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Preface

The present book is devoted to certain problems which belong to the domain of
integral equations and boundary value problems for differential equations. Its
essential part is concerned with linear systems of integral and generalized differential
equations having in general discontinuous solutions of bounded variation on an
interval. For various types of boundary value problems we derive adjoint problems
in order to provide solvability conditions based on the principles of functional
analysis.

Our exposition starts with an introductory chapter on linear algebra, functional
analysis, Perron-Stieltjes integral and functions of bounded variation. In this chapter
we collect some results needed in the other parts of the book. The second chapter
contains results on integral operators in the Banach space of functions of bounded
variation on an interval and basic results concerning linear Fredholm-Stieltjes
and Volterra-Stieltjes integral equations in this space. Generalized linear differential
equations are studied in the third chapter. Chapters IV and V deal with linear
boundary value problems for ordinary differential and integro-differential operators
while the last chapter is devoted to the perturbation theory for nonlinear ordinary
differential equations with nonlinear side conditions.

Our conventions on cross references are as follows: For example, I11.2.1 refers
to paragraph 1 in section 2 of the third chapter while 2.1 refers to paragraph 1 in
section 2 of the current chapter. The same applies to formulas whose numbers are
given in parentheses, i.e. (II1.2,1) is the first formula in section 2 of the third chapter
while (2,1) stands for the first formula in section 2 of the current chapter. Biblio-
graphical references include the name of the author followed by a number in square
brackets which refers to the list of the bibliography given at the end of the book.

We wish express our gratitude to Professor Jaroslav Kurzweil for his continuous
support dating back to the beginning of our work in this field. His results on gener-
alized differential equations, Perron-Stieltjes integral as well as his ideas concerning
general boundary value problems underlie the results contained in this book.

A special acknowledgement is due to Dr. Ivo Vrko¢ who read and critically
examined all the manuscript and in many cases improved considerably our original
version.

The authors
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I. Introduction

This chapter provides some auxiliary results and notations needed in the subsequent
chapters. As most of them can be easily found in the plentiful literature on linear
algebra, real functions, functional analysis etc. we give only the necessary references
without including their proofs. More attention is paid only to the Perron-Stieltjes
integral in sections 4, 5 and 6.

1. Preliminaries

1.1. Basic notations. By R we denote the set of all real numbers.For a < b we denote
by [a, b] and (a, b) respectively the closed and the open interval with the endpoints
a, b. Similarly [a, b), (a, b] means the corresponding halfopen intervals.

A matrix with m rows and n columns is called an m x n-matrix, n X 1-matrices
are called column n-vectors and 1 x m-matrices are called row m-vectors.

Matrices which in general do not reduce to vectors are denoted by capitals while
vectors are denoted by lower-case letters. Given an m x n-matrix A, its element in
the j-th row and k-th column is usually denoted by a;, (A =(a;s), j=1,...m,
k = 1,...,n). Furthermore, A* denotes the transpose of A (A* =(q, ), k = 1,...,n,
i=1..m), "

Al = max ), |l »
ji=1, .., m =1

rank (A) is the rank of A and det (A) denotes the value of the determinant of A.
If m=n and det(A) + 0, then A~' denotes the inverse of A. I, is the identity
m x m-matrix and 0, , is the zero m x m-matrix (I,, = (6;,) j. k = 1,...,m, where
S u=11if j=k 6, =01if j+k and 0,,=(n,) j=1...m k=1..n,
where n;, =0 for all j=1,..,m and k = 1,...,n). Usually, if no confusion may
arise, the indices are omitted. The addition and multiplication on the space of
matrices are defined in the obvious way and the usual notation

A+B, AB, JA  (ieR)



I.1

is used. Let the matrices A, B, C be of the types m x n, m x p and q x n, respectively.
Then D =[A,B] is the m x (n + p}matrix with d;, = a;, for j=1,..,m,
k=1,..,n and d;, =b;,_, for j=1,...m k=n+1,n+2, ..,n+p. Analo-

gously
[ ]
(o

is the.(m +g) x n-matrix with h;, = a;, if j<m and h;, = ¢;_p, if j>m.
R, is the space of all real column n-vectors and R* is the space of all real row
n-vectors, R; = RY = R. For xeR,, x* e R* we write

x| = max |x|
and

el = 5 e

Given an m x n-matrix A, xeR, and yeR,, then |Ax| < |A||x| and |y*A| <
< |y*| |A]. The Euclidean norm in R, is denoted by |.|,

" 12
xeR, — |x|, = (x*x)'? = (42 xf) .
=1

It is easy to see that any x e R, satisfies |x|, = |x*|, and |x| < |x|, < |x*| < n|x|.
The space of all real m x n-matrices is denoted by L(R,, R,) (L(R,, R,) = L(R,)).
If M, N are sets and f is a mapping defined on M with values in N then we write

fi M > N or xe M - f(x)e N. For example, if f is a real function defined on an

interval [a, b], we write simply f: [a,b] - R.

The words “measure”, “measurable” without specification stand always for

Lebesgue measure in R, and measurability with respect to Lebesgue measure.

1.2. Linear spaces. A nonempty set X is called a (real) linear space if for every
x,y€ X and A€ R the sum x + y e X and the product Ax e X are defined and the
operations satisfy the usual axioms of a linear space. The zero element in X is
denoted by 0.

A subset L — X is a linear subspace of X if L is a linear space with respect to the
sum and product with a real number given in X.

The elements x,, ..., x,, of X are called linearly independent if a;x, + ... + o,x,, =0,
o;€R, i=1,..,n implies a; =oa, =...=0a,=0. Otherwise the elements x,,..., x,
are linearly dependent.

If X is a linear space and a norm x € X — || x| € R is defined, X is called a normed
linear space. If X is a normed linear space which is complete with respect to the
metric induced by the norm, then X is called a Banach space.

10
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A real linear space X is called an inner product space (or pre-Hilbert space) if
on X x X a real function (x,X,)x is defined ((X;,x,)€ X x X — (x;,x,)x€R)
such that for all x, x;, x,, x;€ X

(%y 4+ X2, X3)x = (xy, X3)x + (%, X3)x s
(15 X2)x = (%2, X )x 5
(oxy, X,5)y = o(xy, %)y,

(x,x)xy >0 and (x,x)y+0 for x=+0.

The real function (., .)x is called an inner product on X.
If X is an inner product space then the relation

) xeX = x| = (x 2§ R

defines a norm on X.

A real inner product space X which is complete with respect to the norm defined
by (%) is called a real Hilbert space. Consequently a Hilbert space is a Banach space
whose norm is induced by an inner product on X.

1.3. Function spaces. We shall deal with some usual spaces of real functions on an
interval [a,b], —o0 <a <b < +00. The sum of two functions and the product
of a scalar and a function is defined in the usual way. For more detailed information
see e.g. Dunford, Schwartz [1]. )

(i) We denote by C,[a, b] the space of all continuous column n-vector functions
f: [a,b] » R, and define

feC,lab] - ||f|

Cota) = SUP ()] -
tela,b)

|- lc.aey i @ norm on C,[a,b]; C,[a, b] with respect to this norm forms a Banach
space. The zero element in C,[a, b] is the function vanishing identically on [a, b].

(i) If 1 < p < oo we denote by LZ[a, b] the space of all measurable functions
f: [a,b] > R, such that

f’|f(t)|v dt < oo.

b 1/p
LPla,b] = (J |f(t)|p dt) :

The elements of L?[a, b] are classes of functions which are equal to one another
almost everywhere (a. e.)*) on [a, b]. For the purposes of this text it is not restrictive

We set

felfab] - |f

*) If a statement is true except possibly on a set of measure zero then we say that the statement is
true almost everywhere (a.e.).

11



L1

if we consider functions instead of classes of functions which are equal a.e. on [a, b].

Lfa, b] with respect to the norm |.|py,, is a Banach space. By L?[a,b] we
denote the space of all measurable essentially bounded functions f: [a,b] —» R,
with the norm defined by

feL?[ab]-|f

Lieta) = SUp ess [f(1)] .
tela,b]

L, [a,b] is a Banach space with respect to the norm |||| Lefas) 1h€ Zero element
in Lf[a,b] (1 < p < o0) is the class of functions which vanish a.e. on [a, b].

(iii) We denote by BV,[a, b] the space of all functions f: [a,b] — R, of bounded
variation rar® f < oo where

var’ f = SUP.;If(ti) — f(ti-y)|

and the supremum is taken over all finite subdivisions of [a, b] of the form a =
=1y <t; <..<t,=b. Let ce[ab] then

varl f = varS f + varb f.
If we define

f € BV,[a,b] = [f|sv,10n = If(a) + vars f

then ||.||py,a is @ norm on BV,[a,b] and BV,[a,b] is a Banach space with respect
to this norm. _

By NBV,[a,b] the subspace of BV,[a,b] is denoted such that fe NBV,[a,b]
if f is continuous from the right at every point of (g, b) and f(a) = 0. The norm in
NBV,[a.,b] is defined by

fe NBV..[a, b] - Hf”NBV,,[a.h] = VarZ f.

A function f: [a,b] —» R, is called absolutely continuous if for every ¢ >0
there exists 6 > 0 such that

-

|f(bi) - f(ai)l <ée

where (a;, b;), i = 1,...,k are arbitrary pairwise disjoint subintervals in [a, b] such
k
that ) |b, — a| < 6.
i=1

Let AC,[a, b] be the space of all absolutely continuous functions f: [a,b] - R,.
It is AC,[a,b] = BV,[a,b] and AC,[a,b] is a Banach space with respect to the
norm of BV,[a,b], ie.

f e AC,[a,b] > |f[uc,amr = If(a) + varc f.

The zero element in AC,[a,b] and BV,[a,b] is the function vanishing identically
on [a,b].

12



1.1

Given an interval [a, b], we write simply C,, L?, LY, BV,, NBV,, AC, instead of
C,[a,b], L¥[a, b], L*[a,b], BV,[a,b], NBV,[a,b], AC,[a, b] if no misunderstanding
may arise. If n = 1 then the index n is omitted, e.g. C,[a,b] = C[a, b], L5[a,b] =
= I*[a,b] etc. The index n is also sometimes omitted in symbols for the norms,
ie. instead of [.[c, |- lav, [|- ]z We write [[.{lc, [[-]ays |- ].0o respectively.

A matrix valued function F: [a,b] - L(R,, R,,) is said to be measurable or con-
tinuous or of bounded variation or absolutely continuous or essentially bounded
on [a, b] if any of the functions

te[a,b] - f{t)eR (i=12..,m, j=12,..,n)

is measurable or continuous or of bounded variation or absolutely continuous or
essentially bounded on [a, b}, respectively.
Let us mention that

k
var® F=sup Y |F(t;) — F(t;-,)|
i=1
where the supremum is taken over all finite subdivisions of [a, b] of the form

a=ty<t;<..<t,=b
and

uM;

n
Z var) f;, .

mzax (var’; fi) s v
2l

We denote ”F”Lw = sup ess |F(¢)| and ||, = (f%|F(e)}?de)'’" for 1< p< oo.

tefa.b)
If F:[ab]— L(R,R,) is measurable and |F|, <o (1 <p< ), then the
matrix valued function F: [a,b] — L(R,,R,) is said to be [*-integrable on [a,b].
(Instead of L'-integrable we write simply L-integrable.)

1.4. Properties of functions of bounded variation. If fe BV[a,b] then the limits
'Ef:l+f(t) = f(to+), to€la,b), hm  f(t) = flto—), to€(a,b] exist and the set of
discontinuity points of f in [a, b] is at most countable.

