) €Dy > e
o for meN. (5.40)

From (5.39) and Notation 5.1 we get

t x
Ym(t, ) = —zm(a, c) + //Ekm(zm)(s,n)dnds for (t,z) € D, meN,

a

where z,, € C(D;R) and ||z, ||c = 1 for m € N. Since we suppose that the operators
¢, are uniformly bounded in the sense of condition (5.6), we obtain

lymllc <1+ |wlr for meN.

Furthermore, for any (t1,z1), (t2,x2) € D and m € N, we get

|ym(t27 $2) - ym(tla $1)| =

t2 x2 t1 x1

= //Ekm(zm)(s,n)dnds—//gkm(zm)(sm)dnds <

< //w(s,n)dsdn+//w(s,n)d8dn,
E: Es

where measurable sets Ey1, F5 C D are such that mes By < (d — ¢)|ta — t1| and
mes Fy < (b —a)|ze — x1].

Consequently, the sequence {ym };+°°, is bounded and equicontinuous in C'(D;R).
Thus, according to Arzela—Ascoli lemma, without loss of generality we can assume
that the sequence indicated is convergent. Therefore, there exists py € N such that

€0

for m > po. (5.41)
lwllz + €]l + 1)

lym ~ v lle < 5
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Since yp, € C*(D;R) and the relation (5.7) holds, there exists p; € N such that

€0

max //<€k(ypo)(8,77)—E(ypo)(sm))dnds () eD e <

for k>p1. (5.42)

Now let us choose a number M € N satisfying M > pg and kp; > p1. Then
t x
a8 | [ (e oar)(s.) = ona) ) )ands| 5 1. 0) € D <
<(llolle + 140 lyar = gpllo+

+ max // <£kM (Ypo)(5,m) —E(ypo)(s,n))dnds (t,x) eD ) <

g0 _lwlz+ 114l <o
- + — < &y,
2 lwllo+ el +1 2

which contradicts (5.40). O

To prove Theorem 5.2 we need the following lemma.

Lemma 5.2. Let p,p; € L(D;R) and let o, : D — R be measurable and essen-
tially bounded functions for k € N. Assume that the relations (5.10) and (5.11) are
satisfied, and
lim ess sup {|ak(t,:n) —a(t,z)|: (t,z) € D} =0. (5.43)
k—4o00
Then

k——+o0

lim a/c/ (pk(s,n)ak(s,n) —p(s,n)a(s,n))dnds =0

uniformly on D. (5.44)
Proof. Without loss of generality we can assume that
Ip(t,x)| <w(t,z) for (t,z)e D. (5.45)

Let € > 0 be arbitrary but fixed. According to (5.43), there exists kg € N such that

//w(t,x)]ak(t,x) —a(t,x)|dtdr < Z for k> ko. (5.46)
D

Since the function « is measurable and essentially bounded, there exists a function
w € C?(D;R) such that

//w(t, )|alt, z) — w(t, z)|dtdz < Z. (5.47)
D
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For any k € N, we put

fr(t,x) = // (pk(s,n) —p(s,n))dnds for (t,x) € D.

Clearly, the condition (511) can be rewritten in the form
lim / =0. 5.48
i 1 oo | fklle ( )

It can be verified by direct calculation that

t x

// (pk(S,n) —pls, U))w(s, n)dnds = fi(t, x)w(t, z)—

a c
t

= [ s 2 s - [ gty P

a

t x

&*w(s,n)
+//fk(5’77)855)77dnd8 for (t,z) € D, ke N.

a

Consequently, using (5.48), we get

t x
khI}_l // (pk(s,n) — p(s,n))w(s,n)dnds =0 uniformly on D.

