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THE ORNSTEIN UHLENBECK BRIDGE AND APPLICATIONS TO
MARKOV SEMIGROUPS

B. GOLDYS AND B. MASLOWSKI

Abstract. For an arbitrary Hilbert space-valued Ornstein-Uhlenbeck process we con-
struct the Ornstein-Uhlenbeck Bridge connecting a given starting point x and an end-
point y provided y belongs to a certain linear subspace of full measure. We derive also a
stochastic evolution equation satisfied by the OU Bridge and study its basic properties.
The OU Bridge is then used to investigate the Markov transition semigroup defined by a
stochastic evolution equation with additive noise. We provide an explicit formula for the
transition density and study its regularity. These results are applied to show some basic
properties of the transition semigroup. Given the Strong Feller property and the existence
of invariant measure we show that all Lp functions are transformed into continuous func-
tions thus generalising the Strong Feller property. We also show that transition operators
are q-summing for some q > p > 1, in particular of Hilbert-Schmidt type.

1. Introduction

Let (Zx
t ) be an Ornstein-Uhlenbeck process on a separable Hilbert space H. By this we

mean that (Zx
t ) is a solution to a linear stochastic evolution equation{

dZx
t = AZx

t dt+
√
QdWt,

Zx
0 = x ∈ H. (1.1)

In the above equation (Wt) is a standard cylindrical Wiener process defined on a certain
stochastic basis (Ω,F , (Ft) ,P) and Q = Q∗ > 0 is a bounded operator on H. We assume
that the operator (A, dom(A)) is a generator of a C0-semigroup (St) on H. Under the
assumptions given below the solution to (1.1) is defined by the formula

Zx
t = Stx+

∫ t

0

St−s

√
QdWs. (1.2)

The aim of this paper is to study the basic properties of the Ornstein-Uhlenbeck Bridge

(sometimes called a Pinned Ornstein-Uhlenbeck process)
(
Ẑx,y

t

)
associated to the Ornstein-

Uhlenbeck process (Zx
t ) and its applications. Let us recall informally, that this process is

defined via the formula

P (Zx
t ∈ B|Zx

T = y) = P
(
Ẑx,y

t ∈ B
)
, t < T,

Key words and phrases. Ornstein-Uhlenbeck process, pinned process, measurable linear mapping, sto-
chastic semilinear equation, transition density.

This work was partially supported by the UNSW Faculty Research Grant PS06905 and GAČR grant
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where x, y ∈ H and B ⊂ H is a Borel set, so it is the Ornstein-Uhlenbeck process ”con-
ditioned to go from x at time t = 0 to y at time t = T” (a rigorous definition is given
in Section 2, cf. Def. 2.15). The importance of various types of bridge processes in the
theory of finite dimensional diffusions is well recognised, see for example [22]. In infinite
dimensional framework this concept was developed in [19] in order to study regularity of
transition semigroup of certain linear and nonlinear diffusions on Hilbert space. In [17]
and [18] an Ornstein-Uhlenbeck Bridge is introduced in order to obtain lower estimates on
the transition kernel of some semilinear stochastic evolution equations. Those estimates
provide a powerful tool to study exponential ergodicity and V -uniform ergodicity for such
equations and, in particular, the rate of convergence to invariant measure, providing ex-
plicit estimates on the constants in the definition of exponential ergodicity, as has been
shown in our previous paper [12].

In the present paper the OU Bridge is studied under much more general conditions
and in more detail. In particular, unlike in [12] we do not assume that the OU process
is strongly Feller, which is a rather strong requirement in infinite dimensions (the strong
Feller property is assumed only in in Section 4 devoted to applications to transition den-
sities of semilinear equations, where it is a natural condition). We provide also further
applications of the OU Bridge to the analysis of transition densities and the regularity
of associated Markov semigroups. Regularity of strongly Feller transition semigroups was
studied by different methods in [9] (see also references therein). We use methods com-
pletely different from [9] and obtain stronger results but for bounded drifts only while the
aforementioned paper allows linearly growing drifts. Closely related results for semigroups
that are not strongly Feller may be found in [4]. For the regularity of strongly Feller
semigroups associated to the OU process we refer to [6].

Let us describe the contents of this paper. In Section 2 we provide, for the reader’s
convenience, some relevant facts about linear measurable mappings and conditional distri-
butions of Hilbert space valued Gaussian random vectors. Then we give a definition of the
OU Bridge and some basic results on OU processes and OU Bridges. Some of the technical
results from [12] that are needed in the sequel are stated without proof and others (Lemma
2.8, Proposition 2.11 and Lemma 3.3) are reproved under more general conditions. In Sec-
tion 3, a stochastic equation for the OU Bridge is derived. A new Brownian Motion adapted
to the filtration of the Ornstein Uhlenbeck Bridge is obtained and then it is shown that the
Bridge process is a unique mild (and weak) solution of a linear nonhomogenous stochastic
evolution equation with singular coefficients. Section 4 is devoted to applications of the
previous results to semilinear stochastic equations; at first continuity of Markov transition
densities (with respect to the Gaussian invariant measure ν that is an invariant measure
with respect to the OU process) is proved (Theorem 4.5 and Remark 4.10). Note that
(for a fixed initial value) the continuity of densities in infinite dimensional case is a rather
strong requirement (so is, in a sense, continuity of the mappings y → E[Zx

t |Zx
T = y], etc.)

The difficulties lie in the form of conditioned processes and transition densities (typically,
(2.27) and (4.13)) which involve inverses of injective Hilbert-Schmidt operators. These are
in infinite dimensions always unbounded and only densely defined (cf. Example 4.12 for an
illustration of this fact). Furthermore, in Section 4 the Markov semigroup is shown to map
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the space Lp(H, ν), p > 1, into the space of continuous functions on H (Theorem 4.6) and
is also shown to be Hilbert-Schmidt on L2(H, ν) and q-summing (in particular, compact)
as a mapping Lp(H, ν) → Lq(H, ν) even if q > p provided the gap between q and p is not
too large (Theorem 4.7). At the end of the section the results are illustrated in the case
of one-dimensional semilinear stochastic parabolic equation (Example 4.11) in which case
the conditions imposed in the paper are verified or specified. In Example 4.12 it is shown
that even in simple (in fact, linear) infinite dimensional cases densities may be irregular
and conditions for regularity are specified.

ACKNOWLEDGEMENT. The authors are grateful to Jan Seidler for his valuable com-
ments and suggestions.

2. Preliminaries on OU Processes and Bridges

In this section we collect, for the reader convenience, some properties of infinite-dimensional
OU processes and Gaussian random variables which will be useful in the paper. We also
define the OU Bridge and recall some known results that will be useful in the sequel.

2.1. Measurable Linear Mappings. Let H be a real separable Hilbert space and let
µ = N(0, C) be a centered Gaussian measure on H with the covariance operator C such

that im(C) = H. The space HC = im
(
C1/2

)
endowed with the norm |x|C =

∣∣C−1/2x
∣∣ can

be identified as the Reproducing Kernel Hilbert Space of the measure µ. In the sequel we
will denote by {en : n > 1} the eigenbasis of C and by {cn : n > 1} the corresponding set
of eigenvalues:

Cen = cnen, n > 1.

For any h ∈ H we define

φn(x) =
n∑

k=1

1
√
ck
〈h, ek〉 〈x, ek〉 , x ∈ H.

The following two lemmas are well known (see e.g. [12]):

Lemma 2.1. The sequence (φn) converges in L2(H,µ) to a limit φ and∫
H

|φ(x)|2 µ(dx) = |h|2.

Moreover, there exists a measurable linear space Mh ⊂ H, such that µ (Mh) = 1, φ is
linear on Mh and

φ(x) = lim
n→∞

φn(x), x ∈ Mh. (2.1)

We will use the notation φ(x) =
〈
h,C−1/2x

〉
.

Let H1 be another real separable Hilbert space and let T : H → H1 be a bounded
operator. The Hilbert-Schmidt norm of T will be denoted by ‖T‖HS. Let

T̃nx =
n∑

k=1

1
√
ck
〈x, ek〉Tek, x ∈ H.
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Lemma 2.2. Let T : H → H1 be a Hilbert-Schmidt operator. Then the sequence
(
T̃n

)
converges in L2 (H,µ;H1) to a limit T̃ and∫

H

∣∣∣T̃ (x)
∣∣∣2
H1

µ(dx) = ‖T‖2
HS .

Moreover, there exists a measurable linear space MT ⊂ H, such that µ (MT ) = 1, T̃ is
linear on MT and

T̃ (x) = lim
n→∞

T̃nx, x ∈ MT . (2.2)

We will use the notation TC−1/2x := T̃ (x).

The above procedure is specified in the following Lemma (the proof of which may be
found in [12]) to operator-valued functions:

Lemma 2.3. Let K(t, s) : H → H be an operator-valued, strongly measurable function,
such that for each a ∈ (0, T ) ∫ a

0

∫ a

0

‖K(t, s)‖2
HS dsdt <∞. (2.3)

Then the following holds.
(a) There exists a Borel set B ⊂ [0, T ]2 of full Lebesgue measure such that the measurable
linear mapping K(t, s)C−1/2 is well defined for all (s, t) ∈ B.
(b) There exists a measurable mapping f : [0, T )2 ×H → H and a measurable linear space
M ⊂ H of full measure such that f(t, s, y) = K(t, s)C−1/2y for y ∈ M and for each a < T∫ a

0

|f(t, s, y)| ds <∞

for almost all t ∈ [0, T ]. We will use the notation K(t, s)C−1/2y := f(t, s, y).

