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1. Introduction and Notation

On the interval [a,b], we consider two—dimensional differential system
u;(t) = 01 éil(ul)(t) + 052 &Q(ug)(t) + qi(t) (Z =1, 2) (1.1)

with the initial conditions

ui(a) = ¢cq, ug(a) = ¢, (1.2)

where £, @ C([a,b);R) — L([a,b];R) are linear nondecreasing operators, o;; €
{-1,1}, ¢; € L(]a,b;R), and ¢; € R (i,k = 1,2). Under a solution of the problem
(1.1), (1.2) is understood an absolutely continuous vector function u = (uy,us2)? :
[a,b] — R? satisfying (1.1) almost everywhere on [a,b] and verifying also the initial
conditions (1.2).

The problem on the solvability of the Cauchy problem for linear functional
differential equations and their systems has been studied by many authors (see,
e.g., [1,7,9,10,12,17] and references therein). There are a lot of interested re-
sults but only a few efficient conditions is known at present. Furthermore, most
them is available for the one-dimmensional case only or for the systems with the
so—called Volterra operators (see, e.g., [3-5,7,9,12]). Let us mention that the ef-
ficient conditions guaranteeing the unique solvability of the initial value problem
for n-dimensional systems of linear functional difefrential equations are given, e.g.,
in [2,10,11,13,14].

In this paper, we establish new efficient condition sufficient for the unique solv-
ability of the problem (1.1), (1.2) for any disposition of the numbers o;; € {—1,1}
(i, = 1,2). The integral conditions given in Theorems 2.1-2.11 are optimal in
a certain sense which is shown by counter—examples constructed in the last part of
the paper.
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The following notation is used throughout the paper:

1. R is the set of all real numbers, R, = [0, +00].

2. C(Ja,b];R) is the Banach space of continuous functions u : [a, b] — R equipped
with the norm

|ulle = max {|u(t)] : t € [a,b]}.

3. L([a,b];R) is the Banach space of Lebesgue integrable functions h : [a,b] — R
equipped with the norm

b
Il = / Ih(s)ds.

4. L([a,b];R4) = {h € L([a,b];R) : h(t) > 0 for a.a. t € [a,b]}.

5. An operator £ : C([a,b];R) — L([a,b];R) is said to be nondecreasing if the
inequality
L(up)(t) < L(ug)(t) for a.a. t€ a,b

holds for every functions ui,us € C([a,b]; R) such that

ur(t) <wg(t) for te€ [a,bl.

6. Pgp is the set of linear nondecreasing operators £ : C([a, b]; R) — L([a,b];R).

In what follows, the equalities and inequalities with integrable functions are
understood to hold almost everywhere.

2. Main Results

In this section, we present the main results of the paper. The proofs are given

later, in Section 3. Theorems formulated in Subsections 2.1-2.6 contain the efficient

conditions sufficient for the unique solvability of the problem (1.1), (1.2) for any

disposition of the numbers o;; € {—1,1} (4,5 = 1,2). Recall that the operators ¢;;

are supposed to be linear and nondecreasing, i.e., such that ¢;; € Py, for ¢,5 = 1, 2.
Put

b
Aij = /&j(l)(s)ds for i,7=1,2 (2.1)

and

1 for se[0,1]
Pls) = {1 —1(s—1)? for s€[1,3] (22)
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2.1. The case 011 = 1, 092 = 1, 012021 > 0

Theorem 2.1. Let 011 =1, 099 = 1, and o12091 > 0. Let, moreover,
A <1 fOT 1=1,2 (23)

and
Ajg Ao < (1 —Aq1)(1 — Aga), (2.4)

where the numbers A;j (i, = 1,2) are defined by (2.1). Then the problem (1.1),
(1.2) has a unique solution.

Remark 2.1. Neither one of the strict inequalities (2.3) and (2.4) can be replaced
by the nonstrict one (see Examples 4.1 and 4.3).

Remark 2.2. Let H; be the set of triplets (z,y,z) € R3 satisfying
r<l1l, y<l, z<(l-2)(1-y)
(see Fig. 2.1). According to Theorem 2.1, the problem (1.1), (1.2) is uniquely solvable

z

if 4;j € Pap (i,j = 1,2) are such that
b b b b
/611(1)(s)ds,/Egg(l)(:;)ds,/612(1)(s)ds/621(1)(s)ds € Hy.

Remark 2.3. It should be noted that Theorem 2.1 can be derived as a consequence
of Corollary 1.3.1 given in [10]. However, we shall prove this theorem using the
technique common for all the statements of this paper.
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Remark 2.4. According to Corollary 3.2 of [16], if 011 = 1,002 = 1, 012091 > 0,
and

A+ A0 < 1, A9 + Agp < 1, (2.5)

where the numbers A;; (i,j = 1,2) are defined by (2.1), then the problem (1.1),
(1.2) has a unique solution (u1,u2)”. Moreover, this solution satisfies

ui(t) >0, opue(t) >0 for t€a,b]
provided that c¢; > 0, g12co > 0, and
q1(t) >0, o012¢2(t) >0 for t€ Ja,b.
If the assumption (2.5) is weakened to the assumptions (2.3), (2.4) then the

problem (1.1), (1.2) has still a unique solution but no information about sign of this
solution is guaranteed in general.

2.2. The case 011 = 1, 022 = 1, 012021 < 0

Theorem 2.2. Let o11 =1, 099 = 1, and g12091 < 0. Let, moreover, the condition
(2.3) be satisfied and

A19Ah9 < 4\/(1 — All)(l — A22) + (\/1 — A+ \/1 — A22)2, (26)

where the numbers A;j (i, = 1,2) are defined by (2.1). Then the problem (1.1),
(1.2) has a unique solution.

Remark 2.5. The strict inequalities (2.3) in Theorem 2.2 cannot be replaced by the
nonstrict ones (see Example 4.1). Furthermore, the strict inequality (2.6) cannot be
replaced by the nonstrict one provided A7 = Agy (see Example 4.4).

Remark 2.6. Let Hj be the set of triplets (z,y,z) € R3 satisfying

r<l1l, y<l1l, z<4 (1—x)(1—y)+(\/1—x+\/1—y>2

(see Fig. 2.2). According to Theorem 2.2, the problem (1.1), (1.2) is uniquely solvable
if £;; € Pap (4,5 = 1,2) are such that

b b b b
/511(1)(s)d5,/Egg(l)(S)ds,/512(1)(s)d5/€21(1)(5)d5 cH,.

2.3. The case 011022 < 0, 012021 > 0

At first, we consider the case, where 011 = 1 and 099 = —1.
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Theorem 2.3. Let 011 =1, 099 = —1, and 012091 > 0. Let, moreover,
A < 1, Aoy < 3, (27)
and
A12A91 < (1 — A11)p(As2), (2.8)

where the numbers A;; (i,7 = 1,2) are defined by (2.1) and the function ¢ is given
by (2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.7. Neither one of the strict inequalities (2.7) and (2.8) can be replaced
by the nonstrict one (see Examples 4.1, 4.2, 4.5, and 4.6).

Remark 2.8. Let Hj be the set of triplets (z,y,z) € R} satisfying
r<l, y<3, z<(1-z)p(y)

(see Fig. 2.3). According to Theorem 2.3, the problem (1.1), (1.2) is uniquely solvable
if £;; € Pap (4,5 = 1,2) are such that

b b b b
/ £ (1) (s)ds / Lo (1) (8)ds / (1(1)(s)ds / L (1)(s)ds | € Hs.
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Fig. 2.3.
The next statement concerning the case, where o117 = —1 and o099 = 1, follows
immediately from Theorem 2.3.
Theorem 2.4. Let 011 = —1, 099 = 1, and 012091 > 0. Let, moreover,
All < 37 A22 < 17 (29)

and
Aj9A91 < (1 — Ag)p(Ar1),

where the numbers A;; (i,7 = 1,2) are defined by (2.1) and the function ¢ is given
by (2.2). Then the problem (1.1), (1.2) has a unique solution.

2.4. The case 011022 < 0, 012021 <0

At first, we consider the case, where o171 = 1 and g9y = —1.

Theorem 2.5. Leto1; =1, 090 = —1, and g19091 < 0. Let, moreover, the condition
(2.7) be satisfied and
A12A21 < (1 — All)(3 — Agg), (2.10)

where the numbers A;j (i, = 1,2) are defined by (2.1). Then the problem (1.1),
(1.2) has a unique solution.

Remark 2.9. The strict inequalities (2.7) cannot be replaced by the nonstrict ones
(see Examples 4.1 and 4.2). Furthermore, the strict inequality (2.10) cannot be
replaced by the nonstrict one provided 1 < Agy < 3 (see Example 4.7).

Remark 2.10. Let Hy be the set of triplets (z,y,z) € R3 satisfying
r<l, y<3 z<({l-2z)(3-y)

(see Fig. 2.4). According to Theorem 2.5, the problem (1.1), (1.2) is uniquely solvable
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if £;; € Pap (i, = 1,2) are such that

b b b b
(/511(1)(s)d5,/522(1)(s)d5,/Elg(l)(s)ds/fgl(l)(s)ds) c H,.

Example 4.7 shows that Theorem 2.5 is optimal whenever 1 < Aoy < 3. If
Aoy < 1 then the theorem mentioned can be improved. For example, the next
theorem improves Theorem 2.5 if Ays is close to zero.

Theorem 2.6. Leto1; =1, 099 = —1, and 019091 < 0. Let, moreover, the condition
(2.3) be satisfied and

w(l — AH) [1 + A22(1 — AQQ)]
1— Ay +wAx

ApAg < : (2.11)

where

w=4y1— Ay + <1+\/(1—A11)(1—A22)>2 (2.12)

and the numbers A;; (i,j = 1,2) are defined by (2.1). Then the problem (1.1), (1.2)
has a unique solution.

Remark 2.11. If Ay = 0 then the inequality (2.11) can be rewritten as

2
A12A21<4 1—A11+(1+\/1—A11> ,

which coincides with the assumption (2.6) of Theorem 2.2.
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Remark 2.12. Let H, be the set of triplets (z,y,z) € R3 satisfying

w(l-z)[1+y(l-y)]

<1, <1, < —
v y z l—z+4+wy

where
G=aT 2+ (14 VT2 9)

(see Fig. 2.5). According to Theorem 2.6, the problem (1.1), (1.2) is uniquely solvable

if £;; € Pap (i, = 1,2) are such that

b b b b
(/511(1)(8)&9,/522(1)(8)d8,/Elg(l)(s)ds/621(1)(s)ds) € Hy.

a a a a

The next statements concerning the case, where 017 = —1 and o099 = 1, follow
immediately from Theorems 2.5 and 2.6.

