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2 DOUBEK, MARKL, ZIMA

1. Algebras and modules

In this section we investigate modules (where module means rather a bimodule than a one-

sided module) over various types of algebras.

1.1. Example. – The category Ass of associative algebras.

An associative algebra is a k-vector space A with a bilinear multiplication A ⊗ A → A

satisfying

a(bc) = (ab)c, for all a, b, c ∈ A.

Observe that at this moment we do not assume the existence of a unit 1 ∈ A.

What we understand by a module over an associative algebra is in fact a bimodule,

i.e. a vector space M equipped with multiplications (“actions”) by elements of A from both

sides, subject to the axioms

a(bm) = (ab)m,

a(mb) = (am)b,

m(ab) = (ma)b, for all m ∈M, a, b ∈ A.

1.2. Example. – The category Com of commutative associative algebras.

In this case left modules, right modules and bimodules coincide. In addition to the axioms

in Ass we require the commutativity

ab = ba, for all a, b ∈ A,

and for a module

ma = am, for all m ∈M, a ∈ A.

1.3. Example. – The category Lie of Lie algebras.

The bilinear bracket [−,−] : L⊗ L→ L of a Lie algebra L is anticommutative and satisfies

the Jacobi identity, that is

[a, b] = −[b, a], and

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0, for all a, b, c ∈ L.

A left module (also called a representation) M of L satisfies the standard axiom

a(bm)− b(am) = [a, b]m, for all m ∈M, a, b ∈ L.

Given a left module M as above, one can canonically turn it into a right module by setting

ma := −am. Denoting these actions of L by the bracket, one can rewrite the axioms as

[a, m] = −[m, a], and

[a, [b, m]] + [b, [m, a]] + [m, [a, b]] = 0, for all m ∈M, a, b ∈ L.
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Examples 1.1–1.3 indicate how axioms of algebras induce, by replacing one instance of an

algebra variable by a module variable, axioms for the corresponding modules. In the rest of

this section we formalize, following [41], this recipe. The standard definitions below can be

found for example in [32].

1.4. Definition. The product in a category C is the limit of a discrete diagram. The terminal

object of C is the limit of an empty diagram, or equivalently, an object T such that for every

X ∈ C there exists a unique morphism X → T .

1.5. Remark. The product of any object X with the terminal object T is naturally isomor-

phic to X,

X × T ∼= X ∼= T ×X.

1.6. Remark. It follows from the universal property of the product that there exists the

swapping morphism X ×X
s→ X ×X making the diagram

X ×X
p1 - X

X

p2

?
�

p1

X ×X,

p2

6
s

-

in which p1 (resp. p2) is the projection onto the first (resp. second) factor, commutative.

1.7. Example. In the category of A-bimodules, the product M1×M2 is the ordinary direct

sum M1 ⊕M2. The terminal object is the trivial module 0.

1.8. Definition. A category C has finite products, if every finite discrete diagram has a limit

in C.

By [32, Proposition 5.1], C has finite limits if and only if it has a terminal object and

products of pairs of objects.

1.9. Definition. Let C be a category, A ∈ C. The comma category (also called the slice

category) C/A is the category whose

– objects (X, π) are C-morphisms X
π→ A, X ∈ C, and

– morphisms (X ′, π′)
f→ (X ′′, π′′) are commutative diagrams of C-morphisms:

X ′ f - X ′′

A

π′

?
========

idA

A.

π′′

?
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1.10. Definition. The fibered product (or pullback) of morphisms X1
f1→ A and X2

f2→ A in

C is the limit D (together with morphisms D
p1→ X1, D

p2→ X2) of the lower right corner of

the digram:

D
p1 - X1

X2

p2

?

f2

- A.

f1

?

In the above situation one sometimes writes D = X1 ×A X2.

1.11. Proposition. If C has fibered products then C/A has finite products.

Proof. A straightforward verification. The identity morphism (A, idA) is clearly the terminal

object of C/A.

Let (X1, π1) and (X2, π2) be objects of C/A. By assumption, there exists the fibered

product

(1)

D
p1 - X1

X2

p2

?

π2

- A

π1

?

δ

-

in C. In the above diagram, of course, δ := π1p1 = π2p2. The maps p1 : D → X1 and p2 :

D → X2 of the above diagram define morphisms (denoted by the same symbols) p1 : (D, δ)→
(X1, π1) and p2 : (D, δ)→ (X2, π2) in C/A. The universal property of the pullback (1) implies

that the object (D, δ) with the projections (p1, p2) is the product of (X1, π1) × (X2, π2)

in C/A. �

One may express the conclusion of the above proof by

(2) (X1, π1)× (X2, π2) = X1 ×A X2,

but one must be aware that the left side lives in C/A while the right one in C, therefore (2)

has only a symbolical meaning.

1.12. Example. In Ass, the fibered product of morphisms B1
f1→ A, B2

f2→ A is the subalgebra

(3) B1 ×A B2 = {(b1, b2) | f1(b1) = f2(b2)} ⊆ B1 ⊕B2

together with the restricted projections. Hence for any algebra A ∈ Ass, the comma category

Ass /A has finite products.
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1.13. Definition. Let C be a category with finite products and T its terminal object.

An abelian group object in C is a quadruple (G, G×G
µ→ G, G

η→ G, T
e→ G) of objects and

morphisms of C such that following diagrams commute:

– the associativity µ:

G×G×G
µ× idG- G×G

G×G

idG×µ

?

µ
- G,

µ

?

– the commutativity of µ (with s the swapping morphism of Remark 1.6):

G×G
s - G×G

G
�

µµ

-

– the neutrality of e:

T ×G
e× idG- G×G �idG×e

G× T

G

µ

?==
==

==
==

==
==

==
=

∼=

===============

∼=

– the diagram saying that η is a two-sided inverse for the multiplication µ:

G
η × idG- G×G

G×G

idG × η

?

µ
- G,

µ

?-

in which the diagonal map is the composition G→ T
e→ G.

Maps µ, η and e above are called the multiplication, the inverse and the unit of the abelian

group structure, respectively.
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Morphisms of abelian group objects (G′, µ′, η′, e′)
f→ (G′′, µ′′, η′′, e′′) are morphisms G′ f→

G′′ in C which preserve all structure operations. In terms of diagrams this means that

G′ ×G′ f × f- G′′ ×G′′ G′ f - G′′ T =========
idT

T

G

µ′

?

f
- G′

µ′′

?
G

η′

?

f
- G′

η′′

?
G

e′

?

f
- G′

e′′

?

commute. The category of abelian group objects of C will be denoted Cab.

Let Alg be any of the examples of categories of algebras considered above and A ∈ Alg. It

turns out that the category (Alg /A)ab is precisely the corresponding category of A-modules.

To verify this for associative algebras, we identify, in Proposition 1.15 below, objects of

(Ass /A)ab with trivial extensions in the sense of:

1.14. Definition. Let A be an associative algebra and M an A-module. The trivial extension

of A by M is the associative algebra A⊕M with the multiplication given by

(a, m)(b, n) = (ab, an + mb), a, b ∈ A and m, n ∈M.

1.15. Proposition. The category (Ass /A)ab is isomorphic to the category of trivial extensions

of A.

Proof. Let M be an A-module and A⊕M the corresponding trivial extension. Then A⊕M

with the projection A ⊕ M
πA→ A determines an object G of Ass /A and, by (2) and (3),

G × G = (A ⊕M ⊕M
πA→ A). It is clear that µ : G × G → G given by µ(a, m1, m2) :=

(a, m1 + m2), e the inclusion A ↪→ A ⊕M and η : G → G defined by η(a, m) := (a,−m)

make G an abelian group object in (Ass /A)ab.

On the other hand, let ((B, π), µ, η, e) be an abelian group object in Ass /A. The diagram

A
e - B

A

π

?

==============

id
A

for the neutral element says that π is a retraction. Therefore one may identify the algebra A

with its image e(A), which is a subalgebra of B. Define M := Ker π so that there is a vector

spaces isomorphism B = A⊕M determined by the inclusion e : A ↪→ B and its retraction π.

Since M is an ideal in B, the algebra A acts on M from both sides. Obviously, M with these

actions is an A-bimodule, the bimodule axioms following from the associativity of B as in
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Example 1.1. It remains to show that m′m′′ = 0 for all m′, m′′ ∈M which would imply that

B is a trivial extension of A. Let us introduce the following notation.

For a morphism f : (B′, π′) → (B′′, π′′) of k-splitting objects of Ass /A (i.e. objects with

specific k-vector space isomorphisms B ′ ∼= A ⊕ M ′ and B′′ ∼= A ⊕ M ′′ such that π′ and

π′′ are the projections on the first summand) we denote by f̃ : M ′ → M ′′ the restriction

f |M ′ followed by the projection B ′′ π′

→ M ′′. We call f̃ the reduction of f . Clearly, for every

diagram of splitting objects in Ass /A there is the corresponding diagram of reductions in

Ass.

The fibered product (A⊕M, π)× (A⊕M, π) in Ass /A is isomorphic to A⊕M ⊕M with

the multiplication

(a′, m′
1, m

′
2)(a

′′, m′′
1, m

′′
2) = (a′a′′, a′m′′

1 + m′
1a

′′ + m′
1m

′′
1, a

′m′′
2 + m′

2a
′′ + m′

2m
′′
2).

The neutrality of e implies the following diagram of reductions

0⊕M
ẽ× idM- M ⊕M �idM ×ẽ

M ⊕ 0

M

µ̃

?==
==

==
==

==
==

==
=

∼=

===============

∼=

which in turn implies

µ̃(0, m) = µ̃(m, 0) = m, for all m ∈M.

Since µ is a morphism in Ass, it preserves the multiplication and so does its reduction µ̃. We

finally obtain

m′ ·m′′ = µ̃(m′, 0) · µ̃(0, m′′) = µ̃((m′, 0) · (0, m′′)) = µ̃(m′ · 0, 0 ·m′′) = 0.

This finishes the proof. �

We have shown that objects of (Ass /A)ab are precisely trivial extensions of A. Since there

is an obvious equivalence between modules and trivial extensions, we obtain:

1.16. Theorem. The category (Ass /A)ab is isomorphic to the category of A-modules.

1.17. Exercise. Prove analogous statements also for (Com /A)ab and (Lie /L)ab.

1.18. Exercise. The only property of abelian group objects used in our proof of Proposi-

tion 1.15 was the existence of a neutral element for the multiplication. In fact, by analyzing

our arguments we conclude that in Ass /A, every object with a multiplication and a neutral

element (i.e. a monoid in Ass /A) is an abelian group object. Is this statement true in any

comma category? If not, what special property of Ass /A makes it hold in this particular

category?
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2. Cohomology

Let A be an algebra, M an A-module. There are the following approaches to the “coho-

mology of A with coefficients in M .”

(1) Abelian cohomology defined as H∗(Lin(R∗, M)), where R∗ is a resolution of A in the

category of A-modules.

(2) Non-abelian cohomology defined as H∗(Der(F∗, M)), where F∗ is a resolution of A

in the category of algebras and Der(−, M) denotes the space of derivations with

coefficients in M .

(3) Deformation cohomology which is the subject of this note.

The adjective (non)-abelian reminds us that (1) is a derived functor in the abelian category

of modules while cohomology (2) is a derived functor in the non-abelian category of algebras.

Construction (1) belongs entirely into classical homological algebra [30], but (2) requires

Quillen’s theory of closed model categories [40]. Recall that in this note we work over a field

of characteristics 0, over the integers one should take in (2) a suitable simplicial resolution [1].