Hence, there exists k1 > kg such that
t x
// (pk(s,n) —p(s,n))w(s,n)dnds < Z for (t,x) €D, k> k. (5.49)

On the other hand, it is clear that, for any (t,z) € D and k € N,

t oz
// (pk(s,n)ak(s,n) —p(s,n)a(sm))dnds —

:/ipk(S,??)(ak(s,n)_a(sm))dndSJr
t w
+//<pk(8’77)_p(s’n))w(sm)dnds—i-

t x

[ [ (et = plsm)) (atsm) = wis,m)) s



20 JIRI SREMR

Therefore, in view of (5.10), (5.45), (5.46), (5.47), and (5.49), we get

t x
//(pk(s’”)ak(sm)—p(s,n)a(sﬁn))dnds <

< é / (s, m)|(,m) — (s, )l dds+

o ) ra—_

+2 [ tsnlats,n) — wls.n)ldnds <
D
<Z+Z+2Z:5 for (t,x) €D, k>ky,
that is, the relation (5.44) is true. O

Proof of Theorem 5.2. Let £ € L(D) be defined by (4.7). For any k € N, we put

0u(0)(t, ) = pk(t,x)v<7'k(t,x), uk(t,x)> for (t,z) € D. (5.50)

We will show that the condition (5.7) is satisfied for every y € C*(D;R). Indeed, let
y € C*(D;R) be arbitrary but fixed. For any k € N, we put

ar(t,z) = y(m(t, @), p(t, @), olt,z) =y(r(t,z), p(t,z)) for (t,x)€D.

Then it is clear that (5.12) and (5.13) guarantee the condition (5.43). Therefore, it
follows from Lemma 5.2 that the condition (5.44) holds, i.e., the condition (5.7) is
true.

Consequently, the assumptions of Corollary 5.1 are satisfied. O

6. ON DIFFERENTIAL INEQUALITIES

The main goal of this section is to prove the following statement (see Theorem 6.1):
If a certain theorem on differential inequalities holds for the problem (1.1), (1.2)
with a nonincreasing operator ¢ then the operator indicated is necessarily an (a, c)—
Volterra one.

At first let us introduce the following definition.

Definition 6.1. We say that an operator £ € L(D) belongs to the set Sq(D) if an
arbitrary function u € C*(D;R) satisfying

-~ >
n g(u)(t,l‘) for (t,l‘) S D,

u(a,¢) = 0,
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dul(t

uét,c)>0 for t € [a,b],
and 5

“(‘;’x)zo for x € [c,d]

is nonnegative on the set D.

Remark 6.1. Obviously, if £ € S,.(D) then the homogeneous problem (1.1p), (1.29)
has only the trivial solution and thus the problem (1.1), (1.2) is uniquely solvable for
every ¢, ¢, and ¢ (see Theorem 3.1). Moreover, it is clear that the Darboux operator
03 of the problem (1.1p), (1.29) maps the set L(D;R,) into the set C(D;R,), i.e
) is a nondecreasing operator.

Remark 6.2. It is not difficult to verify that £ € S,.(D) if and only if a certain
theorem on differential inequalities is true for the problem (1.1), (1.2), i.e., whenever
u,v € C*(D;R) and ¢ € L(D;R) are such that

Uty (L, )

l(u)(t,x) +q(t,x) for (t,x) €D,
Utx( ) E

(v)(t,z)+q(t,z) for (t,z)eD,
u(a,c) < wv(a,c),
u(t,c) <w(t,e) for t € a,bl,
ug(a,z) <wvg(a,xz) for x € [ed],

<
>

then
u(t,z) <w(t,z) for (t,z)eD.

One can say also that ¢ € S,.(D) if and only if some kind of maximum principle
holds for the probem (1.1), (1.2).

Efficient conditions gauranteeing the inclusion ¢ € S,.(D) have been established
in [7]. Namely, the following assertion is proved in the paper mentioned.

Proposition 6.1. Let ¢ be a nonincreasing (a,c)—Volterra operator and let there
exist a function v € C; _([a,b[x[c,d[;Ry)?* satisfying

loc
2
TD) < u)tw) for (1) €D,
V(tx) >0 for (t,x) € [a,b] x[c,d],
87((;; ) <0 for te€]a,b],
and
87(;3;3:) <0 for z€ed.

Then the operator ¢ belongs to the set Sgc(D).

3The notion of the Darboux operator is given in Definition 3.1.
By C7.(la,b[x[c,d[;Ry) we understand the set of functions u € C(D;R;) which satisfy u €
C*([a, bo] X [c, do]; R) for every by €]a,b] and do €]c,d].
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It follows from the next theorem that the assumption on the nonincreasing op-
erator ¢ in Proposition 6.1 to be an (a,c)—Volterra one is necessary. Analogous
results for the first and second order “ordinary” functional-differential equations
are established in [1] and [8], respectively.

