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Abstract

The Navier-Stokes equations for a compressible barotropic fluid in 1D with zero velocity
boundary conditions are considered. We study the case of large initial data in H' as well
as the mass force such that the stationary density is uniquely determined but admits vacua.
Missing uniform lower bound for the density is compensated by a careful modification of the
construction procedure for a Lyapunov functional known for the case of solutions which are
globally away from zero [9]. An immediate consequence of this construction is a decay rate
estimate for this highly singular problem. The results are proved in the Eulerian coordinates
for a large class of increasing state functions including p(p) = ap” with any v > 0 (a > 0 a
constant).
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0 Introduction

The purpose of this study is construction of a Lyapunov functional for 1D Navier-
Stokes equations of a viscous compressible barotropic fluid under the influence of a
large mass force in the case when the stationary density admits vacua. We assume
standard initial-boundary value problem with zero velocity boundary conditions as
in (1.1) — (1.3) below. An immediate product of our construction is a result on a
decay rate of evolutionary solution to the stationary one as time tends to infinity
(see Theorem 1.1).

There are many results about the global behavior of solutions to equations (1.1),
(1.2) below under different boundary conditions and other data and we refer e.g. to
3], [6], [7], [9], [10] and [11] and the references therein, see also results and comments
in a recent monograph [5], Chapter 8.

In this work we continue the research results of which are summarized in [9],
where a Lyapunov functional has been constructed for the case of positive stationary
density given by equations (1.16), (1.17) below. Note that the explicit necessary and
sufficient conditions for such a positivity are known (see Proposition 1.3). Since for
large class of external forces the stationary densities can contain vacua zones while
being uniquely determined, we believe that Lyapunov analysis is important also for
this case. To our knowledge, the only result in this direction and generality is in
[12], where an analogous problem with a free boundary has been tackled.

The free boundary condition allows us to derive a global lower bound for the den-
sity in terms of the stationary density which we are not able to find for the Dirichlet
boundary condition and thus have to find an alternative argument. This argument



is given by a careful use of a comparison quasistationary density approximating the
original one. Two crucial apriori estimates play decisive role in the construction.
An appropriate form of the energy equality and an estimate utilizing the mono-
tonicity of the state function and the analysis of approximative relation between the
quasistationary density and the original density p.

Despite of the singularity of the problem, a large class of mass forces and state
functions is admitted. First, we give a survey of already known results which play
an important role in the following arguments. Then we present the construction of a
special differential equality including the velocity, the density, stationary density and
quasistationary density. The terms including quasistationary density are carefully
analysed with the aim to exclude it from the differential equality and modify it to
a differential inequality including a suitable Lyapunov functional. Resolving the
Lyapunov differential inequality we obtain a decay rate for the convergence of the
evolutionary solution to the stationary one.

1 Basic known facts and the main result

We consider the following system of equations describing 1D-flow of a viscous com-
pressible barotropic fluid

pe+ (pu)a =0, (1.1)
(pu)e + (pu*)s = (pua — p(p))x = pf (1.2)

in the domain @ = (0,¢) x (0,00) with the boundary and initial conditions
Ulymge = 0 plimg = 0°(2), ul,—g = u’(x) in (0,0). (1.3)

Suppose that

f(2,t) = fool@) + g(a,t) with foo € WH(0,0) and g € L™*(Qu). (1.4)
Here Q7 = (0,¢) x (0,T). Throughout the paper we use the anisotropic Lebesgue
space L5(Q) equipped with the norm ||w||zes(@) == ||[[w||zs(0,0) |2 (0,00)» W*P means

the usual Sobolev space. Let the initial functions satisfy

p’u’ € H'(0,0), 0<p’<p’ u

o, =0 (1.5)

Our main requirements on the state function p are as follows.

p is continuous, increasing function on [0, 00), p(0) =0, p(o0) = oo; (1.6)
p' € L2 (0,00), p(r)>0,r>0; (1.7)

p(r) ~ r7asr— 07 with a v > 0; (1.8)

rp'(r) < const asr — 0. (1.9)

We shall study the asymptotic behavior of the strong generalized solution to prob-
lem (1.1) — (1.3) having the following properties: p € C (@T), Pz, Pt € L>>®(Qr),

p>0and ue HY(Qr) N L2(0,T; HY(0,0)), uy, € L2(Qr) for any T > 0.