Let us indicate the meaning of deformation cohomology in the case of associative algebras.

Let V = Span{e1, . . . , ed} be a d-dimensional k-vector space. Denote Ass(V ) the set of

all associative algebra structures on V . Such a structure is determined by a bilinear map

µ : V ⊗V → V . Relying on Einstein’s convention, we write µ(ei, ej) = Γl
ijel for some scalars

Γl
ij ∈ k. The associativity µ(ei, µ(ej, ek)) = µ(µ(ei, ej), ek) of µ can then be expressed as

Γr
ilΓ

l
jk = Γl

ijΓ
r
lk, i, j, k, r = 1, . . . , d.

These d4 polynomial equations define an affine algebraic variety, which is just another way to

view Ass(V ), since every point of this variety corresponds to an associative algebra structure

on V . We call Ass(V ) the variety of structure constants of associative algebras.

The next step is to consider the quotient Ass(V )/GL(V ) of Ass(V ) modulo the action of

the general linear group GL(V ) recalled in formula (10) below. However, Ass(V )/GL(V )

is no longer an affine variety, but only a (possibly singular) algebraic stack (in the sense of

Grothendieck). One can remove singularities by replacing Ass(V ) by a smooth dg-schemeM.

Deformation cohomology is then the cohomology of the tangent space of this smooth dg-

scheme [6, 8].

Still more general approach to deformation cohomology is based on considering a given

category of algebras as the category of algebras over a certain PROP P and defining the de-

formation cohomology using a resolution of P in the category of PROPs [27, 34, 36]. When P

is a Koszul quadratic operad, we get the operadic cohomology whose relation to deformations

was studied in [3]. There is also an approach to deformations based on triples [11].
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For associative algebras all the above approaches give the classical Hochschild cohomology

(formula 3.2 of [30, §X.3]):

2.1. Definition. The Hochschild cohomology of an associative algebra A with coefficients in

an A-module M is the cohomology of the complex:

0−→M
δHoch−→ C1

Hoch(A, M)
δHoch−→ · · · δHoch−→ Cn

Hoch(A, M)
δHoch−→ · · ·

in which Cn
Hoch(A, M) := Lin(A⊗n, M), the space of n-multilinear maps from A to M . The

coboundary δ = δHoch : Cn
Hoch(A, M)→ Cn+1

Hoch(A, M) is defined by

δHochf(a0 ⊗ . . .⊗ an) := (−1)n+1a0f(a1 ⊗ . . .⊗ an) + f(a0 ⊗ . . .⊗ an−1)an

+
n−1
∑

i=0

(−1)i+nf(a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an),

for ai ∈ A. Denote Hn
Hoch(A, M) := Hn(C∗

Hoch(A, M), δ).

2.2. Exercise. Prove that δ2
Hoch = 0.

2.3. Example. A simple computation shows that

– H0
Hoch(A, M) = {m ∈M | am−ma = 0 for all a ∈ A},

– H1
Hoch(A, M) = Der(A, M)/ IDer(A, M), where IDer(A, M) denotes the subspace of

internal derivations, i.e. derivations of the form ϑm(a) = am−ma for a ∈ A and some fixed

m ∈M . Slightly more difficult is to prove that

– H2
Hoch(A, M) is the space of isomorphism classes of singular extensions of A by M [30,

Theorem X.3.1].

3. Classical deformation theory

As everywhere in this note, we work over a field k of characteristics zero and ⊗ denotes

the tensor product over k. By a ring we will mean a commutative associative k-algebra. Let

us start with necessary preliminary notions.

3.1. Definition. Let R be a ring with unit e and ω : k → R the homomorphism given

by ω(1) := e. A homomorphism ε : R → k is an augmentation of R if εω = idk or,

diagrammatically,

R
ε - k

k.

ω

6

id

-

The subspace R := Ker ε is called the augmentation ideal of R. The indecomposables of the

augmented ring R are defined as the quotient Q(R) := R/R
2
.
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3.2. Example. The unital ring k[[t]] of formal power series with coefficients in k is aug-

mented, with augmentation ε : k[[t]] → k given by ε(
∑

i∈N0
ait

i) := a0. The unital ring

k[t] of polynomials with coefficients in k is augmented by ε(f) := f(0), for f ∈ k[t]. The

truncated polynomial rings k[t]/(tn), n ≥ 1, are also augmented, with the augmentation

induced by the augmentation of k[t].

3.3. Example. Recall that the group ring k[G] of a finite group G with unit e is the space

of all formal linear combinations
∑

g∈G agg, ag ∈ k, with the multiplication

(
∑

g∈G a′
gg)(

∑

g∈G a′′
gg) :=

∑

g∈G

∑

uv=g a′
ua

′′
vg

and unit 1e. The ring k[G] is augmented by ε : k[G]→ k given as

ε(
∑

g∈G agg) :=
∑

g∈G ag.

3.4. Example. A rather trivial example of a ring that does not admit an augmentation is

provided by any proper extension K ) k of k. If an augmentation ε : K → k exists, then

Ker ε is, as an ideal in a field, trivial, which implies that ε is injective, which would imply

that K = k contradicting the assumption K 6= k.

3.5. Exercise. If
√
−1 6∈ k, then k[x]/(x2 + 1) admits no augmentation.

In the rest of this section, R will be an augmented unital ring with an augmentation

ε : R→ k and the unit map ω : k→ R. By a module we will understand a left module.

3.6. Remark. A unital augmented ring R is a k-bimodule, with the bimodule structure

induced by the unit map ω in the obvious manner. Likewise, k is an R bimodule, with the

structure induced by ε. If V is a k-module, then R ⊗ V is an R-module, with the action

r′(r′′ ⊗ v) := r′r′′ ⊗ v, for r′, r′′ ∈ R and v ∈ V .

3.7. Definition. Let V be a k-vector space and R a unital k-ring. The free R-module

generated by V is an R-module R〈V 〉 together with a k-linear map ι : V → R〈V 〉 with the

property that for every R-module W and a k-linear map V
ϕ→ W , there exists a unique

R-linear map Φ : R〈V 〉 →W such that the following diagram commutes:

V
ι - R〈V 〉

W.

Φ

?

ϕ

-

This universal property determines the free module R〈V 〉 uniquely up to isomorphism.

A concrete model is provided by the R-module R ⊗ V recalled in Remark 3.6.
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3.8. Definition. Let W be an R-module. The reduction of W is the k-module W := k⊗RW ,

with the k-action given by k′(k′′ ⊗R w) := k′k′′ ⊗R w, for k′, k′′ ∈ k and w ∈ W .

One clearly has k-module isomorphisms W ∼= W/RW and R〈V 〉 ∼= V . The reduction

clearly defines a functor from the category of R-modules to the category of k-modules.

3.9. Proposition. If B is an associative R-algebra, then the reduction B is a k-algebra, with

the structure induced by the algebra structure of B.

Proof. Since B ' B/RB, it suffices to verify that RB is a two-sided ideal in B. But this is

simple. For r ∈ R, b′, b′′ ∈ B one sees that µ(rb′, b′′) = rµ(b′, b′′) ∈ RB, which shows that

µ(RB, B) ⊂ RB. The right multiplication by elements of RB is discussed similarly. �

3.10. Definition. Let A be an associative k-algebra and R an augmented unital ring. An

R-deformation of A is an associative R-algebra B together with a k-algebra isomorphism

α : B → A.

Two R-deformations (B ′, B
′ α′

→ A) and (B′′, B
′′ α′′

→ A) of A are equivalent if there exists

an R-algebra isomorphism φ : B ′ → B′′ such that φ = α′′−1 ◦ α′.

There is probably not much to be said about R-deformations without additional assump-

tions on the R-module B. In this note we assume that B is a free R-module or, equivalently,

that

(4) B ∼= R⊗ A (isomorphism of R-modules).

The above isomorphism identifies A with the k-linear subspace 1⊗ A of B and A⊗ A with

the k-linear subspace (1⊗ A)⊗ (1⊗ A) of B ⊗B.

Another assumption frequently used in algebraic geometry [19, Section III.§9] is that the

R-module B is flat which, by definition, means that the functor B ⊗R − is left exact. One

then speaks about flat deformations.

In what follows, R will be either a power series ring k[[t]] or a truncation of the polynomial

ring k[t] by an ideal generated by a power of t. All these rings are local Noetherian rings

therefore a finitely generated R-module is flat if and only if it is free (see Exercise 7.15,

Corollary 10.16 and Corollary 10.27 of [2]). It is clear that B in Definition 3.10 is finitely

generated over R if and only if A finitely generated as a k-vector space. Therefore, for A

finitely generated over k, free deformations are the same as the flat ones.

The R-linearity of deformations implies the following simple lemma. Recall that all de-

formations in this sections satisfy (4).
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3.11. Lemma. Let B = (B, µ) be a deformation as in Definition 3.10. Then the multiplica-

tion µ in B is determined by its restriction to A⊗ A ⊂ B ⊗ B. Likewise, every equivalence

of deformations φ : B ′ → B′′ is determined by its restriction to A ⊂ B.

Proof. By (4), each element of B is a finite sum of elements of the form ra, r ∈ R and a ∈ A,

and µ(ra, sb) = rsµ(a, b) by the R-bilinearity of µ for each a, b ∈ A and r, s ∈ R. This proves

the first statement. The second part of the lemma is equally obvious. �

The following proposition will also be useful.

3.12. Proposition. Let B ′ = (B′, B
′ α′

→ A) and B′′ = (B′′, B
′′ α′′

→ A) be R-deformations of

an associative algebra A. Assume that R is either a local Artinian ring or a complete local

ring. Then every homomorphism φ : B ′ → B′′ of R-algebras such that φ = α′′−1 ◦ α′ is an

equivalence of deformations.

Sketch of proof. We must show that φ is invertible. One may consider a formal inverse of φ

in the form of an expansion in the successive quotients of the maximal ideal. If R is Artinian,

this formal inverse has in fact only finitely many terms and hence it is an actual inverse of φ.

If R is complete, this formal expansion is convergent. �

We leave as an exercise to prove that each R-deformation of A in the sense of Definition 3.10

is equivalent to a deformation of the form (B, B
can→ A), with B = R⊗A (equality of k-vector

spaces) and can the canonical map B = k⊗R (R⊗ A)→ A given by

can(1⊗R (1⊗ a)) := a, for a ∈ A.

Two deformations (B, µ′) and (B, µ′′) of this type are equivalent if and only if there exists

an R-algebra isomorphism φ : (B, µ′) → (B, µ′′) which reduces, under the identification

can : B → A, to the identity idA : A → A. Since we will be interested only in equivalence

classes of deformations, we will assume that all deformations are of the above special form.

3.13. Definition. A formal deformation is a deformation, in the sense of Definition 3.10,

over the complete local augmented ring k[[t]].

3.14. Exercise. Is k[x, y, t]/(x2 + txy) a formal deformation of k[x, y]/(x2)?

3.15. Theorem. A formal deformation B of A is given by a family

{µi : A⊗ A→ A | i ∈ N}
satisfying µ0(a, b) = ab (the multiplication in A) and

(Dk)
∑

i+j=k, i,j≥0 µi(µj(a, b), c) =
∑

i+j=k, i,j≥0 µi(a, µj(b, c)) for all a, b, c ∈ A

for each k ≥ 1.
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Proof. By Lemma 3.11, the multiplication µ in B is determined by its restriction to A⊗ A.

