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1 Introduction

The mathematical theory of viscous multipolar fluids, based on the general ideas of
Green and Rivlin [8], was proposed by Nečas and Šilhavý [17] (see also Nečas et al.
[15], [16] for relevant existence theory) in order to develop a general framework for
studying viscous fluids and to present a suitable alternative to the boundary layer
theory (see Bellout et al. [1]). The theory is compatible with the basic principles
of thermodynamics as well as with the principle of material frame indifference. The
present paper is concerned with the mathematical description of the motion of one or
several rigid bodies immersed in a viscous multipolar fluid. The principal and very
natural idea behind the analysis presented below is the fact that the dissipation of
mechanical energy, being much stronger than for classical newtonian fluids, yields
better estimates on the gradient of the velocity field, in particular, the streamlines
are well-defined, which seems crucial for this class of problems partially formulated
in terms of the Lagrangean coordinate system.

1.1 Bodies and motions

From the mathematical viewpoint, a rigid body can be identified with a connected
compact subset S of the Euclidean space R3, the motion of which is represented as
a mapping η : (0, T ) ×R3 → R3, where

η(t, ·) : R3 → R3 is an isometry (1.1)

for any time t ∈ (0, T ). Throughout the whole text, we adopt the Eulerian (spatial)
description of motion, where the coordinate system is attached to a fixed region of the
physical space currently occupied by the fluid. The place x and the time t ∈ (0, T )
play the role of independent variables.

As the mappings η(t, ·) are isometries, we can write

η(t,x) = Xg(t) + O(t)(x − Xg(0)),
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where Xg stands for the position of the center of mass at a time t, and O(t) is a matrix

satisfying OT O = I. Assuming the motion to be absolutely continuous with respect
to time, we introduce

d

dt
Xg = Ug - the translation velocity, (1.2)

and
d

dt
O(t)OT (t) = Q(t) - the angular velocity. (1.3)

Accordingly, the solid velocity in the Eulerian coordinate system can be written
in the form

uS(t,x) =
∂η

∂t
(t, η−1(t,x)) = Ug(t) + Q(t)(x − Xg(t)),

where Xg is determined through (1.2).
The total force FS acting on the body S can be written as a sum of the body force

and the contact force, more specifically,

FS(t) =

∫

S(t)

̺SgS dx +

∫

∂S(t)

Tn dσ,

where T denotes the Cauchy stress, gS is the specific body force, and

S(t) = η(t, S).

Thus Newton’s second law gives rise to

m
d

dt
Ug(t) =

d

dt

∫

S(t)

̺SuS dx =

∫

S(t)

̺SgS dx +

∫

∂S(t)

Tn dσ, (1.4)

where m denotes the total mass of the body.
On the other hand, as the angular velocity Q is skew-symmetric, there exists

a vector ω such that
Q(t)(x − Xg) = ω(t) × (x− Xg).

The balance of moment of momentum reads

d

dt
(Jω) =

d

dt

∫

S(t)

̺S(x− Xg) × uS dx = (1.5)

∫

∂S(t)

(x − Xg) × Tn dσ +

∫

S(t)

̺S(x− Xg) × gS dx,

where J is the inertial tensor that can be identified through formula

Ja · b =

∫

S(t)

̺S(a × (x − Xg)) · (b× (x − Xg)) dx.

Equations (1.4), (1.5) determine completely the motion of the rigid body initially
occupying the spatial domain S.
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1.2 The fluid motion

In what follows, we shall assume that the state of the fluid is completely determined
by its density ̺f and the velocity uf satisfying the standard mass and momentum
balance equations:

∂̺f + divx(̺fuf ) = 0, (1.6)

∂t(̺
fuf ) + divx(̺fuf ⊗ uf ) + ∇xp = divxS + ̺fgf , (1.7)

where the symbol p denotes the pressure, gf is the specific body force, and S denotes
the viscous stress tensor related to the total stress through Stokes’ law:

T = S − pI. (1.8)

In the present paper, the effect of the temperature on the motion will be ignored.
On the other hand, we consider a general compressible fluid so that the state equation
relates the pressure to the fluid density through an empirical formula

p = p(̺f ). (1.9)

1.3 Viscosity

The heart of the theory of multipolar fluids lies in a particular choice of constitutive
equations relating the fluid stress expressed through S to the symmetric component
of the velocity gradient. Very roughly indeed, one can say that, in contrast to the
classical theory of newtonian fluids, the stress tensor depends on higher order gradients
of the velocity field. This piece of information is sufficient in order to obtain a priori
estimates yielding, in particular, strong compactness of the density ̺.