Define also
7) ::r/lrzwds, (1.10)
H(T,s)z/rwda r,s >0

and F := I f.,. We use the notation Ih := [; h(y) dy for any function h € L'(0, ().
First of all, we remind the mass and energy conservation laws:

[ styin = [Py e = m (L11)
%/Oe (%puZ + P(p) — pF) dz + u/oe(ugg)2 de = /Oe pgu dx (1.12)
or (1.13)

d 1 ¢ ¢
—/ —pu2dx+u/ (uz)zdx:/ (pfsott + pgu — p(p)pu) do. (1.14)
dt Jo 2 0 0

Denote the initial total energy by

¢ pouiy
0 2
In the whole paper we will assume that the stationary problem which is given by
Poo)z = Poofoo 0N (0,0), (1.16)
/ puclr) d =, p >0 (1.17)

has a unique solution p., € L>(0, ().
Our main result is contained in the following theorem.

Theorem 1.1 (Main result) Let conditions (1.4)-(1.8) be satisfied and the sta-
tionary problem (1.16), (1.17)have a unique solution ps, € L>°(0,(). Then for
any to > 0 there are positive constants K := K (to,(,m, 1, Eo, || foc|lw1.(0,0)) and
o = afty, {,m, 1, By, || foollwree0,0)) such that

[ (0 + o110, ) + 10 = pl? + 000) = (7)) (.0 (1.13)

t 00
< ke[t [ elg(s)Bds] + [ llo()Bds}, >,
to t
where 7 is given by (1.27) below and 5> 2 if v < 2 or f > v if v > 2 is arbitrary
but fixed.

Theorem 1.1 will be proved in Section 2 after the following preliminaries.
First, a well-known consequence of energy equation (1.12) is

Proposition 1.2 ([9]) Suppose in addition to (1.6), (1.7) that the conditions
0<p” <N, 200 < N, [ foollze(o < N, (1.19)
19/l zoezi@) < N (1.20)
and ||P(p°)||pi0,0) < N are satisfied. Then we have



(1)

IVpullr2e @) + 1P(0)ll 1) + [l r2(q) < K(N); (1.21)
(ii)
p(x,t) < p=: K(N) (1.22)
holds, and
(iii)
1 ¢
5/ (pu®)(z,t)dr — 0 ast — oo. (1.23)
0

It was already mentioned that there is a necessary and sufficient condition for the
solution ps, € C([0,¢]) of (1.16), (1.17) such that p(ps). € L>(0,() to be positive
(i.e., po > 0). Denoting

Foin = I[HO,iKI]lF(I>, Fox i= n[%%xF(x), C, = s dr < o0,

this condition reads:

Proposition 1.3 ([9]) Let (1.6) be satisfied and f, € L>(0,(). Then the positive
solution ps to the problem (1.16), (1.17) exists if and only if

C, < >
Cp = Or Fmax - Fmin < lI[(OO) ; (124)
L [f U™ (F(2) = F) dz < 1

where W(r) ;= 2L 4 [r2 52 Lds forr >0 and U(0) = 0, with U~ being the inverse of
V. Moreover, fm“ C, < 00, the function U is continuous and increasing on [0, 00).
In addition, the positive solution is unique.

Proposition 1.4 (/9]) Let conditions (1.4) — (1.7) be satisfied and p(-), fso €
BV ([0,€]) and m > 0 be such that there is a unique solution of (1.16), (1.17).
Then

1p(o(t)) = p(AE)|zs 0.0 + 12() = pocllLaey = 0 as £ — 00, Vg e [l,00) (1.25)

and
12(8(t)) — p(psc) (o) — 0 as t — oo, (1.26)
where p = p(x,t) is such that

V=7 [ toenag+ g [ [ ot futminde - [ e de.
(1.27)

Notice, that p satisfies
l l
P =pfus w€(0.0.t>0. [ p@)rde= [ plo)dr, >0, (128)
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Let us note that the idea with ” quasistationary density” p was for the first time used
for stabilization in [4], where the case of 2 and 3 space variables has been treated.