Now expand µ(a, b), for a, b ∈ A, into the power series

µ(a, b) = µ0(a, b) + tµ1(a, b) + t2µ2(a, b) + · · ·

for some k-bilinear functions µi : A⊗A→ A, i ≥ 0. Obviously, µ0 must be the multiplication

in A. It is easy to see that µ is associative if and only if (Dk) are satisfied for each k ≥ 1. �

3.16. Remark. Observe that (D1) reads

aµ1(b, c)− µ1(ab, c) + µ1(a, bc)− µ1(a, b)c = 0

and says precisely that µ1 ∈ Lin(A⊗2, A) is a Hochschild cocycle, δHoch(µ1) = 0, see Defini-

tion 2.1.

3.17. Example. Let us denote by H the group

H := {u = idA +φ1t + φ2t
2 + · · · | φi ∈ Lin(A, A)},

with the multiplication induced by the composition of linear maps. By Proposition 3.12,

formal deformations µ′ = µ0 + µ′
1t + µ′

2t
2 + · · · and µ′′ = µ0 + µ′′

1t + µ′′
2t

2 + · · · of µ0 are

equivalent if and only if

(5) u ◦ (µ0 + µ′
1t + µ′

2t
2 + · · · ) = (µ0 + µ′′

1t + µ′′
2t

2 + · · · ) ◦ (u⊗ u).

We close this section by formulating some classical statements [13, 14, 15] which reveal the

connection between deformation theory of associative algebras and the Hochschild cohomol-

ogy. As suggested by Remark 3.16, the first natural object to look at is µ1. This motivates

the following

3.18. Definition. An infinitesimal deformation of an algebra A is a D-deformation of A,

where

D := k[t]/(t2)

is the local Artinian ring of dual numbers.

3.19. Remark. One can easily prove an analog of Theorem 3.15 for infinitesimal deforma-

tions, namely that there is a one-to-one correspondence between infinitesimal deformations

of A and k-linear maps µ1 : A⊗A→ A satisfying (D1), that is, by Remark 3.16, Hochschild

2-cocycles of A with coefficients in itself. But we can formulate a stronger statement:

3.20. Theorem. There is a one-to-one correspondence between the space of equivalence

classes of infinitesimal deformations of A and the second Hochschild cohomology H 2
Hoch(A, A)

of A with coefficients in itself.
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Proof. Consider two infinitesimal deformations of A given by multiplications ∗′ and ∗′′, re-

spectively. As we observed in Remark 3.19, these deformations are determined by Hochschild

2-cocycles µ′
1, µ

′′
1 : A⊗ A→ A, via equations

a ∗′ b = ab + tµ′
1(a, b)(6)

a ∗′′ b = ab + tµ′′
1(a, b), a, b ∈ A.

Each equivalence φ of deformations ∗′ and ∗′′ is determined by a k-linear map φ1 : A→ A,

φ(a) = a + tφ1(a), a ∈ A,(7)

the invertibility of such a φ follows from Proposition 3.12 but can easily be checked directly.

Substituting (6) and (7) into

(8) φ(a ∗′ b) = φ(a) ∗′′ φ(b), a, b ∈ A,

one obtains

φ(ab + tµ′
1(a, b)) = (a + tφ1(a)) ∗′′ (b + tφ1(b))

which can be further expanded into

ab + tφ(µ′
1(a, b)) = ab + t(aφ1(b)) + t(φ1(a)b) + tµ′′

1(a + tφ1(a), b + tφ1(b))

so, finally,

ab + tµ′
1(a, b) = ab + t(aφ1(b) + φ1(a)b) + tµ′′

1(a, b).

Comparing the t-linear terms, we see that (8) is equivalent to

µ′
1(a, b) = δHochφ1(a, b) + µ′′

1(a, b).

We conclude that infinitesimal deformations given by µ′
1, µ

′′
1 ∈ C2

Hoch(A, A) are equivalent if

and only if they differ by a coboundary, that is, if and only if [µ′
1] = [µ′′

1] in H2
Hoch(A, A). �

Another classical result is:

3.21. Theorem. Let A be an associative algebra such that H 2
Hoch(A, A) = 0. Then all formal

deformations of A are equivalent to A.

Sketch of proof. If ∗′, ∗′′ are two formal deformations of A, one can, using the assumption

H2
Hoch(A, A) = 0, as in the proof of Theorem 3.20 find a k-linear map φ1 : A → A defining

an equivalence of (B, ∗′) to (B, ∗′′) modulo t2. Repeating this process, one ends up with an

equivalence φ = id +tφ1 + t2φ2 + · · · of formal deformations ∗′ and ∗′′. �

3.22. Definition. An n-deformation of an algebra A is an R-deformation of A for R the

local Artinian ring k[t]/(tn+1).

We have the following version of Theorem 3.15 whose proof is obvious.
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3.23. Theorem. An n-deformation of A is given by a family

{µi : A⊗ A→ A | 1 ≤ i ≤ n}

of k-linear maps satisfying (Dk) of Theorem 3.15 for 1 ≤ k ≤ n.

3.24. Definition. An (n+1)-deformation of A given by {µ1, . . . , µn+1} is called an extension

of the n-deformation given by {µ1, . . . , µn}.

Let us rearrange (Dn+1) into

−aµn+1(b, c) + µn+1(ab, c)− µn+1(a, bc) + µn+1(a, b)c =

=
∑

i+j=n+1, i,j>0

(µi(a, µj(b, c))− µi(µj(a, b), c))

Denote the trilinear function in the right-hand side by On and interpret it as an element of

C3
Hoch(A, A),

(9) On :=
∑

i+j=n+1, i,j>0

(µi(a, µj(b, c))− µi(µj(a, b), c)) ∈ C3
Hoch(A, A).

Using the Hochschild differential recalled in Definition 2.1, one can rewrite (Dn+1) as

δHoch(µn+1) = On.

We conclude that, if an n-deformation extends to an (n + 1)-deformation, then On is

a Hochschild coboundary. In fact, one can prove:

3.25. Theorem. For any n-deformation, the Hochschild cochain On ∈ C3
Hoch(A, A) defined

in (9) is a cocycle, δHoch(On) = 0. Moreover, [On] = 0 in H3
Hoch(A, A) if and only if the

n-deformation {µ1, . . . , µn} extends into some (n + 1)-deformation.

Proof. Straightforward. �

Geometric deformation theory. Let us turn our attention back to the variety of structure

constants Ass(V ) recalled in Section 2, page 8. Elements of Ass(V ) are associative k-linear

multiplications · : V ⊗ V → V and there is a natural left action · 7→ ·φ of GL(V ) on Ass(V )

given by

(10) a ·φ b := φ(φ−1(a) · φ−1(b)),

for a, b ∈ V and φ ∈ GL(V ). We assume that V is finite dimensional.

3.26. Definition. Let A be an algebra with the underlying vector space V interpreted as a

point in the variety of structure constants, A ∈ Ass(V ). The algebra A is called (geometri-

cally) rigid if the GL(V )-orbit of A in Ass(V ) is Zarisky-open.
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Let us remark that, if k = R or C, then, by [39, Proposition 17.1], the GL(V )-orbit of A in

Ass(V ) is Zarisky-open if and only if it is (classically) open. The following statement whose

proof can be found in [39, § 5] specifies the relation between the Hochschild cohomology and

geometric rigidity, compare also Propositions 1 and 2 of [9].

3.27. Theorem. Suppose that the ground field is algebraically closed.

(i) If H2
Hoch(A, A) = 0 then A is rigid, and

(ii) if H3
Hoch(A, A) = 0 then A is rigid if and only if H2

Hoch(A, A) = 0.

Three concepts of rigidity. One says that an associative algebra is infinitesimally rigid if

A has only trivial (i.e. equivalent to A) infinitesimal deformations. Likewise, A is analytically

rigid , if all formal deformations of A are trivial.

By Theorem 3.20, A is infinitesimally rigid if and only if H2
Hoch(A, A) = 0. Together with

Theorem 3.21 this establishes the first implication in the following display which in fact holds

over fields of arbitrary characteristic

infinitesimal rigidity =⇒ analytic rigidity =⇒ geometric rigidity.

The second implication in the above display is [16, Theorem 3.2]. Theorem 7.1 of the same

paper then says that in characteristic zero, the analytic and geometric rigidity are equivalent

concepts:

analytic rigidity
char. 0

⇐⇒ geometric rigidity.

Valued deformations. The authors of [18] studied R-deformations of finite-dimensional

algebras in the case when R was a valuation ring [2, Chapter 5]. In particular, they considered

deformations over the non-standard extension C∗ of the field of complex numbers, and called

these C∗-deformations perturbations. They argued, in [18, Theorem 4], that an algebra A

admits only trivial perturbations if and only if it is geometrically rigid.

3.28. Remark. An analysis parallel to the one presented in this section can be made for

any class of “reasonable” algebras, where “reasonable” are algebras over quadratic Koszul

operads [38, Section II.3.3] for which the deformation cohomology is given by a “standard

construction.” Let us emphasize that most of “classical” types of algebras (Lie, associative,

associative commutative, Poisson, etc.) are “reasonable.” See also [3, 4].

4. Structures of (co)associative (co)algebras

Let V be a k-vector space. In this section we recall, in Theorems 4.16 and 4.21, the

following important correspondence between (co)algebras and differentials:

{coassociative coalgebra structures on the vector space V }
l

{quadratic differentials on the free associative algebra generated by V }.
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and its dual version:

{associative algebras on the vector space V }
l

{quadratic differentials on the “cofree” coassociative coalgebra cogenerated by V }.

The reason why we put ‘cofree’ into parentheses will become clear later in this section.

Similar correspondences exist for any “reasonable” (in the sense explained in Remark 3.28)

class of algebras, see [12, Theorem 8.2]. We will in fact need only the second correspondence

but, since it relies on coderivations of “cofree” coalgebras, we decided to start with the first

one which is simpler to explain.

4.1. Definition. The free associative algebra generated by a vector space W is an associative

algebra A(W ) ∈ Ass together with a linear map W → A(W ) having the following property:

For every A ∈ Ass and a linear map W
ϕ→ A, there exists a unique algebra homomorphism

A(W )→ A making the diagram:

W - A(W )

A
?

ϕ

-

commutative.

The free associative algebra on W is uniquely determined up to isomorphism. An example

is provided by the tensor algebra T (W ) :=
⊕∞

n=1 W⊗n with the inclusion W = W⊗1 ↪→
T (W ). There is a natural grading on T (W ) given by the number of tensor factors,

T (W ) =
⊕∞

n=0 T n(W ),

where T n(W ) := W⊗n for n ≥ 1 and T 0(W ) := 0. Let us emphasize that the tensor algebra

as defined above is nonunital , the unital version can be obtained by taking T 0(W ) := k.

4.2. Convention. We are going to consider graded algebraic objects. Our choice of signs

will be dictated by the principle that whenever we commute two “things” of degrees p and q,

respectively, we multiply the sign by (−1)pq. This rule is sometimes called the Koszul sign

convention. As usual, non-graded (classical) objects will be, when necessary, considered as

graded ones concentrated in degree 0.

