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CONSTRUCTION OF A LYAPUNOV FUNCTIONAL FOR1D-VISCOUS COMPRESSIBLE BAROTROPIC FLUID EQUATIONSADMITTING VACUAPatrick Penel and Ivan Stra�skrabaAbstractThe Navier-Stokes equations for a compressible barotropic 
uid in 1D with zero velocityboundary conditions are considered. We study the case of large initial data in H1 as wellas the mass force such that the stationary density is uniquely determined but admits vacua.Missing uniform lower bound for the density is compensated by a careful modi�cation of theconstruction procedure for a Lyapunov functional known for the case of solutions which areglobally away from zero [9]. An immediate consequence of this construction is a decay rateestimate for this highly singular problem. The results are proved in the Eulerian coordinatesfor a large class of increasing state functions including p(�) = a�
 with any 
 > 0 (a > 0 aconstant).Mathematics Subject Classi�cation (2000): 35Q30, 35B40, 76N15Keywords: Compressible 
uid, Navier-Stokes equations, asymptotic behavior0 IntroductionThe purpose of this study is construction of a Lyapunov functional for 1D Navier-Stokes equations of a viscous compressible barotropic 
uid under the in
uence of alarge mass force in the case when the stationary density admits vacua. We assumestandard initial-boundary value problem with zero velocity boundary conditions asin (1.1) { (1.3) below. An immediate product of our construction is a result on adecay rate of evolutionary solution to the stationary one as time tends to in�nity(see Theorem 1.1).There are many results about the global behavior of solutions to equations (1.1),(1.2) below under di�erent boundary conditions and other data and we refer e.g. to[3], [6], [7], [9], [10] and [11] and the references therein, see also results and commentsin a recent monograph [5], Chapter 8.In this work we continue the research results of which are summarized in [9],where a Lyapunov functional has been constructed for the case of positive stationarydensity given by equations (1.16), (1.17) below. Note that the explicit necessary andsu�cient conditions for such a positivity are known (see Proposition 1.3). Since forlarge class of external forces the stationary densities can contain vacua zones whilebeing uniquely determined, we believe that Lyapunov analysis is important also forthis case. To our knowledge, the only result in this direction and generality is in[12], where an analogous problem with a free boundary has been tackled.The free boundary condition allows us to derive a global lower bound for the den-sity in terms of the stationary density which we are not able to �nd for the Dirichletboundary condition and thus have to �nd an alternative argument. This argument1