Next Proposition shows that there are fairly general explicit conditions for unique-
ness of the solution to equations (1.16), (1.17). We refer in this respect to ([1]) and
the references therein.

Proposition 1.5 (/2],[1]) Let in addition to (1.7) we have p € C([0,00))NC(0, )
and F = 1f be locally Lipschitz continuous on (0, ().

If [, de(s) < 00, assume in addition, that the upper level sets {x € (0,0); f(x) > k}
are connected in (0, () for any constant k € R.

Then, given m > 0, there is at most one function ps, € L2.(0, () satisfying (1.16),
(1.17) in the sense of distributions.

Moreover, if such a function exists, it is given by the formula

poo =N ([f(2) = ke] ")
for a certain constant ke. (Here [z]T := max{z,0}.)
We will also need the following elementary lemma.

Lemma 1.6 Let ry > 0 and so > 0 be arbitrary fized numbers and assume p(r) ~ 17
asr — 0" with a constant v > 0. Let 3 > 2 if v < 2 and > 7 if v > 2. Then there
is a constant k = k() such that

E(B)|r —s|? < rI(r,s)) forall r € (0,7], s € [0, s0]. (1.29)

Proof. First, let s > 0 be fixed. Then by the 'Hospital rule

. r=s|?
lim ————— 1.30
8 TG ) )
oo if f <2
= Iﬂs lim|s —r|’ 2% = 93(8) if =2
D (5) r—s p ‘s
0if g > 2.
Let now s = 0 and use the assumption p(r) ~ r7 near zero. Then
Tﬁ Tﬁ oo if ﬁ <7
lim ———— = 1lim(f—-1)— =% f—-1if =1 (1.31)
r—0+ rII(r,0))  r—o+ p(r) 0if 3> .

The result immediately follows. O

2 Construction of a Lyapunov functional

Let us subtract the differential equation in (1.28) from equation (1.2). We obtain
the relation

(pu)e + (pu?)y — pitty + p(p)x — (D) = pg. (2.1)



Multiply (2.1) by —I(p(p) — p(p)) and integrate over (0, () :

—5—/ pul(p dm+s/ pul(p(p)e — p(p):) dx
b2 [0 = pu) o) = p()) e+ = [ o) —p@) e (22
= 6/08 pgl(p(P) —
Adding (1.14) multiplied by a positive parameter 7 > 0 and (2.2) we find
dt/ npu (p(p dx-l—?]/ uxdx+5/ pul (p(p): — p(P):) d
v [ (o = ) vlo) ~ (7 >>dx+e/ (0lo) — (7)) dr -+ e [ 2 (23)

= n/oe pug dx +€/0€ pyI(p(p) — p(p)) du.

Next, we also have

s [0l =20 = [l — @) —p@)dr,  (2.)
where (by the equation of continuity and (1.27))
p( (p)t = —(p(p)U)x + (p(p) — 0P’ (p)) U (2.5)
g [0 0) = s+ [ ST (pu)afo) e = I ((pu)f)
Further we have (notice that [;([i hd€)(p(p) — p(p))dx = 0 since [y p(p)dx =
£ p(p)da)
-~ [l P e =~ [ ooV dr - /Zp<p>up<p> o (26)
=5 / dx — ~ / Vo, da + / Ldx
- / Pl dr = / (#(7) — p(p)upfo o + 5 /0 P~ p(p))u, da,
F((pu)efc) = —pufuc — [ pufledo. 2.7

Summarizing (2.4)—(2.7) we get

=y Z(p(p)— p(7)* dx = /[f<p<ﬁ>— <>>upfoodx+1 /z @ — (o)) da
N / ) = (p))u dc + / N(pufoo + I (pufly)) do
= / *Ju, dr + / = o0/ () (28)

+/ I(pufl,) dx



Multiply equality (2.8) by a parameter 6 > 0 and add to (2.3):

L 05) )+ epul (o(7) — plo)) i+ [ (007

b [ oud o) = p@)0) dr + = [ (on® = mpn)(plp) — p(7) da

ve [ 0l0) — p@) de o [ o

+[ /Z<p<> Jueds + [ (00) ~ @) (o) — o1/ (p)) s da
+ [ 0lo) ~ @) (sl da]

= n/o pugdx+€/0 pgI(p(p) — p(p)) dz.