2.2. Conditional Distributions. Let H1 and H2 be two real separable Hilbert spaces
and let (X,Y ) ∈ H1 ×H2 be a Gaussian vector with mean values

mX = EX, and mY = EY.

The covariance operator of X is determined by the equation

E 〈X −mX , h〉 〈X −mX , k〉 = 〈CXh, k〉 , h, k ∈ H1, (2.4)

and a similar condition determines the covariance CY of Y . The covariance operator
CXY : H1 → H2 is defined by the condition

〈CXY h, k〉 = E 〈X −mX , h〉 〈Y −mY , k〉 , h ∈ H1, k ∈ H2,

and then C∗
XY = CY X . For a linear closable operator G on H the closure of G will be

denoted by G. The next theorem is well known, see for example [16]
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Theorem 2.4. Assume that CX is injective. Then the following holds.
(a) We have

im (CY X) ⊂ im
(
C

1/2
X

)
, (2.5)

the operator T = C
−1/2
X CY X is of Hilbert-Schmidt type on H and T ∗ = CXYC

−1/2
X .

(b) We have

E (Y |X) = mY + T ∗C
−1/2
X (X −mX) , PX − a.s.

(c) The conditional distribution of Y given X is Gaussian N
(
E (Y |X) , CY |X

)
, where

CY |X = CY − T ∗T.

Moreover, the random variables T ∗C
−1/2
X X and

(
Y − T ∗C

−1/2
X X

)
are independent.

2.3. Some Properties of the Ornstein-Uhlenbeck Process. The following hypothesis
is a standing assumption for the rest of the paper.

Hypothesis 2.5. For every t > 0∫ t

0

∥∥SsQ
1/2
∥∥2

HS
ds <∞, (2.6)

and
im (Qt) = H, (2.7)

where, in view of (2.6)

Qt =

∫ t

0

SsQS
∗
sds. (2.8)

is a well defined trace class operator.

It is well known that if Hypothesis 2.5 holds then the process (1.2) is a well defined
H-valued, Gaussian and Markov process, see [8].

Let µ denote the probability law of the process {Z0
t : t ∈ [0, 1]} that is concentrated on

L2(0, T ;H) and let L : L2(0, T ;H) → C(0, T ;H) be defined by the formula

L u(t) =

∫ t

0

St−sQ
1/2u(s)ds. (2.9)

Note that, cf. [8], im(L ) = RKHS(µ) (the Reproducing Kernel Hilbert Space of the
measure µ). We will use the notation µx

t for the Gaussian measure N (Stx,Qt) and µt

for µ0
t . By the properties of Gaussian distribution µx

t is the probability distribution of a
random variable Zx

t and we set Zt = Z0
t . In the rest of this subsection we give several

statements on properties of the family of covariance operators {Qt : t 6 T} that will be
useful later.

The definition of Qt given in 2.8 yields immediately a simple identity that will be fre-
quently used:

QT = Qt + StQT−tS
∗
t , t 6 T. (2.10)
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Lemma 2.6. We have

im
(
Q

1/2
t

)
⊂ im

(
Q

1/2
T

)
, t 6 T,

hence the operator Ut = Q
−1/2
T Q

1/2
t is bounded on H for every t 6 T and ‖Ut‖ 6 1.

Moreover, U∗
t = Q

1/2
t Q

−1/2
T , the closure of the operator Q

1/2
t Q

−1/2
T defined on the domain

im
(
Q

1/2
T

)
.

Proof. From the definition of the covariance operators Qt it follows that |Qtx|2 6 |QTx|2
for each x ∈ H and 0 6 t 6 T and the conclusion easily follows.

�

Lemma 2.7. (a) The operator Vt = Q
−1/2
T ST−tQ

1/2
t is well defined and bounded on H and

‖Vt‖ 6 1, t ∈ (0, T ). (2.11)

Moreover,

lim
t→T

V ∗
t x = lim

t→T
Vtx = x, x ∈ H. (2.12)

(b) For any t ∈ [0, T ]

QT−t = Q
1/2
T (I − VtV

∗
t )Q

1/2
T . (2.13)

Proof. The inequality (2.11) has been proved in [20], the convergence (2.12) in [12]. Part
(b) follows immediately from (2.10). �

Under a slightly stronger condition we show that the inequality (2.11) is sharp, more
precisely, we have

Lemma 2.8. The following conditions are equivalent:
(a) For any t ∈ (0, T ]

im
(
Q

1/2
t

)
= im

(
Q

1/2
T

)
. (2.14)

(b) im (Ut) is dense in H for each t ∈ (0, T ).
(c) We have

‖Vt‖ < 1, t ∈ (0, T ). (2.15)

Proof. Obviously (a) implies (b).
To prove that (b) implies (c) note first that (2.10) yields∣∣∣Q1/2

T−tx
∣∣∣2 =

∣∣∣Q1/2
T x

∣∣∣2 − ∣∣∣V ∗
t Q

1/2
T x

∣∣∣2 ,
hence putting y = Q

1/2
T x we obtain∣∣∣Q1/2

T−tQ
−1/2
T y

∣∣∣2 = |y|2 − |V ∗
t y|

2 .
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Assume that ‖V ∗
t ‖ = 1 for a certain t ∈ (0, T ). Since im

(
Q

1/2
T

)
is dense in H, there exists

a sequence yn ∈ im
(
Q

1/2
T

)
, such that |yn| = 1 and |V ∗

t yn| → 1. Therefore,

lim
n→∞

∣∣∣Q1/2
T−tQ

−1/2
T yn

∣∣∣2 = lim
n→∞

(
1− |V ∗

t yn|2
)

= 0. (2.16)

Let ynk
be a subsequence converging weakly to y ∈ H. Since

im
(
Q

1/2
T−t

)
⊂ im

(
Q

1/2
T

)
, t 6 T,

and (
Q
−1/2
T Q

1/2
T−t

)∗
= Q

1/2
T−tQ

−1/2
T ,

we find that

Q
1/2
T−tQ

−1/2
T ynk

→ Q
1/2
T−tQ

−1/2
T y, weakly,

and by (2.16) we obtain Q
1/2
T−tQ

−1/2
T y = 0 and since |V ∗

t y| = 1 we obtain y 6= 0. It follows

that the range of the operator Q
−1/2
T Q

1/2
T−t is not dense in H, which shows that (b) implies

(c).
Finally, assume that (c) holds. Then (2.13) and Proposition B1 in [8] yield

im
(
Q

1/2
T−t

)
= im

(
Q

1/2
T (I − VtV

∗
t )1/2

)
.

Since ‖Vt‖ < 1, the operator I − VtV
∗
t : H → H is an isomorphism, hence

im
(
Q

1/2
T−t

)
= im

(
Q

1/2
T

)
, t < T,

and (a) follows. �

Remark 2.9. Necessary and sufficient conditions for (2.14) to hold are not known but it
was proved to be satisfied in the following cases.
(a) If

im (St) ⊂ im
(
Q

1/2
t

)
, t > 0,

then (2.14) holds. It is known that the above condition is equivalent to the strong Feller
property of the OU transition semigroup Rtφ(x) = Eφ (Zx

t ), see [8] for details.
(b) Assume that the process (Zx

t ) admits a nondegenerate invariant measure ν and im(Q)
is dense in H. Let HQ = im

(
Q1/2

)
be endowed with the norm |x|Q =

∣∣Q−1/2x
∣∣. Assume

that HQ is invariant for the semigroup (St) and its restriction to HQ is a C0-semigroup
in HQ. Then (2.14) holds, see [11]. These assumptions are satisfied for any process (Zx

t )
with the transition semigroup analytic in L2(H, ν), in particular they are satisfied for any
reversible OU process.

We define the operator B : Q
1/2
T (H) → L2(0, T ;H),

Bx(t) = Q1/2S∗T−tQ
−1/2
T x, t ∈ [0, T ], x ∈ Q1/2

T (H).

The following simple Lemma has been proved in [12]:
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Lemma 2.10. (a) The operator B with the domain dom(B) = Q
1/2
T (H) extends to a

bounded operator (still denoted by B) B : H → L2(0, T ;H). Moreover,

|Bx|L2(0,T ;H) = |x|H , x ∈ H.
(b) Setting

H 3 x→ K x(t) = Ktx ∈ L2(0, T ;H), (2.17)

where

Kt = Q
1/2
t V ∗

t , (2.18)

we have K = LB. In particular the operator K : H → C(0, T ;H) is bounded.

2.4. Fundamentals on OU Bridge. In the present subsection we give the definition and
some basic properties of the OU Bridge.

Since V ∗
t = Q

1/2
t S∗T−tQ

−1/2
T is bounded, the operator Kt is of Hilbert-Schmidt type on H

for each t ∈ [0, T ). Also, K : H → L2(0, T ;H) is Hilbert-Schmidt.
Note that if Kt is defined by (2.18) then, in view of Lemma 2.2, the measurable function

KtQ
−1/2
T is well defined for each t ∈ [0, T ]. We will start from the definition of the process

(Ẑt),

Ẑt = Zt −KtQ
−1/2
T ZT , t ∈ [0, 1), and Ẑ1 = 0.

Proposition 2.11. (a) An H-valued Gaussian process
(
Ẑt

)
is independent of ZT .

