
ACADEMY OF SCIENCES
OF THE CZECH REPUBLIC

MATHEMATICAL INSTITUTE

OPERADS AND PROPS

Martin Markl

(p repr in t )

163

2006



OPERADS AND PROPS

MARTIN MARKL

Abstract. We review definitions and basic properties of operads, PROPs and algebras over
these structures.

Dedicated to the memory of Jakub Jan Ryba (1765–1815)

Operads involve an abstraction of the family {Map(Xn, X)}n≥0 of composable functions of

several variables together with an action of permutations of variables. As such, they were orig-

inally studied as a tool in homotopy theory, specifically for iterated loop spaces and homotopy

invariant structures, but the theory of operads has recently received new inspiration from ho-

mological algebra, category theory, algebraic geometry and mathematical physics. The name

operad and the formal definition appear first in the early 1970’s in J.P. May’s book [86], but

a year or more earlier, M. Boardman and R. Vogt [9] described the same concept under the

name categories of operators in standard form, inspired by PROPs and PACTs of Adams and

Mac Lane [67]. As pointed out in [62], also Lambek’s definition of multicategory [60] (late 1960s)

was almost equivalent to what is called today a colored or many-sorted operad. Another im-

portant precursor was the associahedron K that appeared in J.D. Stasheff’s 1963 paper [106]

on homotopy associativity of H-spaces. We do not, however, aspire to write an account on the

history of operads and their applications here – we refer to the introduction of [83], to [89], [114],

or to the report [105] instead.

Operads are important not in and of themselves but, like PROPs, through their representa-

tions, more commonly called algebras over operads or operad algebras. If an operad is thought of

as a kind of algebraic theory, then an algebra over an operad is a model of that theory. Algebras

over operads involve most of ‘classical’ algebras (associative, Lie, commutative associative, Pois-

son, &c.), loop spaces, moduli spaces of algebraic curves, vertex operator algebras, &c. Colored

or many-sorted operads then describe diagrams of homomorphisms of these objects, homotopies

between homomorphisms, modules, &c.

PROPs generalize operads in the sense that they admit operations with several inputs and sev-

eral outputs. Therefore various bialgebras (associative, Lie, infinitesimal) are PROPic algebras.

PROPs were also used to encode ‘profiles’ of structures in formal differential geometry [92, 93].

By the renaissance of operads we mean the first half of the nineties of the last century when

several papers which stimulated the rebirth of interest in operads appeared [31, 34, 41, 45, 47,

49, 72]. Let us mention the most important new ideas that emerged during this period.
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First of all, operads were recognized as the underlying combinatorial structure of the moduli

space of stable algebraic curves in complex geometry, and of compactifications of configuration

spaces of points of affine spaces in real geometry. In mathematical physics, several very important

concepts such as vertex operator algebras or various string theories were interpreted as algebras

over operads. On the algebraic side, the notion of Koszulness of operads was introduced and

studied, and the relation between resolutions of operads and deformations of their algebras was

recognized. See [63] for an autochthonous account of the renaissance. Other papers that later

became influential then followed in a rapid succession [30, 33, 32, 73, 75].

Let us list some most important outcomes of the renaissance of operads. The choice of the ma-

terial for this incomplete catalog has been of course influenced by the author’s personal expertise

and inclination towards algebra, geometry and topics that are commonly called mathematical

physics. We will therefore not be able to pay as much attention to other aspects of operads, such

as topology, category theory and homotopy theory, as they deserve.

Complex geometry. Applications involve moduli spaces of stable complex algebraic curves

of genus zero [34], enumerative geometry, Frobenius manifolds, quantum cohomology and coho-

mological field theory [55, 71]. The moduli space of genus zero curves exhibits an additional

symmetry that leads to a generalization called cyclic operads [32]. Modular operads [33] then

describe the combinatorial structure of the space of curves of arbitrary genus.

Real geometry. Compactifications of configuration spaces of points in real smooth manifolds

are operads in the category of smooth manifolds with corners or modules over these operads [76].

This fact is crucial for the theory of configuration spaces with summable labels [96]. The cacti

operad [117] lies behind the Chas-Sullivan product on the free loop space of a smooth mani-

fold [13], see also [14]. Tamarkin’s proof of the formality of Hochschild cochains of the algebra of

functions on smooth manifolds [110] explained in [40] uses obstruction theory for operad algebras

and the affirmative answer to the Deligne conjecture [17, 56].

Mathematical physics. The formality mentioned in the previous item implies the existence

of the deformation quantization of Poisson manifolds [54]. We must not forget to mention the

operadic interpretation of vertex operator algebras [46], string theory [49] and Connes-Kreimer’s

approach to renormalization [15]. Operads and multicategories are important also for Beilinson-

Drinfeld’s theory of chiral algebras [6].

Algebra. Operadic cohomology [1, 26, 31, 34, 83] provides a uniform treatment of all ‘classical’

cohomology theories, such as the Hochschild cohomology of associative algebras, Harrison coho-

mology of associative commutative algebras, Chevalley-Eilenberg cohomology of Lie algebras, &c.

Minimal models for operads [75] offer a conceptual understanding of strong homotopy algebras,

their homomorphisms and homotopy invariance [80]. Operads serve as a natural language for

various types of ‘multialgebras’ [64, 65]. Relation between Koszulness of operads and properties

of posets was studied in [27]. Also the concept of the operadic distributive law turned out to be

useful [26, 74].

Model structures. It turned out [8, 31, 39, 100] that algebras over a reasonable (possibly

colored) operad form a model category that generalizes the classical model structures of the

categories of dg commutative associative algebras and dg Lie algebras [95, 107]. Operads, in a
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reasonable monoidal model category, themselves form a model category [7, 31] such that algebras

over cofibrant operads are homotopy invariant, see also [104]. Minimal operads mentioned in the

previous item are particular cases of cofibrant dg-operads and the classical W -construction [9] is

a functorial cofibrant replacement in the category of topological operads [116]. The above model

structures are important for various constructions in the homology theory of (free or based) loop

spaces [14, 43] and formulations of ‘higher’ Deligne conjecture [44].

Topology. Operads as gadgets organizing homotopy coherent structures are important in

the brave new algebra approach to topological Hochschild cohomology and algebraic K-theory,

see [22, 23, 90, 115], or [21] for a historical background. A description of a localized category of

integral and p-adic homotopy types by E∞-operads was given in [69, 70]. An operadic approach

to partial algebras and their completions was applied in [58] to mixed Tate motives over the

rationals. See also an overview [88].

Category theory. Operads and multicategories were used as a language in which to propose

a definition of weak ω-category [3, 4, 5, 61]. Operads themselves can be viewed as special kinds

of algebraic theory (as can multicategories, if one allows many-sorted theories), see [85]. There

are also ‘categorical’ generalizations of operads, e.g. the globular operads of [2] and T -categories

of [11]. An interesting presentation of PROP-like structures in enriched monoidal categories can

be found in [91].

Graph Complexes. Each cyclic operad P determines a graph complex [33, 77]. As observed ear-

lier by M. Kontsevich [52], these graph complexes are, for some specific choices of P, closely related

to some very interesting objects such as moduli spaces of Riemann surfaces, automorphisms of

free groups or primitives in the homology of certain infinite-dimensional Lie algebras, see also [83,

II.5.5]. In the same vein, complexes of directed graphs are related to PROPs [84, 111, 112, 113]

and directed graphs with back-in-time edges are tied to wheeled PROPs introduced in [93].

Deformation theory and homotopy invariant structures in algebra. A concept of homotopy

invariant structures in algebra parallel to the classical one in topology [9, 10] was developed

in [80]. It was explained in [56, 73, 79] how cofibrant resolutions of operads or PROPs determine

a cohomology theory governing deformations of related algebras. In [81], deformations were iden-

tified with solutions of the Maurer-Cartan equation of a certain strongly homotopy Lie algebra

constructed in a very explicit way from a cofibrant resolution of the underlying operad or PROP.

– – – – –

Terminology. As we already observed, operads are abstractions of families of composable

functions. Given functions f : X×n → X and gi : X×ki → X, 1 ≤ i ≤ n, one may consider the

simultaneous composition

(I) f(g1, . . . , gn) : X×(k1+···+kn) → X.

One may also consider, for f : X×n → X, g : X×m → X and 1 ≤ i ≤ n, the individual

compositions

(II) f(id , · · · , id , g, id , · · · , id) : X×(m+m−1) → X,

with g at the ith place. While May’s original definition of an operad [86] was an abstraction of
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type (I) compositions, there exist an alternative approach based on type (II) compositions. This

second point of view was formalized in the 1963 papers by Gerstenhaber [29] and Stasheff [106].

A definition that included the symmetric group action was formulated much later in the author’s

paper [75] in which the two approaches were also compared.

In the presence of operadic units, these approaches are equivalent. There are, however, situ-

ations where one needs also non-unital versions, and then the two approaches lead to different

structures – a non-unital structure of the second type always determines a non-unital structure

of the first type, but not vice versa! It turns out that more common are non-unital structures

of the second type; they describe, for example, the underlying combinatorial structure of the

moduli space of stable complex curves.

We will therefore call the non-unital versions of the first type of operads non-unital May’s

operads, while the second version simply non-unital operads. We opted for this terminology,

which was used already in the first version of [75], after a long hesitation, being aware that it

might not be universally welcome. Note that non-unital operads are sometimes called (Markl’s)

pseudo-operads [75, 83].

Outline of the paper: 1. Operads – page 5

2. Non-unital operads – page 11

3. Operad algebras – page 15

4. Free operads and trees – page 18

5. Unbiased definitions – page 24

6. Cyclic operads – page 27

7. Modular operads – page 31

8. PROPs – page 36

9. Properads, dioperads and 1
2
PROPs – page 40

References – page 45

In the first three sections we review basic definitions of (unital and non-unital) operads and

operad algebras, and give examples that illustrate these notions. The fourth section describes

free operads and their relation to rooted trees. In the fifth section we explain that operads can

be defined as algebras over the monad of rooted trees. In the following two sections we show

that, replacing rooted trees by other types of trees, one obtains two important generalizations –

cyclic and modular operads. In the last two sections, PROPs and their versions are recalled; this

article is the first expository text where these structures are systematically treated.

Sections 1–3 are based on the classical book [86] by J.P. May and the author’s article [75].

Sections 4–7 follow the seminal paper [34] by V. Ginzburg and M.M. Kapranov, and papers [32,

33] by E. Getzler and M.M. Kapranov. The last two sections are based on the preprint [84] of

A.A. Voronov and the author, and on an e-mail message [53] from M. Kontsevich. We were also

influenced by T. Leinster’s concept of biased versus un-biased definitions [61]. At some places,

our exposition follows the monograph [83] by S. Shnider, J.D. Stasheff and the author.
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1. Operads

Although operads, operad algebras and most of related structures can be defined in an arbi-

trary symmetric monoidal category with countable coproducts, we decided to follow the choice

of [58] and formulate precise definitions only for the category Modk = (Modk,⊗) of modules over

a commutative unital ring k, with the monoidal structure given by the tensor product ⊗ = ⊗k

over k. The reason for such a decision was to give, in Section 4, a clean construction of free

operads. In a general monoidal category, this construction involves the unordered �-product [83,

Definition II.1.38] so the free operad is then a double colimit, see [83, Section II.1.9]. Our choice

also allows us to write formulas involving maps in terms of elements, which is sometimes a wel-

come simplification. We believe that the reader can easily reformulate our definitions into other

monoidal categories or consult [83, 87].

Let k[Σn] denote the k-group ring of the symmetric group Σn.

Definition 1 (May’s operad). An operad in the category of k-modules is a collection P =

{P(n)}n≥0 of right k[Σn]-modules, together with k-linear maps (operadic compositions)

(1) γ : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn),

for n ≥ 1 and k1, . . . , kn ≥ 0, and a unit map η : k → P(1). These data fulfill the following

axioms.

Associativity. Let n ≥ 1 and let m1, . . . , mn and k1, . . . , km, where m := m1 + · · · + mn, be

non-negative integers. Then the following diagram, in which gs := m1 + · · · + ms−1 and hs =

kgs+1 · · ·+ kgs+1, for 1 ≤ s ≤ n, commutes.

(
P(n)⊗

n⊗

s=1

P(ms)

)
⊗

m⊗

r=1

P(kr) -
γ ⊗ id

P(m)⊗
m⊗

r=1

P(kr)

P(n)⊗
n⊗

s=1

(
P(ms)⊗

ms⊗

q=1

P(kgs+q)

)
P(n)⊗

n⊗

s=1

P(hs)-
id ⊗ (

N

n

s=1 γ)

?

shuffle P(k1 + · · ·+ km)

?

γ

6
γ

Equivariance. Let n ≥ 1, let k1, . . . , kn be non-negative integers and σ ∈ Σn, τ1 ∈ Σk1 , . . . , τn ∈
Σkn

permutations. Let σ(k1, . . . , kn) ∈ Σk1+···+kn
denote the permutation that permutes n blocks
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(1, . . . , k1), . . . , (kn−1 +1, . . . , kn) as σ permutes (1, . . . , n) and let τ1⊕· · ·⊕ τn ∈ Σk1+···+kn
be the

block sum of permutations. Then the following diagrams commute.

P(n)⊗ P(k1)⊗ · · · ⊗ P(kn) P(n)⊗ P(kσ(1))⊗ · · · ⊗ P(kσ(n))

P(k1 + · · ·+ kn) P(kσ(1) + · · ·+ kσ(n))

σ ⊗ σ−1

-

σ(kσ(1), . . . , kσ(n))
-

γ

?

γ

?

P(n)⊗ P(k1)⊗ · · · ⊗ P(kn) P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)

P(k1 + · · ·+ kn) P(k1 + · · ·+ kn)

id ⊗ τ1 ⊗ · · · ⊗ τn

-

τ1 ⊕ · · · ⊕ τn

-

γ

?

γ

?

Unitality. For each n ≥ 1, the following diagrams commute.

P(n)⊗ k⊗n

id ⊗ η⊗n

?

∼=
-

γ

�
�

�
�

�
��3

P(n)

P(n)⊗ P(1)⊗n

k⊗ P(n)

η ⊗ id

?

∼=
-

γ

�
�

�
�

�
��3

P(n)

P(1)⊗ P(n)

A straightforward modification of the above definition makes sense in any symmetric monoidal

category (M,�, 1) such as the category of differential graded modules, simplicial sets, topological

spaces, &c, see [83, Definition II.1.4] or [87, Definition 1]. We then speak about differential graded

operads, simplicial operads, topological operads, &c.

