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ABSTRACT. Let 1 < p < ¢ < 400 and let v, w be weights on (0, +00) satisfying:
v(z)x” is equivalent to a non-decreasing function on (0, +00) for some p > 0;
[w(z)z]/9 = [v(z)z]/P  for all & € (0, +00).

Let A be the averaging operator given by (Af)(z) := 1 [ f(t) dt, x € (0,400).

First, we prove that the operator

A: LP((0,400);v) — LP((0,400);v) is bounded
if and only if the operator
A LP((0,4+00);v) — LI((0,+00);w) is bounded.

Second, we show that the boundedness of the averaging operator A on the
space LP((0,+o0);v) implies that, for all » > 0, the weight v1=P" satisfies the
reverse Holder inequality over the interval (0,r) with respect to the measure
dt, while the weight v satisfies the reverse Holder inequality over the interval
(r, +00) with respect to the measure t~Pdt. As a corollary, we obtain that
the boundedness of the averaging operator A on the space LP((0,+00);v)

is equivalent to the boundedness of the averaging operator A on the space
LP((0, +00); v *?) for some § > 0.

1. INTRODUCTION

Let 1 < p < 400 and let v be a weight on (0,+00), i.e., a measurable func-
tion which is positive a.e. on (0,400). By LP(v) = LP((0,400);v) we denote the
weighted Lebesgue space of all measurable functions f on (0,+00) for which the

norm
“+oo
v = P d
TR ( [ @ x)
is finite.

We shall consider one of the basic operators in the mathematical analysis, the
averaging operator A defined by

(Af)(z) == i/oz f@)de, =z € (0,+00).

1/p

It is well known (see [B] or [OK]) that if 1 < p < 400 and w, v are weights on
(0, +00), then the averaging operator A : LP(v) — L%(w) is bounded, that is, there
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exists a constant ¢ > 0 such that
(1) [Afllgw < cllfllp,o  forall f e LP(v),
if and only if

+oo 1/q r , 1/p’
(2) B :=sup (/ w(t)t 1 dt) (/ v(t)P dt) < +o0,
r>0 r 0

where p’ =p/(p —1).

Throughout the paper we use the following convention: For two non-negative
expressions (i.e. functions or functionals) F' and G the symbol F' < G (or F 2 G)
means that F < ¢G (or ¢F > @), where ¢ is a positive constant independent of
appropriate quantities involved in F and G. We shall write F' =~ G (and say that
F and G are equivalent) if both relations F' < G and F' 2 G hold.

Our aim is to prove the following assertions.

Theorem 1. Let 1 < p < g < 400 and let v, w be weights on (0,400) such that:

(3) v(x)z’ is equivalent to a non-decreasing function on (0,+00) for some p > 0;

(4) [w(z)z]"? ~ [v(z)z]"?  for all z € (0,+00).
Then the averaging operator

(5) A: LP(v) — LP(v) is bounded

if and only if the operator

(6) A: LP(v) — LY (w) is bounded.

Assumptions of Theorem 1 and (5) ensure that

400 1/q r , 1/p’
(/ w(t)t™? dt) (/ v(t)P dt) ~1 forallr>0,
T 0

which means that (w,v) is the optimal couple of weights for which (1) holds. Note
also that assumption (4) is satisfied when w = v and g = p.

In the particular case when p = 0 in (3) the statement of Theorem 1 has been
communicated to us by a referee of another our paper.

It is known that the weight v satisfying both (3) with p = 0 and (5) belongs
to the A,-class of B. Muckenhoupt. Since v € A, implies that v'~?" € A, the
following two reverse Holder inequalities hold for such a weight:

1 /7 , 1/@+8) 4 pr ,
(3 [eorra) <t [ a
0 0

r r

1 r 1/(146) 1 r
(/ v(t)1+5dt> < 7/ o(t) dt,
™ Jo ™ Jo

for all » > 0 and some § > 0.

The next theorem shows that the former inequality remains true even when p > 0
in (3) while the latter inequality is then replaced by the reverse Holder inequality
for the weight v, the interval (r, +00) and the measure t? dt.