Theorem 2.7. Let o1 = —1, 099 = 1, and 019091 < 0. Let, moreover, the condition
(2.9) be satisfied and
Arp A9 < (1 — A2)(3 — A1),

where the numbers A;j (i, = 1,2) are defined by (2.1). Then the problem (1.1),
(1.2) has a unique solution.
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Theorem 2.8. Leto1; = —1, 0990 = 1, and g12091 < 0. Let, moreover, the condition
(2.3) be satisfied and

wo(l — Agg) []. + All(l — All)]

A9y <
. 1 — Az +woAn

9

where

wo = 4+/1 — Agg + <1 + \/(1 — All)(l — A22)>2

and the numbers A;j (i,j = 1,2) are defined by (2.1). Then the problem (1.1), (1.2)
has a unique solution.

2.5. The case 011 = —1, 022 = —1, 12021 > 0
Theorem 2.9. Let 011 = —1, 099 = —1, and 012091 > 0. Let, moreover,
A <3 for i=1,2 (2.13)
and )
A1pAg < " ¢(A11)p(A22), (2.14)
where
W = Imax {1,A11(A22 - 1),A22(A11 - 1)}, (215)

the numbers A;; (i,j = 1,2) are defined by (2.1) and the function ¢ is given by
(2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.13. The strict inequalities (2.13) cannot be replaced by the nonstrict
ones (see Example 4.2). Furthermore, the strict inequality (2.14) cannot be replaced
by the nonstrict one provided w =1 (see Examples 4.8-4.10).

Remark 2.14. Let Hj be the set of triplets (z,y,z) € R3 satisfying

p(z)p(y)
max{1,z(y — 1),y(z — 1)}

(see Fig. 2.6). According to Theorem 2.9, the problem (1.1), (1.2) is uniquely solvable
if £;; € Pap (i,j = 1,2) are such that

r<3, y<3 =z<

b b b b
/ (11 (1) (s)ds / La(1)(8)ds / (1(1)(s)ds / L (1)(s)ds | € Hs.

2.6. The case 011 = —1, 022 = —1, 012021 < 0

Theorem 2.10. Let 011 = —1, 099 = —1, and 012091 < 0. Let, moreover, the
condition (2.13) be satisfied and

1 .
A19A9 < ; <3 — rnax{All, Agg}) ©® ( HllIl{All, Agg}) s (2.16)
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z

where
w =max {1,3(A;1 —1),3(A — 1)}, (2.17)

the numbers Ay; (1,7 = 1,2) are defined by (2.1) and the function ¢ is given by
(2.2). Then the problem (1.1), (1.2) has a unique solution.

Remark 2.15. The strict inequalities (2.13) cannot be replaced by the nonstrict
ones (see Example 4.2). Futhermore, the strict inequality (2.16) cannot be replaced
by the nonstrict one provided that w = 1 and max{Aj1, Ass} > 1 (see Examples 4.11
and 4.12).

Remark 2.16. Let Hg be the set of triplets (z,y,2) € R3 satisfying

(3 — max{z, y}) gp( min{z, y})

< 3, < 3, <
. y * S Thmax{L,3(z — 1),3(y — 1)}

(see Fig. 2.7). According to Theorem 2.10, the problem (1.1), (1.2) is uniquely
solvable if £;; € Py, (4,7 = 1,2) are such that

b b b b
/ (11 (1) (s)ds / Lan(1)(8)ds / (1(1)(s)ds / L (1)(s)ds | € Ho.

If max{A1, A22} < 1 then the assumption (2.16) of Theorem 2.10 can be im-
proved. For example, the next theorem improves Theorem 2.10 if max{A11, A2} is
close to zero.

Theorem 2.11. Let 011 = —1, 099 = —1, and 012021 < 0. Let, moreover, the
condition (2.3) be satisfied and

wo
wo(A11 + Agg — A11Ag) + A1 Agy + 17

ApAg < (2.18)

where

w0:4+(\/1—A11—|—\/1—A22)2 (219)
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and the numbers A;; (i,j = 1,2) are defined by (2.1). Then the problem (1.1), (1.2)
has a unique solution.

Remark 2.17. If A;; = Age = 0 then the inequality (2.18) can be rewritten as
A1pA21 <38,

which coincides with the assumption (2.6) of Theorem 2.2.

Remark 2.18. Let Hg be the set of triplets (x,y,2) € Ri satisfying

wo

T <1, <1l, z< = )
4 wolx+y—zy)+ay+1

where

&0=4+(\/1—x+\/1—y)2

(see Fig. 2.8). According to Theorem 2.11, the problem (1.1), (1.2) is uniquely
solvable if ¢;; € Py, (4,7 = 1,2) are such that

b b b b
( / (11 (1) (s)ds / L (1) (s)ds / (1(1)(s)ds / 621<1><s>ds) € s
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z

3. Proofs of the Main Results

In this section, we shall prove all the statements formulated above. Recall that the
numbers A;; (i,j = 1,2) are defined by (2.1) and the function ¢ is given by (2.2).

It is well-known from the general theory of boundary value problems for func-
tional differential equations (see, e.g., [8,10, 11, 15]) that the following lemma is
true.

Lemma 3.1. The problem (1.1), (1.2) is uniquely solvable if and only if the corre-
sponding homogeneous problem

u;(t) = 0;1 Eil(ul)(t) + 042 €i2(u2)(t) (l = 1, 2), (31)
u(a) =0,  wuz(a) =0
has only the trivial solution.

In order to simplify the discussion in the proofs below, we formulate the following
obvious lemma.

Lemma 3.2. (uy,u2)’ is a solution of the problem (3.1), (3.2) if and only if
(u1, —u2)T is a solution of the problem
vi(t) = (=1)toin L (01) () + (=)' oig lia(v2) (1) (i =1,2), (3.3)
vi(a) =0, va(a) =0.
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Lemma 3.3 (Remark 1.1 in [6]). Let { € Py, be such that

b
/5(1)(5)43 <1

Then every absolutely continuous function u : [a,b] — R such that
u'(t) > L(u)(t) for te€a,b], u(a) >0
satisfies u(t) > 0 fort € [a,b].
Now we are in position to prove Theorems 2.1-2.11.

Proof of Theorem 2.1. According to Lemmas 3.1 and 3.2, in order to prove the the-
orem it is sufficient to show that the system

wi(t) = €1 (ur)(t) + liz(uz)(t) (i=1,2) (3.5)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (uy,us)?
(3.5), (3.2). If the inequality

is a nontrivial solution of the problem

wi(t) >0 for tela,b] (3.6)

holds for some i € {1,2} then, by virtue of (2.3), the assumption ¢35_;; € Py, and
Lemma 3.3, we get
ug—i(t) >0 for te€ [a,b]. (3.7)

Consequently, the functions u1 and wugy satisfy one of the following cases.

(a) Both functions u; and uy do not change their signs. Then, without loss of
generality, we can assume that (3.6) holds for i = 1, 2.

(b) Both functions u; and wus change their signs.

Put
M; = max {u;(t) : t € [a,b]} (1=1,2) (3.8)

and choose «; € [a,b] (i = 1,2) such that
ui(og) = M; for i=1,2. (3.9)
Obviously, in both cases (a) and (b), we have
My >0, My>0, M+ M;>0. (3.10)

The integration of (3.5) from a to o, in view of (3.8)—(3.10), and the assumptions
&1, &-2 S Pllb7 yields

a; a;

M; = /Eil(ul)(s)ds—i- /ﬁig(z@)(s)ds <

a a
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Q; Q;
< M1 /‘&1(1)(8)615 + M2 \/&2(1)(8)d8 < M1A2‘1 + MQAZ'Q (Z = 1,2). (311)
a a

By virtue of (2.3) and (3.10), we get from (3.11) that
0< M;(1—A;) <Msz_;Ais—;  (i=1,2). (3.12)
Using (2.3) and (3.10) once again, (3.12) implies M; > 0, My > 0, and
(1 —A1)(1 - Ax) < A1pAg,

which contradicts (2.4).
The contradiction obtained proves that the problem (3.5), (3.2) has only the
trivial solution. O

Proof of Theorem 2.2. According to Lemmas 3.1 and 3.2, in order to prove the the-
orem it is sufficient to show that the system

uy () = L11(ur)(t) + L2 (u2)(t), (3.13y)
uh(t) = —Lo1 (u1)(t) + Loz (ug)(t) (3.132)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (ui,us)? is a nontrivial solution of the problem
(3.131), (3.132), (3.2). It is clear that uy and ugy satisfy one of the following items.

(a) One of the functions uy and us is of a constant sign. According to Lemma 3.2,
we can assume without loss of generality that u(¢t) > 0 for ¢ € [a, b].

(b) Both functions u; and wug change their signs.

Case (a): ui(t) > 0 for t € [a,b]. In view of (2.3) and the assumption fa31 € Py,
Lemma 3.3 yields ug(t) < 0 for ¢t € [a,b]. Now, by virtue of (2.3) and the assumption
l13 € Pap, Lemma 3.3 again implies u;(t) < 0 for ¢ € [a,b]. Consequently, u; = 0
and Lemma 3.3 once again results in ug = 0, a contradiction.

Case (b): ui and ug change their signs. Put
M; = max {u;(t) : t € [a,b]}, m;=—min{u;(t):t€a,b]} (i=1,2) (3.14)
and choose a;, §; € [a,b] (i = 1,2) such that the equalities
ui(o;) = M; ui(B;) = —my (3.15;)
are satisfied for ¢ = 1,2. Obviously,
M; >0, m;>0 for i=12. (3.16)
Furthermore, we denote

min{«;,5; } max{a;,B3}

Bij = / tij(1)(s)ds,  Djj = / ti;(V)(s)ds (1,5 =1,2). (3.17)
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It is clear that
Byj+ Dy < Ay; for i,j=1,2. (3.18)

According to Lemma 3.2, we can assume without loss of generality that a1 < 1
and ag < (2. The integrations of (3.131) from a to oy and from ay to By, in view
of (3.14), (3.151), (3.17), and the assumptions £11, 12 € Pgp, result in

M; = /511 up)(s)ds + /512 uz)(s)ds <

< M, /511 s)ds + My /512 (s)ds = M1By1 + M3Bi2

and
B B1
My +mq=— /éll(ul)(s)ds — /élg(ug)(s)ds <
[e3] aq
B1 B1
<mq /611(1)(s)ds + mo /612(1)(3)ds = m1D11 + m2D12 .
a1 aq

The last relations, by virtue of (2.3) and (3.16), imply

My My
0< ﬁ(l—Bll)—F—(l—Dll)-ﬁ-— < Big+Dig < Aq9. (319)
2

On the other hand, the integrations of (3.132) from a to ay and from as to (s,
on account of (3.14), (3.152), (3.17), and the assumptions o1, fo2 € Py, arrive at

g a2
My = —/421(’&1)(3)‘554‘ /£22(U2)(s)ds =
as @2
<m /621(1)(s)ds + My /422(1)(3”3 = m1 By + M; By

and

My + my = /521(’&1)(8)(15 — /KQQ(UQ)(S)CZS <

a2

< My /521 dS + mo /522 )dS = M1Ds1 +moDoys .

a2
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The last relations, by virtue of (2.3) and (3.16), yield

Ms
my

M.
0< (1 — Bg) + m2 (1 — Dag) + -2 < By + D91 < Agy . (3.20)
My M,

Now, it follows from (3.19) and (3.20) that

M m
Ai9Ag > -1 (1 — Bll)(l — B22) + 2 (1 — Bll)(l — D22) +1— B+
my My
M, my my My
—(1-Dy1)1—-B — (1-Dy1)1-D 1— D)+
t ( 11)( 22) + 3, ( 11)( 22) + v ( 11)
MyM M-
+ =21 (1~ By) +1— Doy + —2. (3.21)
mimsg ma
Using the relation
x+y>2yry for >0, y>0, (3.22)

it is easy to verify that

M m
—1 (1 =B11)(1 — Bga) + L (1 = D11)(1 — Dgg) >
my My

> 24/(1 = B11)(1 — B)(1 — D11)(1 — Da2) >

>2y/(1 = Byy — D11)(1 — Byg — Da3) > 2¢/(1 — A1) (1 — Asp), (3.23)

Z;%ﬁ (1— D)+ Aﬂfj%; (1 — By) >2 %—j¢(1 — D11)(1 = Ba), (3.24)
% (1-D11)(1 —Ba)+2 17\714_;\/(1 — D11)(1 — By) + *Z_j _
= ]ﬂ\f—z (\/(1 = D11)(1 = Bag) + 1)2, (3.25)
and
JT\% (1= B11)(1 = Dap)+ %—j <\/(1 D)1= Ba) + 1)2 .