is given by a careful use of a comparison quasistationary density approximating theoriginal one. Two crucial apriori estimates play decisive role in the construction.An appropriate form of the energy equality and an estimate utilizing the mono-tonicity of the state function and the analysis of approximative relation between thequasistationary density and the original density �:Despite of the singularity of the problem, a large class of mass forces and statefunctions is admitted. First, we give a survey of already known results which playan important role in the following arguments. Then we present the construction of aspecial di�erential equality including the velocity, the density, stationary density andquasistationary density. The terms including quasistationary density are carefullyanalysed with the aim to exclude it from the di�erential equality and modify it toa di�erential inequality including a suitable Lyapunov functional. Resolving theLyapunov di�erential inequality we obtain a decay rate for the convergence of theevolutionary solution to the stationary one.1 Basic known facts and the main resultWe consider the following system of equations describing 1D-
ow of a viscous com-pressible barotropic 
uid �t + (�u)x = 0; (1.1)(�u)t + (�u2)x � (�ux � p(�))x = �f (1.2)in the domain Q = (0; `)� (0;1) with the boundary and initial conditionsujx=0;` = 0; �jt=0 = �0(x); ujt=0 = u0(x) in (0; `): (1.3)Suppose thatf(x; t) = f1(x) + g(x; t) with f1 2 W 1;1(0; `) and g 2 L1;2(Q1): (1.4)Here QT = (0; `) � (0; T ). Throughout the paper we use the anisotropic Lebesguespace Lq;s(Q) equipped with the norm kwkLq;s(Q) := kkwkLq(0;`)kLs(0;1); W k;p meansthe usual Sobolev space. Let the initial functions satisfy�0; u0 2 H1(0; `); 0 < �0 � �0; u0���x=0;` = 0: (1.5)Our main requirements on the state function p are as follows.p is continuous, increasing function on [0;1); p(0) = 0; p(1) =1; (1.6)p0 2 L1loc(0;1); p0(r) > 0; r > 0; (1.7)p(r) � r
 as r ! 0+ with a 
 > 0; (1.8)rp0(r) � const as r ! 0+: (1.9)We shall study the asymptotic behavior of the strong generalized solution to prob-lem (1.1) { (1.3) having the following properties: � 2 C �QT�, �x; �t 2 L2;1(QT ),� > 0 and u 2 H1(QT ) \ L2(0; T ; �H1(0; `)), uxx 2 L2(QT ) for any T > 0.2



De�ne also P (r) := r Z r1 p(s)� p(1)s2 ds; (1.10)�(r; s) = Z rs p(�)� p(s)�2 d� r; s � 0and F := If1: We use the notation Ih := R x0 h(y) dy for any function h 2 L1(0; `):First of all, we remind the mass and energy conservation laws:Z `0 �(x; t) dx = Z `0 �0(x) dx =: m; (1.11)ddt Z `0  12�u2 + P (�)� �F! dx+ � Z `0 (ux)2 dx = Z `0 �gu dx (1.12)or (1.13)ddt Z `0 12�u2 dx + � Z `0 (ux)2 dx = Z `0 (�f1u+ �gu� p(�)xu) dx: (1.14)Denote the initial total energy byE0 := Z `0 ��0u202 + P (�0)� �0F� dx: (1.15)In the whole paper we will assume that the stationary problem which is given byp(�1)x = �1f1 on (0; `); (1.16)Z `0 �1(x) dx = m; �1 � 0 (1.17)has a unique solution �1 2 L1(0; `):Our main result is contained in the following theorem.Theorem 1.1 (Main result) Let conditions (1.4)-(1.8) be satis�ed and the sta-tionary problem (1.16), (1.17)have a unique solution �1 2 L1(0; `): Then forany t0 � 0 there are positive constants K := K(t0; `;m; �; E0; kf1kW 1;1(0;`)) and� := �(t0; `;m; �; E0; kf1kW 1;1(0;`)) such thatZ `0 ��u2 + ��(�; �1) + j�� �1j� + (p(�)� p(�))2�(x; t) dx (1.18)� Kne��(t�t0)h1 + Z tt0 e�skg(s)k22 dsi+ Z 1t kg(s)k22 dso; t � t0;where � is given by (1.27) below and � � 2 if 