(b) The covariance operator Q̂t of Ẑt is given by

Q̂t = Q
1/2
t (I − V ∗

t Vt)Q
1/2
t . (2.19)

(c) The process
(
Ẑt

)
is mean-square continuous on [0, T ].

(d) If, moreover, one of the equivalent conditions (a)-(c) of Lemma 2.8 holds then

im
(
Q̂

1/2
t

)
= im

(
Q

1/2
t

)
, t ∈ (0, T ). (2.20)

Proof. Theorem 2.4 yields immediately (a) since Ẑt = Zt − E (Zt|ZT ). Invoking (c) of
Theorem 2.4 with CX = QT , CY = Qt and T ∗ = Kt and (2.18) we obtain

Q̂t = Qt −KtK
∗
t = Q

1/2
t (I − V ∗

t Vt)Q
1/2
t , t < T.

Using (2.11) we find easily that

lim
t→0

tr
(
Q̂t

)
= 0. (2.21)

To prove that

lim
t→T

tr
(
Q̂t

)
= 0, (2.22)

we note first that

tr
(
Q̂t

)
= tr ((I − V ∗

t Vt) (Qt −QT )) + tr ((I − V ∗
t Vt)QT ) .
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Next, it is easy to see that

0 6 lim
t→T

tr ((I − V ∗
t Vt) (QT −Qt)) 6 lim

t→T
tr (QT −Qt) = 0. (2.23)

Finally,
tr ((I − V ∗

t Vt)QT ) = tr (QT )− tr (VtQTV
∗
t )

= tr (QT )−
∞∑

k=1

∣∣∣Q1/2
T V ∗

t ek

∣∣∣2 ,
where {ek : k > 1} is a CONS in H. Therefore,

lim
t→T

tr ((I − V ∗
t Vt)QT ) = 0 (2.24)

by Lemma 2.7 and the Dominated Convergence Theorem. Combining (2.23) and (2.24) we
obtain (2.22) and, consequently, (c). Part (d) follows immediately from Lemma 2.8 and
(2.19). �

Proposition 2.12. The conditional distribution of the process (Zx
t ) in the space H2 =

L2(0, T ;H) given Zx
T is N(λ,Q), where

λ(t) = Stx+KtQ
−1/2
T ZT , (2.25)

Q = Q̃−K K ∗, (2.26)

where Q̃ is the covariance operator of the process (Zx
t ) in H2, Q̃ : H → H2,

[Q̃y](t) =

∫ t

0

R(t, s)y(s)ds, y ∈ H2,

and

R(t, s)z =

∫ s

0

St−rQS
∗
s−rzdr, z ∈ H, 0 6 s 6 t 6 T,

and K : H → H1 is defined in (2.17).

Proof. We use Theorem 2.4 withH1 = H, H2 = L2(0, T ;H), X = Zx
t , Y = (Zx

t ), CX = QT ,
and CY = Q̃. By the definition of the covariance CXY ,

〈CXY k, h〉L2(0,T ;H) = E 〈Zx
T , k〉 〈Zx, h〉L2(0,T,H) , k ∈ H1, h ∈ H2,

it is easy to compute [CXY k](t) = QtS
∗
T−tk, t ∈ [0, T ]. Hence we have T ∗ = CXYC

−1/2
X =

K and T : H2 → H1, T y = K ∗y =
∫ T

0
K∗

t y(t)dt. By Theorem 2.4 we have that

Q = CY − T ∗T = Q̃−K K ∗,

and
λ(t) = E(Zx

t |Zx
T ) = E(Stx+ Zt|Zx

T ) = E(Stx+ Ẑt +KtQ
−1/2
t ZT |Zx

T )

which yields λ(t) = Stx +KtQ
−1/2
T ZT , because Ẑt and Zx

T are stochastically independent,
hence (2.25) and (2.26) hold true.

�

Recall that µT denotes the probability law of ZT on H.
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Proposition 2.13. There exists a Borel subspace M ⊂ H such that µT (M ) = 1 and for
all x ∈ H and y ∈ STx+ M the H-valued Gaussian process

Ẑx,y
t = Zx

t −K Q
−1/2
T (Zx

T − y) , (2.27)

is well defined with paths in L2(0, T ;H) and

Ẑx,y
t = Stx−K Q

−1/2
T (STx− y) + Ẑt, P− a.s. (2.28)

Proof. By Lemma 2.2 we can choose a measurable linear space M such that K Q
−1/2
T

is linear on M and µT (M ) = 1. Therefore, K Q
−1/2
T (Zx

T − y) is well defined for any
y ∈ STx+ M and (2.28) holds. �

Theorem 2.14. Let Φ : L2(0, T ;H) → R be a Borel mapping such that

E |Φ (Zx)| <∞.

Then

E (Φ (Zx)|Zx
T = y) = EΦ

(
Ẑx,y

)
, µx

T − a.e. (2.29)

where the left-hand side of (2.29) is defined as a function gΦ = gΦ(y) ∈ L1(H,µx
T ) such

that E(Φ(Zx)|Zx
T ) = gΦ(Zx

T ) P-a.s.

Proof. We have to show that

E(Φ(Zx)|Zx
T ) = E(Φ(Ẑx,y))|Zx

T =y P− a.s.

By Proposition 2.12 we have

E(Φ(Zx)|Zx
T ) =

∫
H

Φ(z)N(λ,Q)(dz) P− a.s., (2.30)

where λ and Q are defined by (2.25) and (2.26), respectively. On the other hand, the

covariance operator Q̂ of the process Ẑx,y
t in H2 is by (2.28) the same as the one of Ẑt.

Since Zt = Ẑt + KtQ
−1/2
T ZT and the summands on the right-hand side are independent

random variables, we obtain Q̃ = Q̂+ K K ∗, that is, Q̂ = Q. Also, we have

EẐx,y
t = Stx−K Q

−1/2
T (STx− y),

and therefore

E(Φ(Ẑx,y))|Zx
T =y =

∫
H

Φ(z)N(Stx−KtQ
−1/2
T (STx−y), Q)(dz)|Zx

T =y =

∫
H

Φ(z)N(λ,Q)(dz)

P− a.s., which together with (2.30) concludes the proof.
�

Definition 2.15. Given x, y ∈ H and an H-valued OU process (Zx
t ), a process (Ẑx,y

t )
satisfying (2.29) is called an Ornstein-Uhlenbeck Bridge (connecting points x at time t = 0

and y at time t = T ). The probability law of the process (Ẑx,y
t ) in the space L2(0, T ;H)

will be denoted by µ̂x,y.
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Thus we have shown that the OU Bridge may be written in the form (2.27) or (2.28) and

its probability law µ̂x,y is N(γ,Q) where γ(t) = E[λ(t)|Zx
T = y] = Stx−KtQ

−1/2
T (STx− y)

µx
T − a.e.
The following Theorem has been proved in [12] :

Theorem 2.16. Let E be a Banach space such that µ(E ) = 1. Then µ̂0,y(E ) = 1 for
y ∈ M .

3. SDE associated to the OU Bridge

The main purpose of this Section is to show that the OU Bridge (Ẑx,y
t ) solves an affine

non-autonomous stochastic forward equation with the intial datum x, where the drift
contains y as a parameter. As the formulae for the coefficients of this equation are rather
cumbersome, we at first outline the main idea. The OU Bridge will be shown to satisfy
the equation of the form

dẐx,y
t = (A+ f1(t)Ẑ

x,y
t )dt+ f2(t)ydt+Q1/2dζt, t ∈ (0, T ), (3.1)

with the initial condition Ẑx,y
0 = x, where (ζt) is again a cylindrical Wiener process,

f1(t) = −Q1/2F ∗
t Q

−1/2
T−t ST−s, f2(t) = Q1/2F ∗

t Q
−1/2
T−t and Ft is defined in (3.6). In particu-

lar, the equation (3.1) corresponds to the well-known equation for the finite-dimensional
Brownian Bridge (see Example 4.12), however in infinite-dimensional case we cannot ex-
pect it to possess a strong solution. We consider two concepts of solutions: mild and weak.
First we show that the OU Bridge solves (3.1) in the mild sense, i.e.

Ẑx,y
t = Stx+

∫ t

0

St−rf1(r)Ẑ
x,y
r dr +

∫ t

0

St−rf2(r)ydr +

∫ t

0

St−rQ
1/2dζr, t ∈ [0, T ), (3.2)

holds (Theorem 3.8). Then it is shown that (Ẑx,y
t ) is also a weak solution to (3.1), that is,〈

Ẑx,y
t , h

〉
= 〈x, h〉+

∫ t

0

〈
Ẑx,y

s , A∗h
〉
ds−

∫ t

0

〈
f1(s)Ẑ

x,y
s , h

〉
ds+

∫ t

0

〈f2(s)y, h〉 ds+
〈
ζt, Q

1/2h
〉

(3.3)
for h ∈ dom(A∗) (Corollary 3.9).

In the sequel we will need the following

Hypothesis 3.1. For any t > 0

im
(
StQ

1/2
)
⊂ im

(
Q

1/2
t

)
. (3.4)

Remark 3.2. Condition (3.4) is satisfied in some important cases.

(a) If the process (Zx
t ) is strong Feller then im (St) ⊂ im

(
Q

1/2
t

)
and therefore (3.4) holds.