Example 2. All properties axiomatized by Definition 1 can be read from the endomorphism

operad EndV = {EndV (n)}n≥0 of a k-module V . It is defined by setting EndV (n) to be the space of

k-linear maps V ⊗n → V . The operadic composition of f ∈ EndV (n) with g1 ∈ EndV (k1), . . . , gn ∈
EndV (kn) is given by the usual composition of multilinear maps as

γ(f, g1, . . . , gn) := f(g1 ⊗ · · · ⊗ gn),

the symmetric group acts by

γσ(f, g1, . . . , gn) := f(gσ−1(1) ⊗ · · · ⊗ gσ−1(n)), σ ∈ Σn,

and the unit map η : k→ EndV (1) is given by η(1) := idV : V → V . The endomorphism operad

can be constructed over an object of an arbitrary symmetric monoidal category with an internal

hom-functor, as it was done in [83, Definition. II.1.7].

One often considers operads A such that A(0) = 0 (the trivial k-module). We will indicate

that A is of this type by writing A = {A(n)}n≥1.

Example 3. Let us denote by Ass = {Ass(n)}n≥1 the operad with Ass(n) := k[Σn], n ≥ 1, and

the operadic composition defined as follows. Let idn ∈ Σn, idk1 ∈ Σk1 , . . . , idkn
∈ Σkn

be the
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identity permutations. Then

γ(idn, idk1 , . . . , idkn
) := idk1+···+kn

∈ Σk1+···+kn
.

The above formula determines γ(σ, τ1, . . . τn) for general σ ∈ Σn, τ1 ∈ Σk1 , . . . , τn ∈ Σkn
by the

equivariance axiom. The unit map η : k→ Ass(1) is given by η(1) := id 1.

Example 4. Let us give an example of a topological operad. For k ≥ 1, the little k-discs operad

Dk = {Dk(n)}n≥0 is defined as follows [83, Section II.4.1]. Let

D
k := {(x1, . . . , xk) ∈ R

k; x2
1 + · · ·+ x2

k ≤ 1}

be the standard closed disc in Rk. A little k-disc is then a linear embedding d : Dk ↪→ Dk which

is the restriction of a linear map Rk → Rk with parallel axes. The n-th space Dk(n) of the

little k-disc operad is the space of all n-tuples (d1, . . . , dn) of little k-discs such that the images

of d1,. . . ,dn have mutually disjoint interiors. The operad structure is obvious – the symmetric

group Σn acts on Dk(n) by permuting the labels of the little discs and the structure map γ is

given by composition of embeddings. The unit is the identity embedding id : Dk ↪→ Dk.

Example 5. The collection of normalized singular chains C∗(T) = {C∗(T(n))}n≥0 of a topological

operad T = {T(n)}n≥0 is an operad in the category of differential graded Z-modules. For a ring

R, the singular homology H∗(T(n);R) = H∗(C∗(T(n)) ⊗Z R) forms an operad H∗(T;R) in the

category of graded R-modules, see [58, Section I.5] for details.

Definition 6. Let P = {P(n)}n≥0 and Q = {Q(n)}n≥0 be two operads. A homomorphism

f : P→ Q is a sequence f = {f(n) : P(n)→ Q(n)}n≥0 of equivariant maps which commute with

the operadic compositions and preserve the units.

An operad R = {R(n)}n≥0 is a suboperad of P if R(n) is, for each n ≥ 0, a Σn-submodule of

P(n) and if all structure operations of R are the restrictions of those of P. Finally, an ideal in

the operad P is the collection I = {I(n)}n≥0 of Σn-invariant subspaces I(n) ⊂ P(n) such that

γP(f, g1, . . . , gn) ∈ I(k1 + · · ·+ kn)

if either f ∈ I(n) or gi ∈ I(ki) for some 1 ≤ i ≤ n.

Example 7. Given an operad P = {P(n)}n≥0, let P̂ = {P̂(n)}n≥0 be the collection defined by

P̂(n) := P(n) for n ≥ 1 and P̂(0) := 0. Then P̂ is a suboperad of P. The correspondence

P 7→ P̂ is a full embedding of the category of operads P with P(0) ∼= k into the category of

operads A with A(0) = 0. Operads satisfying P(0) ∼= k have been called unital while operads

with A(0) = 0 non-unital operads. We will not use this terminology because non-unital operads

will mean something different in this article, see Section 2.

An example of an operad A which is not of the form P̂ for some operad P with P(0) ∼= k can

be constructed as follows. Observe first that operads P with the property that

P(0) ∼= k and P(n) = 0 for n ≥ 2

are the same as augmented associative algebras. Indeed, the space P(1) with the operation

◦1 : P(1)⊗ P(1)→ P(1) is clearly a unital associative algebra, augmented by the composition

P(1)
∼=
−→ P(1)⊗ k

∼=
−→ P(1)⊗ P(0)

◦1−→ P(0) ∼= k.
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Now take an arbitrary unital associative algebra A and define the operad A = {A(n)}n≥1 by

A(n) :=

{
A, for n = 1 and
0, for n 6= 1,

with ◦1 : A(1)⊗ A(1)→ A(1) the multiplication of A. It follows from the above considerations

that A = P̂ for some operad P with P(0) ∼= k if and only if A admits an augmentation. Therefore

any unital associative algebra that does not admit an augmentation produces the desired example.

Example 8. Kernels, images, &c., of homomorphisms between operads in the category of k-

modules are defined componentwise. For example, if f : P → Q is such homomorphism, then

Ker(f) = {Ker(f)(n)}n≥0 is the collection with

Ker(f)(n) := Ker
(
f : P(n)→ Q(n)

)
, n ≥ 0.

It is clear that Ker(f) is an ideal in P.

Also quotients are defined componentwise. If I is an ideal in P, then the collection P/I =

{(P/I)(n)}n≥0 with (P/I)(n) := P(n)/I(n) for n ≥ 0, has a natural operad structure induced by

the structure of P. The canonical projection P→ P/I has the expected universal property. The

kernel of this projection equals I.

Sometimes it suffices to consider operads without the symmetric group action. This notion is

formalized by:

Definition 9 (May’s non-Σ operad). A non-Σ operad in the category of k-modules is a collection

P = {P(n)}n≥0 of k-modules, together with operadic compositions

γ : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn),

for n ≥ 1 and k1, . . . , kn ≥ 0, and a unit map η : k → P(1) that fulfill the associativity and

unitality axioms of Definition 1.

Each operad can be considered as a non-Σ operad by forgetting the Σn-actions. On the other

hand, given a non-Σ operad P, there is an associated operad Σ[P] with Σ[P](n) := P(n)⊗ k[Σn],

n ≥ 0, with the structure operations induced by the structure operations of P. Operads of this

form are sometimes called regular operads.

Example 10. Consider the operad Com = {Com(n)}n≥1 such that Com(n) := k with the trivial

Σn-action, n ≥ 1, and the operadic compositions (1) given by the canonical identifications

Com(n)⊗ Com(k1)⊗ · · · ⊗ Com(kn) ∼= k⊗(n+1) ∼=
−→ k ∼= Com(k1 + · · ·+ kn).

The operad Com is obviously not regular. Observe also that Com ∼= Êndk, where Êndk is the

endomorphism operad of the ground ring without the initial component, see Example 7 for the

notation.

Let Ass denote the operad Com considered as a non-Σ operad. Its symmetrization Σ[Ass]

then equals the operad Ass introduced in Example 3.

As we already observed, there is an alternative approach to operads. For the purposes of

comparison, in the rest of this section and in the following section we will refer to operads viewed
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case 1 ≤ i < j : case j ≤ i < b+ j:

======@
@�

� f

g

j

@@��

h

i

@@��

@
@�

� f

h

i

@@��

g

j + c − 1

@@��

======@
@�

� f

g

j

@@��

h

i

@@��

@
@�

� f

g

j

@@��

h

i−j+1

@@��

case j + b ≤ i ≤ a+ b− 1:

======@
@�

� f

g

j

@@��

h

i

@@��

@
@�

� f

h

i−b+1

@@��

g

j

@@��

Figure 1. Flow charts explaining the associativity in Markl’s operads.

from this alternative perspective as to Markl’s operads. See also the remarks on the terminology

in the introduction.

Definition 11. A Markl’s operad in the category of k-modules is a collection S = {S(n)}n≥0 of

right k[Σn]-modules, together with k-linear maps (◦i-compositions)

◦i : S(m)⊗ S(n)→ S(m + n− 1),

for 1 ≤ i ≤ m and n ≥ 0. These data fulfill the following axioms.

Associativity. For each 1 ≤ j ≤ a, b, c ≥ 0, f ∈ S(a), g ∈ S(b) and h ∈ S(c),

(f ◦j g) ◦i h =





(f ◦i h) ◦j+c−1 g, for 1 ≤ i < j,
f ◦j (g ◦i−j+1 h), for j ≤ i < b+ j, and
(f ◦i−b+1 h) ◦j g, for j + b ≤ i ≤ a + b− 1,

see Figure 1.

Equivariance. For each 1 ≤ i ≤ m, n ≥ 0, τ ∈ Σm and σ ∈ Σn, let τ ◦i σ ∈ Σm+n−1 be given by

inserting the permutation σ at the ith place in τ . Let f ∈ S(m) and g ∈ S(n). Then

(fτ) ◦i (gσ) = (f ◦τ(i) g)(τ ◦i σ).

Unitality. There exists e ∈ S(1) such that

(2) f ◦i e = e and e ◦1 g = g

for each 1 ≤ i ≤ m, n ≥ 0, f ∈ S(m) and g ∈ S(n).

Example 12. All axioms in Definition 11 can be read from the endomorphism operad End V =

{EndV (n)}n≥0 of a k-module V reviewed in Example 2, with ◦i-operations given by

f ◦i g := f(id⊗i−1
V ⊗ g ⊗ id⊗m−1

V ),
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for f ∈ EndV (m), g ∈ EndV (n), 1 ≤ i ≤ m and n ≥ 0.

The following proposition shows that Definition 1 describes the same objects as Definition 11.

Proposition 13. The category of May’s operads is isomorphic to the category of Markl’s operads.

Proof. Given a Markl’s operad S = {S(n)}n≥0 as in Definition 11, define a May’s operad

P = May(S) by P(n) := S(n) for n ≥ 0, with the γ-operations given by

(3) γ(f, g1, . . . , gn) := (· · · ((f ◦n gn) ◦n−1 gn−1) · · · ) ◦1 g1

where f ∈ P(n), gi ∈ P(ki), 1 ≤ i ≤ n, k1, . . . , kn ≥ 0. The unit morphism η : k → P(1) is

defined by η(1) := e. It is easy to verify that May(−) extends to a functor from the category of

Markl’s operads the category of May’s operads.

On the other hand, given a May’s operad P, one can define a Markl’s operad S = Mar(P) by

S(n) := P(n) for n ≥ 0, with the ◦i-operations:

(4) f ◦i g := γ(f, e, . . . , e︸ ︷︷ ︸
i−1

, g, e, . . . , e︸ ︷︷ ︸
m−i

),

for f ∈ S(m), g ∈ S(n), m ≥ 1, n ≥ 0, where e := η(1) ∈ P(1). It is again obvious that Mar(−)

extends to a functor that the functors May(−) and Mar(−) are mutually inverse isomorphisms

between the category of Markl’s operads and the category of May’s operads. �

The equivalence between May’s and Markl’s operads implies that an operad can be defined

by specifying ◦i-operations and a unit. This is sometimes simpler that to define the γ-operations

directly, as illustrated by:

Example 14. Let Σ be a Riemann sphere, that is, a nonsingular complex projective curve

of genus 0. By a puncture or a parametrized hole we mean a point p of Σ together with a

holomorphic embedding of the standard closed disc U = {z ∈ C ; |z| ≤ 1} to Σ centered at

the point. Thus a puncture is a holomorphic embedding u : Ũ → Σ, where Ũ ⊂ C is an open

neighborhood of U and u(0) = p. We say that two punctures u1 : Ũ1 → Σ and u2 : Ũ2 → Σ are

disjoint, if

u1(
o
U) ∩ u2(

o
U) = ∅,

where
o
U := {z ∈ C ; |z| < 1} is the interior of U .

Let M̂0(n) be the moduli space of Riemann spheres Σ with n+1 disjoint punctures ui : Ũi → Σ,

0 ≤ i ≤ n, modulo the action of complex projective automorphisms. The topology of M̂0(n) is

a very subtle thing and we are not going to discuss this issue here; see [46]. The constructions

below will be made only ‘up to topology.’

Renumbering the holes u1, . . . , un defines on each M̂0(n) a natural right Σn-action and the

Σ-module M̂0 = {M̂0(n)}n≥0 forms a topological operad under sewing Riemannian spheres at

punctures. Let us describe this operadic structure using the ◦i-formalism. Thus, let Σ represent

an element x ∈ M̂0(m) and ∆ represent an element y ∈ M̂0(n). For 1 ≤ i ≤ m, let ui : Ũi → Σ

be the ith puncture of Σ and let u0 : Ũ0 → ∆ be the 0th puncture of ∆.
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There certainly exists some 0 < r < 1 such that both Ũ0 and Ũi contain the disc U1/r :=

{z ∈ C ; |z| < 1/r}. Let now Σr := Σ \ ui(Ur) and ∆r := ∆ \ u0(Ur). Define finally

Ξ := (Σr

⊔
∆r)/ ∼,

where the relation ∼ is given by

Σr 3 ui(ξ) ∼ u0(1/ξ) ∈ ∆r,

for r < |ξ| < 1/r. It is immediate to see that Ξ is a well-defined punctured Riemannian sphere,

with n +m− 1 punctures induced in the obvious manner from those of Σ and ∆, and that the

class of the punctured surface Ξ in the moduli space M̂0(m + n − 1) does not depend on the

representatives Σ, ∆ and on r. We define x ◦i y to be the class of Ξ.

The unit e ∈ M̂0(1) can be defined as follows. Let CP
1 be the complex projective line with

homogeneous coordinates [z, w], z, w ∈ C, [118, Example I.1.6]. Let 0 := [0, 1] ∈ CP
1 and

∞ := [1, 0] ∈ CP
1. Recall that we have two canonical isomorphisms p∞ : CP

1 \ ∞ → C and

p0 : CP
1 \ 0→ C given by

p∞([z, w]) := z/w and p0([z, w]) := w/z.

Then p−1
∞ : C → CP

1 (respectively p−1
0 : C → CP

1) is a puncture at 0 (respectively at ∞). We

define e ∈ M̂0(1) to be the class of (CP
1, p−1

0 , p−1
∞ ).

It is not hard to verify that the above constructions make the collection M̂0 = {M̂0(n)}n≥0 a

Markl’s operad. By Proposition 13, M̂0 is a also May’s operad.