>2y/(1—Bp)(1 - D22)(\/(1 = D11)(1 = Bag) + 1) >

> 24/(1 — B11 — D11)(1 — Bag — Dag) 4+ 2+/(1 — B11)(1 — D) >

>2y/(1— An)(1 — Ag) +2v/(1 — Bi1)(1 — Da2) . (3.26)

Therefore, by virtue of (3.23)—(3.26), (3.21) implies

A12A21 >

>4y/(1—Ay)(1 — Agg)+1— B +2/(1 — By1)(1 — Dyp) +1 — Doy >
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> 4y/(1— A11)(1 — Ag) + (\/1 —An+V1- A22)2’

which contradicts (2.6).
The contradictions obtained in (a) and (b) prove that the problem (3.131),
(3.132), (3.2) has only the trivial solution. O

Proof of Theorem 2.3. According to Lemmas 3.1 and 3.2, in order to prove the the-
orem it is sufficient to show that the system

1(t) = La1(ua) () + Lr2(uz2)(t), (3.271)
5(t) = La1(u1)(t) — laa(u2)(t) (3.272)

has only the trivial solution satisfying (3.2).

Suppose that, on the contrary, (ui,us)? is a nontrivial solution of the problem
(3.271), (3.272), (3.2). Define the numbers M;, m; (i = 1,2) by (3.14) and choose
a;, B € [a,b] (i = 1,2) such that the equalities (3.15;) are satisfied for i = 1,2.
Furthermore, let the numbers B;;, D;j (i,7 = 1,2) be given by (3.17). It is clear
that (3.2) guarantees

M; >0, m;>0 for ¢1=1,2.

The integrations of (3.27;) from a to a; and from a to 51, in view of (3.14), (3.157),
and the assumptions #11, {12 € Py, yield

a1 a1

M, = /éll(ul)(s)ds—i-/Elg(z@)(s)ds <
< M, /611(1)(s)d8 + M, /612(1)(s)d5 < M1Aq1 + MyAqs (328)

and

51 51
my = — / O (uy) (5)ds — / Cro(uz)(s)ds <
I631

B1
<mq /611(1)(3)ds + mo /612(1)(3)ds < m1A11 + m2A12 . (329)

Now we shall divide the discussion into the following two cases.

(a) The function us is of a constant sign. Then, without loss of generality we can
assume that ug(t) > 0 for t € [a, b].

(b) The function us changes its sign.
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Case (a): ua(t) > 0 fort € [a,b]. In view of (2.7) and the assumption £19 € Pgp,
Lemma 3.3 implies u1(t) > 0 for ¢t € [a,b]. Consequently, (3.10) is true. The
integration of (3.279) from a to ae, on account of (3.14), (3.152), and the assumption
lo1, 099 € Py, yields

a2 a2 (2]

My = /Egl(ul)(s)ds — /Egg(ug)(s)ds < M, /621(1)(s)ds < MjAs . (3.30)

a a a

According to (2.7) and (3.10), it follows from (3.28) and (3.30) that
0<M(1—An) < MyAs,  0< My < M As. (3.31)
Using (2.7) and (3.10) once again, the last relations imply M; > 0, M > 0, and
A12A21 21— A > (1 — An)p(Az2),
which contradicts (2.8).
Case (b): ua changes its sign. It is clear that
My >0, mo > 0. (3.32)

We can assume without loss of generality that 32 < ag. The integrations of (3.272)
from a to B2 and from s to ag, in view of (3.14), (3.152), (3.17), and the assumptions
lo1, 099 € Pyp, result in

B2 B2

me = — /égl(ul)(s)ds + /Egg(ug)(s)ds <

a

<my /521 dS + Moy /522 )dS = m1By1 + MsBas (3.33)

and
%)) a2
My +mg = /Egl(ul)(s)ds — /égg(ug)(s)ds <
B2 B2
< My /521 dS —+ mo /522 )dS = M1 Do +maoDoo . (3.34)
B2
On the other hand, using (2.7) and (3.32), from (3.28) and (3.29) we get
M A A
Wy 12 mi < 12 (3.35)
M2 1-— All ma 1—Ap
If we take the assumption (2.8) into account, (3.35) yields
my A12An My A1pAn
— B 1 — D 1
2 1_1—1411< ’ M; 21_1—1411<
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Consequently, it follows from (3.33) and (3.34) that

M- M
0<1—EB21§—23227 0<1——1D21§@(D22—1)7
ma ma Mo 2

whence we get Doy > 1 and

mq M1
1-—8B 1-—D < Bos(Dos — 1).
< Mo 21) ( M2 21) > 22( 22 )

Therefore,
mi M1 1 2 1 2
1——Byy—— Dy <-(B Doy —1)" < = (Agp —1
e 21 iR 21_4( 22 + D22 ) _4( 22 ),
which, together with (3.35), results in
1 2 _my My
Axp)=1—=(Ap—-1)"< —8B — Dy <
©(A22) 4( 22 ) = 21+M2 21 <
Aq A2 A2
B Do) < /2=,
_1_A11(21+ 21)_1_A11

But this contradicts (2.8).
The contradictions obtained in (a) and (b) prove that the problem (3.27;),
(3.272), (3.2) has only the trivial solution. O

Proof of Theorem 2.4. The validity of the theorem follows immediately from Theo-
rem 2.3. U

Proof of Theorem 2.5. According to Lemmas 3.1 and 3.2, in order to prove the the-
orem it is sufficient to show that the system

u&(t) = fu(ul)(t) + 512(’&2)(25), (3.361)
uy(t) = —lo1(u1)(t) — Laz(u2)(t) (3.362)

has only the trivial solution satisfying (3.2).
Suppose that, on the contrary, (ui,us)” is a nontrivial solution of the problem
(3.361), (3.362), (3.2). It is clear that one of the following items is satisfied.

(a) The function us is of a constant sign. Then, without loss of generality, we can
assume that ug(t) > 0 for t € [a, b].

(b) The function ug changes its sign.

Case (a): uz(t) > 0 fort € [a,b]. In view of (2.7) and the assumption £19 € Py,
Lemma 3.3 implies u1(t) > 0 for ¢ € [a,b]. Therefore, by virtue of the assumptions
l31,029 € Pap, (3.362) yields uh(t) < 0 for ¢ € [a,b]. Consequently, us = 0 and
Lemma 3.3 once again results in u; = 0, which is a contradiction.

Case (b): ua changes its sign. Define the numbers M;, m; (i = 1,2) by (3.14) and
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choose o, B; € [a,b] (i = 1,2) such that the equalities (3.15;) are satisfied for i = 1, 2.
Furthermore, let the numbers B;j, D;; (4,5 = 1,2) be given by (3.17). It is clear that

My >0, m >0, My>0, mo>Q0.

We can assume without loss of generality that 33 < as. The integrations of (3.362)
from a to 2 and from f2 to a, in view of (3.14), (3.152), (3.17), and the assumptions
a1, lag € Py, yield

B2 B2

my = /égl(ul)(s)ds—i-/Egg(z@)(s)ds <

a

< M, /521 dS + Mo /522 )ds = M B2 + M3Bys (3.37)
and

My + my = — /Kgl(ul)(s)ds — /KQQ(UQ)(S)CZS <

<my /521 dS + mo /522 )dS =m1Da; +maoDas . (3.38)
B2

By virtue of (3.18) and (3.32), it follows from (3.37) and (3.38) that

My M,
3= An <142+ 2 =By —Dn< 7B —D 3.39
22 + My 2 + . 22 22 M, 21 + 21 - ( )
On the other hand, the integrations of (3.361) from a to a3 and from a to fi,
on account of (3.14), (3.151), and the assumptions ¢, 12 € Py, yield (3.28) and
(3.29), respectively. Using (2.7) and (3.32), from (3.28) and (3.29) we get (3.35).
Consequently, (3.39) implies

A0 A
(Ba1 + Day) < 12421

3 Agy < 12
2 =14y T 1-Ay

which contradicts (2.10).
The contradictions obtained in (a) and (b) prove that the problem (3.361),
(3.362), (3.2) has only the trivial solution. O

Proof of Theorem 2.6. If A19A2 < (1 — A11)(1 — Agz) then the validity of the the-
orem follows immediately from Theorem 2.5. Therefore, suppose that

A12A21 (1 — All)(l — A22). (340)

According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to
show that the problem (3.361), (3.362), (3.2) has only the trivial solution.
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Suppose that, on the contrary, (ui,us)” is a nontrivial solution of the problem
(3.361), (3.362), (3.2). Define the numbers M;,m; (i = 1,2) by (3.14) and choose
a;, B € [a,b] (i = 1,2) such that the equalities (3.15;) are satisfied for i = 1,2.
Furthermore, let the numbers B;j, D;; (i,j = 1,2) be given by (3.17). It is clear
that (3.2) guarantees

M; >0, m;>0 for ¢1=1,2.
For the sake of clarity we shall devide the discussion into the following cases.

(a) The function us is of a constant sign. Then, without loss of generality, we can
assume that ug(t) > 0 for t € [a, b].

(b) The function us changes its sign. Then, without loss of generality, we can
assume that Fs < as. It is clear that one of the following items is satisfied.
(b1) wyi(t) >0 for ¢ € [a,b].
(b2) uy(t) <0 for t € [a,b].
(b3) The function u; changes its sign.
Case (a): uz(t) > 0 fort € [a,b]. In view of (2.3) and the assumption £13 € Py,
Lemma 3.3 implies uq(t) > 0 for t € [a,b]. Therefore, by virtue of the assumptions

la1,l20 € Pap, (3.362) yields uh(t) < 0 for ¢t € [a,b]. Consequently, ug = 0 and
Lemma 3.3 once again results in u; = 0, which is a contradiction.