(b) Let HQ = Q1/2(H) be endowed with the norm |x|Q =
∣∣Q−1/2x

∣∣, where Q is assumed
to be nondegenerate. Assume that StHQ ⊂ HQ for all t > 0 and (St) restricted to HQ is a
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C0-semigroup. It was proved in [11] that in this case St(H) ⊂ Q
1/2
t (H) for all t > 0 and

there exists c > 0 such that ∥∥∥Q−1/2
t StQ

1/2
∥∥∥ 6

c√
t
, t > 0.

Assume additionally that the process (Zx
t ) admits a Gaussian invariant measure ν. Then,

cf. [11], (St) is a C0-semigroup on HQ if the transition semigroup of the process (Zx
t ) is

analytic on L2(H, ν), in particular this holds for a symmetric Ornstein-Uhlenbeck process.
Explicit conditions for the analyticity and symmetry of the transition semigroup of the
process (Zx

t ) in L2(H, ν) may be found in [11] and [7].

Lemma 3.3. Assume that Hypothesis 3.1 holds. Then the function

t→
∣∣∣Q−1/2

t StQ
1/2h

∣∣∣ ,
is nonincreasing on (0,∞) for each h ∈ H.

Proof. By Lemma 2.7 we have ∥∥∥Q−1/2
t+s StQ

1/2
s

∥∥∥ 6 1. (3.5)

By assumption the operator Q
−1/2
t+s St+sQ

1/2 is well defined and bounded and SsQ
1/2h ∈

im
(
Q

1/2
s

)
. Therefore, by (3.5)∣∣∣Q−1/2

t+s Ss+tQ
1/2h

∣∣∣ =
∣∣∣Q−1/2

t+s StQ
1/2
s Q−1/2

s SsQ
1/2h

∣∣∣
6
∣∣Q−1/2

s SsQ
1/2h

∣∣ ,
and (b) follows. �

Let

Yu =

∫ T

u

ST−sQ
1/2dWs, u 6 T.

Since the operator-valued function t→ Qt is continuous in the weak operator topology and
all the operators Qt are compact for t > 0, there exists a measurable choice of eigenvectors
{ek(t) : k > 1} and eigenvalues {λk(t) : k > 1}. For each n > 1 we define a process

Xn
u =

n∑
k=1

1√
λk(T − u)

〈Yu, ek(T − u)〉F ∗
uek(T − u),

where

Fu = Q
−1/2
T−u ST−uQ

1/2. (3.6)

Lemma 3.4. There exists a measurable stochastic process (Xu) defined on [0, T ) such that
for each a < T

lim
n→∞

E
∫ a

0

|Xn
u −Xu|2 du = 0. (3.7)
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and for each h ∈ H and a < T the series

〈Xu, h〉 =
∞∑

k=1

1√
λk(T − u)

〈Yu, ek(T − u)〉 〈ek(T − u), Fuh〉 (3.8)

converges in L2(0, a) in mean square. Moreover, if 0 6 u 6 v < T then for all h, k ∈ H

E 〈Xu, h〉 〈Xv, k〉 =
〈
Fuh,Q

−1/2
T−uQ

1/2
T−vFvk

〉
, (3.9)

where the operator Q
−1/2
T−uQ

1/2
T−v is bounded.

Proof. For u 6 v 6 T

E 〈Yu, h〉 〈Yv, k〉 = 〈QT−vh, k〉 , h, k ∈ H. (3.10)

Therefore

E 〈Xn
u −Xm

u , h〉
2 =

n∑
j=m+1

1

λk(T − u)
E 〈Yu, ek(T − u)〉2 〈ek(T − u), Fuh〉2

=
n∑

j=m+1

〈ek(T − u), Fuh〉2 −→
n,m→∞

0, (3.11)

hence the process

〈Xu, h〉 =
∞∑

k=1

1√
λk(T − u)

〈Yu, ek(T − u)〉 〈ek(T − u), Fuh〉 =
〈
Q
−1/2
T−u Yu, Fuh

〉
is well defined for each h ∈ H and u < T . For u, v such that 0 < u 6 v < T we have

im
(
Q

1/2
T−v

)
⊂ im

(
Q

1/2
T−u

)
. (3.12)

Let Pn is an orthogonal projection on lin {ek(T − v) : k 6 n} and F n
u = PnFu. Then

Q
−1/2
T−uF

n
u is bounded on H. Let

Xn
u =

(
Q
−1/2
T−uF

n
u

)∗
Yu.

By (3.10)

E 〈Xn
u , h〉 〈Xn

v k〉 =
〈
QT−vQ

−1/2
T−uF

n
u h,Q

−1/2
T−v F

n
v k
〉

=
〈
F n

u h,Q
−1/2
T−uQ

1/2
T−vF

n
v k
〉
.

By (3.12) the operator Q
−1/2
T−uQ

1/2
T−v is bounded and therefore

E
〈
Q
−1/2
T−u Yu, Fuh

〉〈
Q
−1/2
T−v Yv, Fvk

〉
= lim

n→∞
E 〈Xn

u , h〉 〈Xn
v , k〉

=
〈
Fuh,Q

−1/2
T−uQ

1/2
T−vFvk

〉
.

It follows from (3.9) that

E 〈Xu, h〉2 = |Fuh|2 ,
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and by Lemma 3.3 we obtain for u 6 a

E 〈Xn
u , h〉

2 6 E 〈Xu, h〉2 6 |h|2 ‖FT−a‖2 .

Then (3.11) and the Dominated Convergence Theorem yield

lim
n,m→∞

∫ a

0

sup
|h|61

E 〈Xn
u −Xm

u , h〉
2 du = 0.

As a consequence we find that (3.7) holds for any a ∈ (0, T ). �

By Lemma 3.3 a cylindrical process

It =

∫ t

0

F ∗
uQ

−1/2
T−u Yudu

is well defined, that is for any h ∈ H the real-valued process

〈It, h〉 =

∫ t

0

〈
Q
−1/2
T−u Yu, Fuh

〉
du

is well defined for all t < T .

Lemma 3.5. The cylindrical process

ζt = Wt −
∫ t

0

F ∗
uQ

−1/2
T−u Yudu, t 6 T,

is a standard cylindrical Wiener process on H.

The proof of this Lemma is omitted; it is a word by word repetition of the proof of
Lemma 4.7 in [12] if we use Lemmas 3.3 and 3.4 above.

Theorem 3.6. For all t < T

E
∫ t

0

∣∣∣St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐs

∣∣∣2 ds <∞, (3.13)

and

Ẑt = −
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐsds+

∫ t

0

St−sQ
1/2dζs, P− a.s. (3.14)

Proof. We will show first that the operator Q
−1/2
T−s ST−sQ̂sS

∗
T−sQ

−1/2
T−s is bounded. Let h, k ∈

H. Then by Proposition 2.11 and (2.10) we obtain〈
ST−sQ̂sS

∗
T−sh, k

〉
=
〈
ST−sQsS

∗
T−sh, k

〉
−
〈
ST−sQ

1/2
s V ∗

s VsQ
1/2
s S∗T−sh, k

〉
= 〈(QT −QT−s)h, k〉 −

〈
Q
−1/2
T ST−sQsS

∗
T−sh,Q

−1/2
T ST−sQsS

∗
T−sk

〉
= 〈(QT −QT−s)h, k〉 −

〈
Q
−1/2
T (QT −QT−s)h,Q

−1/2
T (QT −QT−s) k

〉
= 〈(QT −QT−s)h, k〉 −

〈
(QT −QT−s)Q

−1
T (QT −QT−s)h, k

〉
= 〈(QT −QT−s)h, k〉 −

〈
(QT −QT−s)

(
I −Q−1

T QT−s

)
h, k
〉
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=
〈(
QT−s −QT−sQ

−1
T QT−s

)
h, k
〉

=
〈
Q

1/2
T−s

(
I −Q

1/2
T−sQ

−1
T Q

1/2
T−s

)
Q

1/2
T−sh, k

〉
.

Since the operator Q
1/2
T−sQ

−1
T Q

1/2
T−s is bounded for s < T we find that the operator

Ts = Q
−1/2
T−s ST−sQ̂sS

∗
T−sQ

−1/2
T−s = I −Q

1/2
T−sQ

−1
T Q

1/2
T−s (3.15)

is bounded as well . Therefore, for s 6 T − ε Lemma 3.3 and (3.15) yield

E
∣∣∣St−sQ

1/2F ∗
s

(
Q
−1/2
T−s ST−sẐs

)∣∣∣2
=
∥∥∥St−sQ

1/2F ∗
s

(
Q
−1/2
T−s ST−sQ̂

1/2
s

)∥∥∥2

HS
6
∥∥St−sQ

1/2
∥∥2

HS
‖Fs‖2

∥∥T 1/2
s

∥∥
6
∥∥St−sQ

1/2
∥∥2

HS
‖FT−ε‖2 ,

which completes the proof of (3.13). As a byproduct of the argument given above we

proved also that the process Q
−1/2
T−s ST−sẐs is well defined for all s 6 T . Now, we are ready

to prove (3.14). By Lemma 3.5 we have

Ẑt = Zt −KtQ
−1/2
T ZT

=

∫ t

0

St−sQ
1/2dζs +

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
1−s Ysds−KtQ

−1/2
T ZT ,

and since

Ys = ZT − ST−sZs = ZT − ST−sKsQ
−1/2
T ZT − ST−sẐs,

we find that

Ẑt =

∫ t

0

St−sQ
1/2dζs −

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐsds

+

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s

(
ZT − ST−sKsQ

−1/2
T ZT

)
ds−KtQ

−1/2
T ZT .