Following the seminal paper by Nečas and Šilhavý [17] we assume the viscous
stress tensor S to be given as

S[u] =
k−1
∑

n=0

(−1)n∆n
[

µn

(

∇xu + ∇xu
t −

2

3
divxu I

)

+ ζndivxuI
]

, u = uf , (1.10)

where µn, ζn are (constant) viscosity coefficients, and the symbol ∆ stands for the
standard Laplace operator. Accordingly, one can speak about a k-polar fluid, the
classical newtonian fluids being identified as monopolar with k = 1.

As expected, the presence of higher-order viscosities provides very strong a pri-
ori estimates on the velocity gradient, in particular, the streamlines are well defined
allowing for the Lagrangean description of motion. Note that the theory of multipo-
lar fluids requires additional “higher order” stresses to be introduced in the energy
equation in order to comply with the second law of thermodynamics (see Nečas and
Šilhavý [17]).

1.4 Boundary conditions

A proper choice of the boundary conditions represents one of the most delicate issues
of the present theory. We adopt the hypothesis of complete adherence of the fluid to
the boundaries of rigid objects yielding the full-stick boundary conditions

Dj
xu

f = Dj
xu

S , j = 0, ..., k − 1, on ∂S(t), (1.11)
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and
Dj

xu
f = 0, j = 0, ..., k − 1, on ∂Ω (1.12)

provided the flow is confined to a fixed spatial domain Ω ⊂ R3.
Here, the symbol Dj

x denotes the vector of all spatial derivatives of order j, and
conditions (1.11), (1.12) are different from those considered in [17], the latter being of
“Neumann-type”. Clearly, the boundary conditions depend on the physical properties
of a given fluid and as such must be determined by experiments. In the present
setting, the flowing rigid objects are supposed to be “sticky”, in particular, they may
be thought of as integral parts of the surrounding fluid of extremely high viscosity.

1.5 Global-in-time solutions and collisions of rigid objects

The motion of one or several rigid bodies in a viscous fluid has been a topic of
numerous theoretical studies. Desjardins and Esteban [3] establish the existence of
local-in-time solutions for incompressible newtonian fluids, where “local” is to be
understood “up to the first collision of two rigid objects” if Ω ⊂ R2, or “up to the blow-
up of the velocity gradient in a certain Sobolev norm” in the case Ω ⊂ R3. Similar
methods are proposed in [4] in order to study both compressible and incompressible
case. Similar existence results “up to the first collision” were obtained by Conca et
al. [2], Gunzburger et al. [9], Hoffmann and Starovoitov [12], among others.

As we have seen, the problem of existence or rather non-existence of collisions
is important not only because of its practical implications, but also from the purely
theoretical point of view. To the best of our knowledge, this issue remains largely
open even for a two-dimensional physical domain Ω. In the 2-D case, however, there
is a remarkable result by San Martin et al. [18] stating, in particular, that possible
collisions, if any, must be “smooth”, that means, with zero relative velocities. Another
strong evidence of absence of collisions in the 2-D geometry is provided independently
by Hesla [10] and Hillairet [11]. These authors show, roughly speaking, that newtonian
viscosity is strong enough to prevent collisions provided the rigid objects are discs.
As already pointed out, the question is completely open for a linearly viscous fluid in
the realistic situation Ω ⊂ R3 (for partial results see Starovoitov [20]).

