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ON THE CHARACTERISTIC INITIAL VALUE PROBLEM
FOR LINEAR PARTIAL FUNCTIONAL–DIFFERENTIAL

EQUATIONS OF HYPERBOLIC TYPE

Jǐŕı Šremr

Abstract. Theorems on the Fredholm alternative and well–posedness of the
characteristic initial value problem

∂2u(t, x)

∂t ∂x
= `(u)(t, x) + q(t, x),

u(t, c) = ϕ(t) for t ∈ [a, b], u(a, x) = ψ(x) for x ∈ [c, d]

are established, where ` : C(D; R) → L(D; R) is a linear bounded operator, q ∈
L(D; R), ϕ : [a, b] :→ R, ψ : [c, d] :→ R are absolutely continuous functions such that
ϕ(a) = ψ(c), and D = [a, b]× [c, d]. Moreover, it is proved that if ` is a nonincreasing
operator and a certain theorem on functional differential inequalities holds for the
problem considered then the operator indicated is necessarilly an (a, c)–Volterra one.

1. Introduction

On the rectangleD = [a, b]×[c, d], we consider the characteristic initial value problem

∂2u(t, x)
∂t ∂x

= `(u)(t, x) + q(t, x), (1.1)

u(t, c) = ϕ(t) for t ∈ [a, b], u(a, x) = ψ(x) for x ∈ [c, d], (1.2)

where ` : C(D; R) → L(D; R) is a linear bounded operator, q ∈ L(D; R), and ϕ :
[a, b] → R, ψ : [c, d] → R are absolutely continuous functions such that ϕ(a) = ψ(c).
As usual, C(D; R) and L(D; R) denote the Banach spaces of continuous and Lebesgue
integrable functions, respectively, equipped with the standard norms.

Under a solution of the problem (1.1), (1.2) is understood a function u ∈
C∗(D; R)1 which satisfies the equation (1.1) almost everywhere on the set D and
verifies also the condition (1.2).

The aim of the paper is to prove the Fredholm alternative and well–posedness
of the problem (1.1), (1.2) (see Sections 3 and 5). Moreover, some conditions are
given in Section 4 under which the problem (1.1), (1.2) has a unique solution. The
results obtained are concretized for the equation with deviating arguments

∂2u(t, x)
∂t ∂x

= p(t, x)u
(
τ(t, x), µ(t, x)

)
+ q(t, x), (1.1′)

where p, q ∈ L(D; R) and τ : D → [a, b], µ : D → [c, d] are measurable functions. Fi-
nally, there is proved in Section 6 that if a certain theorem on differential inequalities
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holds for the problem (1.1), (1.2) with a nonincreasing operator ` then the operator
indicated is necessarily an (a, c)–Volterra one.

We should note here that some solvability conditions and theorems on the well–
posedness of the other boundary value problems for linear and nonlinear partial
differential equations of hyperbolic type are given, e.g., in [3, 5, 6, 9, 10] (see also
references therein).

2. Notations and Definitions

The following notation and definitions are used throughout the paper.
N is the set of all natural numbers.
R is the set of all real numbers, R+ = [0,+∞[ .
Ent(x) denotes the entire part of the number x ∈ R.
D = [a, b]× [c, d], where −∞ < a < b < +∞ and −∞ < c < d < +∞.
C(D; R) is the Banach space of continuous functions v : D → R equipped with

the norm
‖v‖C = max

{
|v(t, x)| : (t, x) ∈ D

}
.

C(D; R+) = {v ∈ C(D; R) : v(t, x) ≥ 0 for (t, x) ∈ D}.
C̃([α, β]; R), where −∞ < α < β < +∞, is the set of absolutely continuous

functions u : [α, β] → R.
C∗(D; R) is the set of functions v : D → R admitting the representation

v(t, x) = v1(t) + v2(x) +

t∫
a

x∫
c

h(s, η)dηds for (t, x) ∈ D,

where v1 ∈ C̃([a, b],R), v2 ∈ C̃([c, d],R), and h ∈ L(D; R).
C2(D; R) is the set of functions v : D → R which have continuous derivatives up

to the second order.
L(D; R) is the Banach space of Lebesgue integrable functions p : D → R equipped

with the norm
‖p‖L =

∫∫
D

|p(t, x)|dtdx.

L(D; R+) = {p ∈ L(D; R) : p(t, x) ≥ 0 for almost all (t, x) ∈ D}.
L(D) is the set of linear bounded operators ` : C(D; R) → L(D; R).
mesA denotes the Lebesgue measure of the set A ⊂ R2.
If X, Y are some normed spaces and T : X → Y is a linear bounded operator

then ‖T‖ denotes the norm of the operator T , i.e.,

‖T‖ = sup
{
‖T (z)‖Y : z ∈ X, ‖z‖X ≤ 1

}
.

Definition 2.1. An operator ` ∈ L(D) is said to be nondecreasing if it maps the set
C(D; R+) into the set L(D; R+). In the sequel, the set of nondecreasing operators is
denoted by P(D). We say that an operator ` ∈ L(D) is nonincreasing if −` ∈ P(D).
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Definition 2.2. An operator ` ∈ L(D) is said to be an (a, c)–Volterra operator if,
for arbitrary rectangle [a, t0]× [c, x0] ⊆ D and function v ∈ C(D; R) such that

v(t, x) = 0 for (t, x) ∈ [a, t0]× [c, x0],

the relation
`(v)(t, x) = 0 for a. a. (t, x) ∈ [a, t0]× [c, x0]

holds.
Analogously, we say that an operator Ω : L(D;R) → C(D;R) is an (a, c)–Volterra

operator if, for arbitrary rectangle [a, t0]× [c, x0] ⊆ D and function p ∈ L(D;R) such
that

p(t, x) = 0 for a. a. (t, x) ∈ [a, t0]× [c, x0],

we have
Ω(p)(t, x) = 0 for (t, x) ∈ [a, t0]× [c, x0].

Remark 2.1. One can verify that v ∈ C∗(D; R) if and only if the following condi-
tions are satisfied:

(a) v(t, ·) ∈ C̃([c, d],R) for every t ∈ [a, b], v(·, x) ∈ C̃([a, b],R) for every x ∈ [c, d];

(b) vt(t, ·) ∈ C̃([c, d],R) for almost all t ∈ [a, b], vx(·, x) ∈ C̃([a, b],R) for almost
all x ∈ [c, d];

(c) vtx ∈ L(D; R).

Moreover, it is clear that C2(D; R) ⊂ C∗(D; R).
We should also note here that the set C∗(D; R) coincide with the class of abso-

lutely continuous functions of two variables presented, e.g., in [4, 9].

In what follows, the equalities and inequalities with integrable functions are
understood to hold almost everywhere.

3. Fredholm Property

The main result of this section is the following statement.

Theorem 3.1. For the unique solvability of the problem (1.1), (1.2) is sufficient
and necessary that the homogeneous problem

∂2u(t, x)
∂t ∂x

= `(u)(t, x), (1.10)

u(t, c) = 0 for t ∈ [a, b], u(a, x) = 0 for x ∈ [c, d] (1.20)

has only the trivial solution.

Definition 3.1. Let the problem (1.10), (1.20) have only the trivial solution. An
operator Ω : L(D; R) → C(D; R) which assigns to everey q ∈ L(D; R) the solution
u of the problem (1.1), (1.20) is reffered to as the Darboux operator of the problem
(1.10), (1.20).
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Remark 3.1. It follows from Theorem 3.1 that the operator Ω is well–defined.
Obviously, the operator Ω is linear.

If the homogeneous problem (1.10), (1.20) has a nontrivial solution then, by
virtue of Theorem 3.1, there exist functions q, ϕ, and ψ such that the problem (1.1),
(1.2) has either no solution or infinitely many solutions. However, as it follows from
the proof of Theorem 3.1, a stronger assertion can be shown in this case.

Proposition 3.1. Let the problem (1.10), (1.20) have a nontrivial solution. Then,
for arbitrary ϕ ∈ C̃([a, b],R) and ψ ∈ C̃([c, d],R) satisfying ϕ(a) = ψ(c), there exists
a function q ∈ L(D; R) such that the problem (1.1), (1.2) has no solution.