In the rest of this article, we will consider May’s and Markl’s operads as two versions of the

same object which we will call simply a (unital) operad.

2. Non-unital operads

It turns out that the combinatorial structure of the moduli space of stable genus zero curves

is captured by a certain non-unital version of operad. Let M0,n+1 be the moduli space of (n+ 1)-

tuples (x0, . . . , xn) of distinct numbered points on the complex projective line CP
1 modulo pro-

jective automorphisms, that is, transformations of the form

CP
1 3 [ξ1, ξ2] 7→ [aξ1 + bξ2, cξ1 + dξ2] ∈ CP

1,

where a, b, c, d ∈ C with ad− bc 6= 0.

The moduli space M0,n+1 has, for n ≥ 2, a canonical compactification M0(n) ⊃ M0,n+1

introduced by A. Grothendieck and F.F. Knudsen [16, 50]. The space M0(n) is the moduli space

of stable (n+ 1)-pointed curves of genus 0:

Definition 15. A stable (n+ 1)-pointed curve of genus 0 is an object

(C; x0, . . . , xn),

where C is a (possibly reducible) algebraic curve with at most nodal singularities and x0, . . . , xn ∈
C are distinct smooth points such that

(i) each component of C is isomorphic to CP
1,
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(ii) the graph of intersections of components of C (i.e. the graph whose vertices correspond

to the components of C and edges to the intersection points of the components) is a tree,

and

(iii) each component of C has at least three special points, where a special point means either

one of the xi, 0 ≤ i ≤ n, or a singular point of C (the stability).

It can be easily seen that a stable curve (C; x0, . . . , xn) admits no infinitesimal automorphisms

that fix marked points x0, . . . , xn, therefore (C; x0, . . . , xn) is ‘stable’ in the usual sense. Observe

also that M0(0) = M0(1) = ∅ (there are no stable curves with less than three marked points)

and that M0(2) = the point corresponding to the three-pointed stable curve (CP
1;∞, 1, 0). The

space M0,n+1 forms an open dense part of M0(n) consisting of marked curves (C; x0, . . . , xn) such

that C is isomorphic to CP
1.

Let us try to equip the collection M0 = {M0(n)}n≥2 with an operad structure as in Definition 1.

For C = (C, x1, . . . , xn) ∈M0(n) and Ci = (Ci, y
i
1, . . . , y

i
ki

) ∈M0(ki), 1 ≤ i ≤ n, let

(5) γ(C,C1, . . . , Cn) ∈M0(k1 + · · ·+ kn)

be the stable marked curve obtained from the disjoint union C t C1 t · · · t Cn by identifying,

for each 1 ≤ i ≤ n, the point xi ∈ C with the point yi0 ∈ Ci, introducing a nodal singularity, and

relabeling the remaining marked points accordingly. The symmetric group acts on M0(n) by

(C, x0, x1, . . . , xn) 7−→ (C, x0, xσ(1), . . . , xσ(n)), σ ∈ Σn.

We have defined the γ-compositions and the symmetric group action, but there is no room

for the identity, because M0(1) is empty! The above structure is, therefore, a non-unital operad

in the sense of the following definition (which is formulated, as all definitions in this article, for

the monoidal category of k-modules).

Definition 16. A May’s non-unital operad in the category of k-modules is a collection P =

{P(n)}n≥0 of k[Σn]-modules, together with operadic compositions

γ : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn),

for n ≥ 1 and k1, . . . , kn ≥ 0, that fulfill the associativity and equivariance axioms of Definition 1.

We may as well define on the collection M0 = {M0(n)}n≥2 operations

(6) ◦i : M0(m)×M0(n)→M0(m+ n− 1)

for m,n ≥ 2, 1 ≤ i ≤ m, by

(C1; y0, . . . , ym)× (C2; x0, . . . , xn) 7−→ (C; y0, . . . , yi−1, x0, . . . , xn, yi+1, . . . , ym)

where C is the quotient of the disjoint union C1
⊔
C2 given by identifying x0 with yi at a nodal

singularity, see Figure 2. The collection M0 = {M0(n)}n≥2 with ◦i-operations (6) is an example

of another version of non-unital operads, recalled in:

Definition 17. A non-unital Markl’s operad in the category of k-modules is a collection P =

{P(n)}n≥0 of k[Σn]-modules, together with operadic compositions

◦i : S(m)⊗ S(n)→ S(m + n− 1),
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yi = x0

•

C2

C1

�
�

���

J
JJ

Figure 2. The ◦i-compositions in M0 = {M0(n)}n≥2.

for 1 ≤ i ≤ m and n ≥ 0, that fulfill the associativity and equivariance axioms of Definition 11.

A we saw in Proposition 13, in the presence of operadic units, May’s operads are the same as

Markl’s operads. Surprisingly, the non-unital versions of these structures are radically different

– Markl’s operads capture more information than May’s operads! This is made precise in the

following:

Proposition 18. The category of non-unital Markl’s operads is a subcategory of the category of

non-unital May’s operads.

Proof. It is easy to see that (3) defines, as in the proof of Proposition 13, a functor ψMay(−)

which is an embedding of the category of non-unital Markl’s operads into the category of non-

unital May’s operads. �

Observe that formula (4), inverse to (3), does not make sense without units. The relation

between various versions of operads discussed so far is summarized in the following diagram of

categories and their inclusions:

Mar

May

ψMay

?
�

�
??

non-unital Markl’s operadsnon-unital May’s operads

Markl’s operadsMay’s operads

The following example shows that non-unital Markl’s operads form a proper sub-category of

the category of non-unital May’s operads.

Example 19. We describe a non-unital May’s operad V = {V(n)}n≥0 which is not of the form

ψMay(S) for some non-unital Markl’s operad S. Let

V(n) :=

{
k, for n = 2 or 4, and
0, otherwise.
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The only non-trivial γ-composition is γ : V(2) ⊗ V(2) ⊗ V(2) → V(4), given as the canonical

isomorphism

V(2)⊗ V(2)⊗ V(2) ∼= k⊗3 ∼=
−→ k ∼= V(4).

Suppose that V = May(S) for some non-unital Markl’s operad S. Then, according to (3), for

f, g1, g2 ∈ V(2),

γ(f, g1, g2) = (f ◦2 g2) ◦1 g1.

Since (f ◦2 g) ∈ V(3) = 0, this would imply that γ is trivial, which is not true.

Proposition 21 below shows that Markl’s rather than May’s non-unital operads are true non-

unital versions of operads. We will need the following definition in which K = {K(n)}n≥1 is the

trivial (unital) operad with K(1) := k and K(n) = 0, for n 6= 1.

Definition 20. An augmentation of an operad P in the category of k-modules is a homomor-

phism ε : P→ K. Operads with an augmentation are called augmented operads. The kernel

P := Ker (ε : P→ K)

is called the augmentation ideal.

The following proposition was proved in [75].

Proposition 21. The correspondence P 7→ P is an isomorphism between the category of aug-

mented operads and the category of Markl’s non-unital operads.

Proof. The ◦i-operations of P obviously restrict to P, making it a non-unital Markl’s operad.

It is simple to describe a functorial inverse S 7→ S̃ of the correspondence P 7→ P. For a Markl’s

non-unital operad S, denote by S̃ the collection

(7) S̃(n) :=

{
S(n), for n 6= 1, and
S(1)⊕ k, for n = 1.

The ◦i-operations of S̃ are uniquely determined by requiring that they extend the ◦i-operations

of S and satisfy (2), with the unit e := 0⊕ 1k ∈ S(1)⊕ k = S̃(1). Informally, S̃ is obtained from

the Markl’s non-unital operad S by adjoining a unit. �

Observe that if S were a May’s, not Markl’s, non-unital operad, the construction of S̃ described

in the above proof would not make sense, because we would not know how to define

γ(f, e, . . . , e︸ ︷︷ ︸
i−1

, g, e, . . . , e︸ ︷︷ ︸
m−i

)

for f ∈ S(m), g ∈ S(n), m ≥ 2, n ≥ 0, 1 ≤ i ≤ m. Proposition 21 should be compared to the

obvious statement that the category of augmented unital associative algebras is isomorphic to

the category of (non-unital) associative algebras. In the following proposition, Oper denotes the

category of k-linear operads and ψOper the category of k-linear Markl’s non-unital operads.

Proposition 22. Let P be an augmented operad and Q an arbitrary operad in the category of

k-modules. Then there exists a natural isomorphism

(8) Mor Oper(P,Q) ∼= MorψOper(P, ψMay(Q)).
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The proof is simple and we leave it the reader. Combining (8) with the isomorphism of

Proposition 21 one obtains a natural isomorphism

(9) Mor Oper(S̃,Q) ∼= MorψOper(S, ψMay(Q))

which holds for each Markl’s non-unital operad S and operad Q. Isomorphism (9) means that

˜: ψOper→ Oper and ψMay : Oper→ ψOper are adjoint functors. This adjunction will be used

in the construction of free operads in Section 4.

In the rest of this article, non-unital Markl’s operads will be called simply non-unital operads.

This will not lead to confusion, since all non-unital operads referred to in the rest of this article

will be Markl’s.

3. Operad algebras

As we already remarked, operads are important through their representations called operad

algebras or simply algebras.

Definition 23. Let V be a k-module and EndV the endomorphism operad of V recalled in Ex-

ample 2. A P-algebra is a homomorphism of operads ρ : P→ End V .

The above definition admits an obvious generalization into an arbitrary symmetric monoidal

category with an internal hom-functor. The last assumption is necessary for the existence of

the ‘internal’ endomorphism operad, see [83, Definition II.1.20]. Definition 23 can be however

unwrapped into the form given in [58, Definition 2.1] that makes sense in an arbitrary symmetric

monoidal category without the internal hom-functor assumption:

Proposition 24. Let P be an operad. A P-algebra is the same as a k-module V together with

maps

(10) α : P(n)⊗ V ⊗n → V, n ≥ 0,

that satisfy the following axioms.

Associativity. For each n ≥ 1 and non-negative integers k1, . . . , kn, the following diagram com-

mutes.
(

P(n)⊗
n⊗

s=1

P(ks)

)
⊗

n⊗

s=1

V ⊗ks -
γ ⊗ id

P(k1 + · · ·+ kn)⊗ V
⊗(k1+···+kn)

P(n)⊗
n⊗

s=1

(
P(ks)⊗ V

⊗ks

)
P(n)⊗ V ⊗n-

id ⊗ (
N

n

s=1 α)

?

shuffle V

?

α

6α

Equivariance. For each n ≥ 1 and σ ∈ Σn, the following diagram commutes.
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P(n)⊗ V ⊗n P(n)⊗ V ⊗n-σ ⊗ σ−1

V

Q
Q

Q
QQs

�
�

�
��+

α α

Unitality. For each n ≥ 1, the following diagram commutes.

k⊗ V

η ⊗ id

?

∼=
-

α

�
�

�
�

�
��3

V

P(1)⊗ V

We leave as an exercise to formulate a version of Proposition 24 that would use ◦i-operations

instead of γ-operations.

Example 25. In this example we verify, using Proposition 24, that algebras over the operad

Com = {Com(n)}n≥1 recalled in Example 10 are ordinary commutative associative algebras.

To simplify the exposition, let us agree that v’s with various subscripts denote elements of V .

Since Com(n) = k for n ≥ 1, the structure map (10) determines, for each n ≥ 1, a linear map

µn : V ⊗n → V by

µn(v1, . . . , vn) := α(1n, v1, . . . , vn),

where 1n denotes in this example the unit 1n ∈ k = Com(n). The associativity of Proposition 24

says that

(11) µn
(
µk1(v1, . . . , vk1), . . . , µkn

(vk1+···+kn−1+1, . . . , vk1+···+kn
)
)

= µk1+···+kn
(v1, . . . , vk1+···+kn

),

for each n, k1, . . . , kn ≥ 1. The equivariance of Proposition 24 means that each µn is fully

symmetric

(12) µn(v1, . . . , vn) = µn(vσ(1), . . . , vσ(n)), σ ∈ Σn,

and the unitality implies that µ1 is the identity map,

(13) µ1(v) = v.

The above structure can be identified with a commutative associative multiplication on V .

Indeed, the bilinear map · := µ2 : V ⊗ V → V is clearly associative:

(14) (v1 · v2) · v3 = v1 · (v2 · v3)

and commutative:

(15) v1 · v2 = v2 · v1.

On the other hand, µ1(v) := v and

µn(v1, . . . , vn) := (···(v1 · v2) · · · vn−1) · vn for n ≥ 2

defines multilinear maps {µn : V ⊗n → V } satisfying (11)–(13). It is equally easy to verify that

algebras over the operad Ass introduced in Example 3 are ordinary associative algebras.
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Following Leinster [61], one could say that (11)–(13) is an unbiased definition of associative

commutative algebras, while (14)–(15) is a definition of the same object biased towards bilinear

operations. Operads therefore provide unbiased definitions of algebras.

Example 26. Let us denote by UCom the endomorphism operad Endk of the ground ring k. It

is easy to verify that UCom-algebras are unital commutative associative algebras. We leave it to

the reader to describe the operad UAss governing unital associative operads.

Algebras over a non-Σ operad P are defined as algebras, in the sense of Definition 23, over the

symmetrization Σ[P] of P . Algebras over non-unital operads discussed in Section 2 are defined

by appropriate obvious modifications of Definition 23.

Example 27. Let Y be a topological space with a base point ∗ and Sk the k-dimensional sphere,

k ≥ 1. The k-fold loop space ΩkY is the space of all continuous maps Sk → Y that send the

south pole of Sk to the base point of Y . Equivalently, ΩkY is the space of all continuous maps

λ : (Dk, Sk−1) → (Y, ∗) from the standard closed k-dimensional disc Dk to Y that map the

boundary S
k−1 of D

k to the base point of Y . Let us show, following Boardman and Vogt [10],

that ΩkY is a natural topological algebra over the little k-discs operad Dk = {Dk(n)}n≥0 recalled

in Example 4.

The action α : Dk(n) × (ΩkY )×n → ΩkY is, for n ≥ 0, defined as follows. Given λi :

(Dk, Sk−1) → (Y, ∗) ∈ ΩkY , 1 ≤ i ≤ n, and little k-discs d = (d1, . . . , dn) ∈ Dk(n) as in

Example 4, then

α(d, λ1, . . . , λn) : (Dk, Sk−1)→ (Y, ∗) ∈ ΩkY

is the map defined to be λi : Dk → Y (suitably rescaled) on the image of di, and to be ∗ on the

complement of the images of the maps di, 1 ≤ i ≤ n.

Therefore each k-fold loop space is a Dk-space. The following classical theorem is a certain

form of the inverse statement.