The main objective of the present paper is to estalish the existence of global-
in-time solutions for problem (1.1 - 1.12) provided k ≥ 3. In particular, we show
that collisions cannot occur in a finite time unless they were already included in the
initial data. The paper is organized as follows. In Section 2, we introduce a variational
(weak) formulation of the problem in the spirit of Galdi [7], Hoffmann and Starovoitov
[12], Serre [19]. The main results concerning global-in-time solutions are stated in
Section 3. Suitable approximate solutions are constructed in Section 4 by means of
a scheme similar to that used in [6]. In particular, the method of construction is
based on the idea of San Martin et al. [18], where the rigid objects are approximated
by a fluid of large viscosity. Such an approach is of course intimately related to
our choice of the boundary conditions specified through (1.11), (1.12). In Section
5, we derive suitable uniform estimates on the sequence of approximate solutions
based on strong dissipation of the kinetic energy for multipolar fluids. In particular,
the velocity field is uniformly Lipschitz continuous which facilitates the subsequent
analysis considerably. Using the uniform energy estimates, we pass to the limit in the
sequence of approximate solutions in order to obtain a suitable variational solution
of the original problem (see Section 6).
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2 Variational formulation

Similarly to a major part of the reference material mentioned above, our approach is
based on a suitable variational formulation of the problem. In what follows, we shall
assume that Ω ⊂ R3 is a bounded domain with smooth (C∞) boundary.

2.1 Kinematics of the rigid bodies

The reference position Si, i = 1, ...,m, of the i-th rigid body is a bounded domain
in R3 with smooth boundary. The motions are described through affine isometries
ηi(t, ·) : R3 → R3, i = 1, ...,m, that are absolutely continuous as functions of the time
t ∈ [0, T ]. Furthermore, we set

Si(t) = ηi(t, Si), i = 1, ...,m,

and
QS =

{

(t,x)
∣

∣

∣
t ∈ (0, T ), x ∈ ∪m

i=1S
i(t)

}

.

2.2 Conservation of mass

The solid densities ̺Si

as well as the fluid density ̺f can be extended to be zero

outside Si(t), and the fluid region Qf = ((0, T ) × Ω) \Q
S
, respectively. In a similar

way, we introduce a “global” velocity field u,

u(t,x) =











uSi

for t ∈ (0, T ), x ∈ S
i
(t),

uf for t ∈ (0, T ), x ∈ Ω \ ∪m
i=1S

i
(t),

0 for t ∈ (0, T ), x ∈ R3 \ Ω.

The physical principle of mass conservation can be expressed through continuity
equation

∂t̺+ divx(̺u) = 0 in D′((0, T ) ×R3). (2.1)

2.3 Momentum equation

For a given family of motions ηi, i = 1, ...,m, we introduce the set of admissible
velocity fields

Vadm(t) = {w ∈ Ck(R3;R3) | w ≡ 0 on R3 \Ω, ∇xw +∇xw
t ≡ 0 on ∪m

i=1 η
i(t, Si)}.

(2.2)
Following Nečas [14], we introduce a bilinear form ((·, ·)) associated to the stress

tensor S given by (1.10), specifically,

((v,w)) =

∫

Ω

S[v] : ∇xw dx for any v, w ∈ D(Ω;R3). (2.3)

Under the natural hypothesis

µn, ηn ≥ 0, µk−1 > 0, ηk−1 > 0, (2.4)

it is straightforward to see that ((·, ·)) can be extended to a scalar product on the

Sobolev space W k,2
0 (Ω;R3) defined as a completion of the set of compactly supported
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smooth functions with respect to the norm

‖v‖2
W

k,2

0
(Ω;R3)

=

k
∑

n=0

∫

Ω

|Dn
xv|2 dx

(see Nečas [14]).
Assuming continuity of the stresses on the boundaries of rigid objets, we can

reformulate equations (1.4), (1.5), (1.7) in terms of ̺ and u as integral identity

∫ T

0

∫

R3

(

̺u · ∂tw + ̺u⊗ u : ∇xw + p divxw
)

dx dt = (2.5)