If fe BV[a,b] then f(t) = p(t) — n(t), te[ab] where p,n:[a,b] >R are
nondecreasing functions on [a,b]. Let a sequence t,,t,,... of points in [a,b],
ti # tj, i #j and two sequences of real numbers ¢y, ¢,, ..., dy,d,, ... be given such
that t, = a implies ¢, =0 and t,=b implies d, = 0. Assume that the series
Yec, >d, converge absolutely. Define on [a,b] a function s: [a,b] > R by the

relation s(t) _ Z ¢ + Z d..

th<t th <t

Every function of this type is called a break function on [a, b]. Clearly s(t,+) — s(t,) =

=d, and s(t,) — s(t,—)=c¢, n=12,... and s(t+)=s(t) = s(¢t—) if te[a,b],
t+t, n=12,... Further se BV[a,b] and varts = Y (|c,| + |d.])-

13



1.2

If feBV[a,b] then there exist uniquely determined functions f, e BV[a,b],
f»€ BV[a, b] such that f, is a continuous function on [a, b], f; is a break function
on [a,b] and f = f, + f, (the Jordan decomposition of fe€ BV[a, b]).

If fe BV[a,b] then the derivative f' of f exists a.e. on [a,b].

If fe BV[a,b] then f is expressible in the form

J=Jac+ i+ 1o
where f, e AC[a,b], f, is a break function on [a,b] and f;; [a,b] > R is con-
tinuous on [a, b] with the derivative f; = 0 a.e. on [a,b] (the Lebesgue decom-
position of fe BV[a,b]). ‘
If fe AC[a,b] then the derivative f’ exists a.e. on [a,b] and f'e L'[a,b], ie.

217(t) dt < oo and var} f = [&|f"(¢)| dt.
The following statement is important:

Helly’s Choice Theorem. Let an infinite family F of real functions on [a, b] be given.
If there is K > 0 such that
|f) <K for te[a,b] and varf< K forevery feF

then the family F contains a sequence {f,}=-, such that lim f,(t) = ¢(t) for every
te[a,b] and @ € BV[a,b], i.e. the sequence f|t) convergés pointwise to a function
@: [a,b] = R which is also of bounded variation.

On functions of bounded variation see e.g. Natanson [1], Aumann [1].

2. Linear algebraical equations and generalized inverse matrices

Let us consider linear algebraical equations for x e R, and y* e R}

(2.1) Ax=b,
(2.2) Ax =0
and

(2.3) y*A=0,

where A is an m x n-matrix (Ae L(R,,R,)) and beR,,

By N(A) we denote the set of all solutions to (2,2). Obviously, N(A) is a linear
subspace in R,, ie. if x;, x, € N(A) and a,,a, € R, then x,a; + x,a, € N(A). It is
well-known that

(24) dim N(A) = n — rank (A),

ie. either (2,2) possesses only the trivial solution x = 0 (if rank (A) = n) or N(A)
contains a subset of k = n — rank (A) elements x,, x,,..., X, which are linearly
independent, while any subset of k + 1 its elements is linearly dependent. (We say

14
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also that the homogeneous equation (2,2) has exactly k = n — rank (A) linearly
independent solutions.) The set {x,, x,,..,x,} forms a basis of N(A) and any
x € N(A) can be expressed as their linear combination

k
x =Y x, where a;€R (j=1,2,...k).
j=1
As (2,3) is equivalent to A*y = 0, N(A*) denotes the linear subspace in R} of all
solutions to (2,3) and

(2,5) dim N(A*) = m — rank (A*) = m — rank (A).

Furthermore, the equation (2,1) possesses a solution if and only if (2,3) implies
y*b = 0. In particular, (2,1) possesses a solution for any be R,, if and only if (2,3)
implies y* = 0 (dim N(A*) = 0).

The equation (2,4) is said to be an adjoint equation to (2,1).

The concept of a generalized inverse matrix introduced by R. Penrose (Penrose
[1] and [2]) enables us to express the solutions to (2,1) if they exist.

The following assertion is helpful.

2.1. Lemma. BAA*= CAA* implies BA = CA and BA*A = CA*A implies BA*= CA*.
Proof. If BAA* = CAA*, then 0 = (BAA* — CAA*)(B — C)* = (BA — CA)(A*B*
— A*C*), whence BA = CA immediately follows. (Given a matrix D, DD* =0
if and only if D = 0.) As (A*)* = A, the latter implication is a consequence of the
former one.

2.2. Theorem. Given A€ L(R,, R,,), there exists a unique matrix X e L(R,, R,) such
that

(2,6) AXA = A,
2.7) XAX = X,
(2,8) X*A* = AX,
(2.9) A*X* = XA.

Proof. (a) Putting (2,8) into (2,7) we obtain
(2,10) XX*A* = X.

On the other hand, if (2,10) holds, then AX = AXX*A*. Since (AXX*A*)* = AXX*A*,

_ this means that (AX)* = AX and (2,8) holds. Moreover, (2,8) and (2,10) yields

X = XX*A* = XAX, ie. the couple of equations (2,7), (2,8) is equivalent to (2,10).
(b) Analogously, the system (2,6), (2,9) is equivalent to

(2,11) XAA* = A*.

15
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(c) Furthermore, to find a solution X to the system (2,10), (2,11) it is sufficient
to find a solution B to the equation
(2,12) BA*AA* — A*.

In fact, (2,12) implies immediately that X = BA* satisfies (2,11) and consequently
also (2,9). Hence

A*X*A* = XAA* = A* and XX*A* = BA*X*A* = BA* = X.

(d) Now, let us consider the set of n x n-matrices (A*AY (j = 1,2,...). Since
the dimension of the space of all real n x n-matrices is finite (n?), there exist a natural
number k and real numbers A,, 4, ..., 4, such that |4,| + |4,| + ... + |4/ > 0 and

(213) L A*A + Ay(A*A)? + ... + A(A*A) = 0.
Let r be the smallest natural number such that A, # 0. If we put
(2.14) B = —A "{Aisl + A rA*A + ..+ A(A*A)TTTNY,

then according to (2,13)
B(A*Ay "' = (A*AY .

Hence if r > 2, B(A*A) A*A = (A*A)' ! A*A and according to 2.1
B(A*A) = (A*Ay~'.
In this way we can successively obtain
B(A*AY = (A*A)y~! for j=23,..,r.

In particular, B(A*A)* = A*A and by 2.1 BA*AA* = A*. The matrix B defined
in (2,14) satisfies (2,12) and hence X = BA* verifies the system (2,6)—(2,9).
(¢) It remains to show that this X is unique. Let us notice that by (2,9) and (2,7)

A¥XX*X = XAX = X
and by (2,8) and (2,6)
A*AX = A*X*A* = (AXA)* = A*
Now, let us assume that Y € L(R,, R,) is such that
(2,15) A*YXY = ¥, A*AY = A*,
Then, according to (2,10) and (2,11)

X = XX*A* = XX*A*AY = XAY = XAA*Y*Y = A*Y*Y =Y.

2.3. Definition. The unique solution X of the system (2,6)—(2,9) will be called
the generalized inverse matrix to A and written X = A*,

16



2.4. Remark. By the definition and by the proof of 2.2 A* fulfils the relations
(2,16) AA*A=A, A*AA* =A%, (A*)*A* = AA*, AYA*)* = A*A
and '
(2,17) A*(A*)* A* = A%, A*AA* = A*, AXA¥)*A* = A%,  A*AA* = A*
(cf. (2,6)—(2,11) and (2,15)).
2.5. Remark. If m = n and A possesses an inverse matrix A~ !, then evidently A~!
is a generalized inverse matrix to A.
2.6. Proposition. Let Ae L(R,, R,), Be L(R,, R,,). Then the equation for X € L(R,, R,)
(2,18) AX =B
possesses a solution if and only if
(2,19) (I, — AA*)B=0.
If this is true, any solution X of (2,18) is of the form
(2,20) X=X, + A*B,
where X, is an arbitrary solution of the matrix equation

AX, =0, ,.
Proof. Let AX = B, then by (2,6) (I — AA*)B = (A — AA*A) X = 0. If (2,19)

holds, then B = AA*B and (2,18) is equivalent to A(X — A*B) =0, ie. to X =
= X, + A*B, where AX, =0.

2.7. Proposition. Let A€ L(R,,R,). Then AX, =0, , if and only if there exists
CeL(R,R,) such that X, = (I, — A*A) C.

Proof. A(l, — A*A)C = (A — AA*A)C =0 for any CeL(R,,R,). If AX, =0,
then X, = X, — A*AX, = (I — A*A) X,.

Some further properties of generalized inverse matrices are listed in the following
lemma.

2.8. Lemma. Given A€ L(R,,R,,),

(2.21) A** = (A*)* = A,

222) (a%)* = (a*)r,

(223) (AA)* =1"'A*  forany AeR, A+0 and 0;, =0
(2,24) (A*A)* = A*(A%)*, (AA*)* = (A¥)* A% .

n,m>
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(The relations (2,21)—(2,24) may be easily verified by substituting their right-hand
sides in the defining relations for the required generalized inverse.)
2.9. Lemma. Let Ae L(R,,R,,) and let Ue L(R,,, R,) and Ve L(R,, R,,) be such that

A*AU = A* and AA*VY =A.
Then
V*AU = A* .

Proof. Let A*AU = A* and AA*V = A. Then by 2.6
U=U, + (A*A)* A* and V=V, + (AA%)* A,

where A*AU, =0 and AA*V, =0. It follows from 2.1 that A*AU, =0 (ie.
UXA*A = 0A*A) and AA*V, = 0 (ie. VXAA* = 0AA*) implies AU, = 0 and
VA = 0, respectively. Furthermore, by (2,22) and (2,24)

(AA*)¥)* = (AA¥)* = (A*)* A* and (A*A)* = A*(A%)*.

Hence by the definition of A* (cf. 2.4)

V*AU = [A*(A*)*][A*AA*][(A¥)* A*] = A*AA*AA* = A*
2.10. Lemma. Given Ae L(R,, R,,), there exist Ue L(R,,,R,) and Ve L(R,, R,,) such
that
(2,25) A*AU = A*, AA*Y = A.
Proof. By (2,24) and (2,17)

(A*A)* A* = A¥*(A¥)* A* = A*

and by (2,16) and (2,22) AA* = (A¥)* A* = (A*)* A*. Thus

[1 — (A*A)(A*A)*] A* = A* — A*AA* = A* — A¥(A*)* A* = 0.
Since (A*)* = A, this implies also

[1 — (AA*)(AA*)*]A =0.
The proof follows now from 2.6.
2.11. Remark. Let us notice that from the relations (2,16) defining the generalized
inverse of A, only AA* A = A was utilized in the proofs of 2.6 and 2.7. Some authors
(see e.g. Reid [1]) define any matrix X fulfilling AXA = A to be a generalized in-
verse of A.
Let Ae L(R,, R,) and h = rank (A). If h = n, then Ax = 0 if and only if x = 0.

Let us assume h < n. By (2,4) there exist an n x (n— h)-matrix X, such that its
columns form a basis in N(A), i.e. Ax = 0 if and only if there exists ce R,_, such

18



1.2

that x = X,c. Consequently Xe L(R,,R,) fulfils AX = 0,., if and only if there
exists Ce L(R,, R, ) such that X = X,C. In particular, there exists C, € L(R,, R,_})
such that

(2,26) I,— A*A = X,C,.