Case (b): ug changes its sign and B2 < ag. Obviously, (3.32) is true. The integra-
tions of (3.362) from a to (2 and from [3 to aw, in view of (3.14), (3.152), (3.17),
and the assumptions fo1, 99 € Py, yield (3.37) and (3.38), respectively. At first we
note that, by virtue of (2.3), the assumption (2.11) implies

A22 A12A21 — (1 — All)(l — Agg)] <1- All . (3.41)

Now we are in position to discuss the cases (b1)-(b3).

Case (b1): ui(t) > 0 fort € [a,b]. This means that m; = 0. Consequently, (3.38)
implies
My < mg(Daz — 1) < ma(Az — 1),

which, together with (2.3), contradicts (3.32).

Case (b2): ui(t) <0 fort € [a,b]. This means that M; = 0. Consequently, (3.37)
and (3.38) yield

M2 S m1A21 — Tng(l — Agg), myo § M2A22 . (3.42)

On the other hand, the integration of (3.361) from a to (1, in view of (3.14), (3.157),
and the assumption ¢11, 21 € Pgp, resultsin (3.29). If we take now (2.3) into account,
it follows from (3.29) and (3.42) that

ma(1 — Aqp) < MaAgp(l—Aq) <
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<mpAAp(l — A1) — moAg(l — Ap)(1 — Agp) <
< mgAiaAg Az — maAa(l — Ajr)(1 — Aga).

Since mo > 0, we get from the last relations that
1— Ay < Agg|ApAo — (1= App)(1 - A22)],

which contradicts (3.41).

Case (b3): uy changes its sign. Suppose that o; < 1 (the case, where a1 > 31, can
be proved analogously). Obviously, (3.16) is true. The integrations of (3.361) from
a to ap and from «a; to (1, on account of (3.14), (3.15;1), (3.17), and the assumptions
l11, 012 € Py, yield

a1 a1

M, = /éll(ul)(s)ds—i-/Elg(z@)(s)ds <

a

< My /511 dS + My /512 )ds = M1 B11 + M>Bio (3.43)

and
B1 B1
My +mq=— /éll(ul)(s)ds — /élg(ug)(s)ds <
a1 aq
B1 B1
< mq /611(1)(8)d8 + mo /612(1)(s)d5 = m1D11 + nglg, (344)
(651 aq

respectively. By virtue of (2.3), (3.16), and (3.18), combining the inequalities (3.37),
(3.38) and (3.43), (3.44), we get

mo Mg M
— 4+ —+—(1—-D9y) <A — B 4
O<M1+ +ml( 22) 21+M 22 (3.45)
and v u
1 mi 1
—(1—-B —(1-D — <A 4
0<M2( 11)+m2( 11)+m2_ 12 (3.46)
respectively.

On the other hand, in view of (2.3), the relations (3.38) and (3.44) imply
My(1— An) <my {A12A21 —(1-An)(1- A22)]-
Using (3.37) and (3.40) in the last inequality, we get

My (1—A11—A22 [A12A21—(1—A11)(1—A22)]) < My An [A12A21—(1—A11)(1—A22)]-
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Consequently,
(1—A1)Ay
1— Ay — A |ApA — (1 — An)(1 — A22)]

Mo
A —~2 By < 3.47
21 + M 22 < ) ( )

because the inequality (3.41) is true.
Now, it follows from (3.45)—(3.47) that

(1 —An)A2An

M (1 — B11)+
1— Ay — Ag|AgAs — (1 — Ap)(1 — A22)] 2
my M, Mo My M
—(1—-D 1+—(1-B —(1-D
+ M1 ( 11) Tl mq ( 11) mo ( 11) + m1m2+
Mlmg M1
1-B 1-D 1-D 1-D — (1 — D9y9). (3.48
+ My, ( 11)( 922) + ( 11)( 22) + - ( 922). (3.48)

MMy~ Myms
+
mims  Momy

(1 — B11)(1 — Dy) > 2—\/ (1 — By1)(1 — Do), (3.49)

My
mi

(1 — Bll) + 2 —\/ 1-— Bll)(l — Dgg) =+ % (1 — Dgg)

— s (\/1 — B + V1 - D22)2> (3.50)

M 2
—1<\/1—Bn+\/1—D22) —I—%(l—Du)Z

mq
22\/1—D11<\/1—Bl1+\/1—D2z) >
> 24/1— Byy — D11 +2/(1 — D11)(1 — Dag) >

>2y/1— A1 +2y/(1 - Dui)(1 - Da), (3.51)

and

Mo
Mg (1—B11)—|——(1—D11 >2\/ 1—311)(1—D11) > 2 1—A11 (352)

Finaly, in view (3.49)-(3.52), (3.48) implies
(1—A11)A12A9n
1—An — Ax [A12A21 —(1—=An)( - A22)]
> 4y/1— A1 +1+2/(1 = Dn)(1 — Dag) + (1 = D1y)(1 — Do) >
>4 1—A11+<1+\/ 1— An) 1—A22)

>

which contradicts (2.11).
The contradictions obtained in (a) and (b) prove that the problem (3.361),
(3.362), (3.2) has only the trivial solution. O
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Proof of Theorem 2.7. The validity of the theorem follows immediately from Theo-
rem 2.5. U

Proof of Theorem 2.8. The validity of the theorem follows immediately from Theo-
rem 2.6. U

Proof of Theorem 2.9. According to Lemmas 3.1 and 3.2, in order to prove the the-
orem it is sufficient to show that the system

u&(t) = —En(ul)(t) + 512(’&2)(25), (3.531)
uy(t) = Lo1 (ur)(t) — Lo (uz2)(t) (3.532)

has only the trivial solution satisfying (3.2).

Suppose that, on the contrary, (ui,us)” is a nontrivial solution of the problem
(3.531), (3.532), (3.2). Define the numbers M;,m; (i = 1,2) by (3.14) and choose
a;, B € [a,b] (i = 1,2) such that the equalities (3.15;) are satisfied for i = 1,2.
Furthermore, let the numbers B;j, D;; (i,j = 1,2) be given by (3.17). It is clear
that (3.2) guarantees

M; >0, m;>0 for ¢1=1,2.
For the sake of clarity we shall devide the discussion into the following cases.

(a) Both functions w; and ug do not change their signs and u;(t)ua(t) > 0 for
t € [a,b]. Then, without loss of generality, we can assume that

ui(t) >0, wu2(t)>0 for t€a,b]

(b) Both functions u; and us do not change their signs and wu;(¢)ua(t) < 0 for
t € [a,b]. Then, without loss of generality, we can assume that

ui(t) >0, wug(t) <0 for te€la,b].

(c) One of the functions u; and us is of a constant sign and the other one changes
its sign. Then, without loss of generality, we can assume that u(t) > 0 for
t € [a,b].

(d) Both functions u; and uy change their signs. Then, without loss of generality,
we can assume that oy < 1. Obviously, one of the following items is satisfied.

dl) B2 < ag and D;; > 1 for some i € {1,2}.

d2

d3

d4

52 < ag and D;; < 1 for ¢ = 1,2.
B2 > ag and D;; > 1 for some i € {1,2}.

(d1)
(d2)
(d3)
(d4)

B > s and D;; < 1 fori=1,2.
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At first we note that the function ¢ satisfies

Case (a): u1(t) > 0 and ua(t) > 0 for t € [a,b]. Obviuously, (3.10) is true. The
integration of (3.53;) from a to «y, in view of (3.14), (3.15;), and the assumptions
li1,0io € Pgp, yields

= /521 u1 d8+ Z 1/&2 U2 dS <

<M3 1/513 i dS < M3 ZAZ3— (Z: 1,2). (355)

By virtue of (3.10), (3.55) implies M; > 0, My > 0, and Aj2A2; > 1, which
contradicts (2.14), because w > 1 and 0 < p(Ay;) <1 fori=1,2.

Case (b): u1(t) > 0 and uz(t) <0 fort € [a,b]. In view of the assumptions €;; € Pyp
(1,7 = 1,2), (3.531) and (3.532) arrive at u}(t) < 0 for ¢ € [a,b] and ub(t) > 0 for
t € [a,b], respectively. Consequently, u; = 0 and ug = 0, a contradiction.

Case (¢): ui(t) > 0 for t € [a,b] and uz changes its sign. Obviously, m; = 0 and
(3.32) is true. Suppose that f2 < a9 (the case, where 33 > a3, can be proved
analogously). The integration of (3.531) from a to aq, on account of (3.14), (3.151),
and the assumptions #11, 12 € Py, yields

[e%1 (o5} aq
Ml = /611 u1 / dS < Mg/élg(l)(s)ds < M2A12 . (356)

On the other hand, the integrations of (3.532) from a to (2 and from (35 to as, in
view of (3.14), (3.152), (3.17), and the assumptions f21, 29 € Py, result in

/521 u1 dS + /522 UQ dS < MQ/EQQ dS = M5 Bys (3.57)

and

My + my = /521(’&1)(8)(15 — /EQQ(UQ)(S)CZS <
B2 B2

< M; /521 dS —+ mo /522 )dS = M1 Do +moDao, (3.58)
B2

respectively.
It follows from (3.56) and (3.58) that

My < MyAq13A91 + mo(Dag — 1). (3.59)
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Hence, by virtue of (2.14) and (3.32), (3.59) implies

0 < Mo(1 — AjpAst) < ma(Das — 1). (3.60)
Using (3.54), the relations (3.57) and (3.60) result in

¢(A22) <1 — Bya(Da2 — 1) < App Ao,
which contradicts (2.14), because w > 1 and 0 < (A1) < 1.

Case (d): uy and uy change their signs and oy < 1. Obviously, (3.16) is true. The
integrations of (3.531) from a to «; and from «; to 1, in view of (3.14), (3.1571),
(3.17), and the assumptions 11, 12 € Py, yield

- / O (un) (5)ds + / Cro () (5)ds <

<my /511 dS + M, /512 )dS =m1B11 + M2yBjo (3.61)

and
B1 B1
M;+mq = /Ell(ul)(s)ds — /fu(UQ)(S)dS <
[e%1 a1

< M1 /511 dS + mo /512 )dS = M1D11 + m2D12 . (3.62)

aq

Furthermore, under the assumption 2 < a2, the integrations of (3.532) from a
to f2 and from (2 to g, in view of (3.14), (3.152), (3.17), and the assumptions
lo1, 99 € Py, result in

B2 B2

me = — /égl(ul)(s)ds + /Egg(ug)(s)ds <

a

B2
<m /521 dS + Mo /522 )dS = m1Ba1 + My Bos (3.631)

and
My + my = /521(’&1)(8)(15 — /KQQ(UQ)(S)CZS <
B2 B2

< M; /521 dS —+ mo /522 )dS = M1 Ds1 + moDyo . (3.641)
B2
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If B2 > ao, we obtain in a similar manner the inequalities
My < MyBgy +maBaa, (3.632)
My +mo <myDy + MaDas . (3.649)

Now we are in position to discuss the cases (d1)—(d4).