∫ T

0

((u,w)) dt−

∫ T

0

∫

R3

̺g · w dx dt−

∫

R3

̺0u0 ·w(0) dx

to be satisfied for any test function

w ∈ C1([0, T ];Ck(R3)), w(T ) = 0, w(t) ∈ Vadm(t) for any t ∈ [0, T ]. (2.6)

Note that (2.5) includes the initial conditions

(̺u)(0, ·) = ̺0u0. (2.7)

2.4 Compatibility of the “global” velocity with rigid motions

We shall say that a velocity field u is compatible with the family of rigid motions ηi,
i = 1, ...,m provided

u(t,x) = uSi

(t,x) =
∂ηi

∂t
(t, (ηi)−1(t,x)) for all x ∈ ηi(t, Si), i = 1, ...,m. (2.8)

Relation (2.8) is to be satisfied for any t ∈ [0, T ].

2.5 Energy inequality

The velocity field associated to a multipolar fluid is expected regular because of the
strong kinetic energy dissipation in the high velocity gradient regime. Indeed taking
(formally) a test function w = −ψ(t)u, in (2.5) we obtain energy inequality

E(t2) +

∫ t2

t1

((u,u)) dt ≤ E(t1) +

∫ t2

t1

∫

Ω

̺g · u dx (2.9)

for any 0 ≤ t1 ≤ t2 ≤ T , with

E(t) =

∫

Ω

(1

2
̺|u|2 + ̺P (̺)

)

dx, (2.10)

where P is related to the pressure p through

P (̺) = ̺

∫ ̺

1

p(z)

z2
dz. (2.11)
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2.6 Weak (variational) solutions

Having collected all the preliminary material, we are in a position to introduce the
concept of weak solution to our problem referred to hereafter as problem (P).

Definition 2.1
Let the initial distribution of the density and the velocity field be determined

through given functions ̺0 and u0, respectively; the initial position of the rigid bodies
being Si ⊂ Ω, i = 1, ...,m. We say that a family ̺, u, ηi, i = 1, ...,m, represent a
variational solution of problem (P) on a time interval (0, T ) provided the following
conditions are satisfied:

• The density ̺ is a non-negative bounded function, the velocity field u belongs to
the space L∞(0, T ;L2(Ω;R3)) ∩ L2(0, T ;W k,2

0 (Ω;R3)), and they satisfy energy
inequality (2.9) for t1 = 0 and a.a. t2 ∈ (0, T ), with

E(0) = E0 =

∫

Ω

(1

2
̺0|u0|

2 + ̺0P (̺0)
)

dx.

• We have ̺ ∈ C([0, T ];L1(Ω)), ̺(0) = ̺0, and continuity equation (2.1) holds
on (0, T ) ×R3 provided ̺ and u were extended to be zero outside Ω.

• Momentum equation (the integral identity) (2.5) holds for any admissible test
function w satisfying (2.6).

• The mappings ηi, i = 1, ...,m are affine isometries of R3 compatible with the
velocity field u in the sense of (2.8).

3 Global existence - main results

Our main goal is to prove the following existence result.

Theorem 3.1 Let Ω ⊂ R3, Si ⊂ R3, i = 1, ...,m be a family of bounded domains
with boundaries of class C∞ such that

S
i
∩ S

j
= ∅ for i 6= j, S

i
⊂ Ω for i = 1, ...,m. (3.1)

Furthermore, assume that ̺0 is a measurable function such that

0 < ̺ ≤ ̺0(x) ≤ ̺ for a.a. x ∈ Ω, (3.2)

and that
u0 ∈W

k,2
0 (Ω;R3) ∩ Vadm(0) for a certain k ≥ 3. (3.3)