To prove Theorem 3.1 we need several notions and statements from functional
analysis.

Definition 3.2. Let X be a Banach space, X∗ be its dual space.
We say that a sequence {xn}+∞

n=1 ⊆ X is weakly convergent if there exists x ∈ X
such that f(x) = lim

n→+∞
f(xn) for every f ∈ X∗. The element x is said to be a weak

limit of this sequence.
A set M ⊆ X is reffer to be weakly relatively compact if every sequence of

elements from M contains a subsequence which is weakly convergent in X.
A sequence {xn}+∞

n=1 of elements fom X is said to be weakly fundamental if the
sequence {f(xn)}+∞

n=1 is fundamental in R for every f ∈ X∗.
We say that the spaceX is weakly complete if every weakly fundamental sequence

of elements from X possesses a weak limit in X.

Definition 3.3. Let X and Y be some Banach spaces, T : X → Y be a linear
bounded operator. The operator T is said to be weakly completely continuous if it
maps a unit ball of X into a weakly relatively compact subset of Y .

Definition 3.4. We say that a set M ⊆ L(D; R) has a property of absolutely
continuous integral if, for every ε > 0, there exists δ > 0 such that the relation∣∣∣∣∣∣

∫∫
E

p(t, x)dtdx

∣∣∣∣∣∣ < ε for every p ∈M

is true whenever a measurable set E ⊆ D is such that mesE < δ.

The following three lemmata can be found in [2].

Lemma 3.1 (Theorem IV.8.6). The space L(D; R) is weakly complete.

Lemma 3.2 (Theorem VI.7.6). A linear bounded operator mapping the space
C(D; R) into a weakly complete Banach space is weakly completely continuous.

Lemma 3.3 (Theorem IV.8.11). If a set M ⊆ L(D; R) is weakly relatively com-
pact then it has a property of absolutely continuous integral.

Now we will establish a proposition which plays a crucial role in the proof of
Theorem 3.1 as well as in the proofs of statements given in Section 5.



ON THE CHARACTERISTIC INITIAL VALUE PROBLEM . . . 5

Proposition 3.2. Let ` ∈ L(D). Then the operator T : C(D; R) → C(D; R) defined
by

T (v)(t, x) =

t∫
a

x∫
c

`(v)(s, η)dηds for (t, x) ∈ D, v ∈ C(D; R) (3.1)

is completely continuous.

Proof. Let M ⊆ C(D; R) be a bounded set. We will show that the set T (M) =
{T (v) : v ∈ M} is relatively compact in C(D; R). According to Arzelà–Ascoli
lemma, it is sufficient to show that the set T (M) is bounded and equicontinuous.

Boundedness. It is clear that

|T (v)(t, x)| ≤
t∫

a

x∫
c

|`(v)(s, η)|dηds ≤ ‖`(v)‖L ≤ ‖`‖ ‖v‖C

for (t, x) ∈ D and every v ∈ M . Therefore, the set T (M) is bounded in the space
C(D; R).

Equicontinuity. Let ε > 0 be arbitrary but fixed. Lemmata 3.1 and 3.2 yield
that the operator ` is weakly completely continuous, that is, the set `(M) = {`(v) :
v ∈ M} is weakly relatively compact subset of L(D; R). Therefore, Lemma 3.3
guarantees that there exists δ > 0 such that the relation∣∣∣∣∣∣

∫∫
E

`(v)(t, x)dtdx

∣∣∣∣∣∣ < ε

2
for v ∈M (3.2)

holds for every measurable set E ⊆ D satisfying mesE < max{b− a, d− c}δ.
On the other hand, for (t1, x1), (t2, x2) ∈ D and v ∈M , we have

|T (v)(t2, x2)− T (v)(t1, x1)| =

=

∣∣∣∣∣∣
t2∫

a

x2∫
c

`(v)(s, η)dηds−
t1∫

a

x1∫
c

`(v)(s, η)dηds

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣
∫∫
E1

`(v)(s, η)dsdη

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫∫
E2

`(v)(s, η)dsdη

∣∣∣∣∣∣ ,
where measurable sets E1, E2 ⊆ D are such that mesE1 ≤ (d − c)|t2 − t1| and
mesE2 ≤ (b− a)|x2 − x1|. Hence, by virtue of (3.2), we get

|T (v)(t2, x2)− T (v)(t1, x1)| < ε

for (t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ, and v ∈M,

i.e., the set T (M) is equicontinuous in the space C(D; R).
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Proof of Theorem 3.1. Let u be a solution of the problem (1.1), (1.2). It is clear
that u is a solution of the equation

v = T (v) + f (3.3)

in the space C(D; R), where the operator T is given by (3.1) and

f(t, x) = −ϕ(a) + ϕ(t) + ψ(x) +

t∫
a

x∫
c

q(s, η)dηds for (t, x) ∈ D. (3.4)

Conversely, if v ∈ C(D; R) is a solution of the equation (3.3) with f given by (3.4)
then v ∈ C∗(D; R) and v is a solution of the problem (1.1), (1.2). Hence, the problem
(1.1), (1.2) and the equation (3.3) are equivalent in this sense.

Note also that u is a solution of the homogeneous problem (1.10), (1.20) if and
only if u is a solution of the homogeneous equation

v = T (v) (3.5)

in the space C(D; R).
According to Proposition 3.2, the operator T is completely continuous. It follows

from the Riesz–Schauder theory that the equation (3.3) is uniquely solvable for every
f ∈ C(D; R) if and only if the homogeneous equation (3.5) has only the trivial
solution. Therefore, the assertion of theorem is true.

Proof of Proposition 3.1. Let u0 be a nontrivial solution of the problem (1.10),
(1.20), and let ϕ ∈ C̃([a, b],R) and ψ ∈ C̃([c, d],R) be such that ϕ(a) = ψ(c).

It follows from the proof of Theorem 3.1 that u0 is also nontrivial solution of the
homogeneous equation (3.5). Therefore, by the Riesz–Schauder theory, there exists
f ∈ C(D; R) such that the equation (3.3) has no solution.

Then the problem (1.1), (1.2) has no solution for q ≡ `(z), where

z(t, x) = f(t, x) + ϕ(a)− ϕ(t)− ψ(x) for (t, x) ∈ D.

Indeed, if the problem indicated has a solution u then the function u+z is a solution
of the equation (3.3), which is a contradiction.

4. Existence and Uniqueness Theorems

In this section, we will establish some conditions guaranteeing the unique solvability
of the problems (1.1), (1.2) and (1.1′), (1.2). We will prove, in particular, that
the problem (1.1), (1.2) has a unique solution provided that the operator ` is an
(a, c)–Volterra one. We first introduce the following notation.

Notation 4.1. Let ` ∈ L(D). Define operators ϑk : C(D; R) → C(D; R), k =
0, 1, 2, . . . , by setting

ϑ0(v) = v, ϑk(v) = T
(
ϑk−1(v)

)
for v ∈ C(D; R), k ∈ N, (4.1)

where the operator T is given by (3.1).
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Theorem 4.1. Let there exist m ∈ N and α ∈ [0, 1[ such that the inequality

‖ϑm(u)‖C ≤ α‖u‖C (4.2)

is satisfied for every solution u of the homogeneous problem (1.10), (1.20). Then the
problem (1.1), (1.2) is uniquely solvable.

Remark 4.1. The assumption α ∈ [0, 1[ in the previous theorem cannot be replaced
by the assumption α ∈ [0, 1] (see Example 7.1).

Corollary 4.1. Let there exist a number j ∈ N such that∫∫
D

pj(t, x)dtdx < 1, (4.3)

where p1 ≡ |p| and

pk+1(t, x) = |p(t, x)|
τ(t,x)∫
a

µ(t,x)∫
c

pk(s, η)dηds for (t, x) ∈ D, k ∈ N. (4.4)

Then the problem (1.1′), (1.2) is uniquely solvable.

Remark 4.2. Example 7.1 shows that the strict inequality (4.3) in Corollary 4.1
cannot be replaced by the nonstrict one.