Furthermore, let h = rank (A) < m. Then by (2,5) there exists Y, e L(R,, R,,_;)
such that its rows form a basis in N(A*). Consequently Y € L(R,, R ) fulfils YA=0,
if and only if there exists De L(R,,_,, R,) such that Y = DY,. In particular, there
exists Dy € L(R,,—s R,,) such that

(2,27) I, — AA* = DY, .
(If h = m, then y*A = 0 if and only if y* = 0.
2.12. Proposition. Let Ae L(R,,R,) and X = L(R,,R,). Then AXA = A if and
only if there exist H and D € L(R,,, R,) such that
X = A* + (I, — A*A)H + D(I, — AA*)
or equivalently if and only if
X =A% + XK + LY,,

where Xo€ L(R,-»R,) and Y,€L(R,,R,,_,) (h = rank (A)) were defined above,
KeL(R,,R,-,) and Le L(R,,_,, R,) are arbitrary, the term X,K vanishes if h = n
and the term LY, vanishes if h = m.

Proof. Let us assume h <m and h < n. Let both AX;A= A and AX,A = A.
Then A(X, — X;)A=0,, and hence (X, — X,)A = (I, — A*A)C with some
Ce L(R,). By 2.6 and 2.7 this is possible if and only if

X, — X, = (I, — A*A) CA* + D(I, — AA¥)
or by (2,26) and (2,27) if and only if
X, — X, = X,[C,CA*] + [DD,] Y, .
Putting CA¥ = H, C,CA* = K and DD, = L we obtain the desired relations.
The modification of the proof in the case that h = m andfor h = n is obvious.
2.13. Lemma. Let Ae L(R,, R,,). If rank (A) = m, then det (AA*) = 0. If rank (A) = n,
then det (A*A) * 0.

Proof. Let rank (A) = m. Then by (2,5) A*y = 0 if and only if y = 0. Now, since
A* = A*AA* (cf. (2,17)), AA*y = 0 implies A*y = A*AA*y = 0 and hence y = 0.
This implies that rank (AA*) = m (cf. (2,4)).

If rank (A) = rank (A*) = n, then by the first assertion of the lemma rank (A*A)
= rank (A*(A*)*) = n.
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2.14. Remark. It is well known that rank (AX) = min (rank (A), rank (X)) when-
ever the product AX of the matrices A, X is defined. Hence for a given Ae L(R,, R,,)
there exists X € L(R,, R,) such that AX = I,, only if rank (A) = m. Analogously,
there exists X e L(R,, R,) such that XA = I, only if rank (A) = n.

2.15. Lemma. Let Ae L(R,, R,). If rank (A) = m, then AA* = I, If rank (A) = n,
then A*A =1,

Proof. (a) Let rank (A) = m. Then by 2.13 (AA*) possesses an inverse (AA*)™!
and according to the relation A*AA* = A* (cf. (2,17))

(2,28) A* = A¥(AA¥)"!

and hence AA* =1,.
(b) If rank (A) = n, then the relation A*AA* = A* from (2,17) and 2.13 imply

(2,29) A* = (A*A)' A
and hence A*A =1,

2.16. Lemma. Let Ae L(R,), Be L(R,,R,) and CeL(R,). If rank (A) = rank (B)
= m, then (AB)* = B*A~'. If rank (B) = rank (C) = n, then (BC)* = C™'B*.

Proof. Let rank(A)=rank(B)=m. Then by 215 BB* =I. Consequently
ABB*A~! =|. Furthermore, (B*A™')(AB)=B*B = B*(B*)* = B*A*(A~')* (B*)*
= (AB)*(B*A™')*. This completes the proof of the former assertion. The latter
one could be proved analogously.

For some more details about generalized inverse matrices see e.g. Reid [1]
(Appendix B), Moore [1], Nashed [1] and “Proceedings of Symposium on the Theory
and Applications of Generalized Inverses of Matrices” held at the Texas Techno-
logical College, Lubbock, Texas, March 1968, Texas Technological College Math.
Series, No. 4.

3. Functional analysis

Here we review some concepts and results from linear functional analysis used in’
the subsequent chapters. For more information we mention e.g. Dunford, Schwartz
[1], Heuser [1], Goldberg [1], Schechter [1].

Let X be a linear space over the real scalars R. If F, G are linear subspaces of X,
then we set

F+G={zeX;z=x+y,xeF, yeG}.

F + G is evidently a linear subspace of X.
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1.3

F + G is called the direct sum of two linear subspaces F, G if F n G = {0}. Let
the direct sum of F and G be denoted by F @ G.

If F® G = X then G is called the complementary subspace to F in X.

It can be shown (see e.g. Heuser [1], IL4) that

(1) for any linear subspace F — X there exists at least one complementary sub-
space G < X

(2) for any two complementary subspaces G,,G, to a given subspace F < X
we have dim G, = dim G, where by dim the usual linear dimension of a linear
set is denoted.

This enables us to define the codimension of a linear subspace F < X as follows.

Let X = F @ G; then we set

codim F = dimG.

(If dimG = 00 or X = F, we put codimF = oo or codim F = 0, respectively.)

If F < X is a linear subspace, then we set x ~ y for x,ye X if x — ye F. By ~
an equivalence relation on X is given. This equivalence relation decomposes X
into disjoint classes of equivalent elements of X. If x € X belongs to a given equiva-
lence class with respect to the equivalence relation ~ then all elements of this class
belong to the set x + F.

Let us denote by X/F the set of all equivalence classes with respect to the given
equivalence relation. Let the equivalence class containing x € X be denoted by [x],
ie.

[x]=x+F.
Then
X|F={[x]=x+F; xeX}.

If we define [x] + [y] =[x +y], o[x]=[xx] where xe[x], ye[y], aeR
then X /F becomes a linear space over R called the quotient space. It can be shown
that if X = F @ G, then there is a one-to-one correspondence between X /F and G
(see e.g. Heuser [1], I11.20). Hence

codim F = dim G = dim (X/F).

Let X and Y be linear spaces over R. We consider linear operators A which assign
a unique element Ax = ye Y to every element x € D(A) = X. The set D(A) called
the domain of A forms a linear subspace in X and the linearity relation

A(ox + pz) = aAx + PAz

holds for all x,ze X, a,feR.
The set of all linear operators A with values in Y such that D(A) = X will be
denoted by L(X, Y). If X = Y, then we write simply L(X) instead of L(X, X). The
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identity operator x€ X — x€ X on X is usually denoted by I. For an operator
Ae L(X,Y) we use the following notations:

R(A) = {yeY;y = Ax, xe X}
denotes the range of A, the linear subspace of values of Ae L(X,Y) in Y.
N(A)={xeX; Ax =0€eY}

denotes the null-space of Ae L(X,Y); N(A) = X is a linear subspace in X. Further
we denote
*(A) = dim N(A)
and
B(A) = codim R(A) = dim (Y/R(A)).

If o(A), B(A) are not both infinite, then we define the index ind A of Ae L(X,Y)
by the relation
ind A = B(A) — «(A).

The operator Ae L(X, Y) is called one-to-one if for x,, x, € X, x, * x, we have
Ax, + Ax,. Evidently Ae L(X,Y) is one-to-one if and only if N(A)= {0} (or
equivalently ofA) = 0).

The inverse operator A™! for Ae L(X, Y) can be defined only if A is one-to-one.
By definition A~ is a linear operator from Y to X mapping y = Axe Y to xe X.
We have D(A™')=R(A), R(A"!)=D(A)= X, A" !(Ax)=x for xe X, A(A"'y)=y
for yeR(A). If R(A)=Y and N(A)= {0} (ie. oA)= B(A)=0) then we can
assign to any ye Y the element A~'y which is the unique solution of the linear
equation

(3,1) Ax=y.

In this case we have A~' € L(Y, X). The linear equation (3,1) can be solved in general
only for y € R(A).

The linear equation (3,1) for Ae (X, Y) is called uniquely solvable on R(A)
if for any y € R(A) there is only one xe€ X such that Ax = y. The equation (3,1)
is uniquely solvable on R(A) if and only if A is one-to-one (ie. N(A) = {0}).

Let now X, X* be linear spaces. Assume that a bilinear form (x,x*>: X x X* >R
is defined on X x X* (i.e. Cax + By, x* > = alx, x* ) + ply, x ), {x, ax* + By™)
=o{x,x"y + B(x,y*) for every x,ye X, x*,y* e X*, «, feR).

3.1. Definition. If X, X* are linear spaces, {x,x*)> a bilinear form on X x X*
we say that the spaces X, X* form a dual pair (X, X *) (with respect to the bilinear
form (., .)) if

{(x,x*>=0 forevery xeX implies x* =0eX"
and

(x,x*y =0 forevery x*eX* implies x=0eX.
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In Heuser [1], VL.40 the following important statement is proved.

3.2. Theorem. Let (X. X ) he a dual pair of linear spaces with respect to the bilinear
form (., . defined on X x X . Assume that A€ L(X) is such an operator that there
is an operator A* € L(X ™) such that
A, x*y = (x, A*x*)

for every xe X, xt e X,

If ind A =ind A* =0, then

o(A) = oA”) = B(A) = B(A") < o

and moreover

Ax =y has a solution if and only if {y,x*)> =0 for all x* e N(A*),

A*x* =y* has a solution if and only if {(x,y*> =0 for all xe N(A).

In the following we assume that X and Y are Banach spaces, i.c. normed linear
spaces which are complete with respect to the norm given in X, Y respectively.

The norm in a normed linear space X will be denoted by |. |y or simply | .| when
no misunderstanding may occur.

3.3. Definition. An operator A€ L(X,Y) is bounded if there exists a constant
M e R such that
Jax] < M|x|

for all xe X.

The set of all bounded operators AeL(X,Y) (AeL(X)) will be denoted by
B(Y, Y) (B(Y).

It is well-known that Ae B(X, Y) if and only if A is continuous, ie. for every
sequence {x,},, llmx = x we have lim Ax, = Ax.

For Ae B(X, Y) we define

Ax
62) (Al = sup ] = sup 1221

It can be proved that by the relation (3,2) a norm on B(X, Y) is given and that B(X, Y)
with this norm is a Banach space (see e.g. Schechter [1], Chap. IIL).

3.4. Theorem (Bounded Inverse Theorem). If AeB(X,Y) is such that R(A)=Y
and N(A) = {0}, then A~ " exists and A~' € B(Y, X).
(See Schechter [1], III. Theorem 4.1).

3.5. Definition. We denote X* = B(X, R), where R is the Banach space of real
numbers with the norm given by ae R — |¢x|. The elements of X* are called linear
bounded functionals on X and X* is the dual space to X. Given fe X*, its value
at xe X is denoted also by

f(X) = <X, f>x .
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If f(x) =0 for any xe€ X, f is said to be the zero functional on X and we write
f=o0.

3.6. Remark. X* equipped with the norm

for feX*

Il = ix Ilf(")| = sup )

x vofx|x

(cf. (3,2)) is a Banach space. Furthermore,
xeX, feX* - {x, D

is evidently a bilinear form on X x X*. Clearly, {x,f>x = 0 for any xe X if and
only if f is the zero functional on X (f = 0€ X*). Moreover, it follows from the
Hahn-Banach Theorem (see e.g. Schechter [1], 11.3.2) that {x,f)y = 0 for any
fe X* if and only if x = 0. This means that the spaces X and its dual X* form
a dual pair (X, X*) with respect to the bilinear form <., .)y.