Let f ′ : V ′ →W ′ and f ′′ : V ′′ →W ′′ be homogeneous maps of graded vector spaces. The

Koszul sign convention implies that the value of (f ′ ⊗ f ′′) on the product v′ ⊗ v′′ ∈ V ′ ⊗ V ′′

of homogeneous elements equals

(f ′ ⊗ f ′′)(v′ ⊗ v′′) := (−1)deg(f ′′) deg(v′)f ′(v′)⊗ f ′′(v′′).
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In fact, the Koszul sign convention is determined by the above rule for evaluation.

4.3. Definition. Assume V = V ∗ is a graded vector space, V =
⊕

i∈Z
V i. The suspension

operator ↑ assigns to V the graded vector space ↑V with Z-grading (↑V )i := V i−1. There

is a natural degree +1 map ↑: V → ↑V that sends v ∈ V into its suspended copy ↑v ∈ ↑V .

Likewise, the desuspension operator ↓ changes the grading of V according to the rule (↓V )i :=

V i+1. The corresponding degree −1 map ↓: V → ↓V is defined in the obvious way. The

suspension (resp. the desuspension) of V is sometimes also denoted sV or V [−1] (resp. s−1V

or V [1]).

4.4. Example. If V is an un-graded vector space, then ↑ V is V placed in degree +1 and

↓ V is V placed in degree −1.

4.5. Remark. In the “superworld” of Z2-graded objects, the operators ↑ and ↓ agree and

coincide with the parity change operator.

4.6. Exercise. Show that the Koszul sign convention implies (↓ ⊗ ↓) ◦ (↑ ⊗ ↑) = − id or,

more generally,

↓⊗n ◦ ↑⊗n=↑⊗n ◦ ↓⊗n= (−1)
n(n−1)

2 id

for an arbitrary n ≥ 1.

4.7. Definition. A derivation of an associative algebra A is a linear map θ : A→ A satisfying

the Leibniz rule

θ(ab) = θ(a)b + aθ(b)

for every a, b ∈ A. Denote Der(A) the set of all derivations of A.

We will in fact need a graded version of the above definition:

4.8. Definition. A degree d derivation of a Z-graded algebra A is a degree d linear map

θ : A→ A satisfying the graded Leibniz rule

(11) θ(ab) = θ(a)b + (−1)d|a|aθ(b)

for every homogeneous element a ∈ A of degree |a| and for every b ∈ A. We denote Der d(A)

the set of all degree d derivations of A.

4.9. Exercise. Let µ : A⊗A→ A be the multiplication of A. Prove that (11) is equivalent to

θµ = µ(θ ⊗ id) + µ(id ⊗θ).

Observe namely how the signs in the right hand side of (11) are dictated by the Koszul

convention.
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4.10. Proposition. Let W be a graded vector space and T (W ) the tensor algebra generated

by W with the induced grading. For any d, there is a natural isomorphism

(12) Derd(T (W )) ∼= Lind(W, T (W )),

where Lind(−,−) denotes the space of degree d k-linear maps.

Proof. Let θ ∈ Derd(T (W )) and f := θ|W : W → T (W ). The Leibniz rule (11) implies that,

for homogeneous elements wi ∈ W , 1 ≤ i ≤ n,

θ(w1 ⊗ . . .⊗ wn) = f(w1)⊗ w2 ⊗ . . .⊗ wn + (−1)d|w1|w1 ⊗ f(w2)⊗ . . .⊗ wn + · · ·

=
n

∑

i=1

(−1)d(|w1|+···+|wi−1|)w1 ⊗ . . .⊗ f(wi)⊗ . . .⊗ wn

which reveals that θ is determined by its restriction f on W . On the other hand, given

a degree d linear map f : W → T (W ), the above formula clearly defines a derivation

θ ∈ Derd(T (W )). The correspondence

Der d(T (W )) 3 θ ←→ f := θ|W ∈ Lind(W, T (W ))

is the required isomorphism (12). �

4.11. Exercise. Let θ ∈ Der d(T (W )), f := θ|V and x ∈ T 2(W ). Prove that

θ(x) = (f ⊗ id + id ⊗f)(x).

4.12. Definition. A derivation θ ∈ Der d(T (W )) is called quadratic if θ(W ) ⊂ T 2W . A de-

gree 1 derivation θ is a differential if θ2 = 0.

4.13. Exercise. Prove that the isomorphism of Proposition 4.10 restricts to

Derd
2(T (W )) ∼= Lind(W, T 2(W )),

where Derd
2(T (W )) is the space of all quadratic degree d derivations of T (W ).

4.14. Definition. Let V be a vector space. A coassociative coalgebra structure on V is given

by a linear map ∆ : V → V ⊗ V satisfying

(∆⊗ id)∆ = (id ⊗∆)∆

(the coassociativity).

We will need, in Section 6, also a cocommutative version of coalgebras:

4.15. Definition. A coassociative coalgebra A = (V, ∆) as in Definition 4.14 is cocommuta-

tive if

T∆ = ∆
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with the swapping map T : V ⊗ V → V ⊗ V given by

T (v′ ⊗ v′′) := (−1)|v
′||v′′|v′′ ⊗ v′

for homogeneous v′, v′′ ∈ V .

4.16. Theorem. Let V be a (possibly graded) vector space. Denote Coass(V ) the set of all

coassociative coalgebra structures on V and Diff 1
2(T (↑V )) the set of all quadratic differentials

on the tensor algebra T (↑V ). Then there is a natural isomorphism

Coass(V ) ∼= Diff 1
2(T (↑V )).

Proof. Let χ ∈ Diff 1
2(T (↑V )). Put f := χ|↑V so that f is a degree +1 map ↑V → ↑V ⊗↑V .

By Exercise 4.11 (with W := ↑V , θ := χ and x := f(↑v)),

0 = χ2(↑v) = χ(f(↑v)) = (f ⊗ id + id ⊗f)(f(↑v))

for every v ∈ V , therefore

(13) (f ⊗ id + id ⊗f)f = 0.

We have clearly described a one-to-one correspondence between quadratic differentials χ ∈
Diff 1

2(T (↑V )) and degree +1 linear maps f ∈ Lin1(↑V , T 2(↑V )) satisfying (13).

Given f : ↑V → ↑V ⊗ ↑V as above, define the map ∆ : V → V ⊗ V by the commutative

diagram

↑V f- ↑V ⊗ ↑V

V

↑
6

∆- V ⊗ V

↑⊗ ↑
6

i.e., by Exercise 4.6,

∆ := (↑⊗ ↑)−1 ◦ f ◦ ↑ = −(↓⊗ ↓) ◦ f ◦ ↑ .

Let us show that (13) is equivalent to the coassociativity of ∆. We have

(∆⊗ id)∆ = (−(↓⊗ ↓)f ↑⊗ id) (−(↓⊗ ↓)f ↑) = ((↓⊗ ↓)f ↑⊗ id) (↓⊗ ↓)f ↑
= ((↓⊗ ↓)f ⊗ ↓)f ↑ = −(↓⊗ ↓⊗↓)(f ⊗ id)f ↑ .

The minus sign in the last term appeared because we interchanged f (a “thing” of degree

+1) with ↓ (a “thing” of degree −1). Similarly

(id ⊗∆)∆ = (id ⊗(−(↓⊗ ↓))f ↑) (−(↓⊗ ↓)f ↑) = (id ⊗(↓⊗ ↓)f ↑) (↓⊗ ↓)f ↑
= (↓⊗(↓⊗ ↓)f)f ↑ = (↓⊗ ↓⊗↓)(id ⊗f)f ↑,

so (13) is indeed equivalent to (∆⊗ id)∆ = (id ⊗∆)∆. This finishes the proof. �
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We are going to dualize Theorem 4.16 to get a description of associative algebras, not

coalgebras. First, we need a dual version of the tensor algebra:

4.17. Definition. The underlying vector space T (W ) of the tensor algebra with the comul-

tiplication ∆ : T (W )→ T (W )⊗ T (W ) defined by

∆(w1 ⊗ . . .⊗ wn) :=

n−1
∑

i=1

(w1 ⊗ . . .⊗ wi)⊗ (wi+1 ⊗ . . .⊗ wn)

is a coassociative coalgebra denoted cT (W ) and called the tensor coalgebra.

Warning. Contrary to general belief, the coalgebra cT (W ) with the projection cT (W )→W

is not cofree in the category of coassociative coalgebras! Cofree coalgebras (in the sense of

the obvious dual of Definition 4.1) are surprisingly complicated objects [10, 43, 20]. The coal-

gebra cT (W ) is, however, cofree in the subcategory of coaugmented nilpotent coalgebras [38,

Section II.3.7]. This will be enough for our purposes.

In the following dual version of Definition 4.8 we use Sweedler’s convention expressing the

comultiplication in a coalgebra C as ∆(c) =
∑

c(1) ⊗ c(2), c ∈ C.

4.18. Definition. A degree d coderivation of a Z-graded coalgebra C is a linear degree d

map θ : C → C satisfying the dual Leibniz rule

(14) ∆θ(c) =
∑

θ(c(1))⊗ c(2) +
∑

(−1)d|c(1)|c(1) ⊗ θ(c(2)),

for every c ∈ C. Denote the set of all degree d coderivations of C by CoDer d(C).

As in Exercise 4.9 one easily proves that (14) is equivalent to

∆θ = (θ ⊗ id)∆ + (id ⊗θ)∆.

Let us prove the dual of Proposition 4.10:

4.19. Proposition. Let W be a graded vector space. For any d, there is a natural isomor-

phism

(15) CoDerd(cT (W )) ∼= Lind(T (W ), W ).

Proof. For θ ∈ CoDerd(T (W )) and s ≥ 1 denote fs ∈ Lind(T s(W ), W ) the composition

(16) fs : T s(W )
θ|Ts(W )

−−−→ cT (W )
proj.
−−→W.

The dual Leibniz rule (14) implies that, for w1, . . . , wn ∈ W and n ≥ 0,

θ(w1 ⊗ . . .⊗ wn) :=

∑

s≥1

n−s+1
∑

i=1

(−1)d(|w1|+···+|wi−1|)w1 ⊗ . . .⊗ wi−1 ⊗ fs(wi ⊗ . . .⊗ wi+s−1)⊗ wi+s ⊗ . . .⊗ wn,
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which shows that θ is uniquely determined by f := f0 + f1 + f2 + · · · ∈ Lind(T (W ), W ).

On the other hand, it is easy to verify that for any map f ∈ Lind(T (W ), W ) decomposed

into the sum of its homogeneous components, the above formula defines a coderivation

θ ∈ CoDerd(T (W )). This finishes the proof. �

4.20. Definition. The composition fs : T s(W ) → W defined in (16) is called the sth

corestriction of the coderivation θ. A coderivation θ ∈ CoDer d(T (W )) is quadratic if its sth

corestriction is non-zero only for s = 2. A degree 1 coderivation θ is a differential if θ2 = 0.

Let us finally formulate a dual version of Theorem 4.16.

4.21. Theorem. Let V be a graded vector space. Denote CoDiff 1
2(

cT (↓V )) the set of all

quadratic differentials on the tensor coalgebra cT (↓V ). One then has a natural isomorphism

(17) Ass(V ) ∼= CoDiff 1
2(

cT (↓V )).

Proof. Let χ ∈ CoDiff 1
2(

cT (↓V )) and f : ↓V ⊗ ↓V → ↓V be the 2nd corestriction of χ.

Define µ : V ⊗ V → V by the diagram

↓V ⊗ ↓V f - ↓V

V ⊗ V

↓⊗ ↓
6

µ - V.