Case (d1): (B3 < ag and Dj; > 1 for some i € {1,2}. Suppose that Do > 1 (the
case, where Dj; > 1, can be proved analogously). Using this assumption, from
(3.631) and (3.641), we get

mg < myBay + My By Doy + maBaa(Dag — 1)

and
My < Mi1Dsy + myBai(Dag — 1) + My Bag(Dap — 1).

Hence, in view of (3.54), the last two inequalities yield
map(Asz) < miBa + My Bz Doy (3.65)
Map(As2) < M1Day +mqBai(Da2 — 1). (3.66)
By virtue of (2.14) and (3.16), it follows from (3.61), (3.66) and (3.62), (3.65) that
0 <M [SO(A22) - 312D21} < my [QD(Am)BH + B12B21 (D22 — 1)} (3.67)
and

0<my {SO(A22) = D12321] < M [QO(A22)(D11 1)+ D12D21322], (3.68)

respectively. Combining (3.67) and (3.68), we get

0% (Ag) < p(Ags) [BI2D21 + D12321] — B12D12B21 Doy (1 — Baa(Daa — 1))+
+ 0(A22) [312321(1711 —1)(D22 — 1) + D12D21311322] +
+ ¢*(A22)B11 (D11 — 1). (3.69)
Since 1 — By;(D;; — 1) > p(Ay) > 0 for i = 1,2 and
Bi12Dg1 + D12Ba1 < A19A91 — B12Ba1 — D12Da, (3.70)
we obtain from (3.69) that
p(A11)p(Az2) <
< AizAs + BaBat |(Dn = 1)(Dy2 = 1) = 1] + DiyDay [ BuBoy — 1], (3.71)
If (D11 —1)(Da2 — 1) <1 and B3 B2y < 1 then (3.71) implies

©(A11)p(A) < A1pAs,
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which contradicts (2.14).
If (D11 —1)(D9g — 1) < 1 and By1Bgs > 1 then, in view of (3.18) and the
assumption Dag > 1, we obtain from (3.71) that

©(A11)p(Ag) < A19A21 B11Bas < A12A21B11(Aga — Dag) < AjpAz1 A1 (A — 1),

which contradicts (2.14).
If (D11 — 1)(D22 — 1) > 1 and BHBQQ <1 then (371) arrives at

©(A11)p(Az) < A19A9 (D11 — 1)(D2g — 1) < A1 A1 Aj1 (A — 1),

which contradicts (2.14).
If (D11 —1)(Da2 — 1) > 1 and Bj1 By > 1 then (3.71) yields

(A11)p(A2) < A1z [(Dn —1)(D22 — 1) + B11Bas — 1} <
< A2 Ay {Au(Dm -1+ A11322} < A12A21 411 (A2 — 1),
which contradicts (2.14).
Case (d2): Pa < ag and Dy < 1 fori=1,2. We first note that
B11Bo < (Aii — Dii)Bs—i3—i = (Aii = 1)Bs—i3—i + (1 — Dii)Bs—iz—  (3.72;)
for i = 1,2. By virtue of (3.16), we get from the inequalities (3.62) and (3.64;)
my < mgoDia (3.73)

and
My < My Doy . (3.74)

Therefore, in view of (2.14) and (3.16), the relations (3.62), (3.631), (3.74) and
(3.61), (3.74) result in

0<my <1 — D12321> < M1 |:D12D21322 — (1 — Dll) (375)

and
0< M; (1 — B12D21) < mi1Bj1 R (376)

respectively. Combining (3.721), (3.75), (3.76) and taking the inequality D1oDo; < 1
into account, we get

(1 - B12D21) (1 - D12B21) < D12Ds1(A11 — 1)Bag + (Baa — B11)(1 — D11). (3.77)

On the other hand, by virtue of (2.14) and (3.16), the relations (3.61), (3.641),
(3.73) and (3.631), (3.73) imply

0< M2<1 . 312D21) < my [DnglBH — (1 - Da) (3.78)
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and
0< m2(1 - D12B21) < MyBas, (3.79)

respectively. Combining (3.722), (3.78), (3.79) and taking the inequality D1oD9; < 1
into account, we obtain

(1 - B12D21) (1 - D12B21) < D12D31(A22 — 1)B11 + (B11 — B22)(1 — Da2). (3.80)

First suppose that By < Bjj. Then, by virtue of (3.70), the inequality (3.77)
arrives at

1 < B13D21 + D12Ba1 + D12D91(A11 — 1)Bag <
< A13A91 + D19 Doy |:(A11 — 1)322 — 1] . (381)

If (A;1 — 1)Bgg < 1 then (3.81) implies 1 < Aj9A491, which contradicts (2.14),
because 0 < p(A;;) <1 fori=1,2.
If (A11 — 1)B22 > 1 then (3.81) yields

1 < A19A21 (A1 — 1)Bay < A1pA21 (A1 — 1) A,

which contradicts (2.14), because 0 < ¢(A;;) <1 for i =1,2.
Now suppose that By > Bii. Then, by virtue of (3.70), the inequality (3.80)
results in

1 < B13D21 + D12Ba1 + D12Doy(Age — 1) By <
< Aj9A91 + D12Doy [(A22 —1)B1 — 1]- (3.82)

If (Ags — 1)B11 < 1 then (3.82) implies 1 < Aj9A451, which contradicts (2.14),
because 0 < p(A;;) <1 fori=1,2.
If (Aga — 1)By1 > 1 then (3.82) yields

1 < Aj19A91 (A — 1)B11 < A1pA21 (A — 1)A;1,

which contradicts (2.14), because 0 < ¢(A;;) <1 for i =1,2.

Case (d3): (B2 > ay and Dy > 1 for some ¢ € {1,2}. Suppose that Dos > 1 (the
case, where D11 > 1, can be proved analogously). In a similar manner as in the case
(d1), combining (3.61), (3.62) and (3.632), (3.642), we get

P(A11)p(A2) <
< A19A91 + D19 B9y Bll(D22 — 1) — 1] + B19 Doy |:B22(D1]_ — 1) — 1] . (383)

If BH(DQQ — 1) < 1 and BQQ(DH — 1) < 1 then (383) implies

©(A11)p(Az) < A1pAs,
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which contradicts (2.14).
If B11(D23 — 1) <1 and Baa(Dj11 — 1) > 1 then we obtain from (3.83) that
©(A11)p(Az2) < Ao A1 Bog (D11 — 1) < AjpAo1 Aga(Ann — 1),

which contradicts (2.14).
If B11(D22 — 1) > 1 and Bga(D11 — 1) < 1 then (3.83) arrives at

©(A11)p(Az) < A19A21 B11(Daz — 1) < A19A91 A1 (A2 — 1),
which contradicts (2.14).
If BH(DQQ — 1) > 1 and BQQ(DH — 1) > 1 then (383) yields
©(A11)p(A) < AjpAn |:Bll(D22 — 1)+ (D11 — 1)Bag — 1} <

< ApAy {Au(Dm 1)+ A11322} < ApA91 A1 (A — 1),

which contradicts (2.14).
Case (d4): B2 > ag and D;; < 1 for i = 1,2. The inequalities (3.62) and (3.642)

result in
mi1 < maDia, mo < myDoy .

Hence, we get
1 < Di12Dgy < A12Aa1,

which contradicts (2.14), because 0 < ¢(A;;) <1 for i =1,2.
The contradictions obtained in (a)—(d) prove that the problem (3.53;), (3.532),
(3.2) has only the trivial solution. O

Before we prove Theorem 2.10, we give the following lemma.

Lemma 3.4. Let the function ¢ be defined by (2.2). Then, for any 0 <z <y < 3,
the inequality

(3—y)p(x) < (3—=z)p(y) (3.84)

is satisfied.

Proof. Let 0 < z <y < 3 be arbitrary but fixed. It is clear that one of the following
cases is satisfied:

(a) 0 <z <y <1holds. Then
B-y)p@)=3-y<3-—x=(3-12)p(y)
(b) 0 <z <1and]l<y< 3 are satisfied. Then we get
3—y<2 [1—3@—1)2} .
Consequently,

B-y)p(r) =3—-y<2 [1 - i(y - 1)2} <B—z)py).
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(¢) 1 <z <y<3istrue. Then we obtain

B-y[t-@-1=B-y2+@-D][2-@-1] =
=B-y(+ )( ) < ( z)(1+y)B-y) =
=(@-2)[2+ -2~ -] =B-2)[1- -1’
i.e., the inequality (3.84) holds.
U

Proof of Theorem 2.10. According to Lemmas 3.1 and 3.2, in order to prove the
theorem it is sufficient to show that the system

u&(t) = —Kll(ul)(t) —+ Elg(UQ)(t), (3851)
us(t) = —Lo1 (ur)(t) — L22(uz2)(t) (3.852)

has only the trivial solution satisfying (3.2).

Suppose that, on the contrary, (ui,us)? is a nontrivial solution of the problem
(3.851), (3.852), (3.2). Define the numbers M;,m; (i = 1,2) by (3.14) and choose
a;, B € [a,b] (i = 1,2) such that the equalities (3.15;) are satisfied for i = 1,2.
Furthermore, let the numbers B;j, D;; (i,j = 1,2) be given by (3.17). It is clear
that (3.2) guarantees

M; >0, m;>0 for ¢1=1,2.
For the sake of clarity we shall devide the discussion into the following cases.

(a) Both functions u; and uy do not change their signs. According to Lemma 3.2,
we can assume without loss of generality that

ui(t) >0, wug(t) >0 for te€la,b].

(b) One of the functions u; and us is of a constant sign and the other one changes
its sign. According to Lemma 3.2, we can assume without loss of generality
that ui(t) > 0 for ¢ € [a,b].

(¢) Both functions w1 and ug change their signs. According to Lemma 3.2, we can
assume without loss of generality that a1 < (7 and B2 < as. Obviously, one
of the following items is satisfied:

(c1) D;; > 1 for some i € {1,2}
(c2) Dj; <1 fori=1,2 and
(02.1) m1D21 < mgBQQ

(02.2) Ml < M2D12
(02.3) mi1Da1 > moBos and My > MsD1o
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At first we note that (3.54) is true and, by virtue of Lemma 3.4, the assumption
(2.16) can be rewritten as

wA12A21 < (3 — Aii)@(A?;—i?)—i) for = 1, 2. (386)

Case (a): wui(t) > 0 and ug(t) > 0 for t € [a,b]. In view of the assumptions
l31,029 € Pap, (3.852) implies ub(t) < 0 for t € [a,b]. Therefore, us = 0 and,
by virtue of the assumption ¢11 € Py, (3.851) arrives at u)(t) < 0 for ¢ € [a,b)].
Consequently, u; = 0 as well, which is a contradiction.

Case (b): ui(t) > 0 fort € [a,b] and ua changes its sign. Obviously, (3.32) is true,
M > 0, and m; = 0. Suppose that ay < (3 (the case, where ay > [32, can be proved
analogously). The integration of (3.851) from a to aq, in view of (3.14), (3.157),
and the assumptions ¢11, 12 € Py, yields (3.56).