), dx

(2.9)

Our intention now is to compare the integral under 4 with the remaining terms in

dt
equality (2.3).

Lemma 2.1 The following inequality holds true:

Vealt) = [ ("2 4 2 (0(0) — p()) + 2puT o) — (7))

> (1 emp) [ u e+ (5~ ctmi™) [ (0(p) — p(7)? de.

-2 0 2 0

Proof Indeed, we have
[ ot @@ o) dx < ol ([ o0 dx) o) pio)s
<m(p / pu? dz + 5 lp(7) — p(o) )
0 g
with any positive constant 3. Now estimate (2.11) immediately follows. O
Lemma 2.2 The following inequality holds true:

4
e| [ pul (o) = (7)) do| < s cltm. o B | sl 00) 1 3

Proof First, by the renormalized equation of continuity,

/Oxp(p) U+/ ) = pp'(p))u dE.

Secondly, by (1.27) we have

1@ =5 [ vonds+ % [ [ nsednds = [ [ scne

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)



Then, again by the equation of continuity and by the help of several integrations by
parts we finally obtain

P = e/ ) = pp'(p))us d€ + e/ pu(€ foo)e d€ (2.15)
—zpuf+ [ (pu)(Ef)e dE.
Thus
/pu[ /pup dx+/ pu/ ) — o0 (p))us déda

_/ PU/ ) — pp'(p))ua dﬁdm—/ —pu/ pu(€ foo)e dédx (2.16)
_/0 xpu/w PU foo dﬁdm—l—/ﬂ pu/o pu(€ foo)¢ dédur.

Further we have
¢
[ epoye da] < sup pwlo) [[ul} < el I,
since by Proposition 1.2, p is globally bounded. Notice that p(p) is globally bounded:

1 0
()0 < 7 [ plo) do+ 2l frcllc < cltm, Boy [ fcllwson) Voot (217)

Similarly we have

0 z 0
[ ou [ wo) = o0/ (o)) deda] < mllua o] [ (90) = ') | < el 3,
(2.18)
where, for brevity, we do not mark the arguments of ¢(-). Similarly we have

[ Sou [ 0o) — o0/ (p)yu deiz] < el

[ Sou [ puteslededr < Vim PNl < el

l 4

[ wou [ pute deda] < ol fuclell 3 < el (2.19)

l x
o [ puefo)e deda] < mPO(fellncllnnllp < 3

The inequality (2.12) immediately follows. O

According to Lemma 2.2 the term on the right-hand side of (2.12) can be made
subordinate to the term p f(f u? dr when taking ¢ small enough, in particular if

SC(E, m, (b, E07 ||foo||W01°(O,£)> < . (220)



Proceeding in (2.9) to the estimate of the term [ (pu® — puu,)(p(p) — p(7)) d we first
observe that

[ o 0i0) ~ @) o < (¢ [ 0(6) ~ @)~ 7)o + 5107 o) — 2@ ]
< () |3 (2:21)

where 7(t) — 0 as t — oo by Proposition 1.4. Next we observe in (2.9) that the

term
n || (0(7) = b)) da

can be compounded with the term —znu fi (p(p)—p(5))ue dz to obtain (n+=nu) fy (p(p)—
p(p))u, dr which we estimate as

r-+<nm) [ (62) — pl))ueda] < (n emm)llualls + A5 12) ~ plo))- (222)

Quite analogously is estimated the last inconvenient term on the left-hand side of
(2.9):