Theorem 4.2. Let ` be an (a, c)–Volterra operator. Then the problem (1.1), (1.2)
has a unique solution.

Corollary 4.2. Let

|p(t, x)|
(
τ(t, x)− t

)
≤ 0 for (t, x) ∈ D (4.5)

and
|p(t, x)|

(
µ(t, x)− x

)
≤ 0 for (t, x) ∈ D. (4.6)

Then the problem (1.1′), (1.2) has a unique solution.

Proof of Theorem 4.1. According to Theorem 3.1, it is sufficient to show that the
homogeneous problem (1.10), (1.20) has only the trivial solution.

Let u be a solution of the problem (1.10), (1.20). Then it is clear that

u(t, x) =

t∫
a

x∫
c

`(u)(s, η)dηds = T (u)(t, x) = ϑ1(u)(t, x) for (t, x) ∈ D.

Using the last relation, we get

u(t, x) = T
(
ϑ1(u)

)
(t, x) = ϑ2(u)(t, x) for (t, x) ∈ D,

and thus, u = ϑk(u) for every k ∈ N. Therefore, (4.2) implies

‖u‖C = ‖ϑm(u)‖C ≤ α‖u‖C ,

which guarantees u ≡ 0 because we have supposed that α ∈ [0, 1[ .
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Proof of Corollary 4.1. Let ` ∈ L(D) be defined by

`(v)(t, x) = p(t, x)v
(
τ(t, x), µ(t, x)

)
for (t, x) ∈ D. (4.7)

It is clear that

∣∣ϑk(v)(t, x)
∣∣ ≤ t∫

a

x∫
c

∣∣p(s, η)ϑk−1(v)
(
τ(s, η), µ(s, η)

)∣∣dηds ≤
≤ ‖v‖C

t∫
a

x∫
c

pk(s, η)dηds for (t, x) ∈ D, k ∈ N, v ∈ C(D; R).

Therefore, the assumptions of Theorem 4.1 are satisfied for m = j and

α =
∫∫
D

pj(t, x)dtdx.

To prove Theorem 4.2 we need the following lemma.

Lemma 4.1. Let ` ∈ L(D) be an (a, c)–Volterra operator. Then

lim
k→+∞

‖ϑk‖ = 0, (4.8)

where the operators ϑk are defined by (4.1).

Proof. Let ε ∈ ]0, 1[ . According to Proposition 3.2, the operator ϑ1 is completely
continuous. Therefore, by virtue of Arzelà–Ascoli lemma, there exists δ > 0 such
that∣∣∣∣∣∣

t2∫
a

x2∫
c

`(w)(s, η)dηds−
t1∫

a

x1∫
c

`(w)(s, η)dηds

∣∣∣∣∣∣ ≤ ε ‖w‖C

for (t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ, w ∈ C(D; R). (4.9)

Let

n = max
{

Ent
(

2(b− a)
δ

)
,Ent

(
2(d− c)

δ

)}
,

ti = a+ i
b− a

n+ 1
, xi = c+ i

d− c

n+ 1
for i = 0, 1, . . . , n+ 1,

Di = [a, ti]× [c, xi] for i = 1, 2, . . . , n+ 1.

It is clear that, for any j, r = 0, 1, . . . , n, we have∣∣t̃2 − t̃1
∣∣ + |x̃2 − x̃1| < δ for (t̃1, x̃1), (t̃2, x̃2) ∈ [tj , tj+1]× [xr, xr+1]. (4.10)
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If w ∈ C(D; R) then we denote

‖w‖i = ‖w‖C(Di;R) for i = 1, 2, . . . , n+ 1.

Let v ∈ C(D; R) be arbitrary but fixed. We will show that the relation

‖ϑk(v)‖i ≤ αi(k)εk‖v‖C for k ∈ N (4.11)

holds for every i = 1, 2, . . . , n+ 1, where

αi(k) = αik
i−1 for k ∈ N, i = 1, 2, . . . , n+ 1, (4.12)

α1 = 1, αi+1 = i+ 1 + iαi for i = 1, 2, . . . , n. (4.13)

By virtue of (4.9) and (4.10), it is easy to verify that, for any w ∈ C(D; R), we have∣∣∣∣∣∣
tj∫

a

xr∫
c

`(w)(s, η)dηds

∣∣∣∣∣∣ ≤ min{j, r} ε ‖w‖C for j, r = 0, 1, . . . , n+ 1. (4.14)

Firstly, note that

‖ϑ1(v)‖i ≤ i ε ‖v‖C for i = 1, 2, . . . , n+ 1. (4.15)

Indeed, according to (4.9), (4.10), and (4.14), it is obvious that

‖ϑ1(v)‖i =

= max


∣∣∣∣∣∣

t∫
a

x∫
c

`(v)(s, η)dηds

∣∣∣∣∣∣ : (t, x) ∈ Di

 =

∣∣∣∣∣∣
t∗∫

a

x∗∫
c

`(v)(s, η)dηds

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣
t∗∫

a

x∗∫
c

`(v)(s, η)dηds−

tj0∫
a

xr0∫
c

`(v)(s, η)dηds

∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣
tj0∫
a

xr0∫
c

`(v)(s, η)dηds

∣∣∣∣∣∣∣ ≤
≤ ε ‖v‖C + (i− 1) ε ‖v‖C = i ε ‖v‖C for i = 1, 2, . . . , n+ 1,

where (t∗, x∗) ∈ Di and

j0 =

{
t∗−t0
t1−t0

− 1 if t∗−t0
t1−t0

∈ N
Ent

(
t∗−t0
t1−t0

)
otherwise

, r0 =

{
x∗−x0
x1−x0

− 1 if x∗−x0
x1−x0

∈ N
Ent

(
x∗−x0
x1−x0

)
otherwise

. (4.16)

Further, on account of (4.9) and the fact that ` is an (a, c)–Volterra operator, we
get

|ϑk+1(v)(t, x)| =

∣∣∣∣∣∣
t∫

a

x∫
c

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣∣ ≤ ε ‖ϑk(v)‖1

for (t, x) ∈ D1 and k ∈ N. Hence, by virtue of (4.15), we have

‖ϑk(v)‖1 ≤ εk ‖v‖C for k ∈ N,
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i.e., (4.11) is true for i = 1.
Now suppose that the relation (4.11) holds for some i ∈ {1, 2, . . . , n}. We will

show that the relation indicated is true also for i+ 1. With respect to (4.9), (4.10),
(4.14), and the fact that ` is an (a, c)–Volterra operator, we obtain

‖ϑk+1(v)‖i+1 = max


∣∣∣∣∣∣

t∫
a

x∫
c

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣∣ : (t, x) ∈ Di+1

 =

=

∣∣∣∣∣∣
t∗∫

a

x∗∫
c

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣∣∣
t∗∫

a

x∗∫
c

`
(
ϑk(v)

)
(s, η)dηds−

tj0∫
a

xr0∫
c

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣∣∣ +

+

∣∣∣∣∣∣∣
tj0∫
a

xr0∫
c

`
(
ϑk(v)

)
(s, η)dηds

∣∣∣∣∣∣∣ ≤
≤ ε ‖ϑk(v)‖i+1 + i ε ‖ϑk(v)‖i ≤ ε ‖ϑk(v)‖i+1 + i αi(k) εk+1 ‖v‖C for k ∈ N,

where (t∗, x∗) ∈ Di+1 and j0, r0 are given by (4.16). Whence we get

‖ϑk+1(v)‖i+1 ≤ ε
(
ε ‖ϑk−1(v)‖i+1 + i αi(k − 1) εk ‖v‖C

)
+

+ i αi(k) εk+1 ‖v‖C for k ∈ N.

To continue this procedure, on account of (4.15), we obtain

‖ϑk+1(v)‖i+1 ≤

≤
(
i+ 1 + i

(
αi(1) + · · ·+ αi(k)

))
εk+1 ‖v‖C for k ∈ N. (4.17)

With respect to (4.12) and (4.13), it is easy to verify that

i+ 1 + i
(
αi(1) + · · ·+ αi(k)

)
= i+ 1 + i αi

(
1i−1 + · · ·+ ki−1

)
≤

≤ i+ 1 + i αi k k
i−1 = i+ 1 + i αi k

i ≤
≤ (i+ 1 + i αi) ki = αi+1 k

i ≤ αi+1 (k + 1).