It remains to show that∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s

(
ZT − ST−sKsQ

−1/2
T ZT

)
ds−KtQ

−1/2
T ZT = 0. (3.16)

To this end note first that

KtQ
−1/2
T ZT =

(∫ t

0

St−sQ
1/2F ∗

s ds

)
Q
−1/2
T ZT , (3.17)

and

ST−tKtQ
−1/2
T ZT =

(∫ t

0

ST−sQ
1/2F ∗

s ds

)
Q
−1/2
T ZT

= (QT −QT−t)Q
−1
T ZT = ZT −QT−tQ

−1
T ZT ,

and thereby

ZT − ST−tKtQ
−1/2
T ZT = QT−tQ

−1
T ZT . (3.18)
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Finally, (3.18) and the definition of F ∗
s give∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s

(
ZT − ST−sKsQ

−1/2
T ZT

)
ds

=

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s QT−sQ

−1
T ZTds =

(∫ t

0

St−sQ
1/2F ∗

s ds

)
Q
−1/2
T ZT ,

and (3.16) follows from (3.17). �

We will consider now the general case of the bridge
(
Ẑx,y

t

)
connecting points x ∈ H

and y. We will impose the stronger condition (2.14) which is now formulated as a separate
hypothesis:

Hypothesis 3.7. For any t ∈ (0, T ]

im
(
Q

1/2
t

)
= im

(
Q

1/2
T

)
.

For y ∈ H1 := im(Q
1/2
T ) we define

Ny(t) =

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s yds, t 6 T − ε.

Theorem 3.8. Assume that Hypotheses 3.1 and 3.7 hold. Then the following holds.
(a) The operator N : H1 → L2 (0, T − ε;H) is Hilbert-Schmidt.
(b) For any x ∈ H and y ∈ M

Ẑx,y
t = Stx−

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐ

x,y
s ds+

∫ t

0

St−sQ
1/2dζs

+

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s yds. (3.19)

Proof. Recall that by Lemma 2.10 (b) we have K = LB, hence for z ∈ M

KtQ
−1/2
T z =

∫ t

0

St−sQ
1/2BsQ

−1/2
T zds. (3.20)

Next, for s 6 T − ε

sup
s6T−ε

∥∥∥Q−1/2
T−s Q

1/2
T

∥∥∥ =
∥∥∥Q−1/2

ε Q
1/2
T

∥∥∥ <∞,

and invoking Lemma 3.3 we find that∥∥∥NQ1/2
T

∥∥∥2

HS
6
∫ T−ε

0

∥∥∥∥∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s Q

1/2
T ds

∥∥∥∥2

HS

dt

6

(∫ T

0

∥∥SsQ
1/2
∥∥2

HS
ds

)(∫ T−ε

0

∥∥∥F ∗
sQ

−1/2
T−s Q

1/2
T

∥∥∥2

ds

)
6 ‖FT−ε‖2

∥∥∥Q−1/2
ε Q

1/2
T

∥∥∥2
(∫ T

0

∥∥SsQ
1/2
∥∥2

HS
ds

)
<∞.
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Therefore, the measurable function

y →
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s yds,

is well defined. We are ready now for the proof of (3.19). Let x, y ∈ im
(
Q

1/2
T

)
. Then

Hypothesis 3.7 yields STx ∈ im
(
Q

1/2
T

)
, hence y ∈ M . By (2.28) we have

Ẑx,y
t = Ẑt + Stx−KtQ

−1/2
T (STx− y) ,

and Theorem 3.6 yields

Ẑx,y
t = Stx−KtQ

−1/2
T STx+KtQ

−1/2
T y

−
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐsds+

∫ t

0

St−sQ
1/2dζs

= Stx−KtQ
−1/2
T STx+KtQ

−1/2
T y

−
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−s

(
Ẑx,y

s − Ssx+KsQ
−1/2
T STx−KsQ

−1/2
T y

)
ds+

∫ t

0

St−sQ
1/2dζs

= −KtQ
−1/2
T STx+

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−s

(
Ss −KsQ

−1/2
T ST

)
xds

+KtQ
−1/2
T y +

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sKsQ

−1/2
T yds

+Stx−
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐ

x,y
s ds+

∫ t

0

St−sQ
1/2dζs

=: Htx+Gty + Stx−
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sẐ

x,y
s ds+

∫ t

0

St−sQ
1/2dζs. (3.21)

We will show first that

Gty =

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s yds. (3.22)

For y ∈ im
(
Q

1/2
T

)
ST−tKty =

∫ t

0

St−sQS
∗
T−sQ

−1/2
T yds =

∫ t

0

ST−sQS
∗
T−sQ

−1/2
T yds

= (QT −QT−t)Q
−1/2
T y, (3.23)

and therefore
F ∗

sQ
−1/2
T−s ST−sKsy = F ∗

sQ
−1/2
T−s Q

1/2
T y − F ∗

sQ
1/2
T−sQ

−1/2
T y

= F ∗
sQ

−1/2
T−s Q

1/2
T y −Q1/2S∗T−sQ

−1/2
T y.

Hence, taking Lemma 2.10 (b) into account we find that

Gty = KtQ
−1/2
T y +

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sKsQ

−1/2
T yds
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= KtQ
−1/2
T y +

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s yds−KtQ

−1/2
T y,

and (3.22) follows. Next, we claim that for x ∈ im
(
Q

1/2
T

)
Htx = 0. (3.24)

Indeed, using (3.23) we obtain

Htx = −KtQ
−1/2
T STx+

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−s

(
Ss −KsQ

−1/2
T ST

)
xds

= −KtQ
−1/2
T x+

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s STxds−

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s ST−sKsQ

−1/2
T STxds

= −KtQ
−1/2
T x+

∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s STxds

−
∫ t

0

St−sQ
1/2F ∗

sQ
−1/2
T−s (QT −QT−t)Q

−1/2
T STxds = 0,

which yields (3.24) for x ∈ im
(
Q

1/2
T

)
and therefore for all x ∈ H. Finally, combining

(3.21), (3.22) and (3.24) we obtain (3.19). �

Corollary 3.9. Assume Hypotheses 3.1 and 3.7. Then for each t < T , and h ∈ dom (A∗)
and all x ∈ H and y ∈ M〈

Ẑx,y
t , h

〉
= 〈x, h〉+

∫ t

0

〈
Ẑx,y

s , A∗h
〉
ds−

∫ t

0

〈
F ∗

sQ
−1/2
T−s ST−sẐ

x,y
s , Q1/2h

〉
ds

+

∫ t

0

〈
F ∗

sQ
−1/2
T−s y,Q

1/2h
〉
ds+

〈
ζt, Q

1/2h
〉
.

Proof. On any interval [0, T0] with T0 < T and for any y ∈ M the functions

s→ Q1/2F ∗
sQ

−1/2
T−s ST−sẐ

x,y
s and s→ Q1/2F ∗

sQ
−1/2
T−s y

are P-a.s. Bochner integrable by Theorem 3.8 and therefore standard results about the
equivalence of weak and strong solutions of deterministic and stochastic evolution equations
can be applied to prove the corollary, see for example [1] for deterministic and [3], [21] for
stochastic versions. �

4. Applications to Semilinear Equations

In this Section, transition densities and Markov semigroups defined by semilinear sto-
chastic equations are studied using the OU Bridge. Throughout the Section we assume
(beside (2.5)) that the OU process (Zx

t ) is strongly Feller, that is, the condition

im(St) ⊂ im(Q
1/2
t ), t ∈ (0, T ), (4.1)

is satisfied. Note that (4.1) trivially implies the preceding Hypotheses 3.1 and 3.7 (or
(2.14)). Let (P, ‖.‖var) denote the space of probability measures on the Borel sets of H
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endowed with the metric of total variation. We start from a simple proposition where some
continuity properties of the OU Bridge are given.

Proposition 4.1. (a) For each t ∈ (0, T ), y ∈ M , where M has been defined in Proposition
2.13, the mappings

x 7→ Ẑx,y
t (ω), H → H, (4.2)

x 7→ Ẑx,y(ω), H → L2(0, T ;H), (4.3)

are continuous for P-almost all ω ∈ Ω, and the mapping

x 7→ µ̂x,y
t , H → (P, ‖.‖var), (4.4)

is continuous.

(b) If, moreover, for each t ∈ (0, T ) we have KtQ
−1/2
T ∈ L (Ĥ,H), where Ĥ is a separable

Banach space continuously embedded into H, then the mapping y 7→ Ẑx,y
t (ω) is Ĥ → H P-

a.s. continuous. Similarly, if

K Q
−1/2
T ∈ L (Ĥ, L2(0, T ;H)) (4.5)

then M ⊃ Ĥ and the mapping y 7→ Ẑx,y(ω) is P-a.s. Ĥ → L2(0, T ;H)) continuous.

Proof. (a) By (4.1) we have that STx ∈ im(Q
1/2
T ) for each x ∈ H and hence STx ∈ M

by construction of M , hence y ∈ M . Furthermore, (4.1) implies that the mappings

K Q
−1/2
T ST and KtQ

−1/2
T ST , t ∈ (0, T ], are in L (H,L2(0, T ;H)) and L (H), respectively,

and (4.2) and (4.3) follow by (2.28).