Theorem 28. (Boardman-Vogt [10], May [86]) A path-connected Dk-algebra X has the weak

homotopy type of a k-fold loop space.

The connectedness assumption in the above theorem can be weakened by assuming that the

Dk-action makes the set π0(X) of path components of X a group.

Example 29. The non-unital operad M0 of stable pointed curves of genus 0 (also called the

configuration (non-unital) operad) recalled on page 12 is a non-unital operad in the category of

smooth complex projective varieties. It therefore makes sense, as explained in Example 5, to

consider its homology operad H∗(M0,k) = {H∗(M0(n),k)}n≥2.

An algebra over this non-unital operad is called a (tree level) cohomological conformal field

theory or a hyper-commutative algebra [55]. It consist of a family {(−, . . . ,−) : V ⊗n → V }n≥2 of

linear operations which are totally symmetric, that is

(vσ(1), . . . , vσ(n)) = (v1, . . . , vn),
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for each permutation σ ∈ Σn. Moreover, we require the following form of associativity:

(16)
∑

(S,T )

((u, v, xi; i ∈ S), w, xj; j ∈ T ) =
∑

(S,T )

(u, (v, w, xi; i ∈ S), xj; j ∈ T ),

where u, v, w, x1, . . . , xn ∈ V and (S, T ) runs over disjoint decompositions S t T = {1, . . . , n}.
For n = 0, (16) means the (usual) associativity of the bilinear operation (−,−), i.e. ((u, v), w) =

(u, (v, w)). For n = 1 we get

((u, v), w, x) + ((u, v, x), w) = (u, (v, w, x)) + (u, (v, w), x).

Example 30. In this example, k is a field of characteristic 0. The non-unital operad M0(R) =

{M0(R)(n)}n≥2 of real points in the configuration operad M0 is called the mosaic non-unital

operad [19]. Algebras over the homology H∗(M0(R),k) = {H∗(M0(R)(n),k)}n≥2 of this operad

were recently identified [25] with 2-Gerstenhaber algebras, which are structures (V, µ, τ) consisting

of a commutative associative product µ : V ⊗ V → V and an anti-symmetric degree +1 ternary

operation τ : V ⊗ V ⊗ V → V which satisfies the generalized Jacobi identity
∑

σ

sgn(σ) · τ(τ(xσ(1) , xσ(2), xσ(3)), xσ(4), xσ(5)) = 0,

where the summation runs over all (3, 2)-unshuffles σ(1) < σ(2) < σ(3), σ(4) < σ(5). Moreover,

the ternary operation τ is tied to the multiplication µ by the distributive law

τ(µ(s, t), u, v) = µ(τ(s, u, v), t) + (−1)(1+|u|+|v|)|s| · µ(s, τ(t, u, v)), s, t, u, v ∈ V,

saying that the assignment s 7→ τ(s, u, v) is a degree (1 + |u|+ |v|)-derivation of the associative

commutative algebra (V, µ), for each u, v ∈ V .

4. Free operads and trees

The purpose of this section is three-fold. First, we want to study free operads because each

operad is a quotient of a free one. The second reason why we are interested in free operads

is that their construction involves trees. Indeed, it turns out that rooted trees provide ‘pasting

schemes’ for operads and that, replacing trees by other types of graphs, one can introduce several

important generalizations of operads, such as cyclic operads, modular operads, and PROPs.

The last reason is that the free operad functor defines a monad which provides an unbiased

definition of operads as algebras over this monad. Everything in this section is written for k-

linear operads, but the constructions can be generalized into an arbitrary symmetric monoidal

category with countable coproducts (M,�, 1) whose monoidal product � is distributive over

coproducts, see [83, Section II.1.9].

Recall that a Σ-module is a collection E = {E(n)}n≥0 in which each E(n) is a right k[Σn]-

module. There is an obvious forgetful functor : Oper → Σ-mod from the category Oper of

k-linear operads to the category Σ-mod of Σ-modules.

Definition 31. The free operad functor is a left adjoint [38, § II.7] Γ : Σ-mod → Oper to the

forgetful functor : Oper→ Σ-mod. This means that there exists a functorial isomorphism

Mor Oper(Γ(E),P) ∼= MorΣ-mod(E, (P))
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for an arbitrary Σ-module E and operad P. The operad Γ(E) is the free operad generated by the

Σ-module E. Similarly, the free non-unital operad functor is a left adjoint Ψ : Σ-mod → ψOper

of the obvious forgetful functor ψ : ψOper→ Σ-mod, that is

MorψOper(Ψ(E), S) ∼= MorΣ-mod(E, ψ(S)),

where E is a Σ-module and S a non-unital operad. The non-unital operad Ψ(E) is the free

non-unital operad generated by the Σ-module E.

Let ˜ : ψOper → Oper be the functor of ‘adjoining the unit’ considered in the proof of

Proposition 21 on page 14. Functorial isomorphism (9) implies that one may take

(17) Γ := Ψ̃,

which means that the free operad Γ(E) can be obtained from the free non-unital operad Ψ(E)

by formally adjoining the unit.

Let us indicate how to construct the free non-unital operad Ψ(E), a precise description will

be given later in this section. The free non-unital operad Ψ(E) must be built up from all formal

◦i-compositions of elements of E modulo the axioms listed in Definition 11. For instance, given

f ∈ E(2), g ∈ E(3), h ∈ E(2) and l ∈ E(0), the component Ψ(E)(5) must contain the following

five compositions

(18)
(f ◦1 (g ◦2 l)) ◦3 h, (f ◦2 h) ◦1 (g ◦2 l), ((f ◦2 h) ◦1 g) ◦2 l,

((f ◦1 g) ◦2 l) ◦3 h and ((f ◦1 g) ◦4 h) ◦2 l.

The elements in (18) can be depicted by the ‘flow diagrams’ of Figure 3 on page 20. Nodes of

these diagrams are decorated by elements f, g, h and l of E in such a way that an element of E(n)

decorates a node with n input lines, n ≥ 0. Thin ‘amoebas’ indicate the nesting which specifies

the order in which the ◦i-operations are performed. The associativity of Definition 11 however

says that the result of the composition does not depend on the order, therefore the amoebas can

be erased and the common value of the compositions represented by

(19) hg

l
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Let us look more closely how diagram (19) determines an element of the (still hypothetical)

free non-unital operad Ψ(E). The crucial fact is that the underlying graph of (19) is a planar

rooted tree. Recall that a tree is a finite connected simply connected graph without loops and

multiple edges. For a tree T we denote, as usual, by Vert(T ) the set of vertices and Edg(T ) the

set of edges of T . The number of edges adjacent to a vertex v ∈ Vert(T ) is called the valence of

v and denoted val(v). We assume that one is given a subset

ext(T ) ⊂ {v ∈ Vert(T ); val(v) = 1}



20 M. MARKL
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Figure 3. Flow diagrams in non-unital operads.

of external vertices, the remaining vertices are internal . Let us denote

vert(T ) := Vert(T ) \ ext(T )

the set of all internal vertices. Henceforth, we will assume that our trees have at least one

internal vertex. This excludes at this stage the exceptional tree consisting of two external vertices

connected by an edge.

Edges adjacent to external vertices are the legs of T . A tree is rooted if one of its legs, called

the root , is marked and all other edges are oriented, pointing to the root. The legs different from

the root are the leaves of T . For example, the tree in (19) has 4 internal vertices decorated f ,

g, h and l, and 4 leaves. Finally, the planarity means that an embeddings of T into the plane is

specified. In our pictures, the root will always be placed on the top. By a vertex we will always

mean an internal one.

The planarity and a choice of the root of the underlying tree of (19) specifies a total order of

the set in(v) of input edges of each vertex v ∈ vert(T ) as well as a total order of the set Leaf (T )
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of the leaves of T , by numbering from the left to the right:

(20)
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This tells us that l should be inserted into the second input of g, g into the first input of f and

h into the second input of f . Using ‘abstract variables’ v1, v2, v3 and v4, the element represented

by (20) can also be written as the ‘composition’ f(g(v1, l, v2), h(v3, v4)).

Now we need to take into account also the symmetric group action. If τ is the generator of

Σ2, then the obvious equality

f(g(v1, l, v2), h(v3, v4)) = fτ(h(v3, v4), g(v1, l, v2))

of ‘abstract compositions’ coming from the equivariance of Definition 11 translates into the

following equality of flow diagrams:
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Relation (21) shows that the equivariance of Definition 11 violates the linear orders induced

by the planar embedding of T . This leads us to the conclusion that the flow diagrams describing

elements of free non-unital operads are (abstract, non-planar) rooted, leaf-labeled decorated trees.

Let us describe, after these motivations, a precise construction of Ψ(E). The first subtlety

one needs to understand is how to decorate vertices of non-planar trees. To this end, we need to

explain how each Σ-module E = {E(n)}n≥0 naturally extends into a functor (denoted again E)

from the category Setf of finite sets and their bijections to the category of k-modules. If X and

Y are finite sets, denote by

(22) Bij (Y,X) := {ϑ : X
∼=
−→ Y }

the set of all isomorphisms between X and Y (notice the unexpected direction of the arrow!). It

is clear that Bij (Y,X) is a natural left AutY - right AutX -bimodule, where AutX := Bij (X,X)

and AutY := Bij (Y, Y ) are the sets of automorphisms with group structure given by composition.

For a finite set S ∈ Setf of cardinality n and a Σ-module E = {E(n)}n≥0 define E(S) to be

(23) E(S) := E(n)×Σn
Bij ([n], S)

where, as usual, [n] := {1, . . . , n} and, of course, Σn = Aut [n].
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Let us recall that a (leaf-) labeled rooted n-tree is a rooted tree T together with a specified

bijection ` : Leaf (T )
∼
→ [n]. Let Treen be the category of labeled rooted n-trees and their

bijections. For T ∈ Treen define

(24) E(T ) :=
⊗

v∈vert(T )

E(in(v))

where in(v) is, as before, the set of all input edges of a vertex v ∈ vert(T ). It is easy to verify

that E 7→ E(T ) defines a functor from the category Treen to the category of k-modules.

Recall that the colimit of a covariant functor F : D→ Modk is the quotient

colim
x ∈ D

F (x) =
⊕

x∈D

F (x)/ ∼,

where ∼ is the equivalence generated by

F (y) 3 a ∼ F (f)(a) ∈ F (z),

for each a ∈ F (y), y, z ∈ D and f ∈ MorD(y, z). Define finally

(25) Ψ(E)(n) := colim
T ∈ Treen

E(T ), n ≥ 0.

The following theorem was proved in [83, II.1.9].

Theorem 32. There exists a natural non-unital operad structure on the Σ-module

Ψ(E) = {Ψ(E)(n)}n≥0,

with the ◦i-operations given by the grafting of trees and the symmetric group re-labeling the leaves,

such that Ψ(E) is the free non-unital operad generated by the Σ-module E.

One could simplify (25) by introducing Tree(n) as the set of isomorphism classes of n-trees

from Treen and defining Ψ(E) by the formula

(26) Ψ(E)(n) =
⊕

[T ]∈Tree(n)

E(T ), n ≥ 0,

which does not involve the colimit. The drawback of (26) is that it assumes a choice of a

representative [T ] of each isomorphism class in Tree(n), while (25) is functorial and admits

simple generalizations to other types of operads and PROPs. See [83, Section II.1.9] for other

representations of the free non-unital operad functor.

Having constructed the free non-unital operad Ψ(E), we may use (17) to define the free operad

Γ(E). This is obviously equivalent to enlarging, in (25) for n = 1, the category Treen by the

exceptional roted tree with one leg and no internal vertex. If we denote this enlarged category

of trees and their isomorphisms (which however differs from Treen only at n = 1) by UTreen, we

may represent the free operad as

(27) Γ(E)(n) := colim
T ∈ UTreen

E(T ), n ≥ 0.

If E is a Σ-module such that E(0) = E(1) = 0, then (26) reduces to a summation over reduced

trees, that is trees whose all vertices have at least two input edges. By simple combinatorics, the
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number of isomorphism classes of reduced trees in Treen is finite for each n ≥ 0. This implies

the following proposition that says that operads are relatively small objects.

Proposition 33. Let E = {E(n)}n≥0 be a Σ-module such that

E(0) = E(1) = 0

and that E(n) are finite-dimensional for n ≥ 2. Then the spaces Ψ(E)(n) and Γ(E)(n) are

finite-dimensional for each n ≥ 0.

We close this section by showing how the free operad functor can be used to define operads.

It follows from general principles that any operad P is a quotient P = Γ(E)/(R), where E and

R are Σ-modules and (R) is the operadic ideal (see Definition 6) generated by R in Γ(E).

Example 34. The commutative associative operad Com recalled in Example 10 is generated by

the Σ-module

ECom(n) :=

{
k · µ, if n = 2 and
0, if n 6= 2.

where k · µ is the trivial representation of Σ2. The ideal of relations is generated by

RCom := Span
k
{µ(µ⊗ id)− µ(id ⊗ µ)} ⊂ Γ(ECom)(3),

where µ(µ⊗ id)− µ(id ⊗ µ) is the obvious shorthand for γ(µ, µ, e)− γ(µ, e, µ), with e the unit

of Γ(ECom).

Similarly, the operad Ass for associative algebras reviewed in Example 3 is generated by the

Σ-module EAss such that

EAss(n) :=

{
k[Σ2], if n = 2 and
0, if n 6= 2.

The ideal of relations is generated by the k[Σ3]-closure RAss of the associativity

(28) α(α⊗ id)− α(id ⊗ α) ∈ Γ(EAss)(3),

where α is a generator of the regular representation EAss (2) = k[Σ2].

Example 35. The operad Lie governing Lie algebras is the quotient Lie := Γ(ELie)/(RLie),

where ELie is the Σ-module

ELie(n) :=

{
k · β if n = 2 and
0 if n 6= 2,

with k · β is the signum representation of Σ2. The ideal of relations (RLie) is generated by the

Jacobi identity:

(29) β(β ⊗ id) + β(β ⊗ id)c+ β(β ⊗ id)c2 = 0,

in which c ∈ Σ3 is the cyclic permutation (1, 2, 3) 7→ (2, 3, 1).

Example 36. We show how to describe the presentations of the operads Ass and Lie given in

Examples 34 and 35 in a simple graphical language. The generator α of EAss is an operation

with two inputs and one output, so we depict it as . The associativity (28) then reads as

= ,
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therefore Ass = Γ( )/( = ). Also the operad for Lie algebras is generated by one bilinear

operation , but this time the operation is anti-symmetric

1 2
= −

2 1
.

The Jacobi identity (29) reads

1 2 3
+

2 3 1
+

3 1 2
= 0.