 < 2 or � � 
 if 
 � 2 is arbitrarybut �xed.Theorem 1.1 will be proved in Section 2 after the following preliminaries.First, a well-known consequence of energy equation (1.12) isProposition 1.2 ([9]) Suppose in addition to (1.6), (1.7) that the conditions0 < �0 � N; ku0kL2(0;`) � N; kf1kL1(0;`) � N; (1.19)kgkL1;2(Q) � N (1.20)and kP (�0)kL1(0;`) � N are satis�ed. Then we have3



(i) kp�ukL2;1(Q) + kP (�)kL1;1(Q) + kuxkL2(Q) � K(N); (1.21)(ii) �(x; t) � e� =: K(N) (1.22)holds, and(iii) 12 Z `0 (�u2)(x; t) dx! 0 as t!1: (1.23)It was already mentioned that there is a necessary and su�cient condition for thesolution �1 2 C([0; `]) of (1.16), (1.17) such that p(�1)x 2 L1(0; `) to be positive(i.e., �1 > 0): DenotingFmin := min[0;`] F (x); Fmax := max[0;`] F (x); Cp := Z 10 p(r)r2 dr � 1;this condition reads:Proposition 1.3 ([9]) Let (1.6) be satis�ed and f1 2 L1(0; `): Then the positivesolution �1 to the problem (1.16), (1.17) exists if and only ifCp =1 or Cp <1Fmax � Fmin < 	(1)1m R0̀ 	�1(F (x)� Fmin) dx < 1 9>=>; ; (1.24)where 	(r) := p(r)r + R r0 p(s)s2 ds for r > 0 and 	(0) = 0; with 	�1 being the inverse of	: Moreover, for Cp <1; the function 	 is continuous and increasing on [0;1):In addition, the positive solution is unique.Proposition 1.4 ([9]) Let conditions (1.4) { (1.7) be satis�ed and p(�); f1 2BV ([0; `]) and m > 0 be such that there is a unique solution of (1.16), (1.17).Thenkp(�(t))� p(�(t))kLq(0;`)+ k�(t)� �1kLq(0;`) ! 0 as t!1; 8 q 2 [1;1) (1.25)and kp(�(t))� p(�1)kC([0;`]) ! 0 as t!1; (1.26)where � = �(x; t) is such thatp(�(x; t)) = 1̀ Z `0 p(�(�; t)) d� + 1̀ Z `0 Z `� �(�; t)f1(�)d� d� � Z `x �(�; t)f1(�) d�:(1.27)Notice, that � satis�esp(�)x = �f1; x 2 (0; `); t > 0; Z `0 p(�) dx = Z `0 p(�) dx; t > 0: (1.28)4



Let us note that the idea with "quasistationary density" � was for the �rst time usedfor stabilization in [4], where the case of 2 and 3 space variables has been treated.Next Proposition shows that there are fairly general explicit conditions for unique-ness of the solution to equations (1.16), (1.17). We refer in this respect to ([1]) andthe references therein.Proposition 1.5 ([2],[1]) Let in addition to (1.7) we have p 2 C([0;1))\C1(0;1)and F = If be locally Lipschitz continuous on (0; `):If R 10 dp(s)s <1; assume in addition, that the upper level sets fx 2 (0; `); f(x) > kgare connected in (0; `) for any constant k 2 R:Then, given m > 0; there is at most one function �1 2 L1loc(0; `) satisfying (1.16),(1.17) in the sense of distributions.Moreover, if such a function exists, it is given by the formula�1 = 	�1([f(x)� k`]+)for a certain constant k`: (Here [z]+ := maxfz; 0g:)We will also need the following elementary lemma.Lemma 1.6 Let r0 > 0 and s0 > 0 be arbitrary �xed numbers and assume p(r) � r