On the other hand, the integrations of (3.852) from a to ay and from as to (s,
in view of (3.14), (3.152), and the assumptions o1, f92 € Py, result in

—/521(’&1)(8)(15 - /EQQ(UQ) ds < m2/€22 dS —m2B22 (3.87)

and
B2 B2
My +mg = /Egl(ul)(s)ds + /ﬁgg(uQ)(s)ds <
(e %] a2

< M; /521 dS + Ms /522 )dS = M1 Do + MoDoo , (3.88)

a2
respectively. By virtue of (3.32), combining (3.56), (3.87), and (3.88), we get

My M,
Ay <1+ 22412 B Dy <Dy < ApA
3 — A + +M2 22 N 12401,

which contradicts (3.86), because w > 1 and 0 < (A1) < 1.

Case (c): uy and uy change their signs, aq < 31, and (2 < as. Obviously, (3.16) is
true. The integrations of (3.851) from a to a; and from «; to 51, in view of (3.14),
(3.151), and the assumptions 11,12 € Py, imply (3.61) and (3.62). On the other
hand, the integrations of (3.852) from a to (2 and from (2 to ag, on account of
(3.14), (3.152), and the assumptions fa1, 22 € Py, result in (3.37) and (3.38).

By virtue of (3.16), the relations (3.61), (3.62) and (3.37), (3.38) arrive at

M, My
3= Bu—Du <1t 4ok =By —Du< 2Byt 2D 3.89
11 11 + +M1 11 11 — 12-1-]\41 12 ( )
and
My M,
3 — BQQ—DQQ<1+_+__B22_D22<—B21+_D217 (3.90)

Mo
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respectively.

Case (c1): Dy > 1 for some i € {1,2} . Suppose that Dj; > 1 (the case, where
Dy > 1, can be proved analogously). Using this assumption and combining (3.61)
and (3.62), we get

My < MyB11(D11 — 1) + mgoB11D1g + M3 Bio

and
m1 <miB11(Di1 — 1) + Ma(Dyy — 1)Bia + maDia .

Hence, in view of (3.54), the last two inequalities yield
Mip(A11) < meBi1Dig + M2Bia, (3.91)
mip(An) < Ma(Dyy — 1)Bia +meDia . (3.92)

By virtue of the assumption D17 > 1, it follows from (3.37), (3.91) and (3.38), (3.92)
that
My [SD(AH) - B11D12BQI] < M, [3113221712 + B12} (3.93)

and

my [@(Au) — (D11 — 1)3121721] < my [(Dll —1)(D22 — 1)By2 + D12]7 (3.94)

respectively. Note that, in view of (3.18) and the condition D1; > 1, the assumption
(3.86) guarantees

3—A
B11D12Bo; < (A1 — 1)A1249; < 22

3 (A1) < (A1),
(3.95)

3—A
(D11 —1)Bi2D2y < (A1 — 1)A12A49 < 3 2 ©(A11) < o(Anr).

Consequently, we get from (3.90), (3.93), and (3.94) that
(3 — Baa — D29) [SO(AH) — B11D12B21} [SO(AH) — (D11 — 1)B12D21] <
< [3113221)12321 + 312321} [SO(AH) — (D11 — 1)312D21] +

+ [(Du —1)(Dgg — 1)B12D9; + D12D21] [SD(AH) - B11D12Bz1] <

< (A1) {312321 + D12D21 + B11Bo2D12Bo1 + (D11 — 1)(Dag — 1)312D21}-
(3.96)

On the other hand,

(3 — Baa — D23) [@(Au) - 311D12321} [(P(All) — (D11 — 1)Bl2D21] >

> (3 — Ag2)p(A11)?* — (A11)(3 — Bag — Dag)B11 D19 Boy —
— QO(AH)(?) — 322 — D22)(D11 — 1)312D21 . (397)



34 The Cauchy problem for two—dimensional systems of linear FDEs . ..

By virtue of (3.18), the inequality
Bi12Bo1 + D12 D21 < A12A91 — D12Ba1 — Bia Dy (3.98)
is true. Consequently, (3.96) and (3.97) imply
(3 — A)p(A11) < A2 Ao+
+ D12By [(3 — Dyy)Bi; — 1} + BiaDay [(2 ~ By)(D1y — 1) — 1]. (3.99)
If (3 — Dap)Bir < 1 and (2 — Ba)(Di1 — 1) < 1 then (3.99) yields
(3 — Ag2)p(Ann) < A1pAa,

which contradicts (3.86).
If (3 — D22)Bll <1 and (2 — BQQ)(DH — 1) > 1 then (399) results in

(3 — Ag2)p(A11) < A12A21(2 — Baz)(D11 — 1) < 3(A11 — 1)A12491,

which contradicts (3.86).
If (3— D99)B11 > 1 and (2 — Bgg)(D11 — 1) < 1 then, in view of (3.18) and the
assumption D1 > 1, we obtain from (3.99) that
(3 — A22)p(An1) < A12A21(3 — Da2) B11 <
< 3A12A21 (A1 — Di1) <3(A11 —1)Ap Ao,

which contradicts (3.86).
If (3 — D22)Bll > 1 and (2 — BQQ)(DH — 1) > 1 then (399) arrives at

(3 = An)p(An) < A1z Az (3 = Do) By + (2 = Boa)(Diy = 1) — 1] <

< ApAy [3311 +3(Dn — 1)] <3(A11 —1)A12As,

which contradicts (3.86).

Case (c2): Di; < 1 for i = 1,2. By virtue of (3.16), the inequalities (3.62) and
(3.38) result in
mq < m2D12 (3100)

and
My <miDay, (3.101)

respectively.
Case (c2.1): m1Do1 < mgBsy. Combining (3.37), (3.38) and taking (3.18) into

account, we get

mg < M Bgy + my By Doy + maBag(Dag — 1) <
< M1 Baj + mq(Age — Daz) Doy + maBaa(Dag — 1) =
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= M1 Bo1 +mq (A — 1)Day + (1 — Dag) |:mlD21 — moBag|.

Consequently,
mo < M1Boy +my (AQQ — 1)D21 . (3.102)
If Agp <1 then (3.89), (3.101), and (3.102) arrive at
3— A1 <3 — Bi1 — D11 < B12Day1 + D12Boy < A2 Aoy,

which contradicts (3.86), because 0 < ¢(Ag2) < 1.

Therefore, suppose that
Agp > 1. (3103)

Then, using (3.62) in (3.102), we obtain
ma < My Bay + Mi(Azz — 1)(D11 — 1) Doy + ma(Az — 1) D12 Doy,
ie.,
ma [1 — (Agy — 1)D12D21} < M; [Bm ~ (Agy — 1)(1 — DH)Dm]. (3.104)

Note that the assumption (3.86) guarantees

3— A
3

Consequently, we get from (3.89), (3.101), and (3.104) that

(Aga —1)D12Doy < (Agp —1)A12A49 < o(Ap) < 1.

(3 — B — Dll) {1 — (A — 1)D12D21] <
< [1 — (Ag — 1)D12D21]312D21 + D12Bo; — (A2 — 1)(1 — Dy1)D12Dgy <
< Bi19D91 + D19By1 — (A22 — 1)(1 — Dll)Dl2D21 . (3105)

By virtue of the inequality
B12Dgy + D12Ba1 < A12A21 — B12Ba1 — D12 Doy (3.106)
(3.105) implies
3— Ay < A1pAsy + DiaDoy [(A22 —1)(2 - Byy) - 1]. (3.107)
If (A2a — 1)(2 — By1) <1 then (3.107) results in
3— A < AppAgy,

which contradicts (3.86), because 0 < p(Agg) < 1.
If (A2 — 1)(2 — By1) > 1 then (3.107) yields

3— A < A1pA21 (A —1)(2 — Bi1) < 3(A2 — 1)A12401,

which contradicts (3.86), because 0 < p(Agg) < 1.
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Case (c2.2): My < MyD1s. Using (3.100), we get from (3.90) that
3 — Ay <3 — By — Doy < D12Bo1 + D12D91 = D12(B21 + Da1) < Ai2A491,

which contradicts (3.86), because 0 < ¢(A;1) < 1.

Case (c2.3): m1Doy > maBay and My > MsDqo. We first note that, under the
assumption Djp = 0, (3.89) and (3.101) yield

3— A1 <3—DB11 — D11 < BiaDoy < ApAs,

which contradicts (3.86), because 0 < ¢(Agg) < 1. Therefore, suppose that Do > 0.
Then we have

Mo 1
— < —_— 3.108
My Dia ( )
Note also that (3.100) and the assumption mj Dy > mgoBag guarantee
D12Dg1 > Bas . (3.109)
It follows from (3.37) and (3.108) that
mo My B
—~2<B ——By»w <B — . 3.110
S 21+M1 22 < Do1 + Do ( )

Finally, (3.89), (3.101), and (3.110) result in
3—An <3— Bi1 — D11 < B12Day + D12Ba1 + Baa .
Using (3.106) and (3.109) in the last inequality, we get
3 — A1 < A1pAg — B1aBa1 — D12D91 + Bag < A1pAay,

which contradicts (3.86), because 0 < p(Agg) < 1.
The contradictions obtained in (a)—(c) prove that the problem (3.851), (3.852),
(3.2) has only the trivial solution. O

Proof of Theorem 2.11. If A12A21 < 1 then the validity of the theorem follows im-
mediately from Theorem 2.10. Therefore, suppose in the sequel that

Ay Ay > 1. (3.111)

According to Lemmas 3.1 and 3.2, in order to prove the theorem it is sufficient to
show that the problem (3.851), (3.852), (3.2) has only the trivial solution.

Suppose that, on the contrary, (ui,us)? is a nontrivial solution of the problem
(3.851), (3.852), (3.2). Define the numbers M;,m; (i = 1,2) by (3.14) and choose
a;, B € [a,b] (i = 1,2) such that the equalities (3.15;) are satisfied for i = 1,2.
Furthermore, let the numbers B;;, D;j (i,7 = 1,2) be given by (3.17). It is clear
that (3.2) guarantees

MZ'ZO, m; > 0 for i:1,2.

For the sake of clarity we shall devide the discussion into the following cases.
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(a) Both functions u; and uy do not change their signs. According to Lemma 3.2,
we can assume without loss of generality that

ui(t) >0, wug(t) >0 for te€la,b].

(b) One of the functions u; and ug is of a constant sign and the other one changes
its sign. According to Lemma 3.2, we can assume without loss of generality
that ui(t) > 0 for t € [a,b]. Obviously, one of the following items is satisfied:

(bl) a2 < 2
(b2) az > B

(¢) Both functions w1 and ug change their signs. According to Lemma 3.2, we can
assume without loss of generality that oy < 81 and (s < ao.

At first we note that, in view of (2.3), the inequality (2.18) guarantees

AiiA12Ag < |:Az'z' + (1 — Aji)As—; 3—2‘] A12A9 =

- (AH + Ay — A11A22>A12A21 <1 for i=1,2 (3.112)

Now we are in position to discuss the cases (a)—(c).