Therefore, (4.15) and (4.17) imply

‖ϑk(v)‖i+1 ≤ αi+1(k) εk ‖v‖C for k ∈ N.

Thus, by induction, we have proved that the relation (4.11) is true for every i =
1, 2, . . . , n+ 1.

Now it is already clear that, for any k ∈ N, the estimate

‖ϑk(v)‖C = ‖ϑk(v)‖n+1 ≤ αn+1 k
n εk ‖v‖C for v ∈ C(D; R)
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holds. Therefore,
‖ϑk‖ ≤ αn+1 k

n εk for k ∈ N.

Since we suppose that ε ∈ ]0, 1[ , the last relation yields (4.8).

Proof of Theorem 4.2. According to Lemma 4.1, there exists m0 ∈ N such that
‖ϑm0‖ < 1. Moreover, it is clear that

‖ϑm0(v)‖C ≤ ‖ϑm0‖ ‖v‖C for v ∈ C(D; R)

because the operator ϑm0 is bounded. Therefore, the assumptions of Theorem 4.1
are satisfied for m = m0 and α = ‖ϑm0‖.

Proof of Corollary 4.2. The assumptions (4.5) and (4.6) guarantee that the operator
` given by (4.7) is an (a, c)–Volterra one. Therefore, the validity of corollary follows
immediately from Theorem 4.2.

5. Well–posedness

In this part, the well–posedness of the problems (1.1), (1.2) and (1.1′), (1.2) is
investigated.

For any k ∈ N, along with the problem (1.1), (1.2) we consider the perturbed
problem

∂2u(t, x)
∂t ∂x

= `k(u)(t, x) + qk(t, x), (1.1k)

u(t, c) = ϕk(t) for t ∈ [a, b], u(a, x) = ψk(x) for x ∈ [c, d], (1.2k)

where `k ∈ L(D), qk ∈ L(D; R), and ϕk ∈ C̃([a, b]; R), ψk ∈ C̃([c, d]; R) are such that
ϕk(a) = ψk(c).

Notation 5.1. Let ` ∈ L(D). Denote by M(`) the set of all functions y ∈ C∗(D; R)
admitting the representation

y(t, x) = −z(a, c) +

t∫
a

x∫
c

`(z)(s, η)dηds for (t, x) ∈ D,

where z ∈ C(D; R) and ‖z‖C = 1.

Theorem 5.1. Let the problem (1.1), (1.2) have a unique solution u,

lim
k→+∞

λk = 0, (5.1)

where, for any k ∈ N,

λk = sup


∣∣∣∣∣∣

t∫
a

x∫
c

(
`k(y)(s, η)− `(y)(s, η)

)
dηds

∣∣∣∣∣∣ : (t, x) ∈ D, y ∈M(`k)

 ,
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and let

lim
k→+∞

(1 + ‖`k‖)
t∫

a

x∫
c

(
`k(y)(s, η)− `(y)(s, η)

)
dηds = 0

uniformly on D for every y ∈ C∗(D; R). (5.2)

Let, moreover,

lim
k→+∞

(1 + ‖`k‖)
t∫

a

x∫
c

(
qk(s, η)− q(s, η)

)
dηds = 0 uniformly on D (5.3)

and

lim
k→+∞

(1 + ‖`k‖)‖ϕk − ϕ‖C = 0 , lim
k→+∞

(1 + ‖`k‖)‖ψk − ψ‖C = 0. (5.4)

Then there exists k0 ∈ N such that, for every k > k0, the problem (1.1k), (1.2k) has
a unique solution uk and

lim
k→+∞

‖uk − u‖C = 0. (5.5)

If we suppose that the operators `k are “uniformly bounded” in the sense of the
relation (5.6) then we obtain the following assertion.

Corollary 5.1. Let the problem (1.1), (1.2) have a unique solution u, there exist
a function ω ∈ L(D; R+) such that

|`k(y)(t, x)| ≤ ω(t, x)‖y‖C for (t, x) ∈ D, y ∈ C(D; R), k ∈ N, (5.6)

and let

lim
k→+∞

t∫
a

x∫
c

(
`k(y)(s, η)− `(y)(s, η)

)
dηds = 0 uniformly on D (5.7)

for every y ∈ C∗(D; R). Let, moreover,

lim
k→+∞

t∫
a

x∫
c

(
qk(s, η)− q(s, η)

)
dηds = 0 uniformly on D, (5.8)

and
lim

k→+∞
‖ϕk − ϕ‖C = 0 , lim

k→+∞
‖ψk − ψ‖C = 0. (5.9)

Then the conclusion of Theorem 5.1 is true.

Remark 5.1. The assumption (5.6) in the previous corollary is essential and cannot
be omitted (see Example 7.2).

From Corollary 5.1, it immediately follows
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Corollary 5.2. Let the homogeneous problem (1.10), (1.20) have only the trivial
solution. Then the Darboux operator2 of the problem (1.10), (1.20) is continuous.

Now, we will establish a theorem on the well–posedness of the problem (1.1′),
(1.2). For any k ∈ N, along with the equation (1.1′) we consider the perturbed
equation

∂2u(t, x)
∂t ∂x

= pk(t, x)u
(
τk(t, x), µk(t, x)

)
+ qk(t, x), (1.1′k)

where pk, qk ∈ L(D; R) and τk : D → [a, b], µk : D → [c, d] are measurable functions.

Theorem 5.2. Let the problem (1.1′), (1.2) have a unique solution u, there exist
a function ω ∈ L(D; R+) such that

|pk(t, x)| ≤ ω(t, x) for (t, x) ∈ D, k ∈ N, (5.10)

and let

lim
k→+∞

t∫
a

x∫
c

(
pk(s, η)− p(s, η)

)
dηds = 0 uniformly on D. (5.11)

Let, moreover, the conditions (5.8) and (5.9) be satisfied, and

lim
k→+∞

ess sup
{∣∣τk(t, x)− τ(t, x)

∣∣ : (t, x) ∈ D
}

= 0, (5.12)

lim
k→+∞

ess sup
{∣∣µk(t, x)− µ(t, x)

∣∣ : (t, x) ∈ D
}

= 0. (5.13)

Then there exists k0 ∈ N such that, for every k > k0, the problem (1.1′k), (1.2k) has
a unique solution uk and the relation (5.5) is true.

Remark 5.2. The assumption (5.10) in the previous theorem is essential and cannot
be omitted (see Example 7.2).

To prove Theorem 5.1 we need the following lemma.

Lemma 5.1. Let the problem (1.10), (1.20) have only the trivial solution and let the
condition (5.1) be satisfied. Then there exist k0 ∈ N and r0 > 0 such that

‖z‖C ≤ r0ρk(z) for k > k0, z ∈ C∗(D; R), (5.14)

where
ρk(z) = |z(a, c)|+ (1 + ‖`k‖) ‖Γk(z)‖C (5.15)

and

Γk(z)(t, x) = z(t, c) + z(a, x) +

t∫
a

x∫
c

(
∂2z(s, η)
∂s ∂η

− `k(z)(s, η)
)
dηds (5.16)

for (t, x) ∈ D.
2The notion of Darboux operator is introduced in Definition 3.1.
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Proof. Let T, Tk : C(D; R) → C(D; R) be operators defined by (3.1) and

Tk(v)(t, x)
def=

t∫
a

x∫
c

`k(v)(s, η)dηds for (t, x) ∈ D, k ∈ N. (5.17)

Obviously,

‖T (y)‖C ≤ ‖`‖ ‖y‖C , ‖Tk(y)‖C ≤ ‖`k‖ ‖y‖C for y ∈ C(D; R), k ∈ N.