↓
6

The correspondence χ ↔ µ is then the required isomorphism. This can be verified by

dualizing the steps of the proof of Theorem 4.16 so we can safely leave the details to the

reader. �

5. dg-Lie algebras and the Maurer-Cartan equation

5.1. Definition. A graded Lie algebra is a Z-graded vector space

g =
⊕

n∈Z

gn

equipped with a degree 0 bilinear map [−,−] : g ⊗ g → g (the bracket) which is graded

antisymmetric, i.e.

(18) [a, b] = −(−1)|a||b|[b, a]

for all homogeneous a, b ∈ g, and satisfies the graded Jacobi identity:

(19) [a, [b, c]] + (−1)|a|(|b|+|c|)[b, [c, a]] + (−1)|c|(|a|+|b|)[c, [a, b]] = 0

for all homogeneous a, b, c ∈ g.
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5.2. Exercise. Write the axioms of graded Lie algebras in an element-free form that would

use only the bilinear map l := [−,−] : g ⊗ g → g and its iterated compositions, and the

operator of “permuting the inputs” of a multilinear map. Observe how the Koszul sign

convention helps remembering the signs in (18) and (19).

5.3. Definition. A dg-Lie algebra (an abbreviation for differential graded Lie algebra) is a

graded Lie algebra L =
⊕

n∈Z
Ln as in Definition 5.1 together with a degree 1 linear map

d : L→ L which is

– a degree 1 derivation , i.e. d[a, b] = [da, b] + (−1)|a|[a, db] for homogeneous a, b ∈ L, and

– a differential, i.e. d2 = 0.

Our next aim is to show that the Hochschild complex (C∗
Hoch(A, A), δHoch) of an associative

algebra recalled in Definition 2.1 has a natural bracket which turns it into a dg-Lie algebra.

We start with some preparatory material.

5.4. Proposition. Let C be a graded coalgebra. For coderivations θ, φ ∈ CoDer(C) define

[θ, φ] := θ ◦ φ− (−1)|θ||φ|φ ◦ θ.

The bracket [−,−] makes CoDer(C) =
⊕

n∈Z
CoDern(C) a graded Lie algebra.

Proof. The key observation is that [θ, φ] is a coderivation (note that neither θ◦φ nor φ◦θ are

coderivations!). Verifying this and the properties of a graded Lie bracket is straightforward

and will be omitted. �

5.5. Proposition. Let C be a graded coalgebra and χ ∈ CoDer 1(C) such that

(20) [χ, χ] = 0,

where [−,−] is the bracket of Proposition 5.4. Then

d(θ) := [χ, θ] for θ ∈ CoDer(C)
is a differential that makes CoDer(C) a dg-Lie algebra.

Observe that, since |χ| = 1, (20) does not tautologically follow from the graded antisym-

metry (18).

Proof of Proposition 5.5. The graded Jacobi identity (19) implies that, for each homoge-

neous θ,

[χ, [χ, θ]] = −(−1)|θ|+1[χ, [θ, χ]]− [θ, [χ, χ]].

Now use the graded antisymmetry [θ, χ] = (−1)|θ|+1[χ, θ] and the assumption [χ, χ] = 0 to

conclude from the above display that

[χ, [χ, θ]] = −[χ, [χ, θ]],
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therefore, since the characteristic of the ground field is zero,

d2(θ) = [χ, [χ, θ]] = 0,

so d is a differential. The derivation property of d with respect to the bracket can be verified

in the same way and we leave it as an exercise to the reader. �

In Proposition 5.5 we saw that coderivations of a graded coalgebra form a dg-Lie algebra.

Another example of a dg-Lie algebra is provided by the Hochschild cochains of an associative

algebra (see Definition 2.1). We need the following:

5.6. Definition. For f ∈ Lin(V ⊗(m+1), V ), g ∈ Lin(V ⊗(n+1), V ) and 1 ≤ i ≤ m + 1 define

f ◦i g ∈ Lin(V ⊗(m+n+1), V ) by

(f ◦i g) := f
(

id
⊗(i−1)
V ⊗g ⊗ id

⊗(m−i+1)
V

)

.

Define also

f ◦ g :=

m+1
∑

i=1

(−1)n(i+1)f ◦i g

and, finally,

[f, g] := f ◦ g − (−1)mng ◦ f.

The operation [−,−] is called the Gerstenhaber bracket (our definition however differs from

the original one of [13] by the overall sign (−1)n).

Let A be an associative algebra with the underlying space V . Since, by Definition 2.1,

C∗+1
Hoch(A, A) = Lin(V ⊗(∗+1), V ), the structure of Definition 5.6 defines a degree 0 operation

[−,−] : C∗+1
Hoch(A, A) ⊗ C∗+1

Hoch(A, A) → C∗+1
Hoch(A, A) called again the Gerstenhaber bracket.

We leave as an exercise the proof of

5.7. Proposition. The Hochschild cochain complex of an associative algebra together with

the Gerstenhaber bracket form a dg-Lie algebra C∗+1
Hoch(A, A) = (C∗+1

Hoch(A, A), [−,−], δHoch).

The following theorem gives an alternative description of the dg-Lie algebra of Proposi-

tion 5.7.

5.8. Theorem. Let A be an associative algebra with multiplication µ : V ⊗ V → V and

χ ∈ CoDiff 1
2(

cT (↓V )) the coderivation that corresponds to µ in the correspondence of The-

orem 4.21. Let d := [χ,−] be the differential introduced in Proposition 5.5. Then there is a

natural isomorphism of dg-Lie algebras

ξ :
(

C
(∗+1)
Hoch (A, A), [−,−], δHoch

)

∼=−→ (CoDer ∗(cT (↓V )), [−,−], d) .
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Proof. Given φ ∈ Cn+1
Hoch(A, A) = Lin(V ⊗(n+1), V ), let f : (↓V )⊗(n+1) → ↓V be the degree n

linear map defined by the diagram

(↓V )⊗(n+1) f - ↓V

V ⊗(n+1)

↓⊗(n+1)

6

φ - V.

↓
6

By Proposition 4.19, there exists a unique coderivation θ ∈ CoDern(cT (↓V )) whose (n + 1)th

corestriction is f and other corestrictions are trivial.

The map ξ : C
(∗+1)
Hoch (A, A) → CoDer ∗(cT (↓V )) defined by ξ(φ) := θ is clearly an isomor-

phism. The verification that ξ commutes with the differentials and brackets is a straightfor-

ward though involved exercise on the Koszul sign convention which we leave to the reader. �

5.9. Corollary. Let µ be the multiplication in A interpreted as an element of C2
Hoch(A, A),

and f ∈ C∗
Hoch(A, A). Then δHoch(f) = [µ, f ].

Proof. The corollary immediately follows from Theorem 5.8. Indeed, because ξ commutes

with all the structures, we have

δHoch(f) = ξ−1ξδHoch(f) = ξ−1(d(ξf)) = ξ−1[χ, ξf ] = [µ, f ].

We however recommend as an exercise to verify the corollary directly, comparing [µ, f ] to

the formula for the Hochschild differential. �

5.10. Proposition. A bilinear map κ : V ⊗ V → V defines an associative algebra structure

on V if and only if [κ, κ] = 0.

Proof. By Definition 5.6 (with m = n = 1),

1

2
[κ, κ] =

1

2

(

κ ◦ κ− (−1)mnκ ◦ κ
)

= κ ◦ κ = κ ◦1 κ− κ ◦2 κ = κ(κ⊗ idV )− κ(idV ⊗κ),

therefore [κ, κ] = 0 is indeed equivalent to the associativity of κ. �

5.11. Proposition. Let A be an associative algebra with the underlying vector space V and

the multiplication µ : V ⊗ V → V . Let ν ∈ C2
Hoch(A, A) be a Hochschild 2-cochain. Then

µ + ν ∈ C2
Hoch(A, A) = Lin(V ⊗2, V ) is associative if and only if

(21) δHoch(ν) +
1

2
[ν, ν] = 0.

Proof. By Proposition 5.10, µ + ν is associative if and only if

0 =
1

2
[µ + ν, µ + ν] =

1

2

{

[µ, µ] + [ν, ν] + [µ, ν] + [ν, µ]

}

= δHoch(ν) +
1

2
[ν, ν].

To get the rightmost term, we used the fact that, since µ is associative, [µ, µ] = 0 by

Proposition 5.10. We also observed that [µ, ν] = [ν, µ] = δHoch(ν) by Corollary 5.9. �
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A bilinear map ν : V ⊗V → V such that µ+ν is associative can be viewed as a deformation

of µ. This suggests that (21) is related to deformations. This is indeed the case, as we will

see later in this section. Equation (21) is a particular case of the Maurer-Cartan equation

in a arbitrary dg-Lie algebra:

5.12. Definition. Let L = (L, [−,−], d) be a dg-Lie algebra. A degree 1 element s ∈ L1 is

Maurer-Cartan if it satisfies the Maurer-Cartan equation

(22) ds +
1

2
[s, s] = 0.

5.13. Remark. The Maurer-Cartan equation (also called the Berikashvili equation) along

with its clones and generalizations is one of the most important equations in mathematics.

For instance, a version of the Maurer-Cartan equation describes the differential of a left-

invariant form, see [25, I.§4].

Let g be a dg-Lie algebra over the ground field k. Consider the dg-Lie algebra L over the

power series ring k[[t]] defined as

(23) L := g⊗ (t),

where (t) ⊂ k[[t]] is the ideal generated by t. Degree n elements of L are expressions

f1t + f2t
2 + · · · , fi ∈ gn for i ≥ 1. The dg-Lie structure on L is induced from that of g in

an obvious manner. Denote by MC(g) the set of all Maurer-Cartan elements in L. Clearly,

a degree 1 element s = f1t + f2t
2 + · · · is Maurer-Cartan if its components {fi ∈ g1}i≥1

satisfy the equation:

(MCk) dfk +
1

2

∑

i+j=k

[fi, fj] = 0

for each k ≥ 1.

5.14. Example. Let us apply the above construction to the Hochschild complex of an as-

sociative algebra A with the multiplication µ0, that is, take g := C∗+1
Hoch(A, A) with the Ger-

stenhaber bracket and the Hochschild differential. In this case, one easily sees that (MC k)

for s = µ1t+µ2t
2 + · · · , µi ∈ C2

Hoch(A, A) is precisely equation (Dk) of Theorem 3.15, k ≥ 1,

compare also calculations on page 15. We conclude that MC(g) is the set of infinitesimal

deformations of µ0.

Let us recall that each Lie algebra l can be equipped with a group structure with the

multiplication given by the Hausdorff-Campbell formula:

(24) x · y := x + y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + · · ·
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assuming a suitable condition that guarantees that the above infinite sum makes sense in l,

see [42, I.IV.§7]. We denote l with this multiplication by exp(l). Formula (24) is obtained

by expressing the right hand side of

x · y = log(exp(x) exp(y)),

where

exp(a) := 1 + a +
1

2!
a2 +

1

3!
a3 + · · · , log(1 + a) := a− 1

2
a2 +

1

3
a3 − · · · ,

in terms of iterated commutators of non-commutative variables x and y.