For some Banach spaces X there exist a Banach space Ey and a bilinear form
[.,.]x on X x E such that fe X* if and only if there exists ge Ey such that

Gy =[x, 8]x forany xeX.
If this correspondence between Ey and X* is an isometrical isomorphism*),
we identify E, with X* and put
<x1 g>X = [x9 g]x .

3.7. Definition. Let X, Y be Banach spaces. By X x Y we denote the space of all
couples (x,y), where xe X and ye Y. Given (x,y), (u,v)e X x Y and 1eR, we
put (x,y) + (u,v) = (x + u, y +v), A(x,y) = (4x, dy) and

166 W)l = xllx + lylly -

(Clearly, |.|xxy is @ norm on X x Y and X x Y equipped with this norm is
a Banach space.)

3.8. Lemma. If (X, X ™) and (Y, Y*) are dual pairs with respect to the bilinear forms
[., .Jx and [., .]y, respectively, then (X x Y, X* x Y*) is a dual pair with respect
to the bilinear form

(ey)eX x Y, (x*,y")eX* x Yt >
(o6 y) (x5 y Ve = D6 x 1 + [y, ¥y ']y

*) A linear operator mapping a Banach space X into a Banach space Y is called an isomorphism if it
is continuous and has a continuous inverse. An isomorphism ®: X — Y is isometrical if |®x])y = |x|x
for any x € X. Banach spaces X, Y are isometrically isomorphic if there exists an isometrical isomorphism
mapping X onto Y.
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Proof. [., .]x«y is clearly a bilinear form. Furthermore, let us assume that

(33) [(ey), (x*,y*)]xxy =0 forall (x*,y*)eX* x Y*.

In particular, we have
(66 y) "y *)lxny = [0 x7]x = 0

for all (x*,y*)eX* x Y* with y* = 0. Since (X, X ") is a dual pair this implies
x =0 and (3,3) reduces to [y,y*], =0 for all y* €Y, ie. y =0. Analogously,
we would show that [(x,y), (x*,y*)]x«y = 0 for all (x,y)e X x Y if and only if
xt =0 y"=0. :

3.9. Remark. In particular, (X x Y)* = X* x Y*, where

<(X, Y), (é, ")>X xY = <X, €>X + <y’ ">Y

forany xe X, ye Y, £e X* and ne Y*

3.10. Examples. (i) It is well-known (cf. Dunford, Schwartz [1]) that A is a linear
operator acting from R, into R,, if and only if there exists a real m x n-matrix B
such that A: xe R, - Bx e R,,. Thus the space of all linear operators acting from
R, into R,, and the space of all real m x n-matrices may be identified. Clearly,
B(R,, R,) = L(R,, R,,). In particular, R¥ = B(R,, R) = L(R,, R) is the space of all
real row n-vectors, while

(X, y*Dr, = ¥*x forany y*eR* and xeR,.

(ii) Let —o0 <a <b < +oo. The dual space to C,[a,b] is isometrically iso-
morphic with the space NBV,[a, b] of column n-vector valued functions of bounded
variation on [a, b] which are right-continuous on (a, b) and vanishes at a. Given
y* € NBV,[a,b], the value of the corresponding functional on x e C,[a,b] is

64) xyse = [[dyen <0

a

and

”Y*HC = | SHUP IK"’ Y*>c' = varp y* = ”Y*“BV .
xllc=

(The integral in (3,4) is the usual Riemann-Stieltjes integral.) This result is called the
Riesz Representation Theorem (see e.g. Dunford, Schwartz [1], IV.6.3). As a conse-
quence K e B(C,[a,b], R,) if and only if there exists a function K: [a, b] - L(R,, R,,)
of bounded variation on [, b] and such that

K: xeC,[a,b] > jbd[K(t)] x(1)eR,,.
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Let us notice that the zero functional on C,[a,b] corresponds to the function
y* € NBV,[a, b] identically vanishing on [a, b].

(i) Let —0o <a<b<o, 1<p<o, g=pl/p—1)if p>1 and g=
if p=1. The dual space to LZ[a,b] is isometrically isomorphic with L a,b]
(whose elements are row n-vector valued functions). Given y* € L[a, b], the value
of the corresponding functional on x € L?[a, b] is

b

(3.9) xoy*ss = j y¥(0) x(t)di

a

and
ly*lee = sup [<y*>e| = [ly*| e

lIxliLp=1
(see e.g. Dunford, Schwartz [1], IV.8.1). (The integral in (3,5) is the usual Lebesgue
integral.) The zero functional on L2[a, b] corresponds to any function y* e LY[a, b]
such that y*(t) = 0 a.e. on [a, b].

(iv) Any Hilbert space H is isometrically isomorphic with its dual space. If
x,yeH —(x,y)yeR is an inner product on H and xeH - ||x||y = (x, x)'/?
the corresponding norm on H, then given he H, the value of the corresponding
functional on x € H is given by

(¢, hyy = (x, h)H
and
Ih

= S”uP_lK"’ hyul = [h]lx.

If X, Y are Banach spaces and A€ B(X, Y), then for every ge Y* the mapping
x€ X — (Ax, g)y is a linear bounded functional on X. (Given xe X and ge Y*,
|<Ax, g>y| < |Ax|y [ig]y- < [|A|sx.y) |&]l v+ | x||x-) Thus there is an element of X*
denoted by A*g such that (Ax, g, = {x, A*g),. This leads to the following

3.11. Definition. Given A€ B(X, Y), the operator A*: Y* — X* defined by
CAx,g>y = {x, A*g)y

for all xe X and ge Y* is called the adjoint operator to A.
Let us notice that A*eB(Y*, X*) and |A*| = |A| for any AeB(X,Y). (See
Schechter [1], II1.2.)

3.12. Definition. For a given subset M < X we define
M* = {feX*; {x,f>)x =0 forall xeM}
and similarly for a subset N < X* we set

N ={xeX; (x,fyxy=0 forall feN}.
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3.13. Definition. The operator A€ B(X, Y) is called normally solvable if the equation
Ax =y has a solution if and only if <{y,f)y = 0 for all solutions fe Y* of the
adjoint equation A*f = 0.

(In other words, Ae B(X, Y) is normally solvable if and only if the condition
+N(A*) = R(A) is satisfied.)

3.14. Theorem. If A€ B(X, Y), then the following statements are equivalent
() R(A) is closed in Y,
(i) R(A*)is closed in X*,
(iii) A is normally solvable (R(A) = “N(A*)),
(iv) R(A*) = N(A)-.
(See e.g. Goldberg [1], IV.1.2.)

3.15. Theorem. Let A€ B(X,Y) have a closed range R(A) in Y. Then
«(A*) = B(A) and «(A) = (A*).
If ind A is defined, then ind A* is also defined and
ind A* = —indA.
(See e.g. Goldberg [1], IV.2.3 or Schechter [1], V.4

3.16. Definition. If X, Y are Banach spaces then a linear operator Ke L(X, Y) is
called compact (or completely continuous) if for every sequence {x,}=,, x,€X
such that |x,[x < C = const. the sequence {Kx,}>., in Y contains a subsequence
which converges in Y.

Let the set of all compact opérators in L(X, Y) (L(X)) be denoted by K(X, Y)
(K(X).

The set K(X, Y) = L(X, Y) is evidently linear. Moreover every compact operator
is bounded, ie. K(X,Y)< B(X,Y). Indeed, if KeK(X, Y)\B(X,Y), then there
exists a sequence {x,} = X, |x,|x < C such that |Kx,| — o and the sequence
{Kx,} = Y cannot contain a subsequence which would be convergent in Y.

3.17. Theorem. Suppose that Ke B(X,Y) and that there exists a sequence {K,,}
< K(X,Y) such that limK, =K in B(X,Y). Then KeK(X,Y), ie. K(X,Y) is
a closed linear subspace in B(X,Y).

(See Schechter [1], 1V.3.)

3.18. Proposition. If X, Y, Z are Banach spaces, A€ B(X,Y), KeK(Y, Z), then
KAe K(X, Z). Similarly BLe K(X,Z) provided Le K(X,Y), Be B(Y, Z).
(See Schechter [1], IV.3.)
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For the adjoint of a compact operator we have

3.19. Theorem. K € K(X, Y) if and only if K* € K(Y*, X*).
(See Goldberg [1], 11L1.11 or Schechter [1], IV.4 for the “only if” part.)

3.20. Theorem. Let K € K(X) and let both the identity operator on X and the identity
operator on X* be denoted by I. Then | + Ke B(X), | + K* e B(X*) and

(i) R(! + K) is closed in X and R(I + K*) is closed in X*,

(ii) ot + K) = B(I + K) = o(l + K*) = (I + K*) < c0.

(In particular, ind (I + K) = ind (I + K*) = 0,

(See Schechter [1], IV.3.)

3.21. Remark. It follows easily from the Bolzano-Weierstrass Theorem that any
linear bounded operator with the range in a finite dimensional space is compact.
(B(X,R,) = K(X,R,) for any Banach space X.) Analogously B(R,, Y) = K(R,, Y)
for any Banach space Y.

3.22. Definition. Let E, and E, be Banach spaces and let J,e B(X* Ey) and
Jy € B(Y*, E,) be isometrical isomorphisms of X* onto E, and Y* onto E,, respec-
tively. Let [., .]x be a bilinear form on X x Ey such that {(x, &>y = [x, Jx&]x
for any xe X and e X* and let [., .], be a bilinear form on Y x E, such that
<y,m>y =[y,Jyn]y for any yeY and neY* If AeB(X,Y) and Be L(Ey, Ey)
are such that

[Ax,¢]y = [x,Bp]y  forevery xeX and @€k,

then B is called a representation of the adjoint operator to A.

3.23. Remark. If Ae B(X,Y) and Be L(Ey, Ey) is a representation of the adjoint
operator A*e B(Y*, X*) to A, then for any x€ X and ¢ € E, we have

[Ax, @]y = <AX, J; '¢Dy = <x, A%}y '@)y = [x, JxA*]y ‘o] .

Thus B = JyA*J; ' € B(Ey, Ey). It follows easily that if we replace the dual spaces
to X and Y respectively by the spaces Ey and E, isometrically isomorphic to them
and the adjoint operators A* and K* to A and Ke B(X, Y), respectively, by its
representations B and Ce B(Ey, Ey) defined in 3.22, then Theorems 3.14, 3.15,
3.19 and 3.20 remain valid. This makes reasonable to use the notation A* also
for representations of the adjoint operator to A.

In the rest of the section X stands for an inner product space endowed with the
inner product (., .)y and the corresponding norm x e X — |x|y = (x, x)¥*
Furthermore, Y is a Hilbert space, (., .)y is the inner product defined on Y and
lylly = (y.y)/* for any ye Y.
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3.24. Definition. Given Ae L(X, Y) and ye Y, ue X is said to be a least square
solution to (3,1) if

|[Au—y|y < |Ax—y|y forall xeX.

3.25. Proposition. If Ae L(X,Y) and u,€ X is such that
(3,6) (Ax, Auy—y)y =0  forall xeX,

then uy, is a least square solution to (3,1). Furthermore, x € X is a least square solution
to (3,1) if and only if x — uy € N(A).

Proof. Given xe X, Ax —y = A(x — uy) + Auy, — y and in virtue of (3,6)
|Ax = y[§ = |A(x — uo)[7 + 2AAl(x — uo), Aug — y)y + [Au, — y[7 =
= [|A(x = uo)[} + [[Auo — y||7 = [|Auo -yl
Thus u,, is a least square solution to (3,1), while |Ax — y||y = |Au, — y||y if and

only if A(x — uy) = 0.