as r ! 0+ with a constant 
 > 0: Let � � 2 if 
 < 2 and � � 
 if 
 � 2: Then thereis a constant k = k(�) such thatk(�)jr � sj� � r�(r; s)) for all r 2 (0; r0]; s 2 [0; s0]: (1.29)Proof. First, let s > 0 be �xed. Then by the l'Hospital rulelimr!s jr � sj�(r�(r; s)) (1.30)= �sp0(s) limr!s js� rj��2 = 8><>: 1 if � < 2�sp0(s) if � = 20 if � > 2:Let now s = 0 and use the assumption p(r) � r
 near zero. Thenlimr!0+ r�r�(r; 0)) = limr!0+(� � 1) r�p(r) = 8><>: 1 if � < 
� � 1 if � = 
0 if � > 
: (1.31)The result immediately follows. 22 Construction of a Lyapunov functionalLet us subtract the di�erential equation in (1.28) from equation (1.2). We obtainthe relation (�u)t + (�u2)x � �uxx + p(�)x � p(�)x = �g: (2.1)5



Multiply (2.1) by �"I(p(�)� p(�)) and integrate over (0; `) :�" ddt Z `0 �uI(p(�)� p(�)) dx+ " Z `0 �uI(p(�)t � p(�)t) dx+" Z `0 (�u2 � �ux)(p(�)� p(�)) dx+ " Z `0 (p(�)� p(�))2 dx (2.2)= " Z `0 �gI(p(�)� p(�)) dx:Adding (1.14) multiplied by a positive parameter � > 0 and (2.2) we �ndddt Z `0 (��u22 � "�uI(p(�)� p(�))) dx+ � Z `0 (p(�)� p(�))ux dx+ " Z `0 �uI(p(�)t � p(�)t) dx+" Z `0 (�u2 � ��ux)(p(�)� p(�)) dx+ " Z `0 (p(�)� p(�))2 dx+ �� Z `0 u2x dx (2.3)= � Z `0 �ug dx + " Z `0 �gI(p(�)� p(�)) dx:Next, we also have12 ddt Z `0 (p(�)� p(�))2 = Z `0 (p(�)t � p(�)t)(p(�)� p(�)) dx; (2.4)where (by the equation of continuity and (1.27))p(�)t � p(�)t = �(p(�)u)x + (p(�)� �p0(�))ux (2.5)+1̀ Z `0 (�p0(�)� p(�))ux dx+ Z `0 1̀I�((�u)xf1) dx� I�((�u)xf1)Further we have (notice that R0̀ (R0̀ hd�)(p(�) � p(�))dx = 0 since R0̀ p(�)dx =R0̀ p(�)dx)� Z `0 (p(�)u)x(p(�)� p(�)) dx = �12 Z `0 p(�)2ux dx� Z `0 p(�)up(�)x dx (2.6)= 12 Z `0 (p(�)2 � p(�)2)ux dx� 12 Z `0 p(�)2ux dx+ Z `0 (p(�)� p(�))up(�)x dx� Z `0 p(�)p(�)xu dx = Z `0 (p(�)� p(�))u�f1 dx + 12 Z `0 (p(�)2 � p(�)2)ux dx;and I�((�u)xf1) = ��uf1 � Z `x �uf 01 dx: (2.7)Summarizing (2.4){(2.7) we get12 ddt Z `0 (p(�)� p(�))2 dx = Z `0 (p(�)� p(�))u�f1 dx+ 12 Z `0 (p(�)2 � p(�)2)ux dx+ Z `0 (p(�)� p(�))(p(�)� �p0(�))ux dx+ Z `0 (p(�)� p(�))(�uf1 + I�(�uf 01)) dx= 12 Z `0 (p(�)2 � p(�)2)ux dx+ Z `0 (p(�)� p(�))(p(�)� �p0(�))ux dx (2.8)+ Z `0 (p(�)� p(�))I�(�uf 01) dx: 6



Multiply equality (2.8) by a parameter � > 0 and add to (2.3):ddt Z `0 (��u22 + �2(p(�)� p(�))2 + "�uI(p(�)� p(�))) dx+ � Z `0 (p(�)� p(�))ux dx+" Z `0 �uI(p(�)t � p(�)t) dx+ " Z `0 (�u2 � ��ux)(p(�)� p(�)) dx+" Z `0 (p(�)� p(�))2 dx+ �� Z `0 u2x dx (2.9)+�h12 Z `0 (p(�)2 � p(�)2)ux dx+ Z `0 (p(�)� p(�))(p(�)� �p0(�))ux dx+ Z `0 (p(�)� p(�))I�(�uf 01) dxi= � Z `0 �ug dx+ " Z `0 �gI(p(�)� p(�)) dx:Our intention now is to compare the integral under ddt with the remaining terms inequality (2.3).Lemma 2.1 The following inequality holds true:V";�(t) := Z `0 ���u22 + �2(p(�)� p(�))2 + "�uI(p(�)� p(�))� dx (2.10)� (�2 � "m�) Z `0 �u2 dx+ (�2 � "`m��1) Z `0 (p(�)� p(�))2 dx:Proof Indeed, we haveZ `0 �uI(p(�)� p(�)) dx � k�k1�Z `0 �u2 dx�1=2kp(�)� p(�)k1 (2.11)� m�� Z `0 �u2 dx+ �̀ kp(�)� p(�)k22�with any positive constant �: Now estimate (2.11) immediately follows. 