1 /¢ 14
8|5 [ 0@ = p(0)*)urda + [ (plo) = (@) (o) = pp (), dr
+/ PN (pufly) daf (2.23)
< W, m, 1, Bo ||foo||W1,oo<o,z>>u2||ur||§ 25 () = pP) ).
Finally,
l
[ pugda] < Vi sup p)llusellgl: (2.24)
0 x,t>1g
S )\3||u$||g + c(&maﬂa EO) ||foo||W1m(O,E))))\ngg“%a
and

6\/; pgl(p(p) = p(p)) dx| < 6@(82;) Pllgll=llp(p) = p(P)l2 (2.25)

< =(Mallp(p) = p(@)I5 + c(C,m, i, Eo, || fosllwroo0,0) A7 l9ll3)-
Using estimates (2.12), (2.21), (2.22), (2.23), (2.24) and (2.25) in (2.9) we obtain

&L (2 4 S (0lo) — 20D + pul(p() — p(7)) i
+(np — e = n(t) = (0 +enp)dy = cddo — ns)||usf3
e Ok em)i = by = Al(e) ~ ()3 (2.26)
<03+ Aol

To get a decay of the functional V. s(¢) defined by (2.10) we need (observe that
n(t) — 0 ast — oco0)

N > ce + A (n+enp) + cdAs + s,
e > AT (n+enu) + A6 + el (2.27)

9



Since the parameters A3, Ay can be chosen independently, so that, for example, suf-
ficiently small, it suffices, instead of (2.27), to consider conditions

N > cg + M\(n+enu) + cdo
e > A (4 enp) + A6 (2.28)

From (2.10) we get additional conditions for positivity of V. s(¢), namely
o
efVIm < g, B Wim < 3 (2.29)

The choice of 3 which obeys (2.29) is possible if and only if
40me* < né. (2.30)

Next, the choice of \; satisfying (2.28) is possible if

2
gy > ¢ and M <M — ¢ — cOAs.
£ — oA,
Now choose
Ay = 2¢6e7". (2.31)
Then we have to require
2(n+enp)? < e(np — ce — 2c%6%). (2.32)
Choose also
§ =&/t (2.33)

By (2.30) we have the constraint 4/ms5/* < 1.
Then we solve

2(n +enp)? < e(np — c= = 2¢°/=).
Choose = so small that nu — cz — 2¢%\/z > L%, Then it suffices to require

An(1+=2p)? < ep. (2.34)

Since ¢ may be chosen of order n*®, for sufficiently small 7 the last inequality
can be satisfied. Then, choosing ¢ so small that (2.30) and (2.34) hold, and other
parameters as above, we can achieve that in (2.26) the coefficients at |lu,||3 and
lp(p) — p(p)||3 are positive. Then (2.26) implies

% /Of(m;w + g(p(p) —p(P)* + =pul (p(p) — p(p))) (. ) dax
+alluzll3 + llp(p) = p@)3) < kllgll3, >t (2.35)

with some positive constants a, k and t.

10



Further, we have

Vealt) = [ (22 §<p<p> 0P+ puT (o)~ p(p)) dr (230)

nmt

< S llualls + IIP(p)—p(ﬁ)H%+€m€||ux||2||p(p)—p(ﬁ)llz

< 5Ot + 8-+ emt) (sl + lo(o) — p(2)IR)

Putting )
T o+ mﬁ?n +¢) (2.37)
we get from (2.35)
dg;"s (t) + aV.s(t) < Ellg(t)|, > to. (2.38)
By integration of (2.38) over the interval (¢o,?) we arive at the inequality
Veslt) < B0 (Veslro) + [ e lgBds), 1200 (239)

with some constant £ > 1. Note, that a, k, and 6 are locally bounded functions of
C,m, p, Ey and || fxo|lwy 0,y and tg > 0, previously sufficiently large, can be chosen
arbitrary, since, due to the regularity of the solution, (2.39) holds on any finite
interval [0, Tp] (the constant & may eventually change). Now we need the following
technical lemma.

Lemma 2.3 Let the set {x € (0,(); po(x) = 0} be of measure zero and

rd
lim sup/ p(s) ds < 0.
0 S

Then
&I (o, )z = [ 0(5) — plp) (2.40)

Proof Let p, = pos + =. Then by (1.10) we have
d rf /[ p(p) — p(pn)

= —/ (P, pn) wx,ou)x dx (2.41)

_/ T(p. o) L P —pp(pn))x cude.