To show (4.4) we recall Proposition 2.11 and Lemma 2.8 , by which we have im(Q̂
1/2
t ) =

im(Q
1/2
t ). Hence the measures (µ̂x,y

T ), x ∈ H, are equivalent and

ψy(t, x, z) =
dµx,y

t

dµ0,y
t

(z) = exp

(
−1

2

∣∣∣Q−1/2
t Stx

∣∣∣2 +
1

2

∣∣∣Q−1/2
T STx

∣∣∣2 +
〈
Q
−1/2
t z,Q

−1/2
t Stx

〉)
.

(4.6)
Indeed, by the Cameron-Martin formula we have

ψy(t, x, z) = exp

(
−1

2

∣∣∣Q̂−1/2
t m

∣∣∣2 +
〈
Q̂
−1/2
t z, Q̂

−1/2
t m

〉)
,

where m = Q
1/2
t (I − V ∗

t Vt)Q
−1/2
t Stx. Then using (2.19) we get (4.6) and the assertion

easily follows.
The proof of part (b) is completely analogous. �

Remark 4.2. (a) The equivalent form of the density (4.6) is

ψy(t, x, z) = exp

(
−1

2

∣∣∣(I − V ∗
t Vt)

1/2Q
−1/2
t Stx

∣∣∣2 +
〈
Q
−1/2
t z,Q

−1/2
t Stx

〉)
.

(b) Note that the OU Bridge (Ẑx,y
t ) satisfies the SDE (3.19) which defines an (inhomoge-

neous) Markov process on the interval (0, T ). By (4.4) this process is strongly Feller.
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Now consider a stochastic semilinear evolution equation of the form

dXt = AXtdt+ F (Xt)dt+
√
QdWt, X0 = x ∈ H (4.7)

where A, Wt and Q are as before and F : H → H is a nonlinear continuous mapping.
Suppose that im(F ) ⊂ im(Q1/2) and set G := Q−1/2F .

Hypothesis 4.3. The mapping G : H → H is bounded and continuous.

Now we formulate technical assumptions on the linear part of the equation. For simplicity
of presentation, it is stated in the form that is verifiable in examples and includes all
assumptions made previously in the paper.

Hypothesis 4.4. Assume either
(i) dimH <∞ or
(ii) There exist α ∈ (0, 1) and β < 1+α

2
such that∫ T0

0

t−α‖StQ
1/2‖2

HSdt <∞ and

‖Q−1/2
t St‖ 6

c

tβ
, t ∈ (0, T0),

for some c > 0 and T0 > 0.

Conditions from (ii) are often used in the theory of stochastic equations and have been
widely studied (cf.[8] or [12], see also the Example below). Note that Hypothesis 4.4 (ii)
implies all previous assumptions made in the paper on the linear part of the equation (4.7)
(i.e., all except for Hypothesis 4.3).
It is well known (see e.g. [21] ) that under Hypotheses 4.3 and 4.4 equation (4.7) defines
an H-valued Markov process as a solution to the integral equation

Xt = Stx+

∫ t

0

St−rF (Xr)dr +

∫ t

0

St−r

√
QdW̃r, t > 0, (4.8)

where W̃t is a standard cylindrical Wiener process on H defined on a suitable probability
space.
Finally, we assume that the OU process defined by the linear equation (1.1) has an invariant
measure ν that will be used as a reference measure. This is equivalent to the condition

sup
t>0

tr(Qt) <∞. (4.9)

If (4.9) holds then ν is a centered Gaussian measure with the covariance operator

Q∞ =

∫ ∞

0

StQS
∗
t dt.

Moreover, it has been shown in [5] that StQ
1/2
∞ (H) ⊂ Q

1/2
∞ (H) and the family of operators

S0(t) = Q−1/2
∞ StQ

1/2
∞ , t > 0,

defines a C0-semigroup of contractions on H. Moreover, if part (ii) of Hypothesis 4.4 holds
then ‖S0(t)‖ < 1 for all t > 0.
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Denote by (Pt) the transition Markov semigroup defined by the equation (4.7) and set

P (t, x,Γ) = Pt1Γ(x), x ∈ H, t > 0

and Γ Borel sets in H, and

d(t, x, y) =
P (t, x, dy)

ν(dy)
.

It is standard to see that the density d exists, because Girsanov Theorem may be used to
show the equivalence of measures P (t, x, dy) ∼ µx

t , and µx
t ∼ ν by (4.1) (see e.g. [12]).

Theorem 4.5. Let Hypotheses 4.3, 4.4 and (4.9) be satisfied and let T > 0 be fixed. Then
for ν-almost all y ∈ H the mapping x 7→ d(T, x, y) is continuous on H.

Theorem 4.6. Let Hypotheses 4.3, 4.4 and (4.9) be satisfied. Then for p > 1, T > 0, we
have

PT (Lp(H, ν)) ⊂ C (H),

that is, the semigroup (Pt) maps the space Lp(H, ν) into the space of continuous functions
on H.

For p, q > 1 we introduce the notation

‖Pt‖p,q =

(∫
H

(∫
H

dp′
(t, x, y)ν(dy)

)q/p′

ν(dx)

)1/q

,

where p′ = p
p−1

. Note that ‖Pt‖2,2 is a Hilbert-Schmidt norm of Pt. Moreover, if ‖Pt‖p,q <

∞ then the operator Pt : Lp(H, ν) → Lq(H, ν) is compact. Under assumptions more
general than ours necessary and sufficient conditions were given in [4] for boundedness of the
operator Pt : Lp(H, ν) → Lq(H, ν). In the theorem below we use different arguments based
on the formula for transition densities to show that a stronger property holds: ‖Pt‖p,q <∞.

Theorem 4.7. Let Hypotheses 4.3, 4.4 and (4.9) be satisfied. Then for any fixed T > 0
and p, q > 1 satisfying

q < 1 +
p− 1

‖S0(T )‖2

we have ‖PT‖p,q <∞. In particular, the operator PT : Lp(H, ν) → Lq(H, ν) is q-summing.

Corollary 4.8. If

q < 1 +
1

‖S0(T )‖2

then PT : L2(H, ν) → Lq(H, ν) is γ-radonifying. In particular, PT : L2(H, ν) → L2(H, ν)
is Hilbert-Schmidt.

By the above mentioned equivalence of probabilities we may write

d(T, x, y) =
P (T, x, dy)

µx
T (dy)

· µ
x
T (dy)

µ0
T (dy)

· µ
0
T (dy)

ν(dy)
(4.10)

=: h(T, x, y) · g(T, x, y) · k(T, y), (4.11)
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where k does not depend on x, g is given by the Cameron-Martin formula

g(T, x, y) = exp{
〈
x, S∗TQ

−1/2
T Q

−1/2
T y

〉
− 1

2
|Q−1/2

T STx|2} (4.12)

for ν-almost all y ∈ H, and h may be expressed by means of the OU Bridge (Ẑx,y
t ),

h(T, x, y) = E exp{ρ(Ẑx,y)−
∫ T

0

〈
G(Ẑx,y

s ), B1(s)Ẑs +B2(s)x−B3(s)y
〉
ds} (4.13)

(cf.[12], Theorem 5.2), where

ρ(Ẑx,y) =

∫ T

0

〈
G(Ẑx,y

s ), dζs

〉
− 1

2

∫ T

0

|G(Ẑx,y
s )|2ds

and (ζt) is a standard cylindrical Wiener process defined in Lemma 3.5,

B1(s) = (Q
−1/2
T−s ST−sQ

1/2)∗Q
−1/2
T−s ST−s,

B2(s) = (Q
−1/2
T ST−sQ

1/2)∗Q
−1/2
T ST ,

B3(s)y = (Q
−1/2
T ST−sQ

1/2)∗Q
−1/2
T y, y ∈ im

(
Q

1/2
T

)
.

From Lemma 2.10 it follows that∫ T

0

|B2(s)x|2ds = |Q−1/2
T STx|2, x ∈ H, (4.14)

and by [12], Proposition 4.9, we have that

E
∫ T

0

|B1(s)Ẑt|ds <∞ (4.15)

and ∫ T

0

|B3(s)y|ds <∞ (4.16)

for ν- almost all y ∈ M (with no loss of generality we may assume that (4.16) holds for all
y ∈ M , ν(M ) = 1). The proofs of Theorems 4.5, 4.6 and 4.7 are based on the following
technical lemma:

Lemma 4.9. Given T > 0 and q ∈ [0,∞), there exists a constant kq > 0 such that

hq(T, x, y) : = E exp{q(ρ(Ẑx,y)−
∫ T

0

〈
G(Ẑx,y

s ), B1(s)Ẑs +B2(s)x−B3(s)y
〉
ds)}

6 kq exp{kq(|x|+
∫ T

0

|B3(s)y|ds)}
(4.17)

for all x ∈ H and y ∈ M , in particular,

h(t, x, y) 6 k1 exp{k1(|x|+
∫ T

0

|B3(s)y|ds)}.
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Proof. By the Cauchy inequality we have

hq(T, x, y) 6 (E exp{2qρ(Ẑx,y})1/2 (4.18)

×(E exp{2q(
∫ T

0

|
〈
G(Ẑx,y

s ), B1(s)Ẑs +B2(s)x−B3(s)y
〉
|ds)})1/2

and since the process s 7→ G(Ẑx,y
s ) is bounded the first expectation on the right-hand side

of (4.18) is bounded (uniformly w.r.t. x and y). By (4.14) and (4.16) we thus have

hq(T, x, y) 6 Cq(E exp{Cq

∫ T

0

(|B1(s)Ẑs|+ |B2(s)x|+ |B3(s)y|)ds})1/2 (4.19)