Finally, let g ∈ L∞(Ω;R3), and p ∈ C[0,∞) - a non-decreasing function be given.
Then problem (P) admits a variational solution ̺, u, ηi, i = 1, ...,m, in the

sense of Definition 2.1 on an arbitrary time interval (0, T ). Moreover, we have

S
i
(t) ∩ S

j
(t) = ∅ for i 6= j, S

i
(t) ⊂ Ω for i = 1, ...,m (3.4)

for any t ∈ [0, T ], that means, the motion is smooth without any collision of two or
several rigid objects in a finite time.
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As already pointed out several times, the main ingredient of the proof are strong
dissipation estimates resulting from energy inequality (2.9). Since k ≥ 3, the velocity
field u is a priori bounded in the space L2(0, T ;C1

0 (Ω)), in particular, the streamlines
(characteristics) can be identified with the unique solution of the system

d

dt
X(t,x) = u(t,X(t,x)), t > 0, X(0,x) = x. (3.5)

Accordingly, the (unique) weak solution ̺ of (2.1) satisfying ̺(0) = ̺0 is given by
formula

̺(t,X(t,x)) = ̺0(x) exp
(

−

∫ t

0

divxu(s,X(s,x)) ds
)

, x ∈ R3. (3.6)

Note that, in the absence of collisions, one can deduce from (2.5) that

∂t(̺u) ∈ L2(0, T ;W−k,2(Ω;R3)), (3.7)

which, combined with (2.9), gives rise to

u ∈ C([0, T ];L2(Ω;R3)). (3.8)

In particular, formula (3.6) makes sense for any weak solution in the sense of Definition
2.1.

The rest of the paper is devoted to the proof of Theorem 3.1.

4 Approximate problems

Let {vn}
∞

n=1 ⊂ D(Ω;R3) be a basis of the Hilbert space W k,2
0 (Ω;R3). Following San

Martin et al. [18] we introduce the approximate problem (P)n,ε:

∫ T

0

∫

R3

(

̺n,εun,ε · ∂tw + ̺n,εun,ε ⊗ un,ε : ∇xw + p(̺n,ε) divxw
)

dx dt = (4.1)

∫ T

0

∫

Ω

Mε(χn,ε)[∇xun,ε + ∇t
xun,ε] : [∇xw + ∇t

xw] dx dt+

∫ T

0

((un,ε,w)) dt−

∫ T

0

∫

R3

̺n,εg · w dx dt−

∫

R3

̺0u0 · w(0) dx

to be satisfied for any test function

w ∈ C1([0, T ];Xn), w(T ) = 0,Xn = span{v1, ...,vn}. (4.2)

Here, ̺n,ε is determined through formula

̺n,ε(t,Xn,ε(t,x)) = ̺0(x) exp
(

−

∫ t

0

divxun,ε(s,Xn,ε(s,x)) ds
)

, x ∈ R3 (4.3)

while
χn,ε(t,Xn,ε(t,x)) = χ0,ε(x) ≥ 0, (4.4)

where
d

dt
Xn,ε(t,x) = un,ε(t,Xn,ε(t,x)), t > 0, Xn,ε(0,x) = x. (4.5)
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Note that χn,ε is the unique distributional solution of the equation

∂tχn,ε + un,ε · ∇xχn,ε = 0, χn,ε(0) = χ0,ε

(cf. DiPerna and Lions [5]).
The functions Mε belong to the class C1[0,∞) ∩BC[0,∞) for any fixed ε > 0.
Problem (P)n,ε can be solved by means of the standard fixed-point argument

used in [13, Section 2], the presence of the additional viscosity coefficient Mε requiring
only minor modifications.

5 Uniform estimates

Similarly to Section 2.5, one can show that the approximate solutions ̺n,ε, un,ε satisfy
energy equality

En,ε(t2) +

∫ t2

t1

∫

Ω

Mε(χn,ε)|∇xun,ε + ∇t
xun,ε|

2 dx dt+

∫ t2

t1

((un,ε,un,ε)) dt = (5.1)

En,ε(t1) +

∫ t2

t1

∫

Ω

̺n,εg · un,ε dx

for any 0 ≤ t1 ≤ t2 ≤ T , with

En,ε(t) =

∫

Ω

(1

2
̺n,ε|un,ε|

2 + ̺n,εP (̺n,ε)
)

dx, (5.2)