Using this construction, we introduce the gauge group of g as

G(g) := exp(L0),

where L0 = g0 ⊗ (t) is the Lie subalgebra of degree zero elements in L defined in (23). Let

us fix an element χ ∈ g1. The gauge group then acts on L1 = g1 ⊗ (t) by the formula

(25) x · l := l + [x, χ + l] +
1

2!
[x, [x, χ + l]] +

1

3!
[x, [x, [x, χ + l]]] + · · · , x ∈ G(g), l ∈ L1,

obtained by expressing the right hand side of

(26) x · l = exp(x)(χ + l) exp(−x)− χ

in terms of iterated commutators. Denoting dχ := [χ, χ], formula (25) reads

(27) x · l = l + dx + [x, l] +
1

2

{

[x, dx] + [x, [x, l]]
}

+
1

3

{

[x, [x, dx]] + [x, [x, [x, l]]]
}

+ · · ·

5.15. Lemma. Action (27) of G(g) on L1 preserves the space MC(g) of solutions of the

Maurer-Cartan equation.

Proof. We will prove the lemma under the assumption that g is a dg-Lie algebra whose dif-

ferential d has the form d = [χ,−] for some χ ∈ g1 satisfying [χ, χ] = 0 (see Proposition 5.5).

The proof of the general case is a straightforward, though involved, verification.

It follows from (26) that χ + x · l = exp(x)(χ + l) exp(−x), i.e. x transforms χ + l into

exp(x)(χ + l) exp(−x). Under the assumption d = [χ,−], the Maurer-Cartan equation for l

is equivalent to [χ + l, χ + l] = 0. The Maurer-Cartan equation for the transformed l then

reads

[exp(x)(χ + l) exp(−x), exp(x)(χ + l) exp(−x)] = 0,

which can be rearranged into

exp(x)[χ + l, χ + l] exp(−x) = 0.

This finishes the proof. �
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Thanks to Lemma 5.15, it makes sense to consider

Def(g) := MC(g)/G(g),

the moduli space of solutions of the Maurer-Cartan equation in L = g⊗ (t).

5.16. Example. Let us return to the situation in Example 5.14. In this case

g0 = C1
Hoch(A, A) = Lin(A, A),

with the bracket given by the commutator of the composition of linear maps. The gauge

group G(g) consists of elements x = f1t + f2t
2 + . . ., fi ∈ Lin(A, A). It follows from the

definition of the gauge group action that two formal deformations µ′ = µ0 + µ′
1t + µ′

2t
2 + · · ·

and µ′′ = µ0 + µ′′
1t + µ′′

2t
2 + · · · of µ0 define the same element in Def(g) if and only if

(28) exp(x)(µ0 + µ′
1t + µ′

2t
2 + · · · ) = (µ0 + µ′′

1t + µ′′
2t

2 + · · · )(exp(x)⊗ exp(x))

for some x ∈ G(g). The above formula has an actual, not only formal, meaning – all power

series make sense because of the completeness of the ground ring.

On the other hand, recall that in Example 3.17 we introduced the group

H := {u = idA +φ1t + φ2t
2 + · · · | φi ∈ Lin(A, A)}.

The exponential map exp : G(g) → H is a well-defined isomorphism with the inverse map

log : H → G(g). We conclude that the equivalence relation defined by (28) is the same

as the equivalence defined by (5) in Example 3.17, therefore Def(g) = MC(g)/G(g) is the

moduli space of equivalence classes of formal deformations of µ0.

The above analysis can be generalized by replacing, in (23), (t) by an arbitrary ideal m in

a local Artinian ring or in a complete local ring.

6. L∞-algebras and the Maurer-Cartan equation

We are going to describe a generalization of differential graded Lie algebras. Let us start

by recalling some necessary notions.

Let W be a Z-graded vector space. We will denote by ∧W the free graded commutative

associative algebra over W . It is characterized by the obvious analog of the universal property

in Definition 4.1 with respect to graded commutative associative algebras. It can be realized

as the tensor algebra T (W ) modulo the ideal generated by x ⊗ y − (−1)|x||y|y ⊗ x. If one

decomposes

W = W even ⊕W odd

into the even and odd parts, then

∧W ∼= k[W even]⊗ E[W odd],
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where the first factor is the polynomial algebra and the second one is the exterior (Grass-

mann) algebra. The algebra ∧W can also be identified with the subspace of T (W ) consisting

of graded-symmetric elements (remember we work over a characteristic zero field).

Denote the product of (homogeneous) elements w1, . . . , wn ∈ W in ∧W by w1 ∧ . . . ∧ wn.

For a permutation σ ∈ Sk we define the Koszul sign ε(σ) ∈ {−1, +1} by

w1 ∧ . . . ∧ wk = ε(σ)wσ(1) ∧ . . . ∧ wσ(k)

and the antisymmetric Koszul sign χ(σ) ∈ {−1, +1} by

χ(σ) := sgn(σ)ε(σ).

6.1. Exercise. Express ε(σ) and χ(σ) explicitly in terms of σ and the degrees |w1|,. . . ,|wn|.

Finally, a permutation σ ∈ Sn is called an (i, n − i)-unshuffle if σ(1) < . . . < σ(i) and

σ(i + 1) < . . . < σ(n). The set of all (i, n− i)-unshuffles will be denoted S(i,n−i).

6.2. Definition. An L∞-algebra (also called a strongly homotopy Lie or sh Lie algebra) is

a graded vector space V together with a system

lk : ⊗kV → V, k ∈ N

of linear maps of degree 2− k subject to the following axioms.

– Antisymmetry: For every k ∈ N, every permutation σ ∈ Sk and every homogeneous

v1, . . . , vk ∈ V ,

(29) lk(vσ(1), . . . , vσ(k)) = χ(σ)lk(v1, . . . , vk).

– For every n ≥ 1 and homogeneous v1, . . . , vn ∈ V ,

(Ln)
∑

i+j=n+1

(−1)i
∑

σ∈Si,n−i

χ(σ)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.

6.3. Remark. The sign in (Ln) was taken from [17]. With this sign convention, all terms

of the (generalized) Maurer-Cartan equation recalled in (31) below have +1-signs. Our sign

convention is related to the original one in [28, 29] via the transformation ln 7→ (−1)(
n+1

2 )ln.

We also used the opposite grading which is better suited for our purposes – the operation lk

as introduced in [28, 29] has degree k − 2.

Let us expand axioms (Ln) for n = 1, 2 and 3.

Case n = 1. For n = 1 (L1) reduces to l1(l1(v)) = 0 for every v ∈ V , i.e. l1 is a degree +1

differential.

Case n = 2. By (29), l2 : V ⊗V → V is a linear degree 0 map which is graded antisymmetric,

l2(v, u) = −(−1)|u||v|l2(u, v)
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and (Ln) for n = 2 gives

(L2) l1(l2(u, v)) = l2(l1(u), v) + (−1)|u|l2(u, l1(v))

meaning that l1 is a graded derivation with respect to the multiplication l2. Writing d := l1

and [u, v] := l2(u, v), (L2) takes more usual form

d[u, v] = [du, v] + (−1)|u|[u, dv].

Case n = 3. The degree −1 graded antisymmetric map l3 : ⊗3V → V satisfies (L3):

(−1)|u||w|[[u, v], w] + (−1)|v||w|[[w, u], v] + (−1)|u||v|[[v, w], u] =

= (−1)|u||w|(dl3(u, v, w) + l3(du, v, w) + (−1)|u|l3(u, dv, w) + (−1)|u|+|v|l3(u, v, dw)).

One immediately recognizes the three terms of the Jacobi identity in the left-hand side and

the d-boundary of the trilinear map l3 in the right-hand side. We conclude that the bracket

[−,−] satisfies the Jacobi identity modulo the homotopy l3.

6.4. Example. If all structure operations lk’s of an L∞-algebra L = (V, l1, l2, l3, . . .) except

l1 vanish, then L is just a dg-vector space with the differential d = l1. If all lk’s except l1

and l2 vanish, then L is our familiar dg-Lie algebra from Definition 5.3 with d = l1 and the

Lie bracket [−,−] = l2. In this sense, dg-Lie algebras are particular cases of L∞-algebras.

6.5. Example. Let L′ = (V ′, l′1, l
′
2, l

′
3, . . .) and L′′ = (V ′′, l′′1 , l

′′
2 , l

′′
3 , . . .) be two L∞-algebras.

Define their direct sum L′ ⊕ L′′ to be the L∞-algebra L′ ⊕ L′′ with the underlying vector

space V ′ ⊕ V ′′ and structure operations {lk}k≥1 given by

lk(v
′
1 ⊕ v′′

1 , . . . , v
′
k ⊕ v′′

k) := l′k(v
′
1, . . . , v

′
k) + l′′k(v

′′
1 , . . . , v

′′
k),

for v′
1, . . . , v

′
k ∈ V ′, v′′

1 , . . . , v
′′
k ∈ V ′′.

For a graded vector space V denote ∨k(V ) the quotient of
⊗k V modulo the subspace

spanned by elements

v1 ⊗ · · · ⊗ vk − χ(σ) vσ(1) ⊗ · · · ⊗ vσ(k).

The antisymmetry (29) implies that the structure operations of an L∞ algebra can be inter-

preted as maps

lk : ∨k(V )→ V, k ≥ 1.

We are going to give a description of the set of L∞-structures on a given graded vector

space in terms of coderivations, in the spirit of Theorem 4.21. To this end, we need the

following coalgebra which will play the role of cT (W ).
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6.6. Proposition. The space ∧(W ) with the comultiplication ∆ : ∧(W ) → ∧(W )⊗∧(W )

defined by

∆(w1 ∧ . . . ∧ wn) :=
n−1
∑

i=1

∑

σ∈Si,n−i

ε(σ)(wσ(1) ∧ . . . ∧ wσ(i))⊗ (wσ(i+1) ∧ . . . ∧ wσ(n))

is a graded coassociative cocommutative coalgebra. We will denote it c∧(W ).

Proof. A direct verification which we leave to the reader as an exercise. �

For the coalgebra c∧(W ), the following analog of Proposition 4.19 holds.

6.7. Proposition. Let W be a graded vector space. For any d, there is a natural isomorphism

CoDerd(c∧(W )) ∼= Lind(c∧(W ), W ).

We leave the proof to the reader. Observe that the coalgebra c∧(W ) is a direct sum

c∧(W ) =
⊕

n≥1

c∧n(W )

of subspaces c∧n(W ) spanned by w1∧ . . .∧wn, for w1, . . . , wn ∈ W . One may define the sth

corestriction of a coderivation θ ∈ CoDer(c∧(W )) as the composition

fs : c∧s(W )
θ|∧s

(W )

−−−→ c∧(W )
proj.
−−→W.

As in Definition 4.20, a coderivation θ ∈ CoDer d(c∧(W )) is quadratic if its sth corestriction

is non-zero only for s = 2. A differential is a degree 1 coderivation θ such that θ2 = 0.

6.8. Theorem. Denote by L∞(V ) the set of all L∞-algebra structures on a graded vector

space V and CoDiff 1(c∧(↓V )) the set of differentials on c∧(↓V ). Then there is a bijection

L∞(V ) ∼= CoDiff 1(c∧(↓V )).

Proof. Let χ ∈ CoDiff 1(c∧(↓V )) and fn : c∧n(↓V )→ ↓V the nth corestriction of χ, n ≥ 1.

Define ln : ∨n(V )→ V by the diagram

c∧n(↓V )
fn - ↓V

∨n(V )

⊗n↓
6

ln - V.

↓
6

It is then a direct though involved verification that the maps

(30) ln := (−1)(
n+1

2 )ln

define an L∞-structure on V and that the correspondence χ ↔ (l1, l2, l3, . . .) is one-to-one.