6 C̃q exp{C̃q(|Q−1/2
t STx|+

∫ T

0

|B3(s)y|ds)}(E exp{C̃q

∫ T

0

|B1(s)Ẑs|ds})1/2

for some Cq, C̃q, and (4.17) follows by (4.15) and the Fernique inequality. �

Proof of Theorem 4.5. Without loss of generality (dropping, if necessary, a set of ν-measure
zero) we may suppose that g(T, x, y) and k(T, y) are defined for all y ∈ M . By (4.12) we
have that the mapping x 7→ g(T, x, y)k(T, y) is continuous, so we only have to prove
continuity of the mapping x 7→ h(T, x, y), y ∈ M , T > 0. Let xn → x0 in H. First we
show (possibly, for a subsequence) that

lim
n→∞

exp{ρ(Ẑxn,y)−
∫ T

0

〈
G(Ẑxn,y

s ), B1(s)Ẑs +B2(s)xn −B3(s)y
〉
ds} (4.20)

= exp{ρ(Ẑx0,y)−
∫ T

0

〈
G(Ẑx0,y

s ), B1(s)Ẑs +B2(s)x0 −B3(s)y
〉
ds}

P-a.s. We have∫ T

0

∣∣∣∣〈G(Ẑxn,y
s ), B1(s)Ẑs +B2(s)xn −B3(s)y

〉
−
∫ T

0

〈
G(Ẑx0,y

s ), B1(s)Ẑs +B2(s)x0 −B3(s)y
〉∣∣∣∣ ds

6
∫ T

0

|G(Ẑxn,y
s )−G(Ẑx0,y

s )|(|B1(s)Ẑs|+ |B2(s)x0|+ |B3(s)y|)ds

+

∫ T

0

∣∣∣G(Ẑx0,y
s )| · |B2(s)(xn − x0)

∣∣∣ ds,
(4.21)

which tends to zero by continuity and boundedness of G, (4.14) and Dominated Conver-
gence Theorem. Also, we have

E|ρ(Ẑxn,y)− ρ(Ẑx0,y)| 6 C

((
E
∫ T

0

|G(Ẑxn,y
s )−G(Ẑx0,y

s )|2ds
)1/2

+E
∫ T

0

|G(Ẑxn,y
s )−G(Ẑx0,y

s )|2ds
)
,

which again tends to zero by Dominated Convergence Theorem, so there is a subsequence
converging P-a.s. Taking into account (4.21) we obtain (4.20). By (4.17) (used, for instance,
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with q = 2) the random variables on the left-hand side of (4.20) are integrable uniformly
in n, hence the convergence in (4.20) holds also in the space L1(Ω) and, consequently, we
obtain h(T, xn, y) → h(T, x0, y). Since we may choose a subsequence with this property
from an arbitrary sequence xn → x0, the convergence takes place for the whole sequence.

Proof of Theorem 4.6. Let T > 0, φ ∈ Lp(H, ν) and xn → x0 in H. Then

|PTφ(xn)− PTφ(x0)| 6
∫

H

|φ(y)||d(T, xn)− d(T, x0, y)|ν(dy)

6 (

∫
H

|φ|pdν)1/p(

∫
H

|d(T, xn, y)− d(T, x0, y)|p
′
ν(dy))1/p′

,

so by Theorem 4.5 it suffices to show that∫
H

(d(T, xn, y))
qν(dy) < cq, q ∈ (1,∞), (4.22)

where cq does not depend on n. The same property (uniform boundedness in arbitrary
Lq(H, ν)) has been shown for Gaussian densities g(T, xn, ·) and k(T, ·) in [6], so we only
have to show (4.22) where d(T, xn, y) is replaced by h(T, xn, y). However, by Lemma 4.9
and Hölder inequality we have∫

H

(h(T, xn, y))
qν(dy) 6

∫
H

hq(T, xn, y)ν(dy) (4.23)

6 kq exp{kq|xn|}
∫

H

exp{
∫ T

0

|B3(s)y|ds}ν(dy) < cq

where cq does not depend on n, since the sequence xn is obviously bounded and∫
H

exp{
∫ T

0

|B3(s)y|ds}ν(dy) <∞

by (4.16), (4.1) and the Fernique inequality.

Proof of Theorem 4.7. We can rewrite (4.10) in the form

d(T, x, Y ) = h(T, x, y)H(t, x, y),

where

H(T, x, y) =
µx

T (dy)

ν(dy)
.

Invoking the Hölder inequality we obtain

‖PTφ‖q
Lq(H,ν) =

∫
H

(∫
H

hHφν(dy)

)q

ν(dx)

6
∫

H

((∫
H

hp′
Hp′

ν(dy)

)1/p′ (∫
H

|φ|pν(dy)
)1/p

)q

ν(dx)

= ‖φ‖q
p

∫
H

(∫
H

hp′
Hp′

ν(dy)

)q/p′

ν(dx).

(4.24)
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It remains to show that

K =

∫
H

(∫
H

hp′
Hp′

ν(dy)

)q/p′

ν(dx) <∞. (4.25)

Indeed, using successively the Hölder equality we obtain for any r > 1

K 6
∫

H

(∫
H

hp′r′
ν(dy)

)q/p′r′ (∫
H

Hp′rν(dy)

)q/p′r

ν(dx)

6

(∫
H

(∫
H

hp′r′
ν(dy)

)q/p′

ν(dx)

)1/r′ (∫
H

(∫
H

Hp′rν(dy)

)q/p′

ν(dx)

)1/r

.

(4.26)

It was shown in [6] that ∫
H

(∫
H

Ha′
ν(dy)

)b/a′

ν(dx) <∞, (4.27)

for any a, b > 1, such that

b 6 1 +
a− 1

‖S0(T )‖2 . (4.28)

Putting

a =
p′r

p′r − 1
and b = qr,

we find that there exists r > 1 such that (4.28) holds. Therefore, for such an r∫
H

(
Hp′rν(dy)

)q/p′

ν(dx) =

∫
H

(
Ha′

ν(dy)
)b/a′

ν(dx) <∞. (4.29)

Next, we need to show that∫
H

(∫
H

hp′r′
ν(dy)

)q/p′

ν(dx) <∞. (4.30)

To prove (4.30) we note that if q
p′ > 1 then∫

H

(∫
H

hp′r′
ν(dy)

)q/p′

ν(dx) 6
∫

H

∫
H

hr′qν(dy)ν(dx)

However, using Lemma 4.9 for q̃ = r′q we have∫
H

∫
H

(h(T, x, y))q̃ν(dx)ν(dy) 6
∫

H

∫
H

hq̃(T, x, y)ν(dx)ν(dy)

6
∫

H

∫
H

kq̃ exp{kq̃(|x|+
∫ T

0

|B3(s)y|ds)}ν(dx)ν(dy)

6 kq̃

∫
H

exp{kq̃|x|}ν(dx)
∫

H

exp{kq̃

∫ T

0

|B3(s)y|ds)}ν(dy)
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= kq̃Eekq̃ |Z̃| · E exp{kq̃

∫ T

0

|B3(s)Z̃|ds}

where Z̃ is an arbitrary random variable with probability distribution ν. By (4.16), (4.1)
and the Fernique inequality we conclude that (4.30) holds true. The proof of (4.30) for the
case when q

p′ < 1 is even simpler and is omitted. The fact that for p = 2 the operator PT

is γ-radonifying, hence Hilbert-Schmidt for p = q = 2 now follows from the representation
of γ-radonifying operators, see [2].

Remark 4.10. There is a natural question whether the transition density is regular (con-
tinuous) ”in y”, that is, whether the mapping y 7→ d(T, x, y) is continuous, at least on a

certain subspace Ĥ ⊂ H) of full measure. In the Gaussian case the formulas for the density
may be used to conclude that if

S∗TQ
−1
T ∈ L (Ĥ,H) (4.31)

then y → g(T, x, y) is continuous on Ĥ for all T > 0 and x ∈ H (cf. the Cameron-Martin

formula (4.12)). A similar well-known formula for k(T, y) (see e.g. [6]) yields Ĥ → H
continuity of the mapping y 7→ k(T, y) provided

C(T ) := Q
−1/2
∞ (I − S0(T )S∗0(T ))−1S0(T )S∗0(T )Q

−1/2
∞ ∈ L (Ĥ,H) (4.32)

where S0(T ) = Q
−1/2
∞ STQ

1/2
∞ . Following the proof of Theorem 4.5 we can easily see that the

remaining factor, the function h(T, x, y) is continuous in y ∈ Ĥ if the mapping y → Ẑx,y
t

is Ĥ → H a.s. continuous (which by Proposition 4.1 (b) happens if KtQ
−1/2
T ∈ L (Ĥ,H),

t < T ) and

B3 ∈ L (Ĥ, L1(0, T ;H)). (4.33)

In fact, a more careful analysis of the situation shows that if (4.31)-(4.33) is satisfied, we

already have the joint continuity of the mapping (x, y) → p(T, x, y) on H × Ĥ.
We are able to verify these additional conditions in some important cases (supposing

that the standing assumptions of this Section (4.3), (4.4) and (4.9) are satisfied).
(a) All conditions (4.31)-(4.33) are satisfied if dimH <∞.

(b) In the commutative case the conditions (4.31) and (4.32) are satisfied with Ĥ = H by

the strong Feller property. However, condition (4.33) is not satisfied with Ĥ = H even in
simple infinite - dimensional situations (cf. Example 4.12 below).