En,ε(0) = E0 =

∫

Ω

(1

2
̺0|u0|

2 + ̺0P (̺0)
)

dx. (5.3)

Under the hypotheses of Theorem 3.1, it is a routine matter to check that (5.1 -
5.3) give rise to uniform estimates:

{un,ε}n,ε bounded in L2(0, T ;W k,2
0 (Ω;R3)), (5.4)

̺ exp
(

− T‖divxun,ε‖L1(0,T ;L∞(Ω))

)

≤ ̺n,ε(t,x) ≤ ̺ exp
(

T‖divxun,ε‖L1(0,T ;L∞(Ω))

)

(5.5)
for a.a. t ∈ (0, T ), x ∈ Ω, and

{un,ε}n,ε bounded in L∞(0, T ;L2(Ω;R3)). (5.6)

In addition,

∫ T

0

∫

Ω

Mε(χn,ε)|∇xun,ε + ∇t
xun,ε|

2 dx dt ≤ const, (5.7)

where the bound is uniform with respect to n, ε.
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6 Convergence

6.1 The limit n → ∞

With ε > 0 fixed, our aim is to let n → ∞ in the family of approximate solutions
̺n,ε, un,ε constructed in Section 4. To begin with, estimates (5.4), (5.6) yield

un,ε → uε weakly in L2(0, T ;W k,2
0 (Ω;R3)) and weakly-(*) in L∞(0, T ;L2(Ω;R3))

(6.1)
for n→ ∞, at least for a suitable subsequence.

Similarly, by virtue of (4.3), (5.5), we can assume that

̺n,ε → ̺ε in Cweak([0, T ];L1(Ω)) and weakly-(*) in L∞(0, T ;L∞(Ω)). (6.2)

Consequently, combining (6.1), (6.2), we conclude that

̺n,εun,ε → ̺εuε weakly-(*) in L∞(0, T ;L2(Ω;R3)). (6.3)

Moreover, it follows from (4.1) that

{t 7→

∫

Ω

(̺n,εun,ε)(t) · vn dx} → {t 7→

∫

Ω

(̺εuε)(t) · vn dx} in C[0, T ] for n = 1, 2, ...;

whence
̺n,εun,ε → ̺εuε in Cweak([0, T ];L2(Ω;R3)). (6.4)

Relations (6.1), (6.4) imply

̺n,εun,ε · un,ε → ̺εuε · uε weakly in L2((0, T ) × Ω); (6.5)

therefore, in view of (4.3),

un,ε → uε in L2(0, T ;L2(Ω;R3)). (6.6)

Consequently, (6.1), (6.6) and a simple interpolation argument yield

un,ε → uε in L2(0, T ;W k−1,2
0 (Ω;R3)), (6.7)

in particular,
divxun,ε → divxuε in L2(0, T ;W k−2,2

0 (Ω;R3)). (6.8)

Since ̺n,ε satisfy continuity equation (2.1), one can deduce from (6.2), (6.8) that

̺n,ε → ̺ε in L1((0, T ) × Ω). (6.9)

In a similar way, one can show

χn,ε → χε in L1((0, T ) × Ω). (6.10)

Thus we have shown there are functions ̺ε, uε such that

∫ T

0

∫

R3

(

̺εuε · ∂tw + ̺εuε ⊗ uε : ∇xw + p(̺ε) divxw
)

dx dt = (6.11)

∫ T

0

∫

Ω

Mε(χε)[∇xuε + ∇t
xuε] : [∇xw + ∇t

xw] dx dt+
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∫ T

0

((uε,w)) dt−

∫ T

0

∫

R3

̺εg ·w dx dt−

∫

R3

̺0u0 ·w(0) dx

to be satisfied for any test function

w ∈ C1([0, T ];W k,2
0 (Ω, R3)), w(T ) = 0. (6.12)

Furthermore, we have

̺ε(t,Xε(t,x)) = ̺0(x) exp
(

−

∫ t

0

divxuε(s,Xε(s,x)) ds
)