The kind of description used in the above examples is ‘tautological’ in the sense that it just

says that the operad P governing a certain type of algebras is generated by operations of these

algebras, with an appropriate symmetry, modulo the axioms satisfied by these operations. It does

not say directly anything about the properties of the individual spaces P(n), n ≥ 0. Describing

these individual components may be a very nontrivial task, see for example the formula for the

Σn-modules Lie(n) given in [83, page 50]. Operads in Examples 34 and 35 are quadratic in the

sense of the following:

Definition 37. An operad P is quadratic if it has a presentation P = Γ(E)/(R), where E = P(2)

and R ⊂ Γ(E)(3).

Quadratic operads form a very important class of operads. Each quadratic operad P has

a quadratic dual P! [34], [83, Definition II.3.37] which is a quadratic operad defined, roughly

speaking, by dualizing the generators of P and replacing the relations of P by their annihilator

in the dual space. For example, Ass ! = Ass, Com ! = Lie and Lie ! = Com. A quadratic operad

P is Koszul if it has the homotopy type of the bar construction of its quadratic dual [34], [83,

Definition II.3.40]. For quadratic Koszul operads, there is a deep understanding of the derived

category of the corresponding algebras. Operads Ass, Com and Lie above, as well as most

quadratic operads one encounters in everyday life, are Koszul.

5. Unbiased definitions

In this section, we review the definition of a triple (monad) and give, in Theorem 40, a de-

scription of unital and non-unital operads in terms of algebras over a triple. The relevant triples

come from the endofunctors Ψ and Γ recalled in Section 4. Let End(C) be the strict symmetric

monoidal category of endofunctors on a category C where multiplication is the composition of

functors.

Definition 38. A triple (also called a monad) T on a category C is an associative and unital

monoid (T, µ, υ) in End(C). The multiplication µ : TT → T and unit morphism υ : id → T

satisfy the axioms given by commutativity of the diagrams in Figure 4.

Triples arise naturally from pairs of adjoint functors. Given an adjoint pair [38, II.7]

F

G

BA Y
j

,

with associated functorial isomorphism

Mor A(F (X), Y ) ∼= Mor B(X,G(Y )), X ∈ B, Y ∈ A,
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Figure 4. Associativity and unit axioms for a triple.
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Figure 5. T -algebra structure.

there is a triple in B defined by T := GF . The unit of the adjunction id → GF defines the

unit υ of the triple and the counit of the adjunction FG→ id induces a natural transformation

GFGF → GF which defines the multiplication µ. In fact, it is a theorem of Eilenberg and

Moore [20] that all triples arise in this way from adjoint pairs. This is exactly the situation with

the free operad and free non-unital operad functors that were described in Section 4. We will

show how operads and non-unital operads can actually be defined using the concept of an algebra

over a triple:

Definition 39. A T -algebra or algebra over the triple T is an object A of C together with a

structure morphism α : T (A)→ A satisfying

α(T (α)) = α(µA) and αυA = idA,

see Figure 5.

The category of T -algebras in C will be denoted AlgT (C). Since the free non-unital operad

functor Ψ and the free operad functor Γ described in Section 4 are left adjoints to ψ : ψOper→
Σ-mod and : Oper → Σ-mod, respectively, the functors ψΨ (denoted simply Ψ) and Γ

(denoted Γ) define triples on Σ-mod.

Theorem 40. A Σ-module S is a Ψ-algebra if and only if it is a non-unital operad and it is a

Γ-algebra if and only if it is an operad. In shorthand:

AlgΨ(Σ-mod) ∼= ψOper and AlgΓ(Σ-mod) ∼= Oper.

Proof. We outline first the proof of the implication in the direction from algebra to non-unital

operad. Let S be a Ψ-algebra. The restriction of the structure morphism α : Ψ(S) −→ S to

the components of Ψ(S) supported on trees with one internal edge defines the non-unital operad

composition maps ◦i, as indicated by:
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Figure 6. Bracketed trees. The left picture shows an element of ΨΨ(E)(5) while
the right picture shows the same element interpreted, after erasing the braces
indicated by thin cycles, as an element of Ψ(E)(5). For simplicity, we did not show
the decoration of vertices by elements of E.
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In the opposite direction, for a non-unital operad S, the Ψ-algebra structure α : Ψ(S) → S

is the contraction along the edges of underlying trees, using the ◦i-operations. The proof that

Γ-algebras are operads is similar. �

Let us change our perspective and consider formula (25) as defining an endofunctor Ψ :

Σ-mod → Σ-mod, ignoring that we already know that it represents free non-unital operads. We

are going to construct maps

µ : ΨΨ→ Ψ and υ : id → Ψ

making Ψ a triple on the category Σ-mod. Let us start with the triple multiplication µ. It follows

from (25) that, for each Σ-module E,

ΨΨ(E)(n) := colim
T ∈ Treen

Ψ(E)(T ), n ≥ 0.

The elements in the right hand side are represented by rooted trees T with vertices decorated by

elements of Ψ(E), while elements of Ψ(E) are represented by rooted trees with vertices decorated

by E. We may therefore imagine elements of ΨΨ(E) as ‘bracketed’ rooted trees, in the sense

indicated in Figure 6. The triple multiplication µE : ΨΨ(E) → Ψ(E) then simply erases the

braces. The triple unit υE : E → Ψ(E) identifies elements of E with decorated corollas:

E(n) 3 e ←→ •

. . .︸ ︷︷ ︸
n inputs

e
∈ Ψ(E)(n), n ≥ 0.

It is not difficult to verify that the above constructions indeed make Ψ a triple, compare [83,

§ II.1.12]. Now we can define non-unital operads as algebras over the triple (Ψ, µ, υ). The
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Figure 7. A May’s tree.

advantage of this approach is that, by replacing Treen in (25) by another category of trees or

graphs, one may obtain triples defining other types of operads and their generalizations.

We have already seen in (27) that enlarging Treen into UTreen by adding the exceptional tree,

one gets the triple Γ describing (unital) operads. It is not difficult to see that non-unital May’s

operads are related to the category MTreen of May’s trees which are, by definition, rooted trees

whose vertices can be arranged into levels as in Figure 7. Non-unital May’s operads are then

algebras over the triple M : Σ-mod→ Σ-mod defined by

M(E)(n) := colim
T ∈ MTreen

E(T ), n ≥ 0.

These observations are summarized in the first three lines of the table in Figure 14 on page 45.

6. Cyclic operads

In the following two sections we use the approach developed in Section 5 to introduce cyclic

and modular operads. We recalled, in Example 14, the operad M̂0 = {M̂0(n)}n≥0 of Riemann

spheres with parametrized labeled holes. Each M̂0(n) was a right Σn-space, with the operadic

right Σn-action permuting the labels 1, . . . , n of the holes u1, . . . , un. But each M̂0(n) obviously

admits a higher type of symmetry which interchanges labels 0, . . . , n of all holes, including the

label of the ‘output’ hole u0. Another example admitting a similar higher symmetry is the

configuration (non-unital) operad M0 = {M0(n)}n≥2.

These examples indicate that, for some operads, there is no clear distinction between ‘inputs’

and the ‘output.’ Cyclic operads, introduced by E. Getzler and M.M. Kapranov in [32], formalize

this phenomenon. They are, roughly speaking, operads with an extra symmetry that interchanges

the output with one of the inputs. Let us recall some notions necessary to give a precise definition.

We remind the reader that in this section, as well as everywhere in this article, main definitions

are formulated over the underlying category of k-modules, where k is a commutative associative

unital ring. However, for some constructions, we will require k to be a field ; we will indicate this

as usual by speaking about vector spaces instead of k-modules.

Let Σ+
n be the permutation group of the set {0, . . . , n}. The group Σ+

n is, of course, non-

canonically isomorphic to the symmetric group Σn+1. We identify Σn with the subgroup of Σ+
n

consisting of permutations σ ∈ Σ+
n such that σ(0) = 0. If τn ∈ Σ+

n denotes the cycle (0, . . . , n),

that is, the permutation with τn(0) = 1, τn(1) = 2, . . . , τn(n) = 0, then τn and Σn generate Σ+
n .
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Figure 8. A cyclic labeled tree from Tree+
9 .

Recall that a cyclic Σ-module or a Σ+-module is a sequence W = {W (n)}n≥0 such that

each W (n) is a (right) k[Σ+
n ]-module. Let Σ+-mod denote the category of cyclic Σ-modules. As

(ordinary) operads were Σ-modules with an additional structure, cyclic operads are Σ+-modules

with an additional structure.

We will also need the following ‘cyclic’ analog of (23): if X is a set with n + 1 elements and

W ∈ Σ+-mod, then

(30) W ((X)) := W (n)×Σ+
n

Bij ([n]+, X),

where [n]+ := {0, . . . , n}, n ≥ 0. Double brackets in W ((X)) remind us that the nth piece of the

cyclic Σ-module W = {W (n)}n≥0 is applied on a set with n + 1 elements, using the extended

Σ+
n -symmetry. Therefore

W (({0, . . . , n})) ∼= W (n) while W ({0, . . . , n}) ∼= W (n+ 1), n ≥ 0.

Pasting schemes for cyclic operads are cyclic (leg-) labeled n-trees, by which we mean un-

rooted trees as on page 19, with legs labeled by the set {0, . . . , n}. An example of such a tree

is given in Figure 8. Since we do not assume a choice of the root, the edges of a cyclic tree C

are not directed and it does not make sense to speak about inputs and the output of a vertex

v ∈ vert(C). Let Tree+
n be the category of cyclic labeled n-trees and their bijections.

For a cyclic Σ-module W and a cyclic labeled tree T we have the following cyclic version of

the product (24)

W ((T )) :=
⊗

v∈vert(T )

W ((edge(v))).

The conceptual difference between (24) and the above formula is that instead of the set in(v) of

incoming edges of a vertex v of a rooted tree, here we use the set edge(v) of all edges incident

with v. Let, finally, Ψ+ : Σ+-mod→ Σ+-mod be the functor

(31) Ψ+(W )(n) := colim
T ∈ Tree

+
n

W ((T )), n ≥ 0,

equipped with the triple structure of ‘forgetting the braces’ similar to that reviewed on page 26.

We will use also the ‘extended’ triple Γ+ : Σ+-mod→ Σ+-mod,

Γ+(W )(n) := colim
T ∈ UTree

+
n

W ((T )), n ≥ 0,
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where UTree+
n is the obvious extension of the category Tree+

n by the exceptional tree .

Definition 41. A cyclic (resp. non-unital cyclic) operad is an algebra over the triple Γ+ (resp. the

triple Ψ+) introduced above.

In the following proposition, which slightly improves [32, Theorem 2.2], τn ∈ Σ+
n denotes the

cycle (0, . . . , n).

Proposition 42. A non-unital cyclic operad is the same as a non-unital operad C = {C(n)}n≥0

(Definition 11) such that the right Σn-action on C(n) extends, for each n ≥ 0, to an action of Σ+
n

with the property that for p ∈ C(m) and q ∈ C(n), 1 ≤ i ≤ m, n ≥ 0, the composition maps

satisfy

(p ◦i q)τm+n−1 =

{
(qτn) ◦n (pτm), if i = 1, and
(pτm) ◦i−1 q, for 2 ≤ i ≤ m.

The above structure is a (unital) cyclic operad if moreover there exists a Σ+
1 -invariant operadic

unit e ∈ C(1).

Proposition 42 gives a biased definition of cyclic operads whose obvious modification (see [83,

Definition II.5.2]) makes sense in an arbitrary symmetric monoidal category. We can therefore

speak about topological cyclic operads, differential graded cyclic operads, simplicial cyclic op-

erads &c. Observe that there are no non-unital cyclic May’s operads because it does not make

sense to speak about levels in trees without a choice of the root.

Example 43. Let V be a finite dimensional vector space and B : V ⊗ V → k a nondegenerate

symmetric bilinear form. The form B induces the identification

Lin(V ⊗n, V ) 3 f 7−→ B̂(f) := B(−, f(−)) ∈ Lin(V ⊗(n+1),k)

of the spaces of linear maps. The standard right Σ+
n -action

B̂(f)σ(v0, . . . , vn) = B̂(f)(vσ−1(0), . . . , vσ−1(n)), σ ∈ Σ+
n , v0, . . . , vn ∈ V,

defines, via this identification, a right Σ+
n -action on Lin(V ⊗n, V ), that is, on the nth piece of the

endomorphism operad EndV = {EndV (n)}n≥0 recalled in Example 2. It is easy to show that,

with the above action, EndV is a cyclic operad in the monoidal category of vector spaces, called

the cyclic endomorphism operad of the pair V = (V,B). The biased definition of cyclic operads

given in Proposition 42 can be read off from this example.

Example 44. We saw in Example 7 that a unital operad A = {A(n)}n≥0 such that A(n) = 0 for

n 6= 1 is the same as a unital associative algebra. Similarly, it can be easily shown that a cyclic

operad C = {C(n)}n≥0 satisfying C(n) = 0 for n 6= 1 is the same as a unital associative algebra

A with a linear involutive antiautomorphism, by which we mean a k-linear map ∗ : A → A

such that

(ab)∗ = b∗a∗, (a∗)∗ = a and 1∗ = 1,

for arbitrary a, b ∈ A.
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Let P = Γ(E)/(R) be a quadratic operad as in Definition 37. The action of Σ2 on E extends

to an action of Σ+
2 , via the sign representation sgn : Σ+

2 → {±1} = Σ2. It can be easily verified

that this action induces a cyclic operad structure on the free operad Γ(E). In particular, Γ(E)(3)

is a right Σ+
3 -module.

Definition 45. We say that the operad P is a cyclic quadratic operad if, in the above presenta-

tion, R is a Σ+
3 -invariant subspace of Γ(E)(3).

If the condition of the above definition is satisfied, P has a natural induced cyclic operad

structure.

Example 46. By [32, Proposition 3.6], all quadratic operads generated by a one-dimensional

space are cyclic quadratic, therefore the operads Lie and Com are cyclic quadratic. Also the op-

erads Ass and the operad Poiss for Poisson algebras are cyclic quadratic [32, Proposition 3.11].

A surprisingly simple operad which is cyclic and quadratic, but not cyclic quadratic, is con-

structed in [82, Remark 15].

The operad M̂0 of Riemann spheres with labeled punctures reviewed in Example 14 is a

topological cyclic operad. The configuration operad M0 recalled on page 12 is a non-unital

topological cyclic operad. Important examples of non-cyclic operads are the operad pre-Lie for

pre-Lie algebras [82, Section 3] and the operad Leib for Leibniz algebras [32, § 3.15].