Therefore, the operators T , Tk (k ∈ N) are linear bounded ones and the relation

‖Tk‖ ≤ ‖`k‖ for k ∈ N (5.18)

holds. The condition (5.1) can be rewritten in the form

sup
{
‖Tk(y)− T (y)‖C : y ∈M(`k)

}
→ 0 as k → +∞. (5.19)

Assume that, on the contrary, the lemma is not true. Then there exist an in-
creasing sequence {km}+∞

m=1 of natural numbers and a sequence {zm}+∞
m=1 of functions

from C∗(D; R) such that

‖zm‖C > mρkm(zm) for m ∈ N. (5.20)

For any m ∈ N and (t, x) ∈ D, we put

ym(t, x) =
zm(t, x)
‖zm‖C

, (5.21)

vm(t, x) = ym(t, c) + ym(a, x)+

+

t∫
a

x∫
c

(
∂2ym(s, η)
∂s ∂η

− `km(ym)(s, η)
)
dηds,

(5.22)

y0m(t, x) = ym(t, x)− vm(t, x), (5.23)

wm(t, x) = Tkm(y0m)(t, x)− T (y0m)(t, x) + Tkm(vm)(t, x). (5.24)

Obviously,

‖ym‖C = 1 for m ∈ N, (5.25)

y0m(t, x) = −ym(a, c) + Tkm(ym)(t, x) for (t, x) ∈ D, m ∈ N, (5.26)

and

y0m(t, x) = −ym(a, c) + T (y0m)(t, x) + wm(t, x)
for (t, x) ∈ D, m ∈ N. (5.27)

On the other hand, from (5.15), (5.16), (5.18), (5.21), and (5.22), by virtue of (5.20),
we get

‖vm‖C ≤ ρkm(zm)
‖zm‖C(1 + ‖`km‖)

<
1

m(1 + ‖`km‖)
for m ∈ N, (5.28)
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‖Tkm(vm)‖C ≤ ‖Tkm‖ ‖vm‖C <
‖`km‖

m(1 + ‖`km‖)
<

1
m

for m ∈ N, (5.29)

and

|ym(a, c)| ≤ ρkm(zm)
‖zm‖C

<
1
m

for m ∈ N. (5.30)

The relations (5.25) and (5.26) guarantee that y0m ∈ M(`km) for m ∈ N, and
therefoere, in view of (5.19), we obtain

lim
m→+∞

‖Tkm(y0m)− T (y0m)‖C = 0. (5.31)

According to (5.29) and (5.31), it follows from (5.24) that

lim
m→+∞

‖wm‖C = 0, (5.32)

and, by virtue of (5.25) and (5.28), the equality (5.23) implies

‖y0m‖C ≤ ‖ym‖C + ‖vm‖C < 2 for m ∈ N.

Since the sequence {‖y0m‖C}+∞
m=1 is bounded and the operator T is completely contin-

uous (see Proposition 3.2), there exists a subsequence of {T (y0m)}+∞
m=1 which is con-

vergent. Without loss of generality we can assume that the sequence {T (y0m)}+∞
m=1

is convergent, i.e., there exists y0 ∈ C(D; R) such that

lim
m→+∞

‖T (y0m)− y0‖C = 0.

Then it is clear that
lim

m→+∞
‖y0m − y0‖C = 0 (5.33)

because the functions y0m admit the representation (5.27) and the relations (5.30)
and (5.32) are satisfied.

However, the estimate (5.28) holds for vm and thus, the equality (5.23) yields

lim
m→+∞

‖ym − y0‖C = 0,

which, together with (5.25), guarantees

‖y0‖C = 1.

Since the operator T is continuous and the conditions (5.30), (5.32), and (5.33) are
fulfilled, the representation (5.27) of y0m results in

y0(t, x) = T (y0)(t, x) for (t, x) ∈ D.

Consequently, y0 ∈ C∗(D; R) and y0 is a nontrivial solution of the problem (1.10),
(1.20). But this is a contradiction because, according to our assumption, the problem
indicated has no nontrivial solution.
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Proof of Theorem 5.1. Let r0 > 0 and k0 ∈ N be numbers appearing in Lemma 5.1.
If, for some k ∈ N, u0 is a solution of the equation

∂2u(t, x)
∂t ∂x

= `k(u)(t, x) (5.34k)

satisfying (1.20) then ρk(u0) = 0, where ρk is given by (5.15) and (5.16). Therefore,
Lemma 5.1 guarantees that, for every k > k0, the homogeneous problem (5.34k),
(1.20) has only the trivial solution. Hence, for every k > k0, the problem (1.1k),
(1.2k) has a unique solution uk. We will show that the relation (5.5) is satisfied,
where u is a solution of the problem (1.1), (1.2).

For any k > k0, we put

vk(t, x) = uk(t, x)− u(t, x) for (t, x) ∈ D.

Then it is clear that vk ∈ C∗(D; R) for k > k0 and

∂2vk(t, x)
∂t ∂x

= `k(vk)(t, x) + q̃k(t, x) for (t, x) ∈ D, k > k0, (5.35)

vk(t, c) = ϕ̃k(t) for t ∈ [a, b], k > k0,

vk(a, x) = ψ̃k(x) for x ∈ [c, d], k > k0,
(5.36)

where

q̃k(t, x) = `k(u)(t, x)− `(u)(t, x) + qk(t, x)− q(t, x) for (t, x) ∈ D, k > k0,

ϕ̃k(t) = ϕk(t)− ϕ(t) for t ∈ [a, b], k > k0,

ψ̃k(x) = ψk(x)− ψ(x) for x ∈ [c, d], k > k0.

For any k > k0, we put

δk = (1 + ‖`k‖) max


∣∣∣∣∣∣ϕ̃k(t) + ψ̃k(x) +

t∫
a

x∫
c

q̃k(s, η)dηds

∣∣∣∣∣∣ : (t, x) ∈ D

 .

The assumptions (5.2), (5.3), and (5.4) yield

lim
k→+∞

δk = 0 and lim
k→+∞

|vk(a, c)| = 0. (5.37)

On the other hand, by Lemma 5.1, we get

‖vk‖C ≤ r0ρk(vk) = r0(|vk(a, c)|+ δk) for k > k0. (5.38)

Therefore, (5.37) and (5.38) result in

lim
k→+∞

‖vk‖C = 0,

i.e., the relation (5.5) is satisfied.
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Proof of Corollary 5.1. We will show that the assumptions of Theorem 5.1 are sat-
isfied. Indeed, the relation (5.6) yields

‖`k‖ ≤ ‖ω‖L for k ∈ N.

Therefore, it is clear that, by virtue of (5.7)–(5.9), the assumptions (5.2)–(5.4) of
Theorem 5.1 are fulfilled. It remains to show that the condition (5.1) is true.

Assume that, on the contrary, the condition (5.1) does not hold. Then there
exist ε0 > 0, an increasing sequence {km}+∞

m=1 of natural numbers, and a sequence
{ym}+∞

m=1 of functions such that

ym ∈M(`km) for m ∈ N (5.39)

and

max


∣∣∣∣∣∣

t∫
a

x∫
c

(
`km(ym)(s, η)− `(ym)(s, η)

)
dηds

∣∣∣∣∣∣ : (t, x) ∈ D

 ≥ ε0

for m ∈ N. (5.40)

From (5.39) and Notation 5.1 we get

ym(t, x) = −zm(a, c) +

t∫
a

x∫
c

`km(zm)(s, η)dηds for (t, x) ∈ D, m ∈ N,

where zm ∈ C(D; R) and ‖zm‖C = 1 for m ∈ N. Since we suppose that the operators
`k are uniformly bounded in the sense of condition (5.6), we obtain

‖ym‖C ≤ 1 + ‖ω‖L for m ∈ N.

Furthermore, for any (t1, x1), (t2, x2) ∈ D and m ∈ N, we get

|ym(t2, x2)− ym(t1, x1)| =

=

∣∣∣∣∣∣
t2∫

a

x2∫
c

`km(zm)(s, η)dηds−
t1∫

a

x1∫
c

`km(zm)(s, η)dηds

∣∣∣∣∣∣ ≤
≤

∫∫
E1

ω(s, η)dsdη +
∫∫
E2

ω(s, η)dsdη,

where measurable sets E1, E2 ⊆ D are such that mesE1 ≤ (d − c)|t2 − t1| and
mesE2 ≤ (b− a)|x2 − x1|.