Case (a): ui(t) > 0 and uz(t) > 0 for t € [a,b]. In view of the assumptions
l31,029 € Pap, (3.852) implies ubh(t) < 0 for t € [a,b]. Therefore, us = 0 and,
by virtue of the assumption £1; € Py, (3.851) arrives at u(t) < 0 for t € [a,b].
Consequently, u; = 0 as well, which is a contradiction.

Case (b): ui(t) > 0 for t € [a,b] and uz changes its sign. Obviously, m; = 0 and
(3.32) is true. The integration of (3.851) from a to «aq, in view of (3.14), (3.1571),
and the assumptions ¢11, 12 € Py, yields (3.56).

Case (b1): ay < (3. The integrations of (3.852) from a to ag and from ay to o,
in view of (3.14), (3.152), and the assumptions fa9;, lo2 € Py, arrive at (3.87) and
(3.88), respectively. Using (2.3), (3.56), and (3.87) in the relation (3.88), we get

0 <mg <MDy < MyA12A21 < mgBagAiaAr .

Hence we get 1 < Agg A19 Ay, which contradicts (3.112).

Case (b2): ag > (2. The integration of (3.852) from (2 to as, on account of (3.14),
(3.152), and the assumptions fa1, f23 € Pyp, yields

a2 () a2
M2 +mo = — /621 (ul)(s)ds — /EQQ(UQ)(S)dS < mo /Egg(l)(s)ds < m2A22 .
B2 B2 B2

(3.113)
By virtue of (2.3) and (3.32), (3.113) implies

0< My §m2(A22—1) < 0,
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a contradiction.

Case (c): uy and uy change their signs, a; < 1, and (2 < ag. Obviously, (3.16) is
true. The integrations of (3.851) from a to a1 and from ay to (1, in view of (3.14),
(3.151), and the assumptions £11, 12 € Py, imply (3.61) and (3.62). On the other
hand, the integrations of (3.852) from a to (2 and from (2 to ag, on account of
(3.14), (3.152), and the assumptions o1, f29 € Py, result in (3.37) and (3.38).

By virtue of (2.3) and (3.16), from the inequalities (3.61), (3.62) and (3.37),
(3.38) we get

M, M
0< — —1—D —<A —B 3.114
' + ( 1) + 12+ g, P ( )
and M M,
mo 2
0< 2, 22 1 — Dyy) < A9y + =2 By, 3.115
M1+m1+m1( 92) 21+M 22 ( )
respectively.

On the other hand, in view of (2.3), the inequalities (3.38) and (3.62) imply
m1 < maD1g, My < mq1Do . (3.116)
Combining (3.116) and (3.37), we get
My < maD13Dyy < MyAip A3 + MaAgy Ay Agy

i.e.,

Mo (1 - A22A12A21) < My A A2 . (3.117)

Furthermore, combining (3.37), (3.61), and (3.116), we obtain

mi < moDig < My AjpAg + MyAxAjp <

< miA1 A1 Aoy + My A2y Ay + My Aoy Ags

ie.,

my (1 - A11A12A21) < MaAx (A12A21 + A22)- (3.118)

Now, (3.117) and (3.118) yield

A+ 2By < <1 ! A11A22)A12 Aoy + My By < o An
Ms — 1—-A11A19A9 ’ My T 1— AxpAinAy ’

(3.119)

because the condition (3.112) is true
It follows from (3.114), (3.115), and (3.119) that

(14 A1 Ag) A1 Ay
(1 - A1 A1As) (1 — AppAipAs) —
M1 MlmQ

My Moy
> M2 1-D 1-D
1\42 + + lwgml ( 22) + 1 + m11Mmsy

(1 — D11)+



Jif{ Sremr 39

mi M2
— (1-D 1-D — 4+ —=4+1—Dy. (3.120
+ ( 11)( 22) + M, + s + 2. ( )

Using the condition (3.22), we get

M1m2 M1M2 Ml
1-D 1-D >2— 1-D 1-D 121
Mymy ( 22) + g ( 1) > - \/( 11)( 22) (3 )

Ml M1 Ml
— +2— 1—-D 1-D —
+ — V( 11)( 22) + —

ml (1 =D11)(1 — Dgy) =

=2 (14 V=D - Dw)) s (122)

M 2 m
o (VDT =D2)) + g 2 2(1 4+ V= D)= Daa)), (3123)
and M
m2 2
Mo 22y 124
My + meo (3 )

Now, in view of (3.121)—(3.124), (3.120) implies

(1+ Ay Agp) Arp Ay
(1— A1 A1Ay) (1 — ApAipAsr) —

22+2<1+\/(1—D11)(1—D22))+1—D11+1—D22:

:4+<\/1—D11+\/1—D22>22

2
>4 <\/1 —An 01— A22) —wo. (3.125)
Therefore, using (3.112) and the inequality (3.111), we get
(1 + A11A22>A12A21 >
2
> wo {1 — (A1 + Agz) A12Ag1 + A1 Az (A12A21) } >
> wo [1 — (Ap1 + Agp — A11A22)A12A21}7

which contradicts (2.18).

The contradictions obtained in (a)—(c) prove that the problem (3.851), (3.852),

(3.2) has only the trivial solution. O

4. Counter—examples

In this section, the counter—examples are constructed verifying that the results ob-
tained above are optimal in a certain sense.
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Example 4.1. Let 0;; € {—1,1}, hij € L([a,b];R}) (4,5 = 1,2) be such that

b
011 = 1, /hu(s)ds Z 1.

It is clear that there exists ¢y € |a, b] such that

to

/hll(s)ds = 1.

a

Let the operators £;; € Pgp (4,5 = 1,2) be defined by

i () (&) (o (mi5(1)) for ¢ € [ab], ve Cla,b;R) (i,j =1,2), (4.1

where 711 (t) = to, T12(t) = a, T21(t) = a, and T92(t) = a for t € [a,b]. Put
t
u(t) = / hin(s)ds for t € [a,b].

It is easy to verify that (u,0)7 is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).
An analogous example can be constructed for the case, where

b
09292 = 1, /hQQ(S)dS Z 1.
a
This example shows that the constant 1 on the right—hand side of the inequalities

in (2.3) and (2.7) is optimal and cannot be weakened.

Example 4.2. Let 05 € {—1,1}, hj; € L([a,b];R}) (i, = 1,2) be such that

b
09292 = —1, /hQQ(S)dS Z 3.

It is clear that there exist tg € ]a,b] and t; € Jtp, b] such that

to t1
/hgg(s)ds = 1, /hgg(s)ds = 2.
a to
Let the operators ¢;; € Py (1,5 = 1,2) be defined by (4.1), where 711(t) = a,

T12(t) = a, 91(t) = a for t € [a,b], and

(t) t1 for te€ [CL, to[
T = :
> to  for t€ [to,b]
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Put

t

thQ(S)dS for te [a,to[

u(t) =4 :

1— [hoa(s)ds  for te€ [to,b]
to

It is easy to verify that (0,u)” is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0 and ¢; =0 (i = 1,2).
An analogous example can be constructed for the case, where

b
g11 = —1, /hll(s)ds > 3.

a

This example shows that the constant 3 on the right—hand side of the inequalities
in (2.7) and (2.13) is optimal and cannot be weakened.

Example 4.3. Let 0;; = 1 for i,j = 1,2 and let h;; € L([a,b];R;) (i, = 1,2) be
such that

b b
/hll(s)ds <1, /hgg(s)ds <1, (4.2)

/b hia(s)ds /b hor(s)ds > [ 1— /b hu(s)ds | [1- /b hao(s)ds

It is clear that there exists g € ]a,b] such that

and

to to to tg
/hlg(s)dS/hgl(S)dS =11- /hll(s)ds 1— /hgg(s)ds

Let the operators £;; € Pqp (1,7 = 1,2) be defined by (4.1), where 7;;(t) = to for
t €la,b] (i, =1,2). Put

t 1-— jghll(s)ds t
:/h11 ds+— /hlg(s)ds for t € la,b,
fh12(8)d$ a
fh21
/th )ds + — /hgg ds for te€a,b].
1-— thQ )ds a

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.4) in Theorem 2.1 cannot be
replaced by the nonstrict one.
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Example 4.4. Let 011 = 1, 012 = 1, 091 = —1, and 092 = 1. Let o € [0,1] and
hia, ho1 € L([a, b];R+) be such that

b b

/hlg(s)ds/hgl(s)ds > 8(1 — ).

a a
It is clear that there exist tg € ]a,b] and t1,t2 € |a,to] such that

to

/h12(5)d57)h21(8)d5 =38(1-a)

a

and
t1 1 to to 1 to
/h12(8)d$ = 4/h12( )d /hgl(s)ds = E/hgl(s)ds.

Furthermore, we choose hi1, hao € L([a, bl; R+) with the properties

hll(t) =0 for te [a,tl] U [to,b], h22(t) =0 for te [tQ,b]

b
/hll /h22

Let the operators ¢;; € Py (i, = 1,2) be defined by (4.1), where 711(t) = to,
Toa(t) = to for t € [a,b], and

and

t for t € la,t t for te€|a,t
’7’12(t) = 0 [ l[ s ’7’21(25) = ! [ 2[ .
to for te [tl, b] to for te [tz, b]
Put
to t
thl(S)dsfhm(S)dS for te [a,tl[
ul(t) =" ta to t ’
1—a—2[hi(s)ds — [ hai(s)ds [ hia(s)ds  for t€ [tq,b]
K t1 to t1
( t to t
—(1-a) thl(S)dS — [ ho1(s)ds [ haa(s)ds for t € [a,tof
_ to a
ug(t) = .
—fhm dS —|—2fh21 for te [tQ,b]

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.6) in Theorem 2.2 cannot be
replaced by the nonstrict one provided A1; = Ags.
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Example 4.5. Let 011 =1, 012 = 1, 091 = 1, 022 = —1 and let h;; € L([a, b];R+)
(i,7 = 1,2) be such that

b b b b b
/hll(s)ds <1, /hgg(s)ds <1, /h12(s)ds/h21(s)ds >1-— /hll(s)ds.
It is clear that there exists ¢y € |a, b] satisfying
to to to
/h12(8)d$/h21(8)d$ =1 —/hu(s)ds.

Let the operators ¢;; € Py, (i,j = 1,2) be defined by (4.1), where 711(t) = to,
T12(t) = to, T21(t) = to, and 792(t) = a for t € [a,b]. Put

/h11 dS +——

t

ug(t) = /hgl(s)ds for t € la,b].

a

1- fhll
/h12 ds for te€ [a,b],
fh12

It is easy to verify that (ui,us)” is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0 and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.8) in Theorem 2.3 cannot be
replaced by the nonstrict one provided Ags < 1.