The reason for the sign change in (30) is explained in Remark 6.3. �
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6.9. Remark. By Theorem 6.8, L∞-algebras can be alternatively defined as square-zero dif-

ferentials on “cofree” cocommutative coassociative coalgebras (the reason why we put ‘cofree’

into quotation marks is the same as in Section 4, see also the warning on page 21). Dual

forms of these object, i.e. square-zero differentials on free commutative associative algebras,

are Sullivan models that have existed in rational homotopy theory since 1977 [45]. The same

objects appeared as generalizations of Lie algebras independently in 1982 in a remarkable pa-

per [7]. As homotopy Lie algebras with a coherent system of higher homotopies, L∞-algebras

were recognized much later [22, 29].

6.10. Exercise. Show that the isomorphism of Theorem 6.8 restricts to the isomorphism

Lie(V ) ∼= CoDiff 1
2(

c∧(↓V ))

between the set of Lie algebra structures on V and quadratic differentials on the coalgebra
c∧(↓V ). This isomorphism shall be compared to the isomorphism in Theorem 4.21.

Let us make a digression and see what happens when one allows in the right hand side

of (17) all, not only quadratic, differentials. The above material indicates that one should

expect a homotopy version of associative algebras. This is indeed so; one gets the following

objects that appeared in 1963 [44] (but we use the sign convention of [33]).

6.11. Definition. An A∞-algebra (also called a strongly homotopy associative algebra) is

a graded vector space V together with a system

µk : V ⊗k → V, k ≥ 1,

of linear maps of degree k − 2 such that

(An)
n−1
∑

λ=0

n−λ
∑

k=1

(−1)k+λ+kλ+k(|v1|+···+|vλ|) ·µn−k+1(v1, ..., vλ, µk(vλ+1, ..., vλ+k), vλ+k+1, ..., vn) = 0

for every n ≥ 1, v1, . . . , vn ∈ V .

One easily sees that (A1) means that ∂ := µ1 is a degree −1 differential, (A2) that the

bilinear product µ2 : V ⊗ V → V commutes with ∂ and (A3) that µ2 is associative up to

the homotopy µ3. A∞-algebras can also be described as algebras over the cellular chain

complex of the non-Σ operad K = {Kn}n≥1 whose nth piece is the (n − 2)-dimensional

convex polytope Kn called the Stasheff associahedron [38, Section II.1.6]. Let us mention at

least that K2 is the point, K3 the closed interval and K4 is the pentagon from Mac Lane’s

theory of monoidal categories [31]. A portrait of K5 due to Masahico Saito is in Figure 1.
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Figure 1. Saito’s portrait of K5.

6.12. Theorem. For a graded vector space V denote A∞(V ) the set of all A∞-algebra struc-

tures on V and CoDiff 1(cT (↓V )) the set of all differentials on cT (↓V ). Then there is a

natural bijection

A∞(V ) ∼= CoDiff 1(cT (↓V )).

Proof. The isomorphism in the above theorem is of the same nature as the isomorphism of

Theorem 6.8, but it also involves the ‘flip’ of degrees since we defined, following [33], A∞-

algebras in such a way that the differential ∂ = µ1 has degree −1. We leave the details to

the reader. �

Let us return to the main theme of this section. Our next task will be to introduce

morphisms of L∞-algebras. We start with a simple-minded definition.

Suppose L′ = (V ′, l′1, l
′
2, l

′
3, . . .) and L′′ = (V ′′, l′′1 , l

′′
2 , l

′′
3 , . . .) are two L∞-algebras. A strict

morphism is a degree zero linear map f : V ′ → V ′′ which commutes with all structure

operations, that is

f(l′k(v1, . . . , vk)) = l′′k(f(v1), . . . , f(vk)),

for each v1, . . . , vk ∈ V ′, k ≥ 1.

For our purposes we need, however, a subtler notion of morphisms. We give a definition

that involves the isomorphism of Theorem 6.8.

6.13. Definition. Let L′ and L′′ be L∞-algebras represented by dg-coalgebras (c∧(↓V ′), δ′)

and (c∧(↓V ′′), δ′′). A (weak) morphism of L∞-algebras is then a morphism of dg-coalgebras

F : (c∧(↓V ′), δ′)→ (c∧(↓V ′′), δ′′).

Definition 6.13 can be unwrapped. Let Fk : c∧k(↓V ′) → ↓V ′′ be, for each k ≥ 1, the

composition

c∧k(↓V ′)
F

−−−→ c∧(↓V ′′)
proj.
−−→ ↓V ′′.



34 DOUBEK, MARKL, ZIMA

Define the maps fk : ∨kV
′ → V ′′ by the diagram

c∧k(↓V ′)
Fk - ↓V ′′

∨kV
′

⊗k↓
6

fk - V.′′

↓
6

Clearly, fk is a degree 1− k linear map. The fact that F is a dg-morphism can be expressed

via a sequence of axioms (Mn), n ≥ 1, where (Mn) postulates the vanishing of a combination

of n-multilinear maps on V ′ with values in V ′′ involving fi, l
′
i and l′′i for i ≤ n.

We are not going to write (Mn)’s here. Explicit axioms for L∞-maps can be found in [24],

see also [28, Definition 5.2] where the particular case when L′′ is a dg-Lie algebra (l′′k = 0

for k ≥ 3) is discussed in detail. The reader is however encouraged to verify that (M1) says

that f1 : (V ′, l′1)→ (V ′′, l′′1) is a chain map and that (M2) means that f1 commutes with the

brackets l′2 and l′′2 modulo the homotopy f2.

Morphisms of L∞-algebras L′ and L′′ with underlying vector spaces V ′ and V ′′ can there-

fore be equivalently defined as systems f = {fk :
⊗k V ′ → V ′′}k≥1, where fk is a degree

1−k graded antisymmetric linear map, and axioms (Mn), n ≥ 1, are satisfied. Let us denote

by L∞ the category of L∞-algebras and their morphisms in the sense of Definition 6.13.

6.14. Exercise. Show that the category strL∞ of L∞-algebras and their strict morphisms can

be identified with the (non-full) subcategory of L∞ with the same objects and morphisms

f = (f1, f2, . . .) such that fk = 0 for k ≥ 2.

Show that the obvious imbedding dgLie ↪→ L∞ is not full. This means that there are

more morphisms between dg-Lie algebras considered as elements of the category L∞ than in

the category of dgLie. Observe finally that the forgetful functor � : L∞ → dgVect given by

forgetting all structure operations is not faithful.

7. Homotopy invariance of the Maurer-Cartan equation

Let us start with recalling some necessary definitions.

7.1. Definition. A morphism f = (f1, f2, . . .) : L′ = (V ′, l′1, l
′
2, . . .) → L′′ = (V ′′, l′′1 , l

′′
2 , . . .)

of L∞-algebras is a weak equivalence if the chain map f1 : (V ′, l′1) → (V ′′, l′′1) induces an

isomorphism of cohomology.

7.2. Definition. An L∞-algebra L = (V, l1, l2, . . .) is minimal if l1 = 0. It is contractible if

lk = 0 for k ≥ 2 and if H∗(V, l1) = 0.
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7.3. Proposition. Let f be a weak equivalence of minimal L∞-algebras g′, g′′ over the ground

field k. Let m be the maximal ideal in a complete local k-algebra R. Then the induced map

f ⊗m : L′ → L′′, where L′ := g′ ⊗ m and L′′ := g′′ ⊗ m, is an isomorphism of L∞-algebras.

Proof. It follows from the minimality of g′ and g′′ that the linear part f1 of the weak equiv-

alence f = (f1, f2, . . .) is an isomorphism, thus the corresponding map F : (c∧(↓V ′), δ′) →
(c∧(↓V ′′), δ′′) induces an isomorphism of generators. Such maps can be formally inverted,

and the extension of scalars by m guarantees that the inversion formula converges. �

Warning. There seems to be general belief that a weak equivalence of minimal L∞-algebras

is always an isomorphism, but simple examples show that this is not true. One needs to

control the convergence of the inversion formula. This can be achieved either by extending

the scalars as in the above proposition, or by imposing some restrictions on the grading, as

the simple connectivity assumption in rational homotopy theory.

The following theorem, which can be found in [26], uses the direct sum of L∞-algebras

recalled in Example 6.5.

7.4. Theorem. Each L∞-algebra is the direct sum of a minimal and a contractible L∞-

algebra.

Let L ∼= Lm ⊕ Lc be a decomposition of an L∞-algebra L into a minimal L∞-algebra Lm

and a contractible L∞-algebra Lc. Since the inclusion ι : Lm → Lm ⊕ Lc
∼= L is a weak

equivalence, Theorem 7.4 implies:

7.5. Corollary. Each L∞-algebra is weakly equivalent to a minimal one.

Corollary 7.5 can also be derived from homotopy invariance properties of strongly homo-

topy algebras proved in [35]. Suppose we are given an L∞-algebra L = (V, l1, l2, . . .). In

characteristic zero, two cochain complexes have the same cochain homotopy type if and only

if they have isomorphic cohomology. In particular, the cochain complex (V, l1) is homotopy

equivalent to the cohomology H∗(V, l1) considered as a complex with trivial differential. Move

(M1) on page 133 of [35] now implies that there exists an induced minimal L∞-structure on

H∗(V, l1), weakly equivalent to L. Let us remark that an A∞-version of Corollary 7.5 was

known to Kadeishvili already in 1985, see [23].

Remarkably, each L∞-algebra is, under some mild assumptions, weakly equivalent to a dg-

Lie algebra. This can be proved as follows. Suppose L is an L∞-algebra represented by a

dg-coalgebra (c∧(↓V ), δ). The bar construction B(c∧(↓V ), δ) is a dg-Lie algebra and one

may show, under an assumption that guarantees the convergence of a spectral sequence, that
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B(c∧(↓V ), δ) is weakly equivalent to L in the category of L∞-algebras. This property is an

algebraic analog of the rectification principle for WP-spaces provided by the M -construction

of Boardman and Vogt, see [38, Theorem II.2.9].

Let g be an L∞-algebra over the ground field k, with the underlying k-vector space V .

Then V ⊗ (t), where (t) ⊂ k[[t]] is the ideal generated by t, has a natural induced L∞-

structure. Denote this L∞-algebra by L := g ⊗ (t) = (V ⊗ (t), l1, l2, l3, . . .). Let MC(g) be

the set of all degree +1 elements s ∈ L1 satisfying the generalized Maurer-Cartan equation

(31) l1(s) +
1

2
l2(s, s) +

1

3!
l3(s, s, s) + · · ·+ 1

n!
ln(s, . . . , s) + · · · = 0.

When g is a dg-Lie algebra, one recognizes the ordinary Maurer-Cartan equation (22).

At this moment one needs to introduce a suitable gauge equivalence between solutions

of (31) generalizing the action of the gauge group G(g) recalled in (25). Since in applications

of Section 8 all relevant L∞-algebras are in fact dg-Lie algebras, we are not going to describe

this generalized gauge equivalence here, and only refer to [26] instead. We denote Def(g) the

set of gauge equivalence classes of solutions of (31). Let us, however, mention that there are

examples, as bialgebras treated in [36], where deformations are described by a fully-fledged

L∞-algebra.