Consequently, the sequence {ym}+∞
m=1 is bounded and equicontinuous in C(D; R).

Thus, according to Arzelà–Ascoli lemma, without loss of generality we can assume
that the sequence indicated is convergent. Therefore, there exists p0 ∈ N such that

‖ym − yp0‖C <
ε0

2(‖ω‖L + ‖`‖+ 1)
for m ≥ p0. (5.41)
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Since yp0 ∈ C∗(D; R) and the relation (5.7) holds, there exists p1 ∈ N such that

max


∣∣∣∣∣∣

t∫
a

x∫
c

(
`k(yp0)(s, η)− `(yp0)(s, η)

)
dηds

∣∣∣∣∣∣ : (t, x) ∈ D

 <
ε0
2

for k ≥ p1. (5.42)

Now let us choose a number M ∈ N satisfying M ≥ p0 and kM ≥ p1. Then

max


∣∣∣∣∣∣

t∫
a

x∫
c

(
`kM

(yM )(s, η)− `(yM )(s, η)
)
dηds

∣∣∣∣∣∣ : (t, x) ∈ D

 ≤

≤
(
‖ω‖L + ‖`‖

)
‖yM − yp0‖C+

+ max


∣∣∣∣∣∣

t∫
a

x∫
c

(
`kM

(yp0)(s, η)− `(yp0)(s, η)
)
dηds

∣∣∣∣∣∣ : (t, x) ∈ D

 <

<
ε0
2

‖ω‖L + ‖`‖
‖ω‖L + ‖`‖+ 1

+
ε0
2
< ε0,

which contradicts (5.40).

To prove Theorem 5.2 we need the following lemma.

Lemma 5.2. Let p, pk ∈ L(D; R) and let α, αk : D → R be measurable and essen-
tially bounded functions for k ∈ N. Assume that the relations (5.10) and (5.11) are
satisfied, and

lim
k→+∞

ess sup
{
|αk(t, x)− α(t, x)| : (t, x) ∈ D

}
= 0. (5.43)

Then

lim
k→+∞

t∫
a

x∫
c

(
pk(s, η)αk(s, η)− p(s, η)α(s, η)

)
dηds = 0

uniformly on D. (5.44)

Proof. Without loss of generality we can assume that

|p(t, x)| ≤ ω(t, x) for (t, x) ∈ D. (5.45)

Let ε > 0 be arbitrary but fixed. According to (5.43), there exists k0 ∈ N such that∫∫
D

ω(t, x)|αk(t, x)− α(t, x)|dtdx < ε

4
for k ≥ k0. (5.46)

Since the function α is measurable and essentially bounded, there exists a function
w ∈ C2(D; R) such that∫∫

D

ω(t, x)|α(t, x)− w(t, x)|dtdx < ε

4
. (5.47)



ON THE CHARACTERISTIC INITIAL VALUE PROBLEM . . . 19

For any k ∈ N, we put

fk(t, x) =

t∫
a

x∫
c

(
pk(s, η)− p(s, η)

)
dηds for (t, x) ∈ D.

Clearly, the condition (5.11) can be rewritten in the form

lim
k→+∞

‖fk‖C = 0. (5.48)

It can be verified by direct calculation that

t∫
a

x∫
c

(
pk(s, η)− p(s, η)

)
w(s, η)dηds = fk(t, x)w(t, x)−

−
t∫

a

fk(s, x)
∂w(s, x)
∂s

ds−
x∫

c

fk(t, η)
∂w(t, η)
∂η

dη+

+

t∫
a

x∫
c

fk(s, η)
∂2w(s, η)
∂s ∂η

dηds for (t, x) ∈ D, k ∈ N.

Consequently, using (5.48), we get

lim
k→+∞

t∫
a

x∫
c

(
pk(s, η)− p(s, η)

)
w(s, η)dηds = 0 uniformly on D.

Hence, there exists k1 ≥ k0 such that∣∣∣∣∣∣
t∫

a

x∫
c

(
pk(s, η)− p(s, η)

)
w(s, η)dηds

∣∣∣∣∣∣ < ε

4
for (t, x) ∈ D, k ≥ k1. (5.49)

On the other hand, it is clear that, for any (t, x) ∈ D and k ∈ N,

t∫
a

x∫
c

(
pk(s, η)αk(s, η)− p(s, η)α(s, η)

)
dηds =

=

t∫
a

x∫
c

pk(s, η)
(
αk(s, η)− α(s, η)

)
dηds+

+

t∫
a

x∫
c

(
pk(s, η)− p(s, η)

)
w(s, η)dηds+

+

t∫
a

x∫
c

(
pk(s, η)− p(s, η)

)(
α(s, η)− w(s, η)

)
dηds.
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Therefore, in view of (5.10), (5.45), (5.46), (5.47), and (5.49), we get∣∣∣∣∣∣
t∫

a

x∫
c

(
pk(s, η)αk(s, η)− p(s, η)α(s, η)

)
dηds

∣∣∣∣∣∣ ≤
≤

∫∫
D

ω(s, η)|αk(s, η)− α(s, η)|dηds+

+

∣∣∣∣∣∣
t∫

a

x∫
c

(
pk(s, η)− p(s, η)

)
w(s, η)dηds

∣∣∣∣∣∣ +

+ 2
∫∫
D

ω(s, η)|α(s, η)− w(s, η)|dηds <

<
ε

4
+
ε

4
+ 2

ε

4
= ε for (t, x) ∈ D, k ≥ k1 ,

that is, the relation (5.44) is true.

Proof of Theorem 5.2. Let ` ∈ L(D) be defined by (4.7). For any k ∈ N, we put

`k(v)(t, x) = pk(t, x)v
(
τk(t, x), µk(t, x)

)
for (t, x) ∈ D. (5.50)

We will show that the condition (5.7) is satisfied for every y ∈ C∗(D; R). Indeed, let
y ∈ C∗(D; R) be arbitrary but fixed. For any k ∈ N, we put

αk(t, x) = y
(
τk(t, x), µk(t, x)

)
, α(t, x) = y

(
τ(t, x), µ(t, x)

)
for (t, x) ∈ D.

Then it is clear that (5.12) and (5.13) guarantee the condition (5.43). Therefore, it
follows from Lemma 5.2 that the condition (5.44) holds, i.e., the condition (5.7) is
true.

Consequently, the assumptions of Corollary 5.1 are satisfied.

6. On Differential Inequalities

The main goal of this section is to prove the following statement (see Theorem 6.1):
If a certain theorem on differential inequalities holds for the problem (1.1), (1.2)
with a nonincreasing operator ` then the operator indicated is necessarily an (a, c)–
Volterra one.

At first let us introduce the following definition.

Definition 6.1. We say that an operator ` ∈ L(D) belongs to the set Sac(D) if an
arbitrary function u ∈ C∗(D; R) satisfying

∂2u(t, x)
∂t ∂x

≥ `(u)(t, x) for (t, x) ∈ D,

u(a, c) ≥ 0,
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∂u(t, c)
∂t

≥ 0 for t ∈ [a, b],

and
∂u(a, x)
∂x

≥ 0 for x ∈ [c, d]

is nonnegative on the set D.

Remark 6.1. Obviously, if ` ∈ Sac(D) then the homogeneous problem (1.10), (1.20)
has only the trivial solution and thus the problem (1.1), (1.2) is uniquely solvable for
every q, ϕ, and ψ (see Theorem 3.1). Moreover, it is clear that the Darboux operator
Ω3 of the problem (1.10), (1.20) maps the set L(D; R+) into the set C(D; R+), i.e.,
Ω is a nondecreasing operator.

Remark 6.2. It is not difficult to verify that ` ∈ Sac(D) if and only if a certain
theorem on differential inequalities is true for the problem (1.1), (1.2), i.e., whenever
u, v ∈ C∗(D; R) and q ∈ L(D; R) are such that

utx(t, x) ≤ `(u)(t, x) + q(t, x) for (t, x) ∈ D,
vtx(t, x) ≥ `(v)(t, x) + q(t, x) for (t, x) ∈ D,

u(a, c) ≤ v(a, c),
ut(t, c) ≤ vt(t, c) for t ∈ [a, b],
ux(a, x) ≤ vx(a, x) for x ∈ [c, d],

then
u(t, x) ≤ v(t, x) for (t, x) ∈ D.