2Lemma 2.2 The following inequality holds true:"���Z `0 �uI(p(�)t � p(�)t) dx��� � " c(`;m; �; E0; kf1kW 11(0;`)) kuxk22; (2.12)Proof First, by the renormalized equation of continuity,Z x0 p(�)t d� = �p(�)u+ Z x0 (p(�)� �p0(�))ux d�: (2.13)Secondly, by (1.27) we haveIp(�)t = x̀ Z `0 p(�)t d� + x̀ Z `0 Z `� �tf1 d� d� � Z x0 Z `� �tf1 d� d�: (2.14)7



Then, again by the equation of continuity and by the help of several integrations byparts we �nally obtainIp(�)t = x̀ Z `0 (p(�)� �p0(�))ux d� + x̀ Z `0 �u(�f1)� d� (2.15)�x�uf1 + Z x0 (�u)(�f1)� d�:ThusZ `0 �uI(p(�)t � p(�)t) dx = � Z `0 �u2p(�) dx+ Z `0 �u Z x0 (p(�)� �p0(�))ux d�dx� Z `0 x̀�u Z `0 (p(�)� �p0(�))ux d�dx� Z `0 x̀�u Z `0 �u(�f1)� d�dx (2.16)� Z `0 x�u Z `x �uf1 d�dx+ Z `0 �u Z �0 �u(�f1)� d�dx:Further we have ���Z `0 �p(�)u2 dx��� � supx;t �p(�) kuk22 � ckuxk22;since by Proposition 1.2, � is globally bounded. Notice that p(�) is globally bounded:jp(�)(x; t)j � 1̀ Z `0 p(�) dx+ 2mkf1k1 � c(`;m;E0; kf1kW 11(0;`)) 8x; t: (2.17)Similarly we have���Z `0 �u Z x0 (p(�)� �p0(�))ux d�dx��� � mp`kuxk2���Z `0 (p(�)� �p0(�))ux dx��� � ckuxk22;(2.18)where, for brevity, we do not mark the arguments of c(�): Similarly we have���Z `0 x̀�u Z `0 (p(�)� �p0(�))ux d�dx��� � ckuxk22;���Z `0 x̀�u Z `0 �u(�f1)� d�dx � p`m2kuxk2k(�f1)�k1 � ckuxk22;���Z `0 x�u Z `x �uf1 d�dx��� � `2m2kf1k1kuxk22 � ckuxk22; (2.19)���Z `0 �u Z x0 �u(�f1)� d�dx��� � m2`k(�f1)�k1kuxk22 � ckuxk22:The inequality (2.12) immediately follows. 2According to Lemma 2.2 the term on the right-hand side of (2.12) can be madesubordinate to the term � R0̀ u2x dx when taking " small enough, in particular if"c(`;m; �; E0; kf1kW 11(0;`)) < �: (2.20)8



Proceeding in (2.9) to the estimate of the term R0̀ (�u2��ux)(p(�)�p(�)) dx we �rstobserve thatZ `0 �u2(p(�)� p(�)) dx � �` Z `0 (p(�)� p(�))(�� �) dx+ supx;t � kp(�)� p(�)k1�kuxk22� �(t)kuxk22; (2.21)where �(t) ! 0 as t ! 1 by Proposition 1.4. Next we observe in (2.9) that theterm � Z `0 (p(�)� p(�))ux dxcan be compounded with the term�"�� R0̀ (p(�)�p(�))ux dx to obtain (�+"��) R0̀ (p(�)�p(�))ux dx which we estimate as���(� + "��) Z `0 (p(�)� p(�))ux dx��� � (� + "��)(�1kuxk22 + ��11 kp(�)� p(�)k22): (2.22)Quite analogously is estimated the last inconvenient term on the left-hand side of(2.9): ����12 Z `0 (p(�)2 � p(�)2)ux dx+ Z `0 (p(�)� p(�))(p(�)� �p0(�))ux dx+ Z `0 (p(�)� p(�))I�(�uf 01) dx��� (2.23)� �c(`;m; �; E0; kf1kW 1;1(0;`))(�2kuxk22 + ��12 kp(�)� p(�)k22):Finally, ���Z `0 �ug dx��� � p`( supx;t�t0 �)kuxk2kgk2 (2.24)� �3kuxk22 + c(`;m; �; E0; kf1kW 1;1(0;`)))��13 kgk22;and "���Z `0 �gI(p(�)� p(�)) dx��� � "p`(supx;t �)kgk2kp(�)� p(�)k2 (2.25)� "(�4kp(�)� p(�)k22 + c(`;m; �; E0; kf1kW 1;1(0;`))��14 kgk22):Using estimates (2.12), (2.21), (2.22), (2.23), (2.24) and (2.25) in (2.9) we obtainddt Z `0 ���u22 + �2(p(�)� p(�))2 + "�uI(p(�)� p(�))� dx+(��� "c� �(t)� (� + "��)�1 � c��2 � ��3)kuxk22+("� (� + "��)��11 � c���12 � "�4)kp(�)� p(�)k22 (2.26)� c(��13 � + "��14 )kgk22:To get a decay of the functional V";�(t) de�ned by (2.10) we need (observe that�(t)! 0 as t!1) �� > c"+ �1(� + "��) + c��2 + ��3;" > ��11 (� + "��) + c��12 � + "�4: (2.27)9



Since the parameters �3; �4 can be chosen independently, so that, for example, suf-�ciently small, it su�ces, instead of (2.27), to consider conditions�� > c"+ �1(� + "��) + c��2" > ��11 (� + "��) + c��12 �: (2.28)From (2.10) we get additional conditions for positivity of V";�(t); namely"�p`m < �2 ; "��1p`m < �2 : (2.29)The choice of � which obeys (2.29) is possible if and only if4`m"2 < ��: (2.30)Next, the choice of �1 satisfying (2.28) is possible if"�2 > c� and (� + "��)2"� c���12 < ��� c"� c��2:Now choose �2 = 2c�"�1: (2.31)Then we have to require2(� + "��)2 < "(��� c"� 2c2�2"�1): (2.32)Choose also � = "3=4: (2.33)By (2.30) we have the constraint 4`m"5=4 < �:Then we solve 2(� + "��)2 < "(��� c"� 2c2p"):Choose " so small that ��� c"� 2c2p" > ��2 : Then it su�ces to require4�(1 + "�)2 < "�: (2.34)Since " may be chosen of order �4=5; for su�ciently small � the last inequalitycan be satis�ed. Then, choosing " so small that (2.30) and (2.34) hold, and otherparameters as above, we can achieve that in (2.26) the coe�cients at kuxk22 andkp(�)� p(�)k22 are positive. Then (2.26) impliesddt Z `0 ���u22 + �2(p(�)� p(�))2 + "�uI(p(�)� p(�))�(x; t) dx+a(kuxk22 + kp(�)� p(�)k22) � kkgk22; t � t0 (2.35)with some positive constants a; k and t0.
10



Further, we haveV";�(t) � Z `0 ���u22 + �2(p(�)� p(�))2 + "�uI(p(�)� p(�))� dx (2.36)� �m`2 kuxk22 + �2kp(�)� p(�)k22 + "m`kuxk2kp(�)� p(�)k2� 12(�m`+ � + "m`)(kuxk22 + kp(�)� p(�)k22):Putting � := 2a� +m`(� + ") (2.37)we get from (2.35) dV";�dt (t) + �V";�(t) � kkg(t)k22; t � t0: (2.38)By integration of (2.38) over the interval (t0; t) we arive at the inequalityV";�(t) � ke��(t�t0)�V";�(t0) + Z tt0 e�skg(s)k22 ds�; t � t0 (2.39)with some constant k � 1: Note, that �; k; " and � are locally bounded functions of`;m; �; E0 and kf1kW 11(0;`) and t0 � 0; previously su�ciently large, can be chosenarbitrary, since, due to the regularity of the solution, (2.39) holds on any �niteinterval [0; T0] (the constant k may eventually change). Now we need the followingtechnical lemma.Lemma 2.3 Let the set fx 2 (0; `); �1(x) = 0g be of measure zero andlim supr!0+ Z r0 dp(s)s ds <1:Then ddt Z `0 ��(�; �1) dx = Z `0 (p(�)� p(�))ux dx: (2.40)Proof Let �n = �1 + 1n : Then by (1.10) we haveddt Z `0 ��(�; �n) dx = Z `0 ��(�; �n) + �p(�)� p(�n)�2 ��t dx= � Z `0 ��(�; �n) + p(�)� p(�n)� �(�u)x dx (2.41)= Z `0 � � ��(�; �n) + p(�)� p(�n)� �x � u dx:Further,���(�; �n) + p(�)� p(�n)� �x (2.42)11