Let C be an operad, α : C(n) ⊗ V ⊗n → V , n ≥ 0, a C-algebra with the underlying vector

space V as in Proposition 24 and B : V ⊗ V → U a bilinear form on V with values in a vector

space U . We can form a map

(32) B̃(α) : C(n)⊗ V ⊗(n+1) → U, n ≥ 0,

by the formula

B̃(α)(c⊗ v0 ⊗ · · · vn) := B(v0, α(c⊗ v1 ⊗ · · ·vn)), c ∈ C(n), v0, . . . , vn ∈ V.

Suppose now that the operad C is cyclic, in particular, that each C(n) is a right Σ+
n -module. We

say that the bilinear form B : V ⊗ V → U is invariant [32, Definition 4.1], if the maps B̃(α)

in (32) are, for each n ≥ 0, invariant under the diagonal action of Σ+
n on C(n) ⊗ V ⊗(n+1). We

leave as an exercise to verify that the invariance of B̃(α) for n = 1 together with the existence

of the operadic unit implies that B is symmetric,

B(v0, v1) = B(v1, v0), v0, v1 ∈ V.

Definition 47. A cyclic algebra over a cyclic operad C is a C-algebra structure on a vector

space V together with a nondegenerate invariant bilinear form B : V ⊗ V → k.

By [83, Proposition II.5.14], a cyclic algebra is the same as a cyclic operad homomorphism C→
EndV , where EndV is the cyclic endomorphism operad of the pair (V,B) recalled in Example 43.

Example 48. A cyclic algebra over the cyclic operad Com is a Frobenius algebra, that is, a

structure consisting of a commutative associative multiplication · : V ⊗V → V as in Example 25
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together with a non-degenerate symmetric bilinear form B : V ⊗ V → k, invariant in the sense

that

B(a · b, c) = B(a, b · c), for all a, b, c ∈ V.

Similarly, a cyclic Lie algebra is given by a Lie bracket [−,−] : V ⊗V → V and a non-degenerate

symmetric bilinear form B : V ⊗ V → k satisfying

B([a, b], c) = B(a, [b, c]), for a, b, c ∈ V.

For algebras over cyclic operads, one may introduce cyclic cohomology that generalizes the

classical cyclic cohomology of associative algebras [12, 66, 109] as the non-abelian derived functor

of the universal bilinear form [32], [83, Proposition II.5.26]. Let us close this section by mentioning

two examples of operads with other types of higher symmetries. The symmetry required for

anticylic operads differs from the symmetry of cyclic operads by the sign [83, Definition II.5.20].

Dihedral operads exhibit a symmetry governed by the dihedral groups [82, Definition 16].

7. Modular operads

Let us consider again the Σ+-module M̂0 = {M̂0(n)}n≥0 of Riemann spheres with punctures.

We saw that the operation M,N 7→ M ◦i N of sewing the 0th hole of the surface N to the

ith hole of the surface M defined on M̂0 a cyclic operad structure. One may generalize this

operation by defining, for M ∈ M̂0(m), N ∈ M̂0(n), 0 ≤ i ≤ m, 0 ≤ j ≤ n, the element

M i◦jN ∈ M̂0(m+n− 1) by sewing the jth hole of M to the ith hole of N . Under this notation,

◦i = i◦0. In the same manner, one may consider a single surface M ∈ M̂0(n), choose labels i, j,

0 ≤ i 6= j ≤ n, and sew the ith hole of M along the jth hole of the same surface. The result is

a new surface ξ{i,j}(M), with n− 2 holes and genus 1.

This leads us to the system M̂ = {M̂(g, n)}g≥0,n≥−1, where M̂(g, n) denotes now the moduli

space of genus g Riemann surfaces with n + 1 holes. Observe that we include M̂(g, n) also for

n = −1; M̂(g,−1) is the moduli space of Riemann surfaces of genus g. The operations i◦j and

ξ{i,j} act on M̂. Clearly, for M ∈ M̂(g,m) and N ∈ M̂(h, n), 0 ≤ i ≤ m, 0 ≤ j ≤ n and g, h ≥ 0,

(33) M i◦jN ∈ M̂(g + h,m+ n− 1)

and, for m ≥ 1 and g ≥ 0,

(34) ξ{i,j}(M) ∈ M̂(g + 1, m− 2).

A particular case of (33) is the non-operadic composition

(35) 0◦0 : M̂(g, 0)× M̂(h, 0)→ M̂(g + h,−1), g, h ≥ 0.

Modular operads are abstractions of the above structure satisfying a certain additional stability

condition. The following definitions, taken from [33], are made for the category of k-modules, but

they can be easily generalized to an arbitrary symmetric monoidal category with finite colimits,

whose monoidal product � is distributive over colimits. Let us introduce the underlying category

for modular operads.
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Figure 9. The sputnik.

A modular Σ-module is a sequence E = {E(g, n)}g≥0,n≥−1 of k-modules such that each E(g, n)

has a right k[Σ+
n ]-action. We say that E is stable if

(36) E(g, n) = 0 for 2g + n− 1 ≤ 0

and denote MMod the category of stable modular Σ-modules.

Stability (36) says that E(g, n) is trivial for (g, n) = (0,−1), (1,−1), (0, 0) and (0, 1). We

will sometimes express the stability of E by writing E = {E(g, n)}(g,n)∈S, where

S := {(g, n) | g ≥ 0, n ≥ −1 and 2g + n− 1 > 0}.

Recall that a genus g Riemann surface with k marked points is stable if it does not admit

infinitesimal automorphisms. This happens if and only if 2(g − 1) + k > 0, that is, excluded is

the torus with no marked points and the sphere with less than three marked points. Thus the

stability property of modular Σ-modules is analogous to the stability of Riemann surfaces.

Now we introduce graphs that serve as pasting schemes for modular operads. The naive notion

of a graph as we have used it up to this point is not subtle enough; we need to replace it by a

more sophisticated:

Definition 49. A graph Γ is a finite set Flag(Γ) (whose elements are called flags or half-edges)

together with an involution σ and a partition λ. The vertices vert(Γ) of a graph Γ are the blocks

of the partition λ, we assume also that the number of these blocks is finite. The edges Edg(Γ)

are pairs of flags forming a two-cycle of σ. The legs Leg(Γ) are the fixed points of σ.

We also denote by edge(v) the flags belonging to the block v or, in common speech, half-

edges adjacent to the vertex v. We say that graphs Γ1 and Γ2 are isomorphic if there exists a

set isomorphism ϕ : Flag(Γ1) → Flag(Γ2) that preserves the partitions and commutes with the

involutions. We may associate to a graph Γ a finite one-dimensional cell complex |Γ|, obtained

by taking one copy of [0, 1
2
] for each flag, a point for each block of the partition, and imposing

the following equivalence relation: The points 0 ∈ [0, 1
2
] are identified for all flags in a block of

the partition λ with the point corresponding to the block, and the points 1
2
∈ [0, 1

2
] are identified

for pairs of flags exchanged by the involution σ.

We call |Γ| the geometric realization of Γ. Observe that empty blocks of the partition generate

isolated vertices in the geometric realization. We will usually make no distinction between the

graph and its geometric realization. As an example (taken from [33]), consider the graph with

{a, b, . . . , i} as the set of flags, the involution σ = (df)(eg) and the partition {a, b, c, d, e} ∪
{f, g, h, i}. The geometric realization of this graph is the ‘sputnik’ in Figure 9.

Let us introduce labeled versions of the above notions. A (vertex-) labeled graph is a connected

graph Γ together with a map g (the genus map) from vert(Γ) to the set {0, 1, 2, . . .}. Labeled
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graphs Γ1 and Γ2 are isomorphic if there exists an isomorphism preserving the labels of the

vertices. The genus g(Γ) of a labeled graph Γ is defined by

(37) g(Γ) := b1(Γ) +
∑

v∈vert(Γ)

g(v),

where b1(Γ) := dimH1(|Γ|) is the first Betti number of the graph |Γ|, i.e. the number of indepen-

dent circuits of Γ. A graph Γ is stable if

2(g(v)− 1) + |edge(v)| > 0,

at each vertex v ∈ vert(Γ).

For g ≥ 0 and n ≥ −1, let MGr(g, n) be the groupoid whose objects are pairs (Γ, `) consisting of

a stable (vertex-) labeled graph Γ of genus g and an isomorphism ` : Leg(Γ)→ {0, . . . , n} labeling

the legs of Γ by elements of {0, . . . , n}. Morphisms of MGr(g, S) are isomorphisms of vertex-labeled

graphs preserving the labeling of the legs. The stability implies, via an elementary combinatorial

topology that, for each fixed g ≥ 0 and n ≥ −1, there is only a finite number of isomorphism

classes of stable graphs Γ ∈ MGr(g, n), see [33, Lemma 2.16].

We will also need the following obvious generalization of (30): if E = {E(g, n)}g≥0,n≥−1 is a

modular Σ-module and X a set with n+ 1 elements, then

(38) E((g,X)) := E(g, n)×Σ+
n

Bij ([n]+, X), g ≥ 0, n ≥ −1.

For a modular Σ-module E = {E(g, n)}g≥0,n≥−1 and a labeled graph Γ, let E((Γ)) be the product

(39) E((Γ)) :=
⊗

v∈vert(Γ)

E((g(v), edge(v))).

Evidently, the correspondence Γ 7→ E((Γ)) defines a functor from the category MGr(g, n) to the

category of k-modules and their isomorphisms. We may thus define an endofunctor M on the

category MMod of stable modular Σ-modules by the formula

ME(g, n) := colim
Γ ∈ MGr(g, n)

E((Γ)), g ≥ 0, n ≥ −1.

Choosing a representative for each isomorphism class in MGr(g, n), one obtains the identifica-

tion

(40) ME(g, n) ∼=
⊕

[Γ]∈{MGr(g, n)}

E((Γ))Aut(Γ), g ≥ 0, n ≥ −1,

where {MGr(g, n)} is the set of isomorphism classes of objects of the groupoid MGr(g, n) and the

subscript Aut(Γ) denotes the space of coinvariants. Stability (36) implies that the summation

in the right-hand side of (40) is finite. Formula (40) generalizes (26) which does not contain

coinvariants because there are no nontrivial automorphisms of leaf-labeled trees. On the other

hand, stable labeled graphs with nontrivial automorphisms are abundant, an example can be

easily constructed from the graph in Figure 9. The functor M carries a triple structure of

‘erasing the braces’ similar to the one used on pages 26 and 28.

Definition 50. A modular operad is an algebra over the triple M : MMod→ MMod.
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Figure 10. A stable curve and its dual graph. The curve C on the left has five
components Ai, 1 ≤ i ≤ 5, and three marked points x0, x1 and x2. The dual graph
Γ(C) on the right has five vertices ai, 1 ≤ i ≤ 5, corresponding to the components
of the curve and three legs labeled by the marked points.

Therefore a modular operad is a stable modular Σ-module A = {A(g, n)}(g,n)∈S equipped with

operations that determine coherent contractions along stable modular graphs. Observe that the

stability condition is built firmly into the very definition. Very crucially, modular operads do

not have units, because such a unit ought to be an element of the space A(0, 1) which is empty,

by (36).

One can easily introduce un-stable modular operads and their unital versions, but the main

motivating example reviewed below is stable. We will consider an extension of the Grothendieck-

Knudsen configuration operad M0 = {M0(n)}n≥2 consisting of moduli spaces of stable curves of

arbitrary genera in the sense of the following generalization of Definition 15:

Definition 51. A stable (n + 1)-pointed curve, n ≥ 0, is a connected complex projective curve

C with at most nodal singularities, together with a ‘marking’ given by a choice x0, . . . , xn ∈ C of

smooth points. The stability means, as usual, that there are no infinitesimal automorphisms of

C fixing the marked points and double points.

The stability in Definition 51 is equivalent to saying that each smooth component of C isomor-

phic to the complex projective space CP
1 has at least three special points and that each smooth

component isomorphic to the torus has at least one special point, where by a special point we

mean either a double point or a node.

The dual graph Γ = Γ(C) of a stable (n + 1)-pointed curve C = (C, x0, . . . , xn) is a labeled

graph whose vertices are the components of C, edges are the nodes and its legs are the points

{xi}0≤i≤n. An edge ey corresponding to a nodal point y joins the vertices corresponding to the

components intersecting at y. The vertex vK corresponding to a branch K is labeled by the

genus of the normalization of K. See [37, page 23] for the normalization and recall that a curve

is normal if and only if it is nonsingular. The construction of Γ(C) from a curve C is visualized

in Figure 10.

Let us denote by Mg,n+1 the coarse moduli space [37, page 347] of stable (n + 1)-pointed

curves C such that the dual graph Γ(C) has genus g, in the sense of (37). The genus of Γ(C) in

fact equals the arithmetic genus of the curve C, thus Mg,n+1 is the coarse moduli space of stable

curves of arithmetic genus g with n+ 1 marked points. By a result of P. Deligne, F.F. Knudsen

and D. Mumford [18, 51, 50], Mg,n+1 is a projective variety.
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Observe that, for a curve C ∈ M0,n+1, the graph Γ(C) must necessarily be a tree and all

components of C must be smooth of genus 0, therefore M0,n+1 coincides with the moduli space

M0(n) of genus 0 stable curves with n + 1 marked points that we discussed in Section 2. Dual

graphs of curves C ∈Mg,n+1 are stable labeled graphs belonging to MGr(g, n+ 1).

The symmetric group Σ+
n acts on Mg,n+1 by renumbering the marked points, therefore

M := {M(g, n)}g≥0,n≥−1,

with M(g, n) := Mg,n+1, is a modular Σ-module in the category of projective varieties. Since

there are no stable curves of genus g with n+1 punctures if 2g+n−1 ≤ 0, M is a stable modular

Σ-module. Let us define the contraction along a stable graph Γ ∈ MGr(g, n)

(41) αΓ : M((Γ)) =
∏

v∈vert(Γ)

M((g(v), edge(v)))→M(g, n)

by gluing the marked points of curves from M((g(v), edge(v))), v ∈ vert(Γ), according to the

graph Γ. To be more precise, let
∏

v∈vert(Γ)

Cv, where Cv ∈M((g(v), edge(v))),

be an element of M((Γ)). Let e be an edge of the graph Γ connecting vertices v1 and v2, e =

{yev1 , y
e
v2
}, where yevi

is a marked point of the component Cvi
, i = 1, 2, which is also the name of

the corresponding flag of the graph Γ. The curve αΓ(C) is then obtained by the identifications

yev1 = yev2 , introducing a nodal singularity, for all e ∈ Edg(Γ). The procedure is the same as

that described for the tree level in Section 2. As proved in [33, § 6.2], the contraction maps (41)

define on the stable modular Σ-module of coarse moduli spaces M = {M(g, n)}(g,n)∈S a modular

operad structure in the category of complex projective varieties.