One can say also that ` ∈ Sac(D) if and only if some kind of maximum principle
holds for the probem (1.1), (1.2).

Efficient conditions gauranteeing the inclusion ` ∈ Sac(D) have been established
in [7]. Namely, the following assertion is proved in the paper mentioned.

Proposition 6.1. Let ` be a nonincreasing (a, c)–Volterra operator and let there
exist a function γ ∈ C∗loc([a, b[×[c, d[ ; R+)4 satisfying

∂2γ(t, x)
∂t ∂x

≤ `(γ)(t, x) for (t, x) ∈ D,

γ(t, x) > 0 for (t, x) ∈ [a, b[×[c, d[ ,

∂γ(t, c)
∂t

≤ 0 for t ∈ [a, b[ ,

and
∂γ(a, x)
∂x

≤ 0 for x ∈ [c, d[ .

Then the operator ` belongs to the set Sac(D).
3The notion of the Darboux operator is given in Definition 3.1.
4By C∗

loc([a, b[×[c, d[ ; R+) we understand the set of functions u ∈ C(D; R+) which satisfy u ∈
C∗([a, b0]× [c, d0]; R) for every b0 ∈ ]a, b[ and d0 ∈ ]c, d[ .
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It follows from the next theorem that the assumption on the nonincreasing op-
erator ` in Proposition 6.1 to be an (a, c)–Volterra one is necessary. Analogous
results for the first and second order “ordinary” functional–differential equations
are established in [1] and [8], respectively.

Theorem 6.1. Let −` ∈ P(D) and ` ∈ Sac(D). Then the operator ` is an (a, c)–
Volterra one.

To prove this theorem we need some auxiliary assertions.

Proposition 6.2. Let −` ∈ P(D), ` ∈ Sac(D), and (t0, x0) ∈ ]a, b]× ]c, d]. Let,
moreover, u be a solution of the problem (1.1), (1.2), where

q(t, x) = 0 for (t, x) ∈ [a, t0]× [c, x0], (6.1)

ϕ(t) = 0 for t ∈ [a, t0], ψ(x) = 0 for x ∈ [c, x0]. (6.2)

Then
u(t, x) = 0 for (t, x) ∈ [a, t0]× [c, x0]. (6.3)

Proof. Let D0 = [a, t0] × [c, x0]. According to the inclusion ` ∈ Sac(D) and Re-
mark 6.1, the problem

∂2v(t, x)
∂t ∂x

= `(v)(t, x) + |q(t, x)|, (6.4)

v(t, c) =

t∫
a

|ϕ′(s)|ds for t ∈ [a, b],

v(a, x) =

x∫
c

|ψ′(η)|dη for x ∈ [c, d]

(6.5)

has a unique solution v. Moreover, by virtue of (6.2) and Remark 6.2, we get

v(t, x) ≥ 0 for (t, x) ∈ D, (6.6)

v(t, x) ≥ u(t, x) for (t, x) ∈ D. (6.7)

Since −` ∈ P(D), it follows from (6.4) and (6.6) that

vtx(t, x) ≤ |q(t, x)| for (t, x) ∈ D.

Hence, on account of (6.1), (6.2), (6.5), and (6.6), we obtain

0 ≤ v(t, x) ≤
t∫

a

|ϕ′(s)|ds+

x∫
c

|ψ′(η)|dη +

t∫
a

x∫
c

|q(s, η)|dηds = 0

for (t, x) ∈ D0, i.e.,
v(t, x) = 0 for (t, x) ∈ D0 . (6.8)
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On the other hand, by virtue of (1.1), (6.4), (6.7), and the assumption −` ∈ P(D),
it is obvious that

utx(t, x) = `(u− v)(t, x) + q(t, x) + `(v)(t, x) ≥
≥ vtx(t, x) + q(t, x)− |q(t, x)| for (t, x) ∈ D.

The last relation, (6.1), and (6.8) yield

utx(t, x) ≥ 0 for (t, x) ∈ D0 .

However the functions ϕ and ψ in the initial condition (1.2) satisfy (6.2) and thus

u(t, x) = ϕ(t) + ψ(x) +

t∫
a

x∫
c

∂2u(s, η)
∂s ∂η

dηds ≥ 0 for (t, x) ∈ D0 . (6.9)

Finally, (6.7)–(6.9) result in (6.3).

It follows from the previous proposition that if the operator ` appearing in the
equation (1.1) is nonincreasing and the theorem on functional differential inequalities
holds for the problem (1.1), (1.2) then the Darboux operator Ω is necessarily an
(a, c)–Volterra one. More precisely, the following assertion is true.

Corollary 6.1. Let −` ∈ P(D) and ` ∈ Sac(D). Then the Darboux operator Ω of
the problem (1.10), (1.20) is an (a, c)–Volterra one.

We also need to be able to approximate a certain function from the set C(D; R)
by ones of the class C∗(D; R). That is a classical question of the theory of real
function but, for the sake of completness, we will show the following lemma.

Lemma 6.1. Let (t0, x0) ∈ ]a, b]× ]c, d] and let v0 ∈ C(D; R) be a function satisfying

v0(t, x) = 0 for (t, x) ∈ D0 , (6.10)

where D0 = [a, t0] × [c, x0]. Then there exist a sequence {vn}+∞
n=1 of functions from

the set C2(D; R) such that

vn(t, x) = 0 for (t, x) ∈ D0, n ∈ N (6.11)

and
lim

n→+∞
‖vn − v0‖C = 0. (6.12)

Proof. Let fn : R → R (n ∈ N) be the function defined by

fn(s) =


1 if s ≤ 0

exp
(

n3s3

n3s3−1

)
if 0 < s < 1

n

0 if s ≥ 1
n

.
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It is clear that the functions fn (n ∈ N) are continuous together with their derivatives
up to the second order and

0 ≤ fn(s) ≤ 1 for s ∈ R, n ∈ N.

For any n ∈ N, we put

χn(t, x) = 1− fn(t− t0)fn(x− x0) for (t, x) ∈ D.

Then χn ∈ C2(D; R) for n ∈ N,

0 ≤ χn(t, x) ≤ 1 for (t, x) ∈ D, n ∈ N, (6.13)
χn(t, x) = 0 for (t, x) ∈ D0, n ∈ N, (6.14)

and

χn(t, x) = 1 for (t, x) ∈ D \
(
[a, t0 + 1/n]× [c, x0 + 1/n]

)
, n ∈ N. (6.15)

It is well-known from functional analysis that there exists a sequence {wn}+∞
n=1 of

functions from the set C2(D; R) such that

lim
n→+∞

‖wn − v0‖C = 0. (6.16)

Put
vn(t, x) = χn(t, x)wn(t, x) for (t, x) ∈ D, n ∈ N.

Obviously, vn ∈ C2(D; R) for n ∈ N and the relation (6.11) holds. We will show
that the condition (6.12) is satisfied.

Let ε > 0 be arbitrary but fixed. Since the function v0 is continuous on the
rectangle D, there exists δ > 0 such that

|v0(t2, x2)− v0(t1, x1)| <
ε

2
for

(t1, x1), (t2, x2) ∈ D, |t2 − t1|+ |x2 − x1| < δ. (6.17)

According to (6.16), there exists n0 ∈ N such that n0 ≥ 2
δ and

|wn(t, x)− v0(t, x)| <
ε

2
for (t, x) ∈ D, n ≥ n0. (6.18)

Therefore, in view of (6.10) and (6.17), we get

|v0(t, x)| <
ε

2
for (t, x) ∈

(
[a, t0 + 1/n]× [c, x0 + 1/n]

)
∩ D, n ≥ n0. (6.19)

On the other hand, it is clear that the relation

|v0(t, x)− vn(t, x)| ≤
≤ |v0(t, x)|

(
1− χn(t, x)

)
+ |v0(t, x)− wn(t, x)||χn(t, x)| ≤

≤ |v0(t, x)|
(
1− χn(t, x)

)
+ |v0(t, x)− wn(t, x)|

holds for (t, x) ∈ D and n ∈ N. Hence, (6.15), (6.18), and (6.19) guarantee that

|v0(t, x)− vn(t, x)| < ε for (t, x) ∈ D, n ≥ n0 ,

i.e., the relation (6.12) holds.
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Now we are in position to prove Theorem 6.1.