(c) Assume also that the generator A has bounded imaginary powers and (for simplicity)
Q = I. Under these assumptions the OU semigroup (Rt) is analytic in L2(H, ν) and
moreover its generator L is variational, see [11] for details and for more general results. In
particular these conditions are satisfied if A is a variational operator in a bounded domain
with Dirichlet boundary conditions (for instance). Then it follows from [10] that the

S0(t) = Q
−1/2
∞ StQ

1/2
∞ defines a C0-semigroup of contractions in the domain of the operator

Q
−1/2
∞ endowed with the norm |x|0 =

∣∣∣Q−1/2
∞ x

∣∣∣. Therefore, for h ∈ im
(
Q

1/2
∞

)
we obtain
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S0(t)h ∈ im
(
Q

1/2
∞

)
and

|S0(t)h|0 =
∣∣Q−1

∞ StQ∞Q
−1/2
∞ h

∣∣ 6 ∣∣Q−1/2
∞ h

∣∣ ,
or equivalently ‖Q−1

∞ StQ∞‖ 6 1 and Vt = Q−1
∞ StQ∞ is a C0-semigroup in H. Hence our

first condition is satisfied with Ĥ = H. Note that in this case results in [5] yield the
existence of a dual OU process Z∗ such that R∗

tφ(y) = Eφ (Z(t, y)∗) and{
dZ∗(t, y) = BZ∗(t, y)dt+ dWt,
Z(0, y) = y,

where B = Q∞A∗Q−1
∞ is a generator of the C0-semigroup Vt. Note also that the existence

of the process Z∗ follows from the general theory of nonsymmetric Dirichlet forms, see [15].
In this case we could construct a dual bridge Z∗y,x from Zx,y by time reversal.

Example 4.11. Consider the semilinear stochastic heat equation

∂u

∂t
(t, ξ) =

∂2u

∂ξ2
(t, ξ) + f(u(t, ξ)) + η(t, ξ), (t, ξ) ∈ R+ × (0, 1), (4.34)

with an initial condition and Dirichlet boundary conditions

u(0, ξ) = x(ξ), u(t, 0) = u(t, 1) = 0, t > 0, ξ ∈ (0, 1) (4.35)

where f : R → R is bounded and continuous and η denoted formally a space-dependent
white noise. As well known (see e.g. [8] for fundamentals on the theory of stochastic
evolution equations) the system (4.34) - (4.35) may be understood as an equation of the

form (4.7) in the space H = L2(0, 1) where A = ∂2

∂ξ2 , dom(A) = H1
0 (0, 1) ∩ H2(0, 1),

F : H → H, F (y)(ξ) := f(y(ξ)), y ∈ H, ξ ∈ (0, 1), and
√
Q is a bounded operator on

H = L2(0, 1). We assume that the operator Q is boundedly invertible on H, (i.e., the noise
is nondegenerate). Then Hypothesis 4.3 is obviously satisfied and Hypothesis 4.4 (ii) is
satisfied with β = 1

2
and arbitrary α ∈ (0, 1

2
) (cf.[12], Example 9.2 and references therein).

Thus the conclusions of Theorems 4.5, 4.7 and 4.6 hold true in the present example.

Example 4.12. Let (en) denote an ONB of a Hilbert space H and assume that the operators
A and Q are given by sequences if their eigenvalues (−αn), (λn),

Aen = −αnen, 0 < αn →∞,

and

Qen = λnen, 0 < λn 6 supλn <∞,

(note that in the previous example the operator A satisfies this condition with αn ∼ n2).
In this ”diagonal case” all Hypotheses made in the paper may be expressed and verified in
terms of the sequences (−αn), (λn). More specifically,∑ λn

αn

<∞ (4.36)
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is equivalent to Hypothesis 2.5 ; in that case all results of Section 2 on the OU Bridge hold
true (obviously, (4.36) is also necessary and sufficient for the OU process to be well defined
in H).

Furthermore, it is easy to compute that

Qten =
λn

αn

(1− e−2αnt)en, (4.37)

and so Hypotheses 3.1 and 3.7 are always satisfied. Therefore (under condition (4.36))
the differential equations for the OU Bridge has the mild and weak solutions described in
Theorem 3.8 and Corollary 3.9, respectively.

This equation splits into a sequence of independent one-dimensional equations for par-

ticular coordinates ẑx,y
n (t) :=

〈
Ẑx,y

t , en

〉
. We obtain

dẑx,y
n (t) = [−αnẑ

x,y
n (t)−2αne

−αn(T−t)(1−e−2αn(T−t))−1(e−αn(T−t)ẑx,y
n (t)−yn)]dt+

√
λndζn(t)

for t ∈ (0, T ) with the initial condition

ẑx,y
n (0) = xn,

where xn = 〈x, en〉, yn = 〈y, en〉 and ζn(t) = 〈ζt, en〉. The mild and weak formulas from
Theorem 3.8 and Corollary 3.9 may be easily expressed as well.
Note that if dimH < ∞, the condition (4.36) is automatically satisfied. In this case the
above equation has obviously a strong solution. Here we need not have to assume that
the eigenvalues αn are all negative, only αn 6= 0. If αn = 0 for some n the corresponding
equation takes the form

dẑx,y
n (t) =

yn − ẑx,y
n (t)

T − t
dt+

√
λndζn(t), t ∈ (0, T ),

which is a well-known equation for a one-dimensional Brownian Bridge.
In Section 4, where the semilinear equations are considered, our standing assumption was
(4.1) (the strong Feller property for the OU process), which in the present example is
equivalent to

sup
n

αn

λn

e−2αnt < Ct, t > 0, (4.38)

where Ct <∞ (intuitively, the noise term is ”sufficiently nondegenerate”). The condition
(4.9) (existence of the invariant measure for the OU process) is automatically satisfied and
the conditions of Hypothesis 4.4 have been often studied in the past and may be easily
formulated in terms of sequences (αn) and (λn) (cf. Section 3 in [13]). For instance, if∑

(1/αn)1−ε holds for some ε > 0, λn > c > 0 and the nonlinear term F is bounded and
continuous, the conclusions of Theorems 4.5- 4.7 hold true (in particular, the transition
densities are ”continuous in x”).
The continuity of transition density ”in the variable y” may be veriified by means of Remark
4.10 . It is easy to compute eigenvalue expansions of all operators that appear there. We



29

have

KtQ
−1
T en =

1− e−2αnt

1− e−2αnT
e−αn(T−t)en, (4.39)

Q−1
T S∗T en = 2e−αnT αn

λn

(1− e−αnT )−1en, (4.40)

C(T )en = 2e−2αnT αn

λn

(1− e−2αnT )−1en, (4.41)

B3(s)en = 2e−αn(T−s) αn√
λn

(1− e−αnT )−1en. (4.42)

As an illustrative example consider the case when the ”nonlinear term” F is, in fact, a
constant element of H, F =

∑
Fn < F, en >. The solution to the equation (4.7) has the

form

Xt = Stx+ a(t) + Zt, t > 0,

where a(t) :=
∫ t

0
St−sFds. In order to satisfy Hypothesis 4.3 we assume that F ∈ im(Q1/2)

for a given T > 0, which is equivalent to∑ F 2
n

λn

<∞. (4.43)

The regularity ”in x” of the density may be then obtained as a particular case of the
preceding part of the Example. However, since the solution is Gaussian, we may conclude
directly by the Cameron-Martin formula that the mapping x → d(T, x, y) is continuous
(in fact, smooth), for fixed y from a set of measure one, if and only if the strong Feller

property (the condition (4.38)) is satisfied and a(T ) ∈ im(Q
1/2
T ) holds. The latter condition

is equivalent to (−A)−1/2F ∈ im(Q1/2) or equivalently,∑ F 2
n

λnαn

<∞ (4.44)

(this is obviously a weaker condition that (4.43), which in this case is not needed). Now,
let us check the regularity in the variable y for a fixed x ∈ H. Assume that the OU process
is strongly Feller ((i.e., 4.38) is satisfied). It is easy see that the mapping y → k(T, y) ) is
continuous. The continuity y → g(T, x, y) is equivalent to the inclusion Q−1

T S∗T ∈ L (H),
which in terms of the eigenvalues is expressed as

sup
n

αn

λn

e−αnT < CT . (4.45)

This would be, for a fixed T > 0, a stronger demand than the strong Feller property (4.38)
but if we require (4.38) and (4.45) for each T > 0, they are equivalent. By Gaussianity,
the remaining factor h may be again expressed by the Cameron-Martin formula

h(T, x, y) =
N(STx+ a(T ), QT )(dy)

N(Stx,QT )(dy)
= exp(< Q

−1/2
T a(T ), Q

−1/2
T y > −1

2
|Q−1/2

T a(T )|2).

(4.46)
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Now it is easy to see that the mapping y → h(T, x, y) is continuous (and in fact, smooth)
for each x ∈ H if and only if a(T ) ∈ im(QT), which turns out to be the same as F ∈ im(Q),
or equivalently, ∑ F 2

n

λ2
n

<∞. (4.47)

Obviously, (4.47) is stronger than (4.43), which shows that for the continuity ”in x” the
Hypothesis 4.3, which makes the Girsanov theorem applicable, is in general unnecessary.
For continuity ”in y” in our example, even stronger condition (4.47) is necessary. However,
our formulation of the problem is not ”symmetric in x and y”: While x is the initial
value that is supposed to be arbitrary, y is just a variable in the densities and we obtain
continuity x→ d(T, x, y) only for y from a set of measure one.
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