Example 4.6. Let 011 = 1, 012 = 1, 091 = 1, 0992 = —1, and hn,th S L([a, b];R+)
be such that

b b
/hn(s)ds <1, 1< /h22(8)d$ < 3. (4.3)
Obviously, there exists ty € Ja, b] satisfying
b
to f hQQ(S)dS -1
/hgg(s)ds = af . (4.4)

a

Furthermore, we choose his, ho1 € L([a, bl; R+) with the properties
th(t) =0 for te [to,b]

and

b
/h22 dS—l

b b
1
hlg(s)ds/hgl(s)ds > (1- /hll(s) ~ 1

Se— o
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It is clear that there exists ¢; € |a, b] such that

t1 to t1 b
/hlg(s)ds/h21(8)d8 = 1— /hu(s)ds 1-— i /hQQ(S)dS -1

Let the operators ¢;; € Py (i, = 1,2) be defined by (4.1), where 711(t) = t1,
T12(t) = to, T21(t) = t1 for t € [a,b], and

b for t€|a,t
’7’22(25) = [ O[ . (4.5)
to for te [to, b]

2

Put

t1
fh12(8)d$ t 3
ui(t) = “tl— hi1(s)ds + /hlg(s)ds for t € a,b],
1-— fhll(s)ds a a

ﬁhlg(s)ds t f‘hgg(s)ds—l t
e J ha1(s)ds + =—5—— [ hoa(s)ds  for t € [a,to]

UQ(t) — l—f hll(s)ds a

t
1 — [ hoa(s)ds for t € [to,b]
to
It is easy to verify that (ug,us)?
with ¢; =0and ¢; =0 (i = 1,2).
This example shows that the strict inequality (2.8) in Theorem 2.3 cannot be
replaced by the nonstrict one provided Agy > 1.

is a nontrivial solution of the problem (1.1), (1.2)

Example 4.7. Let 01; = 1, 09; = —1 for i = 1,2 and let hq1, hoo € L([a,b];R+) be
such that (4.3) is true. Obviously, there exists tg € ]a, b[ satisfying

to

/hQQ(S)dS =1. (4.6)

a

Furthermore, we choose his, ho1 € L([a, bl; R+) with the properties
ho1(t) =0 for t € [a,to]

and
b b b

/hlg(s)dS/hgl(S)dS > |1 —/hll(s)ds 3—/bh22(3)ds

a a a

It is clear that there exists ¢ € ]a,b] such that
t1

/hlg(s)ds/bhgl(s)ds =11- /hll(s)ds 2— /bhgg(s)ds

t1
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Let the operators ¢;; € Py (i, = 1,2) be defined by (4.1), where 711(t) = ¢,
T12(t) = to, T21(t) = t1 for t € [a,b], and 7o is given by (4.5). Put

t1
fh12(8)d$ 3
u(t) = ————— hll ds+/h12 ds for te€[a,b],
1-— fhll dS a
to
— [ haa(s)ds for t € [a,to]
t
U’Q(t) = tflhlg(s)ds t t .
1 — —t——— [ hai(s)ds — [ haa(s)ds for t € [to, D]
1— f hll dS to to

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.10) in Theorem 2.5 cannot be
replaced by the nonstrict one provided Ags > 1.

Example 4.8. Let 0;; = —1, 053—; = 1 for i« = 1,2 and let h;; € L([a, b];R+)
(i = 1,2) be such that

b b b

/hll( )ds <1, /hgg(s)ds <1, /h12 dS/h21 ds > 1.

It is clear that there exists ¢y € |a, b] satisfying

to

/ hys(s)ds 7) hoy (5)ds = 1.

a

Let the operators £;; € Py (4,5 = 1,2) be defined by (4.1), where 7;;(t) = a and
Tiz—i(t) =to for t € [CL, b] (i=1,2). Put

up(t) = /h12(s)ds, ua(t) = /hlg(s)ds/hgl(s)ds for t € la,b].

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.14) in Theorem 2.9 cannot be
replaced by the nonstrict one provided max{A11, Aso} < 1.

Example 4.9. Let 0;; = —1, 0;3_; = 1 for : = 1,2 and let hy1, hos € L([a, b];R+)
be such that

b b
/hll(s)ds <1, 1< /hgg(s)ds < 3. (4.7)
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Obviously, there exists ty € ]a,b[ such that (4.4) is true. Furthermore, we choose
hio,ha1 € L([a, b];R+) with the properties

th(t) =0 for te [to,b]

and
b b

1
/hlg(s)dS/hgl(S)dS >1-— 2 h22 )ds — 1

a a a

It is clear that there exists t; € |a, b] satisfying

t1 to
1
/hlg(s)ds / hoi(s)ds =1 — 2 h22 )ds — 1

Let the operators ¢;; € Py (i,j = 1,2) be defined by (4.1), where 711(t) = a,
T12(t) = to, T21(t) = t1 for t € [a,b], and Too is given by (4.5). Put

t

up(t) = /hlg(s)ds for t € [a,b],

a

t1 fhzz )ds—1 t
( ) fh12 dsfhm dS + thQ(S)dS for te [a,to[
ug(t) =< a a .

1-— fhgg(s)ds for t € [to,b]
to

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).
An analogous example can be constructed for the case, where
b b
< /hn(s)ds <3, /h22(s)ds <1 (4.8)
a a

This example shows that the strict inequality (2.14) in Theorem 2.9 cannot be
replaced by the nonstrict one provided that min{A;;, Ass} < 1, max{Aj1, A} > 1,
and w = 1.

Example 4.10. Let 05, = —1, 0;3_; = 1 for i = 1,2 and let hy1, hoo € L([a, b];R+)
be such that

b
1</hu )ds <3 for i=1,2.

Obviously, there exist t1,ts € ]a,b| satisfying

b
t J hii(s)ds — 1
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Furthermore, we choose hio, ho1 € L([a, bl; R+) with the properties

hlg(t) =0 for te [tl,b], hgl(t) =0 for te [a,tg],
and
b b
/h12(8)d /hgl( )ds >
a a b , b ,

1
> 1—1 /hll(s)ds—l -

a

/h22 dS—l

-

It is clear that there exists « € ]0, 1] such that

t1 b
a/hlg(s)ds/hgl(s)ds:
a to

b 2 b 2
1 1
v /hll )ds — 1 1 /h22 )ds — 1
Put
b b
fhu(s dS 1 ¢ Oéfh21(3)d5 t
fhu )ds + t; 5 [ hia(s)ds for t€a,tq]
ul(t) = 1—<fh22 )ds— 1> a
t
1 — [ hii(s)ds for t e [t1,0]
t1
b
J ha1(s)ds t
- 2 5 [ hoa(s)ds for t € a,tof
1—* (f h22 ds 1> a
uQ(t) = to
t fhgl(s)dsfhgz(s)ds t
fhgl dS + f2 . ¢ <fh22(s)ds — 1) for te [tg,b]
1—<fh22 Yds— 1) t2

Since uz(te) < 0 and wug(b) > 0, there exists to € |t2,b] satisfying wua(tg) = ausa(b).
Let the operators ¢;; € Py (i,7 = 1,2) be defined by (4.1), where T12(t) = to,
To1(t) = t1 for t € [a,b], and

b for te€la,t b for t € la,t
7'11(25) = [ l[ s 7'22(25) = [ 2[ . (4.9)
t for te [tl, b] to for te [tQ, b]

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

This example shows that the strict inequality (2.14) in Theorem 2.9 cannot be
replaced by the nonstrict one provided that min{A;;, Ass} > 1 and w = 1.
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Example 4.11. Let g11 = —1, 012 = 1, 0921 = —1, 0922 = —1 and let h11,h22 S
L([a,b];Ry) be such that (4.7) holds. Obviously, there exists to € Ja,b[ such that
(4.6) is satisfied. Furthermore, we choose his, hoy € L([a, bl; R+) with the properties

ho1 (t) =0 for te [a,to]

and
b b b
/h12(8)d$/h21(8)d$ Z 3—/h22(8)d$.
It is clear that there exists t; € |a, b] satisfying
t1 b b
/hlg(s)ds/hgl(s)ds =2— /hgg(s)ds.
a to to

Let the operators ¢;; € Py (1,7 = 1,2) be defined by (4.1), where 711(t) = a,
T12(t) = to, T21(t) = t1 for t € [a,b], and 7o is given by (4.5). Put

ui(t) = /hlg(s)ds for t € a,b],

a

¢
[ haa(s)ds for t € [a,to]
uz(t) =4 4 t t .
1 — [ hia(s)ds [ hoi(s)ds — [ hoa(s)ds — for t € [to,D]
a to to
It is easy to verify that (ug,us)?
with ¢; =0and ¢; =0 (i = 1,2).
An analogous example can be constructed for the case, where the functions
hi1, hoo € L([a, b];R+) satisfy (4.8).
This example shows that the strict inequality (2.16) in Theorem 2.10 cannot be
replaced by the nonstrict one provided that min{ A1, A2o} < 1, max{Aj;, Az} > 1,
and w = 1.

is a nontrivial solution of the problem (1.1), (1.2)

Example 4.12. Let o11 = —1, 012 = 1, 0921 = —1, 0922 = —1 and let h11,h22 S
L([a,b]; Ry) be such that

b

b
1< /hll(s)ds < /hgg(s)ds < 3.

a

Obviously, there exist t1,ts € ]a,b| satisfying

b
ty [ hir(s)ds — 1 ta
/hll(s)ds = af : /hgg(s)ds =1

a a
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Furthermore, we choose hio, ho1 € L([a, bl; R+) with the properties

hlg(t) =0 for te [tl, b], ho1 (t) =0 for te [a,tg],
and
b b b . b 2
/hlg(s)ds/h21(8)d8 Z 3 — /hQQ(S)dS 1-— Z /hu(s)ds -1
It is clear that there exist « € ]0,1] and t¢ € ]a, 2] such that
t b b . b 2
a/hlg(s)ds/hgl(s)ds =12- /hgg(s)ds 1- 1 /hu(s)ds -1
a to t2 a

and
to
/hgg(s)ds = a.

Let the operators ¢;; € Py, (i,j = 1,2) be defined by (4.1), where 712(t) = to,
To1(t) = t1 for t € [a,b], and 711, 722 are given by (4.9). Put

<2—jb1 hgg(s)ds) <jl hll(s)ds—1> ¢ ¢
2 " [ hi1(s)ds + a [ hia(s)ds for t € [a,t1]
2fh21(s)ds a a

ul(t) = *2 N

2—‘; hoo(s)ds ¢
2 (1 - fhll(s)ds> for t e [t1,0]
fhzl(s)ds t1
t2
(¢t
[ haa(s)ds for t € [a,to]
’LLQ(t) = a tflhlg(s)ds

¢ t .
s [ ho1(s)ds — [ hoa(s)ds — for t € [ta,b]

]_ _
1—% (fb hll(s)ds—1> t2 t2

It is easy to verify that (u1,us)? is a nontrivial solution of the problem (1.1), (1.2)
with ¢; =0and ¢; =0 (i = 1,2).

An analogous example can be constructed for the case, where

b b

1< /hgg(s)ds < /hll(s)ds < 3.

a a

This example shows that the strict inequality (2.16) in Theorem 2.10 cannot be
replaced by the nonstrict one provided that min{A41;, A2} > 1 and w = 1.
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