Proof of Theorem 6.1. Assume that, on the contrary, ` is not (a, c)–Volterra opera-
tor. Then there exist v0 ∈ C(D; R) and (t0, x0) ∈ ]a, b]× ]c, d], (t0, x0) 6= (b, d), such
that (6.10) holds with D0 = [a, t0]× [c, x0] and

mes{(t, x) ∈ D0 : `(v0)(t, x) 6= 0} > 0.

Without loss of generality we can assume that

mes{(t, x) ∈ D0 : `(v0)(t, x) < 0} > 0. (6.20)

At first we will show that

Ω
(
`(|v0|)

)
(t, x) = 0 for (t, x) ∈ D0, (6.21)

where Ω denotes the Darboux operator of the problem (1.10), (1.20).
According to Lemma 6.1, there exists a sequence {vn}+∞

n=1 ⊂ C2(D; R) such that
(6.11) is satisfied and

lim
n→+∞

‖vn − |v0| ‖C = 0. (6.22)

Since ` and Ω are continuous operators (see Corollary 5.2), the relation (6.22) implies

lim
n→+∞

∥∥Ω
(
`(vn)

)
− Ω

(
`(|v0|)

)∥∥
C

= 0. (6.23)

Let zn = Ω
(
`(vn)

)
for n ∈ N. Then zn is a solution of the problem

∂2zn(t, x)
∂t ∂x

= `(zn)(t, x) + `(vn)(t, x), (6.24)

zn(t, c) = 0 for t ∈ [a, b], zn(a, x) = 0 for x ∈ [c, d]. (6.25)

For any n ∈ N, we put

wn(t, x) = vn(t, x) + zn(t, x) for (t, x) ∈ D.

It is clear that wn ∈ C∗(D; R) for n ∈ N because every function vn belongs to the
set C2(D; R). Moreover, (6.24) and (6.25) result in

∂2wn(t, x)
∂t ∂x

= `(wn)(t, x) +
∂2vn(t, x)
∂t ∂x

,

wn(t, c) = vn(t, c) for t ∈ [a, b], wn(a, x) = vn(a, x) for x ∈ [c, d].

Therefore, on account of (6.11), Proposition 6.2 implies

wn(t, x) = 0 for (t, x) ∈ D0, n ∈ N.

Hence, again by virtue of (6.11), we get

Ω
(
`(vn)

)
(t, x) = zn(t, x) = −vn(t, x) = 0 for (t, x) ∈ D0, n ∈ N
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and thus, in view of (6.23), the relation (6.21) is satisfied.
According to Remark 6.1, the problem (1.1), (1.20) with

q(t, x) =

{
−`(|v0|)(t, x) if (t, x) ∈ D0

0 if (t, x) ∈ D \ D0

(6.26)

has a unique solution u. We suppose that −` ∈ P(D) and therefore

q(t, x) ≥ 0 for (t, x) ∈ D (6.27)

and
mes{(t, x) ∈ D0 : q(t, x) > 0} > 0, (6.28)

because the relation (6.20) holds. Since Ω is an (a, c)–Volterra operator (see Corol-
lary 6.1) and u = Ω(q) it follows from (6.21) and (6.26) that

u(t, x) = 0 for (t, x) ∈ D0 . (6.29)

On the other hand, the operator ` belongs to the set Sac(D) which garantees

u(t, x) ≥ 0 for (t, x) ∈ D, (6.30)

because the relation (6.27) is true. By virtue of the assumption −` ∈ P(D), the
equation (1.1) implies

utx(t, x) ≤ q(t, x) for (t, x) ∈ D

and thus, using (6.26) and (6.29), we get

utx(t, x) ≤ 0 for (t, x) ∈ D. (6.31)

However, the function u satisfies the homogeneous initial conditions (1.20) and there-
fore the last inequality yields

u(t, x) ≤ 0 for (t, x) ∈ D.

Whence we get u ≡ 0 because the function u satisfies (6.30). Finally, the equation
(1.1) implies q ≡ 0, which contradicts (6.28).

7. Examples

Example 7.1. Let p ∈ L(D; R+) be such that∫∫
D

p(s, η)dηds = 1

and let ` ∈ L(D) be defined by

`(v)(t, x) = p(t, x)v(b, d) for (t, x) ∈ D, v ∈ C(D; R).
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Then the condition (4.2) with α = 1 is satisfied for every m ∈ N and v ∈ C(D; R).
Moreover, ∫∫

D

pj(s, η)dηds = 1 for every j ∈ N,

where pj is given by (4.4).
On the other hand, the problem (1.10), (1.20) has a nontrivial solution

u(t, x) =

t∫
a

x∫
c

p(s, η)dηds for (t, x) ∈ D.

This example shows that the assumption α ∈ [0, 1[ in Theorem 4.1 cannot be
replaced by the assumption α ∈ [0, 1], and the strict inequality (4.3) in Corollary 4.1
cannot be replaced by the nonstrict one.

Example 7.2. Let

gk(t) = k cos k2t, hk(t) = −k sin k2t for t ≥ 0, k ∈ N, (7.1)

and

yk(t) = −k
t∫

0

exp
(

sin k2t

k
− sin k2s

k

)
sin k2sds for t ≥ 0, k ∈ N. (7.2)

It is not difficult to verify that, for every k ∈ N,

y′k(t) = gk(t)yk(t) + hk(t) for a. a. t ≥ 0, (7.3)

|yk(t)| ≤ 1 + e+ te2 for t ≥ 0, (7.4)

and
lim

k→+∞
yk(t) =

t

2
for t ≥ 0, (7.5)

because

yk(t) =
1
k

cos k2t− 1
k

exp
(

sin k2t

k

)
+

+
1
2

t∫
0

exp
(

sin k2t

k
− sin k2s

k

)
ds+

+
1
2

t∫
0

exp
(

sin k2t

k
− sin k2s

k

)
cos 2k2sds for t ≥ 0.

Now, let p ≡ 0, q ≡ 0, ϕ ≡ 0, ψ ≡ 0, and

τ(t, x) = t, µ(t, x) = x for (t, x) ∈ D.
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For any k ∈ N, we put ϕk ≡ 0, ψk ≡ 0,

pk(t, x) = gk(t− a)gk(x− c) for (t, x) ∈ D,

qk(t, x) = hk(t− a)y′k(x− c) + y′k(t− a)hk(x− c)−

− hk(t− a)hk(x− c) for (t, x) ∈ D,

and
τk(t, x) = t, µk(t, x) = x for (t, x) ∈ D.

Let `, `k ∈ L(D) be operators defined by (4.7) and (5.50).
According to (7.1), (7.3), and (7.4), it is clear that the assumptions of Theo-

rem 5.2 are satisfied except of (5.10) which, in view of the proof of theorem men-
tioned, guarantees that the assumptions of Corollary 5.1 are fulfilled except of (5.6).

On the other hand,
u(t, x) = 0 for (t, x) ∈ D

and
uk(t, x) = yk(t− a)yk(x− c) for (t, x) ∈ D, k ∈ N

are solutions of the problems (1.1′), (1.2) and (1.1′k), (1.2k), respectively, as well
as of the problems (1.1), (1.2) and (1.1k), (1.2k), respectively. However, in view of
(7.5), we get

lim
k→+∞

(
uk(t, x)− u(t, x)

)
= lim

k→+∞
yk(t− a)yk(x− c) =

=
(t− a)(x− c)

4
for (t, x) ∈ D,

that is, the relation (5.5) is not true.
This example shows that the assumption (5.6) in Corollary 5.1 and the assump-

tion (5.10) in Theorem 5.2 are essential and cannot be omitted.
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