, x ∈ R3 (6.13)

and
χε(t,Xε(t,x)) = χ0,ε(x) ≥ 0, (6.14)

where
d

dt
Xε(t,x) = uε(t,Xε(t,x)), t > 0, Xε(0) = x. (6.15)

In addition, the energy inequality

Eε(t2) +

∫ t2

t1

∫

Ω

Mε(χε)|∇xuε + ∇t
xuε|

2 dx dt+

∫ t2

t1

((uε,uε)) dt ≤ (6.16)

Eε(t1) +

∫ t2

t1

∫

Ω

̺εg · uε dx

holds for any 0 ≤ t1 ≤ T and a.a. t2 ∈ (t1, T ), where

Eε(t) =

∫

Ω

(1

2
̺ε|uε|

2 + ̺εP (̺ε)
)

dx, Eε(0) = E0 =

∫

Ω

(1

2
̺0|u0|

2 + ̺0P (̺0)
)

dx.

6.2 The limit for ε → 0

Adopting the idea of San Martin et al. [18] we take

Mε(z) =
1

ε
max{z, 0}, (6.17)

χε,0 = χ0 ∈ C1(Ω), χ0(x) =

{

0 for x ∈ Ω \ ∪m
i=1S

i
,

> 0 for x ∈ ∪m
i=1S

i.
(6.18)

Our ultimate goal is to let ε→ 0 in (6.11 - 6.16) in order to recover the global-in-time
solution of problem (P), the existence of which is claimed in Theorem 3.1.

To begin with, we can assume, by virtue of (6.16), that

uε → u weakly in L2(0, T ;W k,2
0 (Ω;R3)) (6.19)

passing to a suitable subsequence as the case may be. Moreover, as {̺ε}ε>0 is bounded
below away from zero in view of (6.13), we have

uε → u weakly-(*) in L∞(0, T ;L2(Ω;R3)). (6.20)

As stated in (6.13), {̺ε}ε>0 solve (in the sense of distributions) continuity equation
(2.1) supplemented with the initial datum ̺0; whence we have

̺ε → ̺ in, say, Cweak([0, T ];L2(Ω)), (6.21)

11



̺εuε → ̺u weakly-(*) in L∞(0, T ;L2(Ω;R3)). (6.22)

Thus we are allowed to conclude that ̺, u, extended to be zero outside Ω, solve
equation (2.1). In addition, ̺ is uniquely determined by ̺0 and the velocity field u,
and ̺ ∈ C([0, T ];L1(Ω)) (cf. DiPerna and Lions [5]).

In order to identify the family of isometries ηi, i = 1, ...,m, we need the following
auxilliary result proved in [6, Proposition 5.1].

Lemma 6.1 Let uε = uε(t,x) be a family of Caratheodory functions such that

∫ T

0

‖uε(t)‖
2
W 1,∞(R3;R3) dt ≤ const

uniformly with respect to ε→ 0. Let Sε ⊂ R3 be a family of open sets such that

db[Sε] → db[S] in Cloc(R
3),

where S ⊂ R3 is an open set and the symbol db denotes the signed distance from the
boundary:

db[S](x) = dist[x, R3 \ S] − dist[x, S], dist[x,K] ≡ min
y∈K

|x− y|.

Denote by Xε the unique solution of the problem

d

dt
Xε(t,x) = uε(t,Xε(t,x)), 0 < t < T, Xε(0,x) = x. (6.23)

Then, extracting a suitable subsequence if necessary, we have

uε → u weakly-(*) in L2(0, T ;W 1,∞(R3;R3)),

and
Xε(t, ·) → X(t, ·) in Cloc(R

3) uniformly in t ∈ [0, T ],

where X solves

d

dt
X(t,x) = u(t,X(t,x)), 0 < t < T, X(0,x) = x. (6.24)

Moreover,

db[Sε(t)] → db[S(t)] in Cloc(R
3) uniformly in t ∈ [0, T ],

where we have ser
Sε(t) = Xε(t, Sε), S(t) = X(t, S).