Further,

p(p) — p(pn))

; (2.42)

p(H(p, pn) +

11



_ p<p(p) —2p(pn)px _ /P p(pg)x o 4 PP)e = Plpn)s _ p(p) —Zp(pn)px)
p b O p p
= 02 (5 = =) + 20 = D(2)e = D00)e = bl ) = pl0)s = ()

where 7(r) = [y 5 2 ds. Since {ps > 0} is an open set, we can write it in the form

Ujes(a;j,b;), where S C N is countable. Notice that poo(a]) Poo(br) = 0 as soon as
aj, by € (0,0). Let o € C*(0,0), p(0) = p(¢) = 0. Then

4 4 4
/0 T(pn)app da = —/ T(pn)(pp)e dv — —/ T(poo) (P2 d
B _ % p(poo)e
- _Z/a poo P‘P dr = Z/a poo :rP‘PdI Z @dm

jes jes jes Poo
=/ pfwdl“=/ pfod.
Pooc>0 0

The result immediately follows. O
By (2.40) and (2.39) we have

\dt [ 100 p.0) 2] < sl llo) = (o) (2.43)
< 2y e ™ 1=10) (V5 (to) +k/t0 e llg(s)3ds) 1> to.
Since by (1.25),
tim [ p(e, TH(p(, ), () i = [ oM ps(0), pcla)) dr =0, (241)
we find
/ p(OTT(p(t), poo) dx — Oep Poo) d (2.45)
:_/ dT/ T),poo)dxd7'</ \_/ p(T(p(r), pec) d|dr

2\/_ == (r— ao 1/2
< /tiiux<r>||ze2( O(Valto) + [ gl o) ar
0

< ¥(1 a3 ar) [ e o (Vaslta) + [ e llg(o)|3do) ar]

L, s . 2 1y _ o ’ ’
( t ||U (7')“2 T) { Q [5 to ¢ ||9(0)||2 U]T:t
|4 Lr
( _ . efa(sfto)) + _/ eia(T*tO)eaTHg(ng ds}

« Jt

)
o 2 1/2¢1 a(tt)/t ao 2
- d — 0 d
(] sl dr) “{Zemo) [ eollgo)|3do
1 0o
el = [T e g(r) 3 dr}.
o Jt

)
@._%S

+

0) (e a(t—to

2

%Q

<

N
-
o

)

+

«v
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Sending s — oo and using (2.44) we obtain
[ oOT(p(0), pc) (2.46)
< K(to, €, m, 1, Eo, [ fool [ (0,0)) [efa(t%)(l + /t: e*|lg(o)]l3 dff)
+ [T lg@3ar].
By (2.10) and (2.39) we also have
[ (0% + 0l0) — (7)) 0. 1) dr < Vi)
< gge t-to) (Vms(tg) +k /t: e g(s)||3 ds) (2.47)
smfw4ﬁAQw%umm—pwwxanx+AEMM@M@]

with constants a; = a;((, m, jt, Eo, || fso|lwt(0,¢)), 7 = 0, 1. This together with (2.46)
yields

/(f (v + p1(p, poo) + (p(p) — P(7))) (1) dx (2.48)
SK%%mm%%&MWWMKW%W+ﬁfWMM%]
+ [T lgto)lzar) (2.49)

The estimate (2.48) in combination with Lemma 1.6 yields the desired estimate
(1.18). O

Remark 2.4 Let us note that since limy_. fi e™*=9G(s)ds = 0 for all G €
LYR") with « > 0 and 1 < q < 00, the right-hand side of (2.48) tends to zero
as t — oo. If, moreover, ||e"g(x,t)||r2(q) < N with some b € (0,a] (for ezample, if
g = 0), then the decay rate is exponential, i.e.,

4
[ (0 + o102 p) + I = pl” + Ip(0) = p(P)I3) d < K(N)e ™, 20, O
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