3.26. Remark. Let us notice that if R(A) is closed in Y, then the Classical Projection
Theorem (cf. e.g. Luenberger [1], p. 51) implies that the equation (3,1) possesses
for any ye Y a least square solution, while uye X is a least square solution to
(3,1) if and only if (3,6) holds.

3.27. Definition. Given Ae L(X, Y) and y€ Y, uy € X is a best approximate solution
to (3,1) if it is a least square solution to (3,1) of minimal norm (i.e. |u,|yx < |lufx
for any least square solution u of (3,1)).

3.28. Proposition. Let Ae L(X,Y) and let uge X fulfil (3,6). If besides it
(3,7 (v, up)x = for all veN(A)

holds, then uy, is a best approximate solution of (3,1).

Proof. By 3.25 u, is a least square solution to (3,1) and u — u, € N(A) for all least
square solutions u of (3,1). Thus assuming (3,7) we have

lullz = llu — wollZ + 2(u — uo, wo)x + [luol|z = [lu — woZ + fuolZ = fuo%

for any least square solution u of (3,1). Let us notice that |ju,|x = ||ju,|x if and
only if u = u,.

3.29. Remark. Let Ae L(X, Y). If k = dim N(A) < oo, then applying the Gramm-
Schmidt orthogonalization process we may find a orthonormal basis x,, x,, ..., X,
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in N(A), ie. (x;, X;)x = 0 if i + j and (x; x;)x = 1. Let us put
k
P:xeX > (x,x)y x;.
i=1

Then Pe B(X), R(P) = N(A) and P>x = P(Px) = Px for every x e X. Moreover,
(3.8) (x —Px,v)y =0 forall xeX and veN(A).

If R(A) is closed in Y, then there exists Q € B(Y) such that R(Q) = R(A), Q* = Q
and

) x,Qy —y)y = orall yeY and xe
39 Ax,Qy—y), =0 forall yeY and xeX

(cf. Luenberger [1]). P is said to be a linear bounded orthogonal projection of X
onto N(A) and Q is a linear bounded orthogonal projection of Y onto R(A). Let
us notice that since

R(I — P)= N(P) and R(l - Q)= N(Q),

R(I — P) and R(I — Q) are closed.
As a restriction A|g,- p of A onto R(I — P) is a one-to-one mapping of R(I — P)
onto R(A), it possesses a linear inverse operator A* € L(R(A), R(I — P)), i..

(3,10) AA*A=A.

As obviously AA*Q = Q, it follows from (3,9) that (Ax, AA*Qy —y), =(Ax, Qy —y)y
= 0 for every ye Y and x € X. Hence by 3.25 A*Qy is for any y € Y a least square
solution of (3,1).

Let us put

(3,11) A* = (- P)A*Q.

Evidently A(l —P)= A and hence (Ax, AA*y—y), =(Ax, AA*Qy—y)y =0
for every xe X and ye Y. Since according to (3,8) (v, A*y)x = (v, (I — P) A*Qy)x
=0 for each ve N(A) and ye Y, it follows from 3.28 that for every ye Y, u, = A"y
is a best approximate solution to (3,1). Moreover, it is easy to verify that

(3,12) AA*A=A, A*AA* = A*, A*A=1-P, AA* = Q.

3.30. Remark. If Ae B(X, Y), then the condition (3,6) becomes A*Au, = A*y or
denoting u, = A%y,

(3.13) A*AA* = A*.

Let us notice that if R(A) is closed, then (3,12) implies (3,13). In fact, given x€ X
and ye Y, we have by (3,9) 0 = (x, A*Qy — A*y),, i.e. A*Q = A*. This together
with the relation AA* = Q from (3,12) yields A*AA* = A*Q = A*. Finally, as
A* = A*AA*, A* = (I — P) A* and hence by (3,.8) (v, A*y)x = (v, (I — P)A*y)x
= 0 for every ve N(A) and ye Y. It means that (3,12) implies also (3,7).
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Given AeL(X, Y), any operator A* € L(Y, X) satisfying (3,10) is called a gener-
alized inverse operator to A. If Ae B(X, Y), then the unique operator A* € B(Y, X)
satisfying (3,12) is called the principal generalized inverse operator of A.

3.31. Remark. If X = R,, Y= R,, and Ais an m x n-matrix and A* its generalized
inverse matrix defined by 2.2, then the vector u, = A*beR, satisfies the con-
ditions (3,13) and (3,7). In fact, as by 2.7 ve N(A) if and only if v = (I — A*A)d
for some d e R,, we have owing to (2,16) (v, A*b) = v*A¥*b = d*(I — (A*A)*) A*b
= d*A* — A*AA*)b = 0. Furthermore, A*AA* = A* by (2,17). Thus if R, and R,,
are equipped with the Euclidean norm .]e, A*b is for any beR,, a unique best
approximate solution of (2,1).

4. Perron-Stieltjes integral

This section contains the definition of the Perron-Stieltjes integral based on the
work of J. Kurzweil [1], [2]. Some facts concerning this integral are collected here.
These facts are necessary for the subsequent study of equations and problems in-
volving the Perron-Stieltjes integrals.

Letafixed interval [a, b], —o0 <a <b < + oo begiven. Wedenote by & = #[a, b]
the system of sets S = R, having the following property:

for every te[a,b] there exists such a 6 = §(tr) > 0 that (z,t)e S whenever
t€[a,b] and te[t — §(z), T + (1))

Evidently any set Se %[, b] is characterized by a real function é: [a, b] - (0, + ).

Let f: [a,b] > R and g: [a,b] > R be real functions, —oc0 <a<a<b<p
< +00. If g(r) is defined only for te[a,b] then we assume automatically that
g(t) = g(a) for t <a and g(t) = g(b) for ¢ > b. It is evident that if varig < oo,
this arrangement yields var® g = vartg for any a, B such that a <a<b<§B.

4.1. Definition. A real valued finite function M: [a,b] > R is a major function
of f with respect to g if there exists such a set Se€ .%[a,b] that

(z = 7o) (M(z) = M(zo)) = (v = 70) f(%o) (9(7) — 9(%0))

for (to, 7)€ S. The set of major functions of f with respect to g is denoted by M(f, g).

A function m: [a,b] — R is a minor function of f with respect to g if —meM(—/, g),
ie. if —m is a major function of —f with respect to g. The set of minor functions
of f with respect to g is denoted by m(f; g).

4.2. Definition. Let M(f,g) + @ and m(f, g) * 0. The lower bound of the numbers
M(b) — M(a) where M e M(f,g) is called the upper Perron-Stieltjes integral of f
with respect to g from a to b and is denoted by [® f dg. Similarly the upper bound
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of the numbers m(b) — m(a), me m(f, g) is called the lower Perron-Stieltjes integral
of f with respect to g from a to b and is denoted by [} f dg.

4.3. Lemma. If M(f,g) + 0 and m(f,g) + 0, then

Jf@sjf@-

For the proof of this lemma see Kurzweil [1], Lemma 1,1,1.

4.4. Definition. If M(f,g) + 0, m(f,g) + @ and the equality

Jf@=}f®
ff®=jf®

the Perron-Stieltjes integral |5 f dg of the function f with respect to g from a to b
is defined. In this case f is called integrable with respect to g on [a,b]. If a = b,
then we set [°fdg =0 and if b < a, then we put 5 fdg = —[; fdg.

Now we give a different definition of the Stieltjes integral which is also included
in the paper Kurzweil [1] and is equivalent to Definition 4.4. This is a definition
of the integral using integral sums which is close to the Riemann-Stieltjes definition.

For the given bounded interval [a,b] = R we consider sequences of numbers
A = {09, Ty, 0y, ..., Ty %} such that

holds, then by the relation

(4.1) a=ay<o; <..<o=b,
(4.2) <1<, j=12.,k.

For a given set Se #[a,b], A satisfying (4,1) and (4,2) is called a subdivision
of [a, b] subordinate to S if

(43) (tpt)eS  for tela;_y o], j=1,2,..k.

The set of all subdivisions A4 of the interval [a, b] subordinate to S is denoted
by A(S).

In Kurzweil [1], Lemma 1.1.1 it is proved that for every Se %[a,b] we have
(4.4) AS) + 0.

If now the real functions f: [a, b] - R, g:[a, b] - R are given and
A = {ay,1,,0,,....T, 0]} is a subdivision of [a,b] which satisfies (4,1) and (4,2),
we put

(43) By ) = 3. (6 6le) ~ ofe-1).
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If no misunderstanding may occur, we write simply B(A) instead of B, (A).

4.5. Definition. Let f: [a,b] - R and g: [a,b] — R. If there is a real number J
such that to every & > 0 there exists a set Se &[a, b] such that

|B;(A4) —J| <& forany AeA(S),

we define this number to be the integral

b
deg

of the function f with respect to g from a to b.
The completeness of the space R of all real numbers implies that the integral
{b f dg exists if and only if for any € > O there exists a set S€ ¥[a,b] such that

|Brg(41) — B, j(A,)] <& forall A,,A,eA(S).

In Kurzweil [1] (Theorem 1.2.1), the following statement is proved.

4.6. Theorem. The integral [’ f dg exists in the sense of Definition 4.4 if and only
if |5 f dg exists in the sense of Definition 4.5. If these integrals exist, then their values
are equal.

4.7. Remark. In Schwabik [3] it is shown that the integral introduced in 4.4 and 4.5
is equivalent to the usual Perron-Stieltjes integral defined e.g. in Saks [1]. Con-
sequently the Riemann-Stieltjes, Lebesgue and Perron integrals are special cases
of our integral. In particular, if one of the functions f, g is continuous and the other
one is of bounded variation on [, b], then the integral (5 f dg exists and is equal
to the ordinary Riemann-Stieltjes integral of f with respect to g from a to b.

The o-Young integral described in Hildebrandt [1] (I1.19.3) is not included in
the Perron-Stieltjes integral (see Example 2,1 in Schwabik [3]). However, if
f: [a,b] > R is bounded and ge BV[a,b], then the existence of the o-Young
integral Y (5 fdg implies the existence of the Perron-Stieltjes integral [3 f dg
and both integrals are then equal to one another (Schwabik [3], Theorem 3,2).

Now we give a survey of some fundamental properties of the Perron-Stieltjes
integral. The proofs of Theorems 4.8 and 4.9 follow directly from Definition 4.5.

4.8. Theorem. If f: [a,b] > R, g: [a,b] = R, A€ R and the integral |} f dg exists,
then the integrals [5Af dg and [} f d[Ag] exist and

b b b b
jlfdg=lffdg, de[ig]=ljfdg-
4.9. Theorem. If fi.f>: [a.b] > R, g: [a,b] > R and the integrals [; f, dg and
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[ f, dg exist, then the integral (5(f, + f,)dg exists and

b b b
j(fl +fz)dg={f1 dg+szdg-

If f: [a,b] > R, g,,95: [a,b] > R and the integrals [’ f dg, and [} f dg, exist,
then the integral [} f d[g, + g,] exists and

ffd[yl+gz]=degx+degz.

4.10. Theorem. If f: [a,b] > R, g: [a,b] > R and [} fdg exists, then for any
c,deR, a < c <d <b the integral (! f dg exists.