Theorem 6.1. Let —¢ € P(D) and £ € Soc(D). Then the operator ¢ is an (a,c)-
Volterra one.

To prove this theorem we need some auxiliary assertions.

Proposition 6.2. Let —¢ € P(D), { € S,.(D), and (to,z0) €la,b]x]c,d]. Let,
moreover, u be a solution of the problem (1.1), (1.2), where

q(t,z) =0 for (t,z) € [a,to] X [c,x0], (6.1)
e(t)=0 for tela,to, Y(x) =0 for z € c,xo). (6.2)

Then
u(t,z) =0 for (t,x) € [a,to] X [c, zo). (6.3)

Proof. Let Dy = [a,tg] X [c,x0]. According to the inclusion ¢ € S,.(D) and Re-
mark 6.1, the problem

0%v(t, )

W = ﬁ(v)(tﬂ) + ‘Q(t7x)’a (64)

t
v(t,c):/|<p'(s)ds for € b,

vaa) = [W@ldn for a ¢ e

has a unique solution v. Moreover, by virtue of (6.2) and Remark 6.2, we get
v(t,z) >0 for (t,z)€ D, (6.6)
v(t,z) > u(t,z) for (t,z)€D. (6.7)
Since —¢ € P(D), it follows from (6.4) and (6.6) that
v (t, ) <|q(t,z)| for (t,z) € D.

Hence, on account of (6.1), (6.2), (6.5), and (6.6), we obtain

t x t x
0< vt z) < / 1 (s)]ds + / [ ()l dn + / / lg(s,m)|dnds = 0

for (t,x) € Dy, i.e.,
v(t,z) =0 for (t,z)€ Dy. (6.8)
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On the other hand, by virtue of (1.1), (6.4), (6.7), and the assumption —¢ € P (D),
it is obvious that

e (t, ) = L(u —v)(t,x) + q(t,x) + L(v)(t, z) >
> v (t,x) + q(t,z) — |q(t,z)| for (t,z) € D.

The last relation, (6.1), and (6.8) yield
utzx(t,z) >0 for (t,x) € Dy.

However the functions ¢ and 1 in the initial condition (1.2) satisfy (6.2) and thus

t x
2
u(t, z) = o(t) + () +//a“(3’")dnds >0 for (ba)€Dy.  (6.9)
0s 0n
Finally, (6.7)-(6.9) result in (6.3). O

It follows from the previous proposition that if the operator ¢ appearing in the
equation (1.1) is nonincreasing and the theorem on functional differential inequalities
holds for the problem (1.1), (1.2) then the Darboux operator 2 is necessarily an
(a,c)-Volterra one. More precisely, the following assertion is true.

Corollary 6.1. Let —¢ € P(D) and { € Su.(D). Then the Darboux operator Q of
the problem (1.1p), (1.29) is an (a,c)—Volterra one.

We also need to be able to approximate a certain function from the set C(D;R)
by ones of the class C*(D;R). That is a classical question of the theory of real
function but, for the sake of completness, we will show the following lemma.

Lemma 6.1. Let (to, o) € |a,b]x |c,d] and let vg € C(D;R) be a function satisfying
vo(t,z) =0 for (t,z)€ Dy, (6.10)

where Dy = [a,to] X [¢,m0]. Then there exist a sequence {v,} 125 of functions from
the set C?(D;R) such that

vp(t,x) =0 for (t,z) € Dy, n €N (6.11)

and
lim v, —vollc = 0. (6.12)
n—-4o0o

Proof. Let f, : R — R (n € N) be the function defined by

1 if s<0
fn(s) =< exp (n?;s:) if 0<s< % .
0 if s> %
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It is clear that the functions f,, (n € N) are continuous together with their derivatives
up to the second order and

0< fu(s) <1 for seR, neN.
For any n € N, we put
Xn(t,z) =1 — fo(t —to) fu(x — x9) for (t,z)e D.
Then x,, € C*(D;R) for n € N,
0<xn(t,x) <1 for (t,z) €D, neN, (6.13)
Xn(t,z) =0 for (t,x) € Dy, n €N, (6.14)
and
Xn(t,z) =1 for (t,z)eD\ ([a,to +1/n] % [¢, x0 + 1/n]), neN.  (6.15)

It is well-known from functional analysis that there exists a sequence {w, zi'i of

functions from the set C?(D;R) such that
lim |lwy, —vollc = 0. (6.16)

n—-+o00

Put
n(t, ) = xn(t, )w,(t,2) for (t,x) € D, n€N.