Let us look more closely at the structure of the modular triple M . Given a (stable or unstable)

modular Σ-module E , there is, for each g ≥ 0 and n ≥ −1, a natural decomposition

M(E)(g, n) = M 0(E)(g, n)⊕M 1(E)(g, n)⊕M 2(E)(g, n)⊕ · · · ,

with Mk(E)(g, n) the subspace obtained by summing over graphs Γ with dimH1(|Γ|) = k, k ≥ 0.

In particular, M0(E)(g, n) is a summation over simply connected graphs. It is not difficult to

see that M0(E) is a subtriple of M(E). This shows that modular operads are M 0-algebras with

some additional operations (the ‘contractions’) that raise the genus and generate the higher

components Mk, k ≥ 1, of the modular triple M .

There seems to be a belief expressed in the proof of [33, Lemma 3.4] and also in [33, Theo-

rem 3.7] that, in the stable case, the triple M 0 is equivalent to the non-unital cyclic operad triple

Ψ+, but it is not so. The triple M 0 is much bigger , for example, if a ∈ E(1, 0), then M 0(E)(2,−1)

contains a non-operadic element
aa
••

which can be also written, using (35), as a0◦0a. The corresponding part Ψ+(E)(−1) of the cyclic

triple is empty. In the Grothendieck-Knudsen modular operad M, an element of the above type

is realized by two tori meeting at a nodal point.
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On the other hand, the triple M 0 restricted to the subcategory of stable modular Σ-modules

E such that E(g, n) = 0 for g > 0 indeed coincides with the non-unital cyclic operad triple Ψ+,

as was in fact proved in [33, page 81]. Therefore, given a modular operad A = {A(g, n)}(g,n)∈S,

there is an induced non-unital cyclic operad structure on the cyclic collection A[ := {A(0, n)}n≥2.

We will call A[ the associated cyclic operad . For example, the cyclic operad associated to the

Grothendieck-Knudsen modular operad M equals its genus zero part M0.

A biased definition of modular operads can be found in [83, Definition II.5.35]. It is formulated

in terms of operations

{i◦j : A(g,m)⊗A(h, n)→ A(g + h,m+ n); 0 ≤ i ≤ m, 0 ≤ j ≤ n, g, h ≥ 0}

together with contractions
{
ξ{i,j} : A(g,m)→ A(g + 1, m− 2); m ≥ 1, g ≥ 0

}

that generalize (33) and (34).

Example 52. Let V = (V,B) be a vector space with a symmetric inner product B : V ⊗V → k.

Denote, for each g ≥ 0 and n ≥ −1,

EndV (g, n) := V ⊗(n+1).

It is clear from definition (39) that, for any labeled graph Γ ∈ MGr(g, n), EndV ((Γ)) = V ⊗Flag(Γ).

Let B⊗Edg(Γ) : V ⊗Flag(Γ) → V ⊗Leg(Γ) be the multilinear form which contracts the factors

of V ⊗Flag(Γ) corresponding to the flags which are paired up as edges of Γ. Then we define

αΓ : EndV ((Γ))→ EndV (g, n) to be the map

αΓ : EndV ((Γ)) = V ⊗Flag(Γ)
B⊗Edg(Γ)

−−−→ V ⊗Leg(Γ) V ⊗`

−→ V ⊗(n+1) = EndV (g, n),

where ` : Leg(Γ) → {0, . . . , n} is the labeling of the legs of Γ. It is easy to show that the

compositions {αΓ; Γ ∈ MGr(g, n)} define on EndV the structure of an un-stable unital modular

operad, see [33, § 2.25].

An algebra over a modular operad A is a vector space V with an inner product B, together

with a morphism ρ : A → EndV of modular operads. Several important structures are algebras

over modular operads. For example, an algebra over the homology H∗(M) of the Grothendieck-

Knudsen modular operad is the same as a cohomological field theory in the sense of [55]. Other

physically relevant algebras over modular operads can be found in [33, 78, 83]. Relations between

modular operads, chord diagrams and Vassiliev invariants are studied in [42].

8. PROPs

Operads are devices invented to describe structures consisting of operations with several inputs

and one output. There are, however, important structures with operations having several inputs

and several outputs. Let us recall the most prominent one:

Example 53. A (associative) bialgebra is a k-module V with a multiplication µ : V ⊗ V → V

and a comultiplication (also called a diagonal) ∆ : V → V ⊗V . The multiplication is associative:

µ(µ⊗ idV ) = µ(idV ⊗ µ),
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the comultiplication is coassociative:

(∆⊗ idV )∆ = (idV ⊗∆)∆

and the usual compatibility between µ and ∆ is assumed:

(42) ∆(u · v) = ∆(u) ·∆(v) for u, v ∈ V,

where u · v := µ(u, v) and the dot · in the right hand side denotes the multiplication induced on

V ⊗ V by µ. Loosely speaking, bialgebras are Hopf algebras without unit, counit and antipode.

PROPs (an abbreviation of product and permutation category) describe structures as in

Example 53. Although PROPs are more general than operads, they appeared much sooner, in

a 1965 Mac Lane’s paper [68]. This might be explained by the fact that the definition of PROPs is

more compact than that of operads – compare Definition 54 below with Definition 1 in Section 1.

PROPs then entered the ‘renaissance of operads’ in 1996 via [73].

Definition 54 uses the notion of a symmetric strict monoidal category which we consider so

basic and commonly known that we will not recall it, standard citations are [68, 67], see also [83,

§ II.1.1]. An example is the category Modk of k-modules, with the monoidal product � given by

the tensor product ⊗ = ⊗k, the symmetry SU,V : U ⊗ V → V ⊗ U defined as SU,V (u, v) := v⊗ u
for u ∈ U and v ∈ V , and the unit 1 the ground ring k.

Definition 54. A (k-linear) PROP (called a theory in [73]) is a symmetric strict monoidal

category P = (P,�, S, 1) enriched over Modk such that

(i) the objects are indexed by (or identified with) the set N = {0, 1, 2, . . .} of natural numbers,

and

(ii) the product satisfies m�n = m+n, for any m,n ∈ N = Ob(P) (hence the unit 1 equals 0).

Recall that the Modk-enrichment in the above definition means that each hom-set MorP(m,n)

is a k-module and the operations of the monoidal category P (the composition ◦, the product �
and the symmetry S) are compatible with this k-linear structure.

For a PROP P denote P(m,n) := MorP(m,n). The symmetry S induces, via the canonical

identifications m ∼= 1�m and n ∼= 1�n, on each P(m,n) a structure of (Σm,Σn)-bimodule (left Σm-

right Σn-module such that the left action commutes with the right one). Therefore a PROP is a

collection P = {P(m,n)}m,n≥0 of (Σm,Σn)-bimodules, together with two types of compositions,

horizontal

⊗ : P(m1, n1)⊗ · · · ⊗ P(ms, ns)→ P(m1 + · · ·+ms, n1 + · · ·+ ns),

induced, for all m1, . . . , ms, n1, . . . , ns ≥ 0, by the monoidal product � of P, and vertical

◦ : P(m,n)⊗ P(n, k)→ P(m, k),

given, for all m,n, k ≥ 0, by the categorial composition. The monoidal unit is an element

e := 1 ∈ P(1, 1). In Definition 54, Modk can be replaced by an arbitrary symmetric strict

monoidal category.

Let P = {P(m,n)}m,n≥0 and Q = {Q(m,n)}m,n≥0 be two PROPs. A homomorphism f :

P → Q is a sequence f = {f(m,n) : P(m,n) → Q(m,n)}m,n≥0 of bi-equivariant maps which

commute with both the vertical and horizontal compositions. An ideal in a PROP P is a system
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I = {I(m,n)}m,n≥0 of left Σm- right Σn-invariant subspaces I(m,n) ⊂ P(m,n) which is closed, in

the obvious sense, under both the vertical and horizontal compositions. Kernels, images, &c., of

homomorphisms between PROPs, as well as quotients of PROPs by PROPic ideals, are defined

componentwise, see [73, 111, 112, 113] for details.

Example 55. The endomorphism PROP of a k-module V is the system

EndV = {EndV (m,n)}m,n≥0

with EndV (m,n) the space of linear maps Lin(V ⊗n, V ⊗m) with n ‘inputs’ and m ‘outputs,’

e ∈ EndV (1, 1) the identity map, horizontal composition given by the tensor product of linear

maps, and vertical composition by the ordinary composition of linear maps.

Also algebras over PROPs can be introduced in a very concise way:

Definition 56. A P-algebra is a strict symmetric monoidal functor λ : P → Modk of enriched

monoidal categories. The value λ(1) is the underlying space of the algebra ρ.

It is easy to see that a P-algebra is the same as a PROP homomorphism ρ : P→ EndV . As in

Proposition 24, a P-algebra is determined by a system

α : P(m,n)⊗ V ⊗n → V ⊗m, m, n,≥ 0,

of linear maps satisfying appropriate axioms.

As before, the first step in formulating an unbiased definition of PROPs is to specify their

underlying category. A Σ-bimodule is a system E = {E(m,n)}m,n≥0 such that each E(m,n)

is a left k[Σm]- right k[Σn]-bimodule. Let Σ-bimod denote the category of Σ-bimodules. For

E ∈ Σ-bimod and finite sets Y,X with m resp. n elements put

E(Y,X) := Bij (Y, [m])×Σm
E(m,n)×Σn

Bij ([n], X), m, n ≥ 0,

where Bij (−,−) is the same as in (22). Pasting schemes for PROPs are directed (m,n)-graphs,

by which we mean finite, not necessary connected, graphs in the sense of Definition 49 such that

(i) each edge is equipped with a direction

(ii) there are no directed cycles and

(iii) the set of legs is divided into the set of inputs labeled by {1, . . . , n} and the set of outputs

labeled by {1, . . . , m}.

An example of a directed graph is given in Figure 11. We denote by Gr(m,n) the category of

directed (m,n)-graphs and their isomorphisms. The direction of edges determines at each vertex

v ∈ vert(G) of a directed graph G a disjoint decomposition

edge(v) = in(v) t out(v)

of the set of edges adjacent to v into the set in(v) of incoming edges and the set out(v) of outgoing

edges. The pair (#(out(v)),#(in(v))) ∈ N×N is called the biarity of v. To incorporate the unit,

we need to extend the category Gr(m,n), for m = n, into the category UGr(m,n) by allowing the

exceptional graph

↑ ↑ ↑ · · · ↑ ∈ UGr(n, n), n ≥ 1,
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Figure 11. A directed graph from Gr(4, 3).

with n inputs, n outputs and no vertices. For a graph G ∈ UGr(m,n) and a Σ-bimodule E, let

E(G) :=
⊗

v∈vert(G)

E(out(v), in(v)).

and

(43) ΓP(E)(m,n) := colim
G ∈ UGr(m,n)

E(G), m, n ≥ 0.

The Σ-bimodule ΓP(E) is a PROP, with the vertical composition given by the disjoint union

of graphs, the horizontal composition by grafting the legs, and the unit the exceptional graph

↑ ∈ ΓP(E)(1, 1). The following proposition follows from [84] and [111, 112, 113]:

Proposition 57. The PROP ΓP(E) is the free PROP generated by the Σ-bimodule E.

As in the previous sections, (43) defines a triple ΓP : Σ-bimod → Σ-bimod with the triple

multiplication of erasing the braces. According to general principles [20], Proposition 57 is

almost equivalent to

Proposition 58. PROPs are algebras over the triple ΓP.

One may obviously consider non-unital PROPs defined as algebras over the triple

ΨP(E)(m,n) := colim
G ∈ Gr(m,n)

E(G), m, n ≥ 0,

and develop a theory parallel to the theory of non-unital operads reviewed in Section 2.

Example 59. We will use the graphical language explained in Example 36. Let Γ( , ) be the

free PROP generated by one operation of biarity (1, 2) and one operation of biarity (2, 1).

As we noticed already in [72, 73], the PROP B describing bialgebras equals

B = Γ( , )/IB,

where IB is the PROPic ideal generated by

(44) − , − and − @@ .
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In the above display we denoted

:= ◦ ( ⊗ e), := ◦ (e⊗ ), := ( ⊗ e) ◦ , := (e⊗ ) ◦ ,

:= ◦ and @@ := ( ⊗ ) ◦ κ ◦ ( ⊗ ),

where κ ∈ Σ4 is the permutation

(45) κ :=

(
1 2 3 4
1 3 2 4

)
=

•

•

•

•

•

•

•

•

�@ .

The above description of B is ‘tautological,’ but B. Enriquez and P. Etingof found in [24,

Proposition 6.2] the following basis of the k-linear space B(m,n) for arbitrary m,n ≥ 1. Let

∈ B(1, 2) be the equivalence class, in B = Γ( , )/IB, of the generator ∈ Γ( , )(1, 2) (we

use the same symbol both for a generator and its equivalence class). Define [1] := e ∈ B(1, 1)

and, for a ≥ 2, let

[a] := ◦ ( ⊗ e) ◦ ( ⊗ e⊗2) ◦ · · · ◦ ( ⊗ e⊗(a−2)) ∈ B(1, a).

Let [b] ∈ B(b, 1) has the obvious similar meaning. The elements

(46) ( [a1] ⊗ · · · ⊗ [am]) ◦ σ ◦ ( [b1] ⊗ · · · ⊗ [bn]),

where σ ∈ ΣN for some N ≥ 1, and a1 + · · · + am = b1 + · · · + bm = N , form a k-linear basis

of B(m,n). This result can also be found in [57]. See also [59, 94] for the bialgebra PROP viewed

from a different perspective.

Example 60. Each operad P generates a unique PROP P such that P(1, n) = P(n) for each

n ≥ 0. The components of such a PROP are given by

P(m,n) =
⊕

r1+···+rk=n

[P(1, r1)⊗ · · · ⊗ P(1, rk)]×Σr1×···×Σrk
Σn,

for each m,n ≥ 0. The (topological) PROPs considered in [10] are all of this type. On the other

hand, Example 59 shows that not each PROP is of this form. A PROP P is generated by an

operad if and only if it has a presentation P = ΓP(E)/(R), where E is a Σ-bimodule such that

E(m,n) = 0 for m 6= 1 and R is generated by elements in ΓP(E)(1, n), n ≥ 0.

9. Properads, dioperads and 1
2
PROPs

As we saw in Proposition 33, under some mild assumptions, the components of free oper-

ads are finite-dimensional. In contrast, PROPs are huge objects. For example, the component

ΓP( , )(m,n) of the free PROP ΓP( , ) used in the definition of the bialgebra PROP B in

Example 59 is infinite-dimensional for each m,n ≥ 1, and also the components of the bialge-

bra PROP B itself are infinite-dimensional, as follows from the fact that the Enriquez-Etingof

basis (46) of B(m,n) has, for m,n ≥ 1, infinitely many elements.