4.11. Theorem. If f: [a,b] > R, g:[a,b] > R, ce[a, b] and the integrals
o fdg, [ fdg exist, then also the integral [} f dg exists and the equality

b c b
dg = dg + d
holds. J:.f I .[;f 9 ch I

The statement 4.10 can be proved easily if 4.6 is taken into account. The proof
of 4.11 is given in Kurzweil [1] (Theorem 1.3.4).

4.12. Theorem. Let f: [a,b] > R, g: [a,b] > R be given and let the integral
|t f dg exist. If ce[a,b], then

im [ (100 060~ 00| = [ 100

te[a b]

(See Kurzweil [1], Theorem 1.3.5.)

4.13. Corollary. If the assumptions of 4.12 are satisfied, then

11m jfdg—deg

te[u b]
if and only if lim g(t) = g(c) or f(c) =
t—=c¢
tela,b)

If g: [a,b] = R possesses the onesided limits g(c+), gc—) at ce[a,b] (eg. if
geBV[a, b)), then ~

t—~c+
tela, b]

(46) lim deg—ffdg+f()(g(c+)~g jfdg+f)A+()
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and
(4,7) lim J"f dg - J‘cf dg — f(C) (Q(c) _ g(c__)) — ch dg — f(c)A_g(c)

t—=c—
tefa,b] ¥'¢ 4

for ce (a,b]
where we have used the notation A*g(c) = glc+) — g(c), A glc) = g(c) — glc—).
4.14. Lemma. If fl [a, b] - R, i = 1, 2, ge BV[a, b] and A = {ao’ Tiseenr T ak}
is an arbitrary subdivision of [a,b] SALisfying (4,1) and (4,2), then

(4.8) |B;, o(4) — By, (A4) < sup | £,(2) — f(t)| vartg.
Proof. Evidently €la,b]

M=

[Br.d) = Brofa) = | ¥ (i) = £o(e)) (o) — a(e;- 1))

1

i

< 3 1) = o) lote) ~ oo}

< sup |£1(0) = (o) _zilg(a,-) = 9(0y-1)

and (4,8) holds.
In the same trivial way the following lemma can be proved.

4.15. Lemma. Let f: [a,b] - R, |f()] < M forall te [a,b), gi€ BV[a,b], i =1,2.
Then for any subdivision A = {09, 7,5, 7, 0} of the interval [a, b] satisfying (4,1)
and (4,2) we have

(49) [B/6,(4) — By.p(4)] < Mvar; (g, — g2).

4.16. Lemma. If f: [a,b] > R, 'geBV[a,b] and the integral (°fdg exists, then

the inequality .
J. fdg

Proof. Since the integral [% fdg exists, for every & > 0 there exists Se #[a,b]
such that for any 4 e A(S) we have

Bf,q(A) - \[ fdg

Let us set fi(¢) = f(t), f(t) = 0 for t € [a, b]. Then by 4.14 we have for any A € A(S)
b
By (4) - J fdg

b
[
< ¢+ sup |f(t)| var,’jg.

. te[a,b]

< sup |f(t)| var g
tela,b]

holds.

<eE€.

+ |Bf,g(A)| <&+ lex,y(A) - sz,g(A)l
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Hence the inequality is proved because ¢ > 0 is arbitrary.

4.17. Theorem. If f,: [a,b] >R, n=1,2,..., limf,=f uniformly on [a,b],
geBV[a,b] and [’ f,dg exists for all n=1,2," "then the limit lim [} f,dg as
well as the integral |5 f dg exist and the equality e

b b
(4,10) limf f.dg = J fdg
holds. ’ ’

The proof of the existence of the limit lim [% f,dg and of the integral [% fdg
follows from 4.14. The equality of these quaftities is an immediate consequence
of 4.16.

4.18. Theorem. Let g,, g€ BV[a,b], n=1,2,... and lim var}(g, — g) = 0. Assume

that f: [a,b] > R is bounded and [’ f dg, exists for all n = 1,2,.... Then the limit
lim |4 f dg, as well as the integral [° f dg exist and

a a

(4.11) lim rf dg, = fbf dg .

(The proof follows from 4.15; cf. Schwabik [3], Proposition 2,3.)

If f,ge BV[a,b], then by Hildebrandt [1] (I1.19.3.11) the o-Young integral
Y [%fdg exists. Taking into account the relationship of the o-Young and the
Perron-Stieltjes integrals (cf. 4.7) we obtain immediately the following.

4.19. Theorem. If f,g€ BV[a,b], then the integral [} f dg exists.

4.20. Remark. For a given a€[a,b] and for te[a,b] we define

(4,12) Yr()=0 if t<a, YS()=1 if a<t
and
(4,13) Ya()=0 if t<a, Y ()=1 if a<rt.

The functions ', Y, are called simple jump functions.

A real function f: [a,b] — R is said to be a finite-step function on the interval
[a, b] if there is a finite sequence a = dy < d; < ... < dy = b of points in [a,b]
such that in every open interval (d;_,,d;) (i=1,2,.., k) the function f equals
identically a constant c;e R. Let us put for te[a,b] and i = 1,2,...,k

git) = cbii_ () = va(0) + f(di- 1) (Wa_.(0) = ¥, (1)-
It is easy to see that gt) = f(¢) if te[d;—,, d) and g{t) = 0 if te[a,b]\[d:-}, d).
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Hence, for any t€[a,b] we have
10 = 3 ait) + 1) 5 0
= 3 Vi 0 — i) + i) Wi 0 = Vi) + 1) i 0,

i.e. any finite-step function can be expressed in the form of a finite linear combination
of functions of the type ¢, and ¥ .

Since any function f: [a,b] > R which possesses the onesided limits f(c+)
for any ce[a,b) and f(c—) for any ce(a,b] can be approximated uniformly on
[, b] by a sequence of finite-step functions (see e.g. assertion 7.3.2.1 (3) in Aumann
[1]), it follows from 4.17 that to prove 4.19 it is sufficient to show that the integrals
by dg and [,y dg exist for any ge BV[a,b] and any a€[a,b].

4.21. Lemma. Let oe[a,b] and let Y, : [a,b] > R and Y, : [a,b] > R be the
simple jump functions defined by (4,12) and (4,13) in 4.20.

(a) Theintegrals [® g dy, and [ g dy, exist for an arbitrary function g: [a,b]— R
and

(4,14) L gy = {g(a) Z, Z : I;
(4,15) fg dy; = {g(“) z; e

(b) If f BV[a,b] then the integrals {2y df, f2yi; df exist and
T
R A T

Proof. (a) If & = b then by definition ¥, (t) = 0 for every t€[a, b] and for any
subdivision A: a =0, < 7, < a; < ... < rk < oy = b we have B, ,+(4) = 0. Hence
fogdyy =0.1f « < b let us define 6 =4t —of for te[ab], t +a &)=
Evidently 6: [a,b] - (0, + c0). We deﬁne

S = {(e)eRy; velab), tels— &) «+ 5]},
by definition we have Se ¥[a, b] For every subdivision A€ A(S) we have
[o-n ] = [5; = 8(z)) 7, + 8(z)] . e
0 <o —a;_; <231)

for any j=1,2,..,k (see (4,1), (4,2)). Moreover, there exists an index i, 1 <i<k,
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such that ae[o;-y, ). If 7, + « then we obtain a contradictory inequality
0 <o —o_y <20(t) =HYr; — o] < Hoy — oi—y)-

Hence 1; = o. For every subdivision 4 € A(S) we have

( D (@) = v (-1)] = g(z) [¥a () — ¥ (- 1)] = 9(z:) = gl@).-

Hence the mtegral (g dy,; exists and equals g(x) by Definition 4.5. The result
for the integral (g dy, can be proved similarly.

(b) The existence of the integrals [5y." df, [5y, df follows imeediately from 4.19.
It is not difficult to compute their values using 4.11 and 4.13. See also Schwabik [2],
Proposition 2.1.

nM»

Bq"ﬁ: (A)

J

4.22. Lemma. For a€[a,b] define Y, (t) =0 if te[ab], t +a, Y, (a) = 1. Then
for any ge BV[a,b] the integrals {5, dg, {gdy, exist and

b
(4,18) j Y, dg = gla+) — gla—) = Ag(«),

(recall that gla—) = g(a) and g(b+) = g(b)),

(@.19) j ‘U =0 if ae(ab),

[[oar.= 0. [oas=a00.

Proof. It is easy to see that y,(t) = ¥, (t) — ¥, (t) where y,7, ¥, are given by (4,12)
(4,13) respectively. The existence of the integrals is clear by 4.19, the relations (4,18),
(4,19) follow immediately from 4.21.

4.23. Lemma. Let gge BV[a,b] be a break function, f€ BV|[a,b]. Then the integral
|t f dgp exists and

j fdgs = fl0) A*aa) + T F6) Agale) + 116) A~ aulb)

where A*gg(t) = gg(t+) — gu(t), A gslt) = gs(t) — gslt—), Agslt) = gslt+)— gslt—).

Proof. Since g is a break function, there exists an at most countable set (z,,1,,...)
of points in [a, b] and two sequences ¢;", ¢, i = 1,2,... such that

gs(t) = X oo+ Y
asti<t a<t;<t
where varlgy = Y |c7|+ Y || < +oo. By definition it is ¢ = A*gy(t),
a<ti<b

as<t;<b
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¢ = A~ gg(t). Using the functions ¢, , Y. defined by (4,12), (4,13) we can write
gslt) = X [ ¥ ) + i ¥ (0]

i1

[A*gy(ts) ver (1) + A7 gu(t) ¥, (1)].

e

1

Let us define
o3e) = i} [A* gs(t) Wit () + A”a5lt) Wi ()],

we have
5 (8000 + A 0e) 0] =

 + 1

var gy — o) = var

= Y [|a*gs(t)] + [A"gs(t)] -
i=N+1
This yields
lim vart (95 — 95) =0

N—o
since the series . [|A*gy(t)| + |A™gs(t:)|] = var;gp converges by the asumption.
i=1
Evaluating (% f dgj we obtain by the results of 4.21
N

f fdgy =3 [A+ga(ti)J fdy; + A_gB(ti)J fd!//,il =

=l§l[A+gB(t,.) f(t) + A7 gg(t:) £()] -

Recall that we assume g(a—) = g(a), g(b) = g(b+). By 4.18 we have
b b ©
[[raas=tim [[r0at = £ 0 ade) + a-ai) 10
and the proof is complete.

In Hildebrandt [1] (I 19.3.14) the following result is proved for the Young
integrals.

Osgood Convergence Theorem. If f,: [a,b] — R, n = 1,2,... are uniformly bounded
on [a,b], ie. |f(t)) <M for all te[a,b] and n=1,2,..., ge BV[a,b], lim f(t)

= f(t) for all te[a,b], and if Y [; f,dg and Y[, fdg exist, then lim Y [} f,dg

=Y fdg.
In virtue of the relations between the Young integral and the Perron-Stieltjes
integral mentioned in 4.7 the following statement can be deduced.
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4.24. Theorem. If f,g,f,€ BV[a,b], |f(t)) <M for all te[a,b], n=1,2,... and
lim f,(t) = f(t) for all te[a,b], then the integrals [} f,dg, [%fdg exist and

lim {2 f,dg = {2 f dg.

This statement follows from the above quoted Osgood Convergence Theorem
in the following way: Since all functions in question belong to BV[a, b}, the integrals
fofudg, [afdg, Y[if,dg and Y [;fdg exist and [;f,dg=Y[;f,dg, [ifdg
= Y [* fdg (see 4.7). Hence all the assumptions of the Osgood theorem are satisfied
and our statement holds.