Obviously, v, € C*(D;R) for n € N and the relation (6.11) holds. We will show
that the condition (6.12) is satisfied.

Let € > 0 be arbitrary but fixed. Since the function vy is continuous on the
rectangle D, there exists § > 0 such that

oo (t2, 2) — vo(tr, 21)| < g for
(t1,21), (t2,22) € D, |ta — t1| + |x2 — 21| < 0. (6.17)
According to (6.16), there exists ng € N such that ng > 2 and
|wy (t, ) —vo(t, z)| < % for (t,z) € D, n > no. (6.18)
Therefore, in view of (6.10) and (6.17), we get
loo(t, )| < % for (t,z) e ([a,to +1/n] % [e,x0 + 1/n]) ND, n>ny. (6.19)
On the other hand, it is clear that the relation

lvo(t, x) — v (t, z)| <
< Jvo(t, 2)[(1 = xn(ts ) + |vo(t,
< |v0(t,$)|(1 — Xn(t,x)) + |vo(t,
holds for (¢t,x2) € D and n € N. Hence, (6.15), (6.18), and (6.19) guarantee that

Wy (t,2)|[xn(t )] <
wp,(t, )]

)_
)_

lvo(t, ) —vp(t,x)| <e for (t,z) € D, n>ng,

i.e., the relation (6.12) holds. O
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Now we are in position to prove Theorem 6.1.

Proof of Theorem 6.1. Assume that, on the contrary, ¢ is not (a, c)—Volterra opera-
tor. Then there exist vg € C(D;R) and (to, zo) € |a,b]x |, d], (to,z0) # (b,d), such
that (6.10) holds with Dy = [a, o] X [¢, zo] and

mes{(t,x) € Dy : L(vo)(t,xz) # 0} > 0.
Without loss of generality we can assume that

mes{(t,x) € Dy : £(vy)(t,z) <0} > 0. (6.20)
At first we will show that

Q(|vo]))(t,z) =0 for (t,x) € Dy, (6.21)

where € denotes the Darboux operator of the problem (1.1p), (1.29).
According to Lemma 6.1, there exists a sequence {v, },;:>] € C?(D;R) such that
(6.11) is satisfied and
lim v, — |vol||c = 0. (6.22)

n—-+o00

Since ¢ and €2 are continuous operators (see Corollary 5.2), the relation (6.22) implies

lim_{|Q(¢(va)) — Q(¢(Jvo])) || = O (6.23)

n—-+o00o

Let z, = Q(ﬂ(vn)) for n € N. Then z, is a solution of the problem

Pz (t, )
“atos — Llen)(tz) + L(vn) (E @), (6.24)
zn(t,c) =0 for t € la,b], zp(a,z) =0 for z € e, d). (6.25)

For any n € N, we put
wp(t, ) = v, (t,x) + 2, (t,x) for (t,x) € D.

It is clear that w, € C*(D;R) for n € N because every function v, belongs to the
set C?(D;R). Moreover, (6.24) and (6.25) result in

0wy (t, ) 0?vy(t, )
grow bt e
wp(t,c) =vp(t,c) for t € la,b], wp(a,z) =vp(a,z) for z € e, d).

Therefore, on account of (6.11), Proposition 6.2 implies
wp(t,z) =0 for (t,x) € Dy, n € N.
Hence, again by virtue of (6.11), we get

Q((vn)) (t, @) = 2 (t,2) = —vp(t,z) =0 for (t,x) € Dy, n €N
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and thus, in view of (6.23), the relation (6.21) is satisfied.
According to Remark 6.1, the problem (1.1), (1.2y) with