7.6. Example. For g contractible, Def(g) is the one-point set consisting of the equivalence

class of the trivial solution of (31). Indeed,

MC(g) = {s = s1t + s2t
2 + . . . | ds1 = ds2 = · · · = 0}

so, by acyclicity, si = dbi for some bi ∈ g0, i ≥ 1. Formula (27) (with x = −b1t1 − b2t2 − · · ·
and l = s1t + s2t

2 + · · · ) gives

(−b1t1 − b2t2 − · · · ) · (s1t + s2t
2 + · · · ) = 0,

therefore s = s1t + s2t
2 + · · · is equivalent to the trivial solution.

7.7. Example. Let g′ and g′′ be two L∞-algebras. Then, for the direct product,

Def(g′ ⊕ g′′) ∼= Def(g′)×Def(g′′).

Indeed, it follows from definition that MC(g′ ⊕ g′′) ∼= MC(g′)×MC(g′′). This factorization

is preserved by the gauge equivalence.

The central statement of this section reads:

7.8. Theorem. The assignment g 7→ Def(g) extends to a covariant functor from the category

of L∞-algebras and their weak morphisms to the category of sets. A weak equivalence f :

g′ → g′′ induces an isomorphism Def(f) : Def(g′) ∼= Def(g′′).
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The above theorem implies that the deformation functor Def descends to the localization

hoL∞ obtained by inverting weak equivalences in L∞. By Quillen’s theory [40], hoL∞ is

equivalent to the category of minimal L∞-algebras and homotopy classes (in an appropriate

sense) of their maps. This explains the meaning of homotopy invariance in the title of this

section.

Proof of Theorem 7.8. For an L∞-morphism f = (f1, f2, f3, . . .) : g′ → g′′ define MC(f) :

MC(g′)→ MC(g′′) by

MC(f)(s) := f1(s) +
1

2
f2(s, s) + · · ·+ 1

n!
fn(s, . . . , s) + · · ·

It can be shown that MC(f) is a well-defined map that descends to the quotients by the

gauge equivalence, giving rise to a map Def(f) : Def(g′)→ Def(g′′).

Assume that f : g′ → g′′ above is a weak equivalence. By Theorem 7.4, g′ decomposes

as g′ = g′
m ⊕ g′

c, with g′
m minimal and g′

c contractible, and there is a similar decomposition

g′′ = g′′
m ⊕ g′′

c for g′′. Define the map f : g′
m → g′′

m by the commutativity of the diagram

g′
m ⊕ g′

c
�i

⊃ g′
m

g′′
m ⊕ g′′

c

f

? p -- g′′
m

f

?

in which i is the natural inclusion and p the natural projection. Observe that f is a weak

equivalence. By Proposition 7.3, f becomes, after extending the scalars by (t) ⊂ k[[t]], an iso-

morphism. Therefore, in the following induced diagram, the map Def(f) is an isomorphism,

too:

Def(g′
m)×Def(g′

c) �Def(i)
⊃ Def(g′

m)

Def(g′′
m)×Def(g′′

c )

Def(f)

? Def(p)-- Def(g′′
m).

Def(f)

?

Since, by Example 7.6, both Def(g′
c) and Def(g′′

c) are points, the maps Def(i) and Def(p) are

isomorphisms. We finish the proof by concluding that Def(f) is also an isomorphism. �

8. Deformation quantization of Poisson manifolds

In this section we indicate the main ideas of Kontsevich’s proof of the existence of a de-

formation quantization of Poisson manifolds. Our exposition follows [26]. Let us recall some

necessary notions.
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8.1. Definition. A Poisson algebra is a vector space V with operations · : V ⊗ V → V and

{−,−} : V ⊗ V → V such that:

– (V, · ) is an associative commutative algebra,

– (V, {−,−}) is a Lie algebra, and

– the map v 7→ {u, v} is a · -derivation for any u ∈ V , i.e. {u, v ·w} = {u, v}·w+v ·{u, w}.

8.2. Exercise. Show that Poisson algebras can be equivalently defined as structures with

only one operation • : V ⊗ V → V such that

u•(v•w) = (u•v)•w − 1

3

{

(u•w)•v + (v•w)•u− (v•u)•w − (w•u)•v)
}

,

for each u, v, w ∈ V , see [37, Example 2].

Poisson algebras are ‘classical limits’ of associative deformations of commutative associa-

tive algebras. By this we mean the following. Let A = (V, · ) be an associative algebra with

multiplication a, b 7→ a · b. Consider a formal deformation (k[[t]] ⊗ V, ?) of A given, as in

Theorem 3.15, by a family {µi : A⊗ A→ A}i≥1 by the formula

(32) a ? b := a · b + tµ1(a, b) + t2µ2(a, b) + t3µ3(a, b) + · · ·
for a, b ∈ V . We have the following:

8.3. Proposition. Suppose A = (V, · ) is a commutative associative algebra. Then, for

an associative deformation (32) of A,

{a, b} := µ1(a, b)− µ1(b, a), a, b ∈ V,

is a Lie bracket such that P? := (V, ·, {−,−}) is Poisson algebra.

8.4. Definition. In the above situation, P? is called the classical limit of the ?-product and

(k[[t]]⊗ V, ?) a deformation quantization of the Poisson algebra P?.

Proof of Proposition 8.3. Let us prove first that {−,−} is a Lie bracket. The antisymmetry

of {−,−} is obvious, one thus only needs to verify the Jacobi identity. It is a standard fact

that the antisymmetrization of an associative multiplication is a Lie product [42, Chapter I],

therefore [−,−] defined by [x, y] := x ? y − y ? x for x, y ∈ k[[t]] ⊗ A, is a Lie bracket

on k[[t]] ⊗ A. We conclude by observing that the Jacobi identity for {−,−} evaluated at

a, b, c ∈ A is the term at t2 of the Jacobi identify for [−,−] evaluated at the same elements.

It remains to verify the derivation property. It is clearly equivalent to

(33) µ1(ab, c)− µ1(c, ab)− aµ1(b, c) + aµ1(c, b)− µ1(a, c)b + µ1(c, a)b = 0

where we, for brevity, omitted the symbol for the · -product. In Remark 3.16 we observed

that µ1 is a Hochschild cocycle, therefore

ρ(a, b, c) := aµ1(b, c)− µ1(ab, c) + µ1(a, bc)− µ1(a, b)c = 0.
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A straightforward verification involving the commutativity of the · -product shows that the

left hand side of (33) equals −ρ(a, b, c) + ρ(a, c, b)− ρ(c, a, b). This finishes the proof. �

Let us recall geometric versions of the above notions.

8.5. Definition. A Poisson manifold is a smooth manifold M equipped with a Lie prod-

uct {−,−} : C∞(M) ⊗ C∞(M) → C∞(M) on the space of smooth functions such that

(C∞(M), · , {−,−}), where · is the standard pointwise multiplication, is a Poisson algebra.

Poisson manifolds generalize symplectic ones in that the bracket {−,−} need not be

induced by a nondegenerate 2-form. The following notion was introduced and physically

justified in [5].

8.6. Definition. A deformation quantization (also called a star product) of a Poisson man-

ifold M is a deformation quantization of the Poisson algebra (C∞(M), ·, {−,−}) such that

all µi’s in (32) are differential operators.

8.7. Theorem (Kontsevich [26]). Every Poisson manifold admits a deformation quantiza-

tion.

Sketch of Proof. Maxim Kontsevich proved this theorem in two steps. He proved first a ‘local’

version assuming M = Rd, and then he globalized the result to an arbitrary M using ideas

of formal geometry and the language of superconnections. We are going to sketch only the

first step of Kontsevich’s proof.

The idea was to construct two weakly equivalent L∞-algebras g′, g′′ such that Def(g′)

contained the moduli space of Poisson structures on M and Def(g′′) was the moduli space

of star products, and then apply Theorem 7.8. In fact, g′ will turn out to be an ordinary

graded Lie algebra and g′′ a dg-Lie algebra.

– Construction of g′. It is the graded Lie algebra of polyvector fields with the Shouten-

Nijenhuis bracket. In more detail, g′ =
⊕

n≥0 g′n with

g′n := Γ(M,∧n+1TM), n ≥ 1,

where Γ(M,∧n+1TM) denotes the space of smooth sections of the (n + 1)th exterior power

of the tangent bundle TM . The bracket is determined by

[ξ0 ∧ . . . ∧ ξk, η0 ∧ . . . ∧ ηl] :=

:=

k
∑

i=0

l
∑

j=0

(−1)i+j+k[ξi, ηj] ∧ ξ0 ∧ . . . ∧ ξ̂i ∧ . . . ∧ ξk ∧ η0 ∧ . . . ∧ η̂j ∧ . . . ∧ ηl,

where ξ1, . . . , ξk, η1, . . . , ηl ∈ Γ(M, TM) are vector fields,ˆindicates the omission and [ξi, ηj]

in the right hand side denotes the classical Lie bracket of vector fields ξi and ηj [25, I.§1].
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Recall that Poisson structures on M are in one-to-one correspondence with smooth sections

α ∈ Γ(M,∧2TM) satisfying [α, α] = 0. The corresponding bracket of smooth functions

f, g ∈ C∞(M) is given by {f, g} = α(f ⊗ g). Since g′ is just a graded Lie algebra,

MC(g′) = {s = s1t + s2t
2 + . . . ∈ g′1 ⊗ (t) | [s, s] = 0}

therefore clearly s := αt ∈ MC(g′) for each α ∈ Γ(M,∧2TM) defining a Poisson structure.

We see that Def(g′) contains the moduli space of Poisson structures on M .

– Construction of g′′. It is the dg Lie algebra of polydiffenential operators,

g′′ =
⊕

n≥0

Dn
poly(M),

where

Dn
poly(M) ⊂ Cn+1

Hoch(C
∞(M), C∞(M))

consists of Hochschild cochains (Definition 2.1) of the algebra C∞(M) given by polydiffer-

ential operators. It is clear that D∗
poly(M) is closed under the Hochschild differential and

the Gerstenhaber bracket, so the dg-Lie structure of Proposition 5.7 restricts to a dg-Lie

structure on g′′. The analysis of Example 5.16 shows that Def(g′′) represents equivalence

classes of star products.

– The weak equivalence. Consider the map f1 : g′ → g′′ defined by

f1(ξ0, . . . , ξk)(g0, . . . , gk) :=
1

(k + 1)!

∑

σ∈Sk+1

sgn(σ)

k
∏

i=0

ξσ(i)(gi),

for ξ0, . . . , ξk ∈ Γ(M, TM) and g0, . . . , gk ∈ C∞(M). It is easy to show that f1 : (g′, d = 0)→
(g′′, δHoch) is a chain map. Moreover, a version of the Kostant-Hochschild-Rosenberg theorem

for smooth manifolds proved in [26] states that f1 is a cohomology isomorphism. Unfortu-

nately, f1 does not commute with brackets. The following central statement of Kontsevich’s

approach to deformation quantization says that f1 is, however, the linear part of an L∞-map:

Formality. The map f1 extends to an L∞-homomorphism f = (f1, f2, f3, . . .) : g′ → g′′.

The formality theorem implies that g′ and g′′ are weakly equivalent in the category of

L∞-algebras. In other words, the dg-Lie algebra of polydifferential operators is weakly

equivalent to its cohomology. The ‘formality’ in the name of the theorem is justified by

rational homotopy theory where formal algebras are algebras having the homotopy type of

their cohomology.

Kontsevich’s construction of higher fi’s involves coefficients given as integrals over com-

pactifications of certain configuration spaces. An independent approach of Tamarkin [46]

based entirely on homological algebra uses a solution of the Deligne conjecture, see also an

overview [21] containing references to original sources.

�
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