4.25. Theorem (Substitution Theorem). If he BV[a,b], g: [a,b] > R and
f: [a,b] > R, the integral |5 g dh exists and f is bounded on [a,b], then the integral
b f(t) d([% g(z) dh(z)) exists if and only if the integral (5 f(t) g(t) dh(r) exists and in
this case the two integrals are equal.

Proof. Let us show that the following statement holds. If [%gdh exists then for
every n >0 there is an S, € #[a,b] such that for every Ae A(S,), 4:a=a,
<1, <..<71 <o =b wehave

o) )~ Ho -] = [ o al <n.

;-

a

M=

(4,20)

Jj=1

Let n > 0 be given. By definition there exists S, € #[a, b] such that if 4 € A(S,)
then

b
B, 4) — J gdh' =

a

jé {g(Tj) [Alo;) — hlo;-1)] = ajg dh}‘ < g

and if also 4’ € A(S,) then

, n
|By.h(A) - Ba.h(A )I < Z

Let Ata=ay<1, <..<1,<q=>b A€A(S,) be fixed. Assume that U,
= {j1,J2»-- Jm}» m <1 is an arbitrary set of integers such that 1 <j, <j, <...
< jn < k. Since by 4.10 the integrals _[:j_l gdh, i=1,2,...,m exist there is an
S,e¥[a,b], S, =S, such that for any subdivision 4, of the interval [a; _,, ;]
which is subordinate to S, we have

B, (4) - J %ji

%ji—1

(4,21)

n
dh| < —.
d ' 4m

Let us refine the subdivision A in such a way that for i = 1,...,m the points «;, _,
< 1;, < a;, are replaced by the points of 4; and the points a;_, < 7; < a; j¢ U,
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remain unchanged. Let us denote this refinement by A’; evidently A’e A(S,).

We have
5 (o) toe) = ey [ g
6 ) — ey )1 = B + |5 (Bt - [ an)

Ji—1

- j;g(r,-) [He) )] = 5. o) a) — ) - § )

1¢U|

<

;o

, n
g dh‘ < |B,W(A) = BuA) + m <

B,uA) - f

%ji—1

because A, A€ A(S,) and (4,21) holds.

Since the set U, < {1,...,k} of indices was arbitrary, we obtain that for a given
n > 0 there exists S, € #[a,b] such that for any A€ A(S,) and U, < {1,2,....k}
the inequality

3 ole) (W) - Hs)] - j gdh\<_

holds. Let us set =0

= o) [x) ~ W] — | g

and assume that U, is the set of all je {1,...,k} for which d; > 0, U, = {1,...,k}\U,.
Then we have

> di| +

JjeU;

Ydi| <

jeUz

k .
2ldj=%d—3d; <
i=1 jeUy jeUz
i.e. (4,20) holds.
Now, let us prove the theorem. Assume that ¢ > 0 is given. If the integral
| fgdh exists then by definition there exists S, € ¥[a, b] such that for all
A€ A(S,)

(i)

o) [hie) — M) — j fa dh

Since the integral [gdh exists, by the above statement there is S, € ¥[a,b]
such that for any A4 € A(S,) we have

(i) 3 ot

<_

)0~ o] = [ g

where C > 0 is the bound for fie. |f(t)| < C forall te[a,b]. Ifweset S =S, N S,
then Se &[a,b] and for any A e A(S) the inequalities (i), (ii) are satisfied. Let us
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set k(t) = [, g(r)dh(z), te[a,b]. Then for A€ A(S) we have by (i) and (ii)

Y1) j Y gdn - J f dh’

aj-y

BMM—JmMF

<| 50 [ 0= st ot ) - )

; 7;) 9(t;) [hle;) — hlo;- )] = Jfgdh
Z

o(t,) [h(o) — hle,_ )] — J gdh‘+ <—Ziiae

Hence according to Definition 4.5 the integral [ fdk = [® f(¢) d([% g dh) exists
and equals (% fg dh. Using the same technique the second implication can be also
proved.

4.26. Theorem. Assume that for the functions g,he BV[a,b], f: [a, b] - R,
@: [a,b] = R the integrals [} fdg, [>@dh exist. If to every t€[a,b] there is a
0*(t) > O such that

(422) |t — || 1(2) (9(t) = 9(2))| < (t — 1) ol5) (h(e) - h())
holds for every t€[a,b], te[a,b] N[t — 6*(), T + 6*(1)], then

b b
jfdg}sfqzdh.

This statement is proved in Kurzweil [2].

4.27. Corollary. Assume that geBV[a,b]. If f:[a,b]—> R, |f(t) < M = const.
for all te[a,b] and [} f dg exists then for every [c,d] < [a,b] we have

deg

and consequently var} ({% f dg) < M varbg < co.

< Mvarlg

If fe BV[a,b] then [} f dg exists and

b
J.fdg' flf (¢)] d(vars g) < sup | f(t)| vartg.

tefa,b]
Proof. In the first case we have

|t—‘L’||f )(9(t) — 9())] < (¢ — )| f(z)| (var’ g — varig)
< (t— t) M(var, g — var g)
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for every te[a,b], te[a,b]. Since the integral ¢ M d(var, g) exists and equals
M var?g we obtain the result by 4.26. The second statement can be derived in
a similar way, when 4.19 and the fact that |f|e BV[q,b] are taken into account.

4.28. Theorem. Let us assume that g: [a,b] — R is nondecreasing, f,, f,: [a,b] >R,
£it) < fo(t) for all te[a,b] and [ f,dg exists for i = 1,2. Then

J‘fldgﬁj‘fzdéﬁ

This statement follows from 4.26.

4.29. Theorem. If h: [a,b] - R is nonnegative, nondecreasing and continuous from
the left in [a,b] (i.e. h(t—) = h(t) for every te(a,b]), then

(4.23) J;bh"(t) dh(t) < ﬁ—l [ 3(b) — B 1(a)]

for any k =0,1,2,... If h: [a,b] > R is assumed to be nonnegative, nonincreasing
and continuous from the right (i.e. (h(t+) = h(t) for every te[a,b)), then

(4.24) j "We) dh(t) g [ (0) = ()

forany k=0,1,2,...
The proof of the first part is given in Kurzweil [2]. The second part can be proved
similarly.

4.30. Theorem. Assume that g: [a,b] > R is a nonnegative nondecreasing function,
@: [a,b] > R nonnegative and bounded, i.e. ¢(t) < C = const. for all t€[a,b].

(a) If g is continuous from the right on [a, b) and if there exist nonnegative constants
K,, K, such that

b

(4.25) (&) <K, + K, J (7) dg(v)
&

for every E€[a,b], then

(4,26) o(r) < K eX2e®) -0

for any t€[a,b].

(b) If g is continuous from the left on (a,b] and if there exist nonnegative constants

K,, K, such that
4

(4,27) o) <K, + K, '[ o(7) dg(7)

a
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for every £€[a,b], then
(4,28) (p(‘l) < K 1eK2(a(t)—a(a))
for any t€[a,b].

Proof. We prove only (a). The statement (b) can be proved in the same way. Let
us define

w(t) - LeKz(a(b)-g(t)) , te [a’ b]
where L > 0 is a constant.

For any ¢ €[a,b] we have

b - b
L+ KZJ w(r) dg(t) =L + KZLJ‘ eKzlgd) - g(x) dg(t)
¢ ¢

b K .
~ (1o [ 5560 - a0 aat).
gi=1 ¢
Since the series ) K(g(b) — g(t))'/i! evidently converges uniformly on [a,b],
i=0
4.17 ensures that in the last term the integration and summation are interchangeable.
Hence by (4,24) from 4.29 we obtain

b

L+K, wa(r) dg(t) = L (1 + Kz.i 5'3 f (g(b) — glx)y dg(r)) =

=Ol &

Let e >0 bé arbitrary. We set
w(t) = (K, + €) eKa(g(b)— g(t)) , te [a, b] .

Then

b

(4,29) K, +e+ K, £we(1:) dg(r) < wy(9), ¢ela,b].

For the difference m,(¢) = ¢(¢&) — wil &) we have by (4,25), (4,29)

(4,30) m(¢) < —e + K, J‘bms(‘r) dg(l’),' ¢ela,b]
<
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and, in particular, m/(b) < —& < 0. Moreover, it is easy to see that |m£(§)l <C,

= const. for ¢ € [a, b]. By 4.12 we have

m(¢) < —¢ + Ky m(b) [g(b) — 9(b~)] + lim K, L " nde) gl
< —e+ Ky m(b)[g(b) — 9(b—)] + C[a(b—) — 9(¢)],  C,=K,Ci.

Since g e BV, there exists 1 > 0 such that if 0 < b—¢ <7 then Cy(g(b—) ~ g(¢))
< ¢[2. Hence for £ e[b—n, b] we have m(£) < 0. Let us set

(4,31) T=inf{te[a,b]; m(&) <0 for &e[1b]}.

We have shown that T < b and we have evidently m,(t) < 0 for t € (T, b]. Further
by (4,30) and 4.12

b

m(T) < —¢ + K, me(r) dg()

= —¢+ K, m(T)(g(T+) — g(T)) +al—i~%1+K2j m(t)dg(t) < —e <0

T+46

since g(T+) — g(T) = 0 and [}, ;m(t)dg(r) < O for every § > 0.

If T > a then we repeat the above procedure and show in the same way that
there exists an # > 0 such that m(¢) < 0 for all ée[T—n, T]. This contradicts
(4,31). Hence T=a and m(¢) <O for all ¢e[a,b], ie.

(P(f) < Klel(z(g(b)~g(¢)) + geKata®) —g@)

for all {e[a,b] and & > 0. This yields (4,26).

4.31. Theorem. Let h: [a,b] x [c, d] — R be such that |h(s,t)) <M < oo and
varb h(., t) + vard h(s, .) < co for every (t,s) € [a, b] x [c,d]. Thenfor any fe BV[a, b]
and any g e BV[c,d] both the iterated integrals

fdf(s) ( j s, 1) dg(t)> and j ( J "dr(s) K, z)) aalt)

exist and are equal.

(See Hildebrandt [2], p. 356 and [1], I1.19.)

4.32. Theorem (Dirichlet formula). If h: [a,b] x [a,b] = R is bounded on [a,b]
x [a.b] and var®h(s,.) < oo for every se[a,b], varbh(.,t) < oo for every
te[a,b), then for any f,ge BV[a,b] we have
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(4,32) Lbdg(z) <£h(s, t) df (S)>

N J b (J bdg(t) h(s, z))df(s) + Y ATgle)h(t, ) Af()) = Y, Atg(e) At ) A*£()

s te(a,b] tela,b)
where A™g(t) = g(t) — g(t—), A" g(t) = g(t+) — g(t).

Proof. Let us define k(s,t) = h(s,t) for a<s<t<b and k(s,t) =0 for a <t

< s <b. Then k: [a,b] x [a,b] > R evidently satisfies the assumptions of 4.31
and this theorem gives

(4.3 [0 ([ M0 09) = [([[estomis ) .