Theorem 2. Let 1 < p < +oo and let v be a weight on (0,4+00) such that (3)
holds. Assume that the averaging operator

(7) A: LP(v) — LP(v) is bounded.
Then there is 6o > 0 such that

- (1 /Or[v(t)l—f”]“ﬂs dt>1/(1+6) < 1 /Orv(t)l—P' w

r T
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and

1 —+00 s 1/(1+5) 1 —+oo
1+64—p < -p
) (Tlp / o(t) 1+ dt) < / o(E)E7 dt

for allr >0 and 6 € [0,dp).

Corollary 1. Let 1 < p < +00 and let v be a weight on (0,4+00) such that (3)
holds. Then the averaging operator

(10) A: LP(v) — LP(v) s bounded

if and only if there is § > 0 such that the operator

(11) A LP(01H0) = LP(vF0) s bounded.
Corollary 1 is a particular case of the following assertion.

Corollary 2. Let 1 < p < g < 400 and let v, w be weights on (0,4+00) such that
(3) and (4) hold. Then (10) is satisfied if and only if there is § > 0 such that the
operator

A LP(v(x)'H0) — LY (w(x) F0x00=9/P)) s bounded.
We refer to [OR] for further related results.

Remark 1. It has been said that the weight v satisfying both (3) with p = 0 and (5)
belongs to the A,-class of B. Muckenhoupt. On the other hand, there are weights
which satisfy (3) and (5) but which do not belong to the A,-class. A simple example
isv(t) =t t>0, with 8 < —1.

The paper is organized as follows. In Section 2 we prove Theorem 1 while
the proof of Theorem 2 is given in Section 3. Section 4 is devoted to proofs of
Corollaries 1 and 2.

2. PROOF OF THEOREM 1

To prove Theorem 1, we shall use the following assertion. (Note that its proof
is based on [N, Lemma 2] and a dual version of Nakai’s result.)

Lemma 1 (see [OR, Lemma B]). Let 1 < p < g < +oo and let v, w be weights on
(0,+00) such that (3) and (4) hold. Assume that the averaging operator
A LP(v) — L%(w) is bounded. Then there exists a positive constant ag such
that

[0 s e
0
and
+oo
/ w(t)t*" 1 dt ~ w(r)rottTe
for allr >0 and o € [0, o).

Proof of Theorem 1. (i) Assume that (6) holds. Then, by Lemma 1, there exists
ag > 0 such that

(12) / [w(t)t*]' " dt & [o(r)r*T P17 for all r > 0 and o € [0, ap).
0
Hence,

(13) / ()P dt ~ o(r) P ¢ for all r > 0.
0
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Moreover, using (12) with a fixed a € (0, o), we get

r , 1/(1-p")
(14) o(r) mrPime (/ [v(t)t*]' P dt) for all r > 0.
0
Thus, applying also the monotonicity of the function
t ) 1/(1-p")
(15) - (/ [w(r)ro]i-? d7> L0,
0

and (12), we arrive at

—+oo
/ v(t)tPdt

Q

+oo ) 1/(1-p")
/ Pl (/ [”U(T)Ta]lip d7'> tPdt
r 0

1/(1=p")  ptoo
< (/ a]l-p dT) / timedt
0 r
~ o(r)r'™? forall r >0,
which implies that
“+oo 1/p ,
(16) (/ v(t)t™P dt) < o(r)YPr P for all # > 0.

On the other hand, by (13),

r 1/p
(17) </ v(t) P dt) ~o(r) VPP for all r > 0.
0
Estimates (16) and (17) used in (2) yield (5).
(ii) Assume now that (5) holds. By Lemma 1 (with p = ¢ and w = v), (12) is
satisfied. (Note that (4) holds when p = ¢ and w = v.) Consequently, (13), (14)

and (17) remain true. Thus, using also the monotonicity of the function (15), we
arrive at

“+ o0
/ v(t)q/ptq/pfltfq dt

+o0 t / 1/(-p)\ /P
m/ (tp_l_o‘ (/ [v(T)To]} P dT) ) ta/P=1-a 4t
T 0
q/lp(1=p")] 400
( o dr) / tmea/p=l gt
~ v(r
)~

/Prq/p 7 for all r > 0.