—/ t if (¢ D
q(t,x) _ (|U0|)( ,IL‘) 1 ( ,1?) €Dy (626)
0 if (t,z) e D\ Dy
has a unique solution u. We suppose that —¢ € P(D) and therefore
q(t,z) >0 for (t,z)e D (6.27)
and
mes{(t,x) € Dy : q(t,z) > 0} >0, (6.28)

because the relation (6.20) holds. Since €2 is an (a, ¢)-Volterra operator (see Corol-
lary 6.1) and u = Q(q) it follows from (6.21) and (6.26) that

u(t,z) =0 for (t,x) € Dy. (6.29)
On the other hand, the operator ¢ belongs to the set S;.(D) which garantees
u(t,z) >0 for (t,x) €D, (6.30)

because the relation (6.27) is true. By virtue of the assumption —¢ € P(D), the
equation (1.1) implies

uge(t,x) < q(t,x) for (t,x) € D
and thus, using (6.26) and (6.29), we get
utz(t,z) <0 for (t,x) € D. (6.31)

However, the function u satisfies the homogeneous initial conditions (1.2¢) and there-
fore the last inequality yields

u(t,z) <0 for (t,z)eD.

Whence we get u = 0 because the function u satisfies (6.30). Finally, the equation
(1.1) implies ¢ = 0, which contradicts (6.28). O

7. EXAMPLES

Example 7.1. Let p € L(D; R4 ) be such that

4 [ pis.nydnds =1

and let ¢ € L(D) be defined by

L(v)(t,z) = p(t,x)v(b,d) for (t,x) € D, ve C(D;R).
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Then the condition (4.2) with o = 1 is satisfied for every m € N and v € C(D;R).
Moreover,

//pj(sjn)dnds =1 forevery j€N,

where p; is given by (4.4).
On the other hand, the problem (1.1p), (1.29) has a nontrivial solution

t x
u(t,x)://p(s,n)dnds for (t,x) € D.

This example shows that the assumption « € [0, 1] in Theorem 4.1 cannot be
replaced by the assumption « € [0, 1], and the strict inequality (4.3) in Corollary 4.1
cannot be replaced by the nonstrict one.

Example 7.2. Let
gr(t) = kcosk®t, h(t) = —ksink’*t for t>0, k€N, (7.1)

and

t

]CQ : k?

k/exp (sm smk s) sink®sds for t>0, ke N. (7.2)
0

It is not difficult to verify that, for every k € N,

v (t) = gy (t) + hi(t) for a.a. t>0, (7.3)
lye(t)| < 1+e+te? for t>0, (7.4)
and y
Jm yi(t) =5 for ¢20, (7.5)
because

1 k2t
yr(t) = — cosk*t — — exp <s1n )

k
1 / sin /c2 sin k2s ds+
2 k

t
1 k*t  sink?
+ 3 /exp <s1n o S) cos 2k?sds for t>0.
0

k

Now, let p=0,¢=0, p=0, ¢ =0, and

T(t,z) =t, wp(t,x)=x for (t,z)e€D.
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For any k € N, we put ¢ =0, ¥ =0,

pr(t,x) = gr(t —a)gp(x —¢) for (t,x) € D,

qe(t, ) = hi(t — a)yp(z — ¢) + yp(t — a)hg(z — ¢)—
— hi(t —a)hg(x —¢) for (t,z)€ D,

and
m(t,x) =t, pp(t,z) =z for (t,z)e€ D.

Let ¢, ¢, € L(D) be operators defined by (4.7) and (5.50).

According to (7.1), (7.3), and (7.4), it is clear that the assumptions of Theo-
rem 5.2 are satisfied except of (5.10) which, in view of the proof of theorem men-
tioned, guarantees that the assumptions of Corollary 5.1 are fulfilled except of (5.6).

On the other hand,

u(t,z) =0 for (t,x) €D

and
up(t,z) = yp(t — a)yp(x —¢) for (t,x) €D, ke N

are solutions of the problems (1.1), (1.2) and (1.1}), (1.2;), respectively, as well
as of the problems (1.1), (1.2) and (1.1), (1.2;), respectively. However, in view of
(7.5), we get

lim (uk(t, x) — u(t, x)) = kgl—ll-loo yp(t — a)yp(z — ¢) =

k—+oco
:“—a{f—@ for (1) e D,

that is, the relation (5.5) is not true.
This example shows that the assumption (5.6) in Corollary 5.1 and the assump-
tion (5.10) in Theorem 5.2 are essential and cannot be omitted.
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