To handle this combinatorial explosion of PROPs combined with lack of suitable filtrations,

smaller versions of PROPs were invented. Let us begin with the simplest modification which we

use as an example which explains the general scheme of modifying PROPs. Denote UGrc(m,n)
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the full subcategory of UGr(m,n) consisting of connected graphs and consider the triple defined

by

(47) Γc(E)(m,n) := colim
G ∈ UGrc(m,n)

E(G), m, n ≥ 0,

for E ∈ Σ-bimod. The following notion was introduced by B. Vallette [111, 112, 113].

Definition 61. Properads are algebras over the triple Γc : Σ-bimod → Σ-bimod.

A properad is therefore a Σ-bimodule with operations that determine coherent contractions

along connected graphs. A biased definition of properads is given in [111, 112, 113]. Since Γc
is a subtriple of ΓP, each PROP is automatically also a properad. Therefore one may speak

about the endomorphism properad EndV and define algebras over a properad P as properad

homomorphisms ρ : P → EndV . Algebras over other versions of PROPs recalled below can be

defined in a similar way.

Example 62. Associative bialgebras reviewed in Example 59 are algebras over the properad B

defined (tautologically) as the quotient of the free properad Γc( , ) by the properadic ideal

generated by the elements listed in (44). We leave as an exercise to describe the sub-basis of (46)

that span B(m,n), m,n ≥ 1.

The following slightly artifical structure exists over PROPs but not over properads. It consists

of a ‘multiplication’ µ = : V ⊗ V → V , a ‘comultiplication’ ∆ = : V → V ⊗ V and a linear

map f = • : V → V satisfying ∆ ◦ µ = f ⊗ f or, diagrammatically

= • •.

This structure cannot be a properad algebra because the graph on the right hand side of the

above display is not connected.

Properads are still huge objects. The first really small version of PROPs were dioperads

introduced in 2003 by W.L. Gan [28]. As a motivation for his definition, consider the following:

Example 63. A Lie bialgebra is a vector space V with a Lie algebra structure [−,−] = :

V ⊗V → V and a Lie diagonal δ = : V → V ⊗V . We assume that [−,−] and δ are related by

(48) δ[a, b] =
∑(

[a(1), b]⊗ a(2) + [a, b(1)]⊗ b(2) + a(1) ⊗ [a(2), b] + b(1) ⊗ [a, b(2)]
)

for any a, b ∈ V , with the Sweedler notation δa =
∑
a(1) ⊗ a(2) and δb =

∑
b(1) ⊗ b(2).

Lie bialgebras are governed by the PROP LieB = Γ( , )/ILieB, where and are now

antisymmetric and ILieB denotes the ideal generated by

(49)
1 2 3

+
2 3 1

+
3 1 2

,
1 2 3

+
2 3 1

+
3 1 2

and
1 2

1 2

−
21

21

−
1 2

1 2

+
21

12

+
1 2

2 1

,

with labels indicating the corresponding permutations of the inputs and outputs.

We observe that all graphs in (49) are not only connected as demanded for properads, but

also simply-connected. This suggests considering the full subcategory UGrD(m,n) of UGr(m,n)
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consisting of connected simply-connected graphs and the related triple

(50) ΓD(E)(m,n) := colim
G ∈ UGrD(m, n)

E(G), m, n ≥ 0.

Definition 64. Dioperads are algebras over the triple ΓD : Σ-bimod→ Σ-bimod.

A biased definition of dioperads can be found in [28]. As observed by T. Leinster, dioperads are

more or less equivalent to polycategories, in the sense of [108], with one object. Lie bialgebras

reviewed in Example 63 are algebras over a dioperad. Another important class of dioperad

algebras is recalled in:

Example 65. An infinitesimal bialgebra [48] (called in [26, Example 11.7] a mock bialgebra)

is a vector space V with an associative multiplication · : V ⊗ V → V and a coassociative

comultiplication ∆ : V → V ⊗ V such that

∆(a · b) =
∑(

a(1) ⊗ a(2) · b+ a · b(1) ⊗ b(2)
)

for any a, b ∈ V . It is easy to see that the axioms of infinitesimal bialgebras are encoded by the

following simply connected graphs:

− , − and − − .

Observe that associative bialgebras recalled in Example 53 cannot be defined over dioperads,

because the rightmost graph in (44) is not simply connected. The following proposition, which

should be compared to Proposition 33, shows that dioperads are of the same size as operads.

Proposition 66. Let E = {E(m,n)}m,n≥0 be a Σ-bimodule such that

(51) E(m,n) = 0 for m+ n ≤ 2

and that E(m,n) is finite-dimensional for all remaining m,n. Then the components ΓD(E)(m,n)

of the free dioperad ΓD(E) are finite-dimensional, for all m,n ≥ 0.

The proof, similar to the proof of Proposition 33, is based on the observation that the assump-

tion (51) reduces the colimit (50) to a summation over reduced trees (trees whose all vertices

have at least three adjacent edges).

An important problem arising in connection with deformation quantization is to find a reason-

ably small, explicit cofibrant resolution of the bialgebra PROP B. Here by a resolution we mean

a differential graded PROP R together with a homomorphism β : R → B inducing a homology

isomorphism. Cofibrant in this context means that R is of the form (ΓP(E), ∂), where the gen-

erating Σ-bimodule E decomposes as E =
⊕

n≥0En and the differential decreases the filtration,

that is

∂(En) ⊂ ΓP(E)<n, for each n ≥ 0,

where ΓP(E)<n denotes the sub-PROP of Γ(E) generated by
⊕

j<nEj. This notion is an PROPic

analog of the Koszul-Sullivan algebra in rational homotopy theory [36]. Several papers devoted

to finding R appeared recently [57, 99, 97, 98, 101, 103, 102]. The approach of [79] is based on

the observation that B is a deformation, in the sense explained below, of the PROP describing

structures recalled in the following:
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Figure 12. Edges allowed in a 1
2
graph.

Definition 67. A half-bialgebra or simply a 1
2
bialgebra is a vector space V with an associative

multiplication µ : V ⊗ V → V and a coassociative comultiplication ∆ : V → V ⊗ V that satisfy

(52) ∆(u · v) = 0, for each u, v ∈ V.

We chose this strange name because (52) is indeed one half of the compatibility relation (42)

of associative bialgebras. 1
2
bialgebras are algebras over the PROP

1
2
B := Γ( )/( = , = , = 0).

Now define, for a formal variable t, Bt to be the quotient of the free PROP Γ( , ) by the ideal

generated by

= , = , = t · @@ .

Thus Bt is a one-parametric family of PROPs with the property that B0 = 1
2
B. At a generic t,

Bt is isomorphic to the bialgebra PROP B. In other words, the PROP for bialgebras is a deforma-

tion of the PROP for 1
2
bialgebras. According to general principles of homological perturbation

theory [35], one may try to construct the resolution R as a perturbation of a cofibrant resolution
1
2
R of the PROP 1

2
B. Since 1

2
B is simpler that B, one may expect that resolving 1

2
B would be a

simpler task than resolving B.

For instance, one may realize that 1
2
bialgebras are algebras over a dioperad 1

2
B, use [28] to

construct a resolution 1
2
R of the dioperad 1

2
B, and then take 1

2
R to be the PROP generated by 1

2
R.

More precisely, one denotes

(53) F1 : diOp→ PROP

the left adjoint to the forgetful functor PROP
�1−→ diOp and defines 1

2
R := F1(

1
2
R).

The problem is that we do not know whether the functor F1 is exact, so it is not clear if 1
2
R

constructed in this way is really a resolution of 1
2
B. To get around this subtlety, M. Kontsevich

observed that 1
2
bialgebras live over a version of PROPs which is smaller than dioperads. It can

be defined as follows.

Let an (m,n)-1
2
graph be a connected simply-connected directed (m,n)-graph whose each edge

e has the following property: either e is the unique outgoing edge of its initial vertex or e is the

unique incoming edge of its terminal vertex, see Figure 12. An example of an (m,n)- 1
2
graph is

given in Figure 13. Let Gr 1
2
(m,n) be the category of (m,n)- 1

2
graphs and their isomorphisms.

Define a triple Γ 1
2

: Σ-bimod→ Σ-bimod by
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Figure 13. A graph from Gr 1
2
(4, 4).

(54) Γ 1
2
(E)(m,n) := colim

G ∈ Gr 1

2

(m, n)

E(G), m, n ≥ 0.

Definition 68. A 1
2
PROP (called a meager PROP in [53]) is an algebra over the triple Γ 1

2
:

Σ-bimod → Σ-bimod.

A biased definition of 1
2
PROPs can be found in [53, 79, 84]. We followed the original convention

of [53] that 1
2
PROPs do not have units; the unital version of 1

2
PROPs can be defined in an obvious

way, compare also the remarks in [79].

Example 69. 1
2
bialgebras are algebras over a 1

2
PROP which we denote 1

2
b. Another example

of structures that can be defined over 1
2
PROPs are Lie 1

2
bialgebras consisting of a Lie algebra

bracket [−,−] : V ⊗ V → V and a Lie diagonal δ : V → V ⊗ V satisfying one-half of (48):

δ[a, b] = 0.

Let us denote by

F : 1
2
PROP→ PROP

the left adjoint to the forgetful functor PROP
�
−→ 1

2
PROP from the category of PROPs to the

category of 1
2
PROPs. M. Kontsevich observed that, in contrast to F1 : diOp → PROP in (53),

F is a polynomial functor, which immediately implies the following important theorem [53, 84].

Theorem 70. The functor F : 1
2
PROP→ PROP is exact.

Now one may take a resolution 1
2
r of the 1

2
PROP 1

2
b and put 1

2
R := F (1

2
r). Theorem 70

guarantees that 1
2
R defined in this way is indeed a resolution of the PROP 1

2
B. Let us mention

that there are also other structures invented to study resolutions of the PROP B, as 2
3
PROPs of

Shoikhet [101], matrons of Saneblidze and Umble [99], or special PROPs considered in [79].

– – – – –
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Pasting schemes corresponding structures

rooted trees non-unital operads

May’s trees non-unital May’s operads

extended rooted trees operads

cyclic trees non-unital cyclic operads

extended cyclic trees cyclic operads

stable labeled graphs modular operads

extended directed graphs PROPs

extended connected directed graphs properads

extended connected 1-connected dir. graphs dioperads
1
2
graphs 1

2
PROPs

Figure 14. Pasting schemes and the structures they define.

The constructions reviewed in this section can be organized into the following chain of inclu-

sions of full subcategories:

Oper ⊂ 1
2
PROP ⊂ diOp ⊂ Proper ⊂ PROP.

The general scheme behind all these constructions is the following. We start by choosing a

sub-groupoid SGr =
⊔
m,n≥0 SGr(m,n) of Gr :=

⊔
m,n≥0 Gr(m,n) (or a subgroupoid of UGr :=⊔

m,n≥0
UGr(m, n) if we want units). Then we define a functor ΓS : Σ-bimod→ Σ-bimod by

ΓS(E)(m,n) := colim
G ∈ SGr(m,n)

E(G), m, n ≥ 0.

It is easy to see that ΓS is a subtriple of the PROP triple ΓP if and only if the following two

conditions are satisfied:

(i) the groupoid SGr is hereditary in the sense that, given a graph from SGr with vertices

decorated by graphs from SGr, then the graph obtained by ‘forgetting the braces’ again

belongs to SGr, and

(ii) SGr contains all directed corollas.

Hereditarity (i) is necessary for ΓS to be closed under the triple multiplication of ΓP while (ii)

guarantees that ΓS has an unit. Plainly, all the three choices used above – UGrc, UGrD and Gr 1
2

– satisfy the above assumptions. Let us mention that one may modify the definition of PROPs

also by enlarging the category Gr(m,n), as was done for wheeled PROPs in [93]. Pasting schemes

and the corresponding structures reviewed in this article are listed in Figure 14.

References

[1] D. Balavoine. Homology and cohomology with coefficients, of an algebra over a quadratic operad. J. Pure
Appl. Algebra, 132:221–258, 1998.

[2] M. A. Batanin. Monoidal globular categories as a natural environment for the theory of weak n-categories.
Adv. in Math., 136(1):39–103, 1998.



46 M. MARKL

[3] M.A. Batanin. Homotopy coherent category theory and A∞-structures in monoidal categories. J. Pure Appl.
Algebra, 123(1-3):67–103, 1998.

[4] M.A. Batanin. The Eckmann-Hilton argument, higher operads and En-spaces. Preprint math.CT/0207281,
July 2002.

[5] M.A. Batanin. The combinatorics of iterated loop spaces. Preprint math.CT/0301221, January 2003.
[6] A. Beilinson and V. Drinfel’d. Chiral Algebras, volume 51 of Colloquium Publications. American Mathemat-

ical Society, 2004.
[7] C. Berger and I. Moerdijk. Axiomatic homotopy theory for operads. Comment. Math. Helv., 78(4):805–831,

2003.
[8] C. Berger and I. Moerdijk. Resolution of coloured operads and rectification of homotopy algebras. Preprint

math.AT/0512576, December 2005.
[9] J.M. Boardman and R.M. Vogt. Homotopy-everything H-spaces. Bull. Amer. Math. Soc., 74(6):1117–1122,

1968.
[10] J.M. Boardman and R.M. Vogt. Homotopy Invariant Algebraic Structures on Topological Spaces. Springer-

Verlag, 1973.
[11] A. Burroni. T -catégories (catégories dans un triple). Cahiers Topologie Géom. Différentielle, 12:215–321,
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Algébrique, volume 288, pages 1–24. Springer-Verlag, Berlin, 1972.
[17] P. Deligne. A letter to Stasheff, Gerstenhaber, May, Schechtman and Drinfel’d. Unpublished, 1993.
[18] P. Deligne and D. Mumford. The Irreducibility of the Space of Curves of Given Genus, volume 36 of Inst.

Hautes Études Sci. Publ. Math. I.H.E.S., 1969.
[19] S. L. Devadoss. Tessellations of moduli spaces and the mosaic operad. In J.P. Meyer, J. Morava, and W.S.

Wilson, editors, Homotopy Invariant Algebraic Structures, volume 239 of Contemporary Math., pages 91–
114, 1999.

[20] S. Eilenberg and J.C. Moore. Adjoint functors and triples. Illinois J. Math., 9:381–389, 1965.
[21] A.D. Elmendorf. The development of structured ring spectra. In A. Baker and B. Richter, editors, Structured

ring spectra, volume 315 of London Math. Soc. Lecture Note Series. London Math. Soc., 2004.
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