Since, by (4), w(t) ~ v(t)?/Pt9/P=! for all ¢ > 0, the last estimate implies that

1/q
(18) (/ w(t)t™? dt) < v(r)l/pr_l/p/ for all r > 0.
Estimates (17) and (18) used in (2) yield (6). O

3. PROOF OF THEOREM 2

Assume that (7) holds. Then, by Lemma 1 (with ¢ = p and w = v), there is
ag > 0 such that

(19) /0 ot dt & [o(r)ret T
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and
—+o0
(20) / V(E)49 P dt ~ ()t P

for all » > 0 and « € [0, ap). Consequently, for all > 0,

(21) o(r)' =~ ! /OT o) dt
and

+oo
(22) o(r) =Pt / v(t)tP dt.

Take ¢ € (0,01), where §1 := ap(p’ — 1) and put o := §/(p’ — 1). Using (21), the
monotonicity of the function

" 5
t— (/ o(r) dT) , t>0,
0

(19) and again (21), we arrive at

| a
0

Q

IN

+1

Q

*, for all r > 0,

which implies that

(23) (1 /O "ot -r i dt)l/(1+6) <1 /0 o) at

r

for all » > 0 and 0 € [0,47).
Take ¢ € (0,02), where d3 := ap/(p — 1) and put « := d(p — 1). Using (22), the
monotonicity of the function

0

+o0
t— (/ v(T)T7P d7'> , t>0,
¢
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(20) and again (22), we obtain

+o0 +oo
/ () TtPdt = / )t Pu(t)° dt
+oo +oo §
/ (tp 1/ U(T)T_pdT) dt
r t

§ too
/ v(t) P dt

Q

IN

400

/ )T pdT)
+oo

/ )T pd7>
“+oo

/ 7P d7> p1=p p5(p—1)
“+o0

/ TP dT)

a+17p

o= forall r > 0,

Q

(
~
(
(

which implies that

1 —+o00 1/(1+6) 1 —+o0
(24) < / v(t)1+5tpdt) < 1_p/ v(t)tP dt

rl-p

for all » > 0 and 6 € [0, d2).
Putting dp := min{dy, d2}, we get estimates (8) and (9) from (23) and (24). O

4. PROOFS OF COROLLARIES 1 AND 2

Proof of Corollary 1. (i) Assume that (10) is satisfied. Then, by Theorem 2, there
is dp > 0 such that reverse Holder inequalities (8) and (9) hold. Together with (10)
and (2) (used with ¢ = p and w = v), this implies that

</T+°° (t)1+6tpdt>1/1’ </OT[U(t)1+5]1p/ dt>1/p,
o o]

Up , L1

l tht> (/0 U(t)l_p/dt> 1

S

for all r >0 and ¢ € [0, do).

Consequently, (11) holds with any ¢ € [0, do).
(ii) Assume now that (11) is satisfied with some ¢ > 0. Together with the Holder
inequalities (used with the exponents 1+ 6, (1 + ¢)/0 and the measures t~P dt or
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dt) and (2) (applied with ¢ = p and w, v replaced by v!*?), this shows that

(/;OO v(t)tP dt> v (/OT v(t) P dt) Up/
([ warsera) ™ ([ ra)

5 1/p’

r 1/(1+9)
o (/ ()7 dt) 16/(149)
0

A (/;OO U(t)1+5tpdt>1/p (/Or[v(t)l+5]1p/ dt>1/p/

<1 forallr>0.
Consequently, (10) holds. O
Proof of Corollary 2. By Corollary 1, (10) is equivalent to (11). Thus, putting

V(x) := v(z)'*® and W(z) := w(z) 021 =9/P) 1 > 0, we see that the result will
follow from Theorem 1 provided that we show that

5/(1+8)7 /P

A

1/(146)

V(z)z” is equivalent to a non-decreasing function on (0, +c0) for some p >0

and

(W (2)z]" ~ [V (x)x]Y?  for all z € (0, +00).
We can easily see that the former condition is a consequence of (3) if p > p(1 + ¢)
and that the latter one is equivalent to (4). O
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