= ��p(�)� p(�n)�2 �x � Z ��n p(�n)x�2 d� + p(�)x � p(�n)x� � p(�)� p(�n)�2 �x�= �p(�n)x�1� � 1�n �+ p(�)x � p(�n)x = p(�)x � ��np(�n)x = p(�)x � ��(�n)x;where �(r) = R r0 p0(s)s ds: Since f�1 > 0g is an open set, we can write it in the form[j2S(aj; bj); where S � N is countable. Notice that �1(aj); �1(bk) = 0 as soon asaj; bk 2 (0; `): Let ' 2 C1(0; `); '(0) = '(`) = 0: ThenZ `0 �(�n)x�' dx = � Z `0 �(�n)(�')x dx! � Z `0 �(�1)(�')x dx= �Xj2S Z bjaj �(�1)(�')x dx = Xj2S Z bjaj �(�1)x�' dx = Xj2S Z bjaj p(�1)x�1 �' dx= Z�1>0 �f' dx = Z `0 �f' dx:The result immediately follows. 2By (2.40) and (2.39) we have��� ddt Z `0 ��(�; �1) dx��� � kuxk2kp(�)� p(�)k2 (2.43)� 2�kuxk2e��2 (t�t0)�V";�(t0) + k Z tt0 e�skg(s)k22 ds�1=2; t � t0:Since by (1.25),limt!1 Z `0 �(x; t)�(�(x; t); �1(x)) dx = Z `0 �1(x)�(�1(x); �1(x)) dx = 0; (2.44)we �ndZ `0 �(t)�(�(t); �1) dx� Z `0 �(s)�(�(s); �1) dx (2.45)= � Z st dd� Z `0 �(�)�(�(�); �1) dxd� � Z st ��� dd� Z `0 �(�)�(�(�); �1) dx���d�� 2pk� Z st kux(�)k2e��2 (��t0)�V";�(t0) + Z �t0 e��kg(�)k22 d��1=2 d�� 2pk� �Z st kux(�)k22 d��1=2hZ st e��(��t0)�V";�(t0) + Z �t0 e��kg(�)k22 d�� d�i1=2= 2pk� �Z st kux(�)k22 d��1=2n� 1�h"��(��t0) Z �t0 e��kg(�)k22 d�is�=t+V (t0)� �e��(t�t0) � e��(s�t0)�+ 1� Z st e��(��t0)e��kg(�)k22 dso� 2pk� �Z 1t kux(�)k22 d��1=2n 1�e��(t�t0) Z tt0 e��kg(�)k22 d�+V (t0)� e��(t�t0) + 1� Z 1t e�t0kg(�)k22 d�o:12



Sending s!1 and using (2.44) we obtainZ `0 �(t)�(�(t); �1) dx (2.46)� �(t0; `;m; �; E0; kf1kW 1;1(0;`))he��(t�t0)�1 + Z tt0 e��kg(�)k22 d��+ Z 1t kg(�)k22 d�i:By (2.10) and (2.39) we also haveZ `0 ��u2 + (p(�)� p(�))2�(x; t) dx � a0V";�(t)� a0e��(t�t0)�V";�(t0) + k Z tt0 e�skg(s)k22 ds� (2.47)� a1e��(t�t0)hZ `0 ��u2 + (p(�)� p(�))2�(x; t0) dx+ Z tt0 e�skg(sk22 dsiwith constants aj = aj(`;m; �; E0; kf1kW 1;1(0;`)); j = 0; 1: This together with (2.46)yields Z `0 ��u2 + ��(�; �1) + (p(�)� p(�))2�(x; t) dx (2.48)� K(t0; `;m; �; E0; kf1kW 1;1(0;`))ne��(t�t0)h1 + Z tt0 e�skg(s)k22 dsi+ Z 1t kg(�)k22 d�o (2.49)The estimate (2.48) in combination with Lemma 1.6 yields the desired estimate(1.18). 2Remark 2.4 Let us note that since limt!1 R t0 e��(t�s)G(s) ds = 0 for all G 2Lq(R+) with � > 0 and 1 � q < 1; the right-hand side of (2.48) tends to zeroas t !1: If, moreover, kebtg(x; t)kL2(Q) � N with some b 2 (0; �] (for example, ifg � 0); then the decay rate is exponential, i.e.,Z `0 ��u2 + ��(�; �1) + j�� �1j� + kp(�)� p(�)k22� dx � k(N)e�bt; t � 0: 2AcknowledgementsThe research was supported by the University of Sud, Toulon Var, by the GrantAgency of the Czech Republic (grant No. 201/05/0005) and by the Academy ofSciences of the Czech Republic, Institutional Research Plan No. AVOZ1090503.References[1] R.Erban, On the static{limit solutions to the Navier{Stokes equations of com-pressible 
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