Consider the domains Si(t), i = 1, ...,m occupied by the images of the rigid bodies
Si, i = 1, ...,m under the flow induced by (6.24):

Si(t) = X(t, Si), i = 1, ...,m.

Since the velocity field u belongs to the class L2(0, T ;C1(R3;R3), we have, in accor-
dance with hypothesis (3.1),

S
i
(t) ∩ S

j
(t) = ∅ for i 6= j, S

i
⊂ Ω for i = 1, ...,m (6.25)
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for all t ∈ [0, T ], that is to say, there is no collision of two or more “rigid” objects.
Let

(t,x) ∈ ∪t∈(0,T )S
i(t).

In accordance with Lemma 6.1, there is a small open neighbourhood V of (t,x) such
that

V ⊂ V ⊂ ∪t∈(0,T )Xε(t, S
i) for all ε > 0 small enough,

where Xε are determined through (6.15).
Consequently, combining energy inequality (6.16) with (6.14), (6.17), (6.18) we

conclude that
∇xu + ∇t

xu = 0 a.a. on V.

As the point (t,x) was arbitrary, we have

∇xu + ∇t
xu = 0 a.a. on ∪m

i=1 ∪t∈(0,T )S
i(t). (6.26)

It is a routine matter to deduce from (6.24), (6.26) that

X(t, ·) : Si → R3 is an isometry for any i = 1, ...,m and any fixed t ∈ [0, T ];

whence we can set

ηi(t, ·) : R3 → R3, ηi(t,x) = X(t,x) for all x ∈ Si, t ∈ [0, T ], i = 1, ...,m (6.27)

Clearly, the family ηi, i = 1, ...,m is compatible with the vector field u in the sense
of Definition 2.1.

In order to complete the proof of Theorem 3.1, we have to pass to the limit for
ε→ 0 in (6.11) to recover momentum equation (2.5). To this end, first observe that

{̺εuε}ε>0 is precompact in Cweak([t1, t2], L
2(B;R3)) (6.28)

whenever ([t1, t2] ×B) ∩ ∪m
i=1 ∪t∈[0,T ] S

i
(t) = ∅.

In particular, in accordance with (6.20),

̺εuε ⊗ uε → Q weakly in L2(0, T ;L2(Ω;R3×3)), (6.29)

where
Q = ̺u⊗ u on Ω \ ∪m

i=1 ∪t∈(0,T ) S
i(t). (6.30)

As a byproduct of (6.30) we get

uε → u in L2
(

Ω \ ∪m
i=1 ∪t∈(0,T ) S

i(t);R3
)

; (6.31)

whence, having used the estimates on divxuε resulting from (6.16), we conclude that

divxuε → divxu in L1((0, T ) × Ω). (6.32)

Since ̺ε solve the continuity equation, relation (6.32) implies

̺ε → ̺ in L1((0, T ) × Ω). (6.33)

Using (6.29), (6.33) one can let ε → 0 in (6.11) in order to recover (2.5) at least
for any test function w such that

w ∈ C1([0, T ];Ck(R3)), w(T ) = 0, w(t) ∈ V δ
adm(t) for any t ∈ [0, T ],
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where

V δ
adm(t) = {w ∈ Ck(R3;R3) | w ≡ 0 on a δ-neighbourhood of R3 \ Ω,

∇xw + ∇xw
t ≡ 0 on a δ-neighbourhood of ∪m

i=1 η
i(t, Si)}, δ > 0.

Note that

∫ T

0

∫

Ω

̺εuε ⊗ uε : ∇xw dx dt =
1

2

∫ T

0

∫

Ω

̺εuε ⊗ uε : (∇xw + ∇t
xw) dx dt.

Since there is no contact of rigid objets (see (6.25)), it is easy to extend validity
of (2.5) to all test functions in the class (2.6) via density argument.

Finally, by virtue of (6.19), (6.33), energy inequality (2.9) holds for t1 = 0 and
a.a. t2 ∈ (0, T ) as required in Definition 2.1. Theorem 3.1 has been proved.
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