Moreover for t€[a,b) it is

b

[ Me99 = [ .09 + [ e 019

a t

= J.!h(s, t)df(s) + h(t,t) A*f(t),

a

since from 4.13 and from the definition of k(s, t) we have by (4,6)

j,bk(s, t) df(s) = lim U,bk(s, ) df(s) + ke, ) (f(t+) = f (t»]

Tt

= k(t, ) A*f(¢) = h(t, 1) A*1(2) .
If ¢t = b, then [ k(s, b)df(s) = [’ h(s, b) df(s). Hence for an arbitrary te[a,b] we

can write

(4.34) j K, 0 df() = fh(s, 0 df(s) + e, ) A*1(0)

if we set A*f(b) = 0.
A similar argument gives
b b
(4,35) J dg(e) ks, t) = J dg(¢) h(s, t) + A~ g(s) h(s, s)

for every se[a,b] if the convention A~g(a) = 0 is used. Setting (4,34) and (4,35)
into (4,33) we obtain

(436) [[aat0 ([ 1.0

= [or([[Hs.0000) + [ 5t 9709 - [ty a*s09.

a S a
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Since g e BV[a, b], there is an at most countable set of points oy, a,,... in [a,b]

such that A g(s) =0 for all se[a,b], s+« and ZIA glo)| < varhlg < +o0.
Let us set H(s) = A~g(s) h(s, s) for any se[a,b]. Then H( ) =0 for all se[a,b],
s+o,i=12,..and

b

J‘bA_g(s) h(s, s) df(s) = J H(s) df(s).

a a

Let us define for N = 1,2,... and se[a,b]

HS) = XA 0lo) W 3) 1,5

where Y (s) = 0 if s + a and ¥,(¢) =

Evidently Hy(s) = 0 for all s€(aq, b], S * oy, 0y,..,0y and Hy(x) = H(x) for
i=12..N.For se[a,b], S¢ay,o,,...,ay We have

0

[H(5) = H(s) = [H()| < _sup .I (@) < 3 A" glo) hlan, )]

i=N+1

<M |A'9(°‘i)|

i=N+1

where M is the bound of |k(s, t)|-

o0
Since the series ). |A”g(x)| is convergent, we obtain that for any ¢> 0 there is
i=1

a natural N such that M i |A~g(x;)| < ¢ and also
i=N+1

|Hy(s) — H(s)| < ¢

for all se[a,b], ie. Jim H x(s) = H(s) uniformly in [a, b]. Using (4,18) we conclude

Mz

[a =

a i

A~ g(or;) hloy, o) Af (o)

1

and by 4.17 we obtain

b

[ 85,9479 = [ 1119 = pim [ 1,50 010 =

a a

= 5 8 glo) o) () = T A”0(5) (s 9 A1(5).

se(a,b]

. Similarly it can be proved that

fmwmmwm=2m0()W)

tela,b)
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If we set these expressions into (4,36) we obtain

[0t ([h(s, ) df(s>)

= ["([[aut0s.0) a9 + 5, 1870t 1) — 3t M) 1)

a s se(a,b)

+ A g(b) h(b, b) Af(b) — y(a) h(a, a) A*f(a)

and this yields the result.

4.33. Theorem (integration-by-parts). Let f,ge BV[a,b]; then Jor any interval
[c, d] < [a, b] we have

[raa+ [a0r = s - naae - 3 asatat + T ast9a ot
where A*f(t) = f(t+) — f(r), Af(z) = f(z) — flz—) and similarly for A*g(z),
A7 g(r).

Proof. If we set h(s,t) =1 on [a,b] x [a,b] then for every f,9€BV[a,b] we
have by 4.32

(@) [ ([la6) et

zrqddg(t)) )+ Y Agl)As() - Y ATgl)ATS).

te(c,d] tefc,d)
Moreover,

f (fdf (S)> aolo) = ch(f (1) — /(c)) dglt) = ff (£) dg(t) — () (9(d) — g(c))

and similarly

| (f“g“’) o) = - [ 50 + o) (10 - ).

c

Inserting this into (4,37) we obtain the result. (A direct proof of the integration-
by-parts theorem 4.33 is given in Kurzweil [3].)

The Lebesgue-Stieltjes integral has been defined and studied in many monographs
on integration theory. (See e.g. Saks [1], Hildebrandt [1], Dunford, Schwartz [1]
etc.) In the next theorem its relationship with the Perron-Stieltjes integral is cleared
up. The proof follows e.g. from Theorem VI (8.1) in Saks [1].

4.34. Theorem. Let ge BV[a,b] and f: [a,b] > R be such that the Lebesgue-
Stieltjes integral (L-S) (.5 f dg over the open interval (a, b) exists. Then the Perron-
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Stieltjes integral [} f dg also exists and

b

[aa=w-9[ e+ maatdasmado.
a (a.b)

4.35. Remark. If f: [a,b] - R is bounded, h: [a,b] — R is Lebesgue integrable

on [a,b] (heL'[a,b]) and g(t) = g(a) + [, h(r)dt on [a,b] (g€ AC[a,b]), then

in virtue of 4.25 and 4.34
b b

(000 = [ romoa.

a a

where the right-hand side integral is the Lebesgue one.

For the proof of the following assertion see e.g. Natanson [1] (Corollary of
Theorem XII1.4.2). It is also included as a special case in the “symmetrical Fubini
theorem” for Lebesgue-Stieltjes integrals (cf. Hildebrandt [1], X.3.2).

4.36. Theorem (Tonelli, Hobson). If h: D = [a,b] x [c¢,d] - R is measurable and
if any one of the three Lebesque integrals

~[L[h(t, s)|de ds, f (J;d]h(t, s)| ds) dr, f <Lb|h(t, s)| dz) ds

exists, then the Lebesgue integrals

th(t, s)deds, L ' ( £ dh(t, s) ds) de, f (fh(t, s) dt) ds

all exist and are equal to one another.

One of the most helpful tools for the investigation of integro-differential and
functional-differential equations is the “unsymmetrical Fubini theorem” 4.38. For
its proof the following lemma is needed.

4.37. Lemma. Let h: [a,b] x [c,d] - R be such that h(., s) is measurable on [a, b]
for any se[c,d], x(t) = |h(t, )| + var?h(t, .) < oo for ae. te[a,b] and ye L*[a,b],
1 <p< . Then

(a) given fe Lf[a,b] withq = p[(p — 1) if p> 1 and q = oo if p = 1, the function

b
¢:selc,d] - J f(e) ht, s) ds
is defined for any se|[c,d], belongs to BV[c,d] and

a

(4,38) ols+) = rf(t) h(t,s+)dt  for any se[c,d),

P(s—) = rf(t)h(t,s——)dt for any se(c,d];
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1.4
(b) given ge C[c,d] (or ge BV[c,d]), the function

d
n:tela,b] - j d,[h(t, 5)] g(s)
is defined a.e. on [a, b] and belongs to L"[a, b].

Proof. Clearly, ¢(s) is defined for any se[c,d]. For an arbitrary subdivision
c=15,<5; <..<s =d of [¢,d] we have

jg|¢(.s-,) —ols ) < J | f(z);j:ilwt, 5) = (e, 5;. )| de

i.e. € BY[c,d]. Furthermore,
|[/(t)h(t, o) < [f(6) x(t)  forae te[a,b] andany oe|c,d].

Applying the Lebesgue Dominated Convergence Theorem we obtain immediately
(4,38).

(b) Under our assumptions #(t) is defined a.e. on [a, b]. If g: [c,d] — R is a finite
step function with jumps at s;e[c,d] (j = 1,2,...,k) (cf. 4.20), then according to
4.21 n(t) is a.e. on [a,b] equal to a linear combination of the values h(t, b), h(t, a),
h(t,s;+) and h(t,s;—) (j = 1,2,...,k). In particular, in this case # is measurable
on [a, b]. Making use of the fact that any function g which is continuous on [a, b]
or of bounded variation on [a, b] can be approximated uniformly on [a, b] by finite
step functions (Aumann [1]) and applying 4.17 we complete the proof of the mea-
surability of n on [a,b]. By 4.16

In(e)| < x(t)(sglllcg]lg(S)l) ae. on [ab]

and hence ne L”[a,b] for any ge C[c,d] (or ge BV[c,d]).

4.38. Theorem (Cameron, Martin). Let h: [a,b] x [c,d] — R fulfil the assumptions
of 4.37. Then for any fe L[a,b], where q = pl(p — 1) if p>1and g= o0 if p=1,
and any ge Clc,d] (or ge BV|[c,d]) the integrals

L bf (1) ( j[ dds[h(t, s)] g(8)> dt and des [J;b 1£(e) hle, s) dz] 4(s)

both exist and are equal to one another.

Proof. Let the functions ¢: [¢,d] - R and 7: [a,b] > R be defined as in 4.37.
By 4.19 and 4.37 both the integrals

jb f()n(r)dt and rd[(p(s)] g(s)

a c
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exist. Let g,: [c,d] > R (n=1,2,...) be a sequence of finite step functions such
that lim g,(t) = g(t) uniformly on [c,d]. (Such a sequence exists according to

7.3.2.1 (3) in Aumann [1].) To prove the theorem it is sufficient by 4.17 and 4.20
to show that

(4.39) [0 ac= [[atoton s

holds for all simple jump functions g(s) = ( ) Or g(s) = ¥, (s) (x€[c,d]) defined
by (4,12) and (4,13). Let ae[c,d] and g(s) = ) on [c,d], then in virtue of 4.21
(e, d) — (e, ) if «<d
“0_% it ox=d
and

g .
_ fold) = ola+) if a<d
[[atonats = {6 o<
and (4,3 ) follows from (4,38). Analogously we can show that (4,39) holds also if
) =

o9 = Y2 () on [e.d]

4.39. Integrals of matrix valued functions. If F=(f;)), i=1,2,..,p; j=1,2,..,r;
G=(9;4 j=12,..,r, k=1,2,...,q are matrix valued functions defined on the
interval [a,b] (fi;: [a.b] = R, g, [a, b] = R), then we use the following symbols

b
JFdG = (ot; ) i=12..,p, k=12..,q,

a

and

b
Jqﬂc=wm, i=12..p, k=12..q

where

r (b )
= Z J ﬁ,jdgj,k and Bi,k = Z Jgj,k d:/;',j’
j=1Ja ji=1Ja
whenever the integrals appearing in these sums exist. In the same way it is possible
to define also integrals of the type [2Fd[G]H etc. if the products of matrices oc-
curring in the expressions are well defined.

Since the integral of a matrix valued function with respect to a matrix valued
function is a matrix whose elements are sums of Perron-Stieltjes integrals of real
scalar functions with respect to real scalar functions, all statements from this section
can be used also for such integrals.
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5. The space BV,

In this section we recall some basic properties of the linear space of functions with
a bounded variation from the functional analytic point of view.

Let us consider the linear set of all functions x: [0,1] - R with a bounded
variation var) x. Let this linear set with the norm

(51) x€BV - ||x|| g = |x(0)] + varg x

be denoted by BV[0, 1] or simply BV.
It is easy to check that (5,1) satisfies all the axioms of a norm.
If x € BV, then evidently

(52) |x(r)] < |x(¢) = x(0)] + |x(0)| < |x(0)| + varyx < ||x|sy forany te[0,1].

5.1. Proposition. The normed linear space BV is a Banach space (i.e. BV is complete).

(See Dunford, Schwartz [1] or Hildebrandt [1], 11.8.6.)

Further it can be easily shown that BV is not separable. Indeed, if we set x,(t) =0
for 0<t<a, x(t)=1 for a <t <1 for any ae(0,1), then evidently x,e BV
for any a€(0,1) and

[]xa - xB”BV =2

provided a, f e (0, l), o # B. Hence BV cannot contain a countable subset which
would be dense in BV. This implies that BV is not separable.

In the same way we can introduce the Banach space BV, of all column n-vector
functions x = (xy,...,x,)*: [0,1] > R, of bounded variation if for the definition
of varg x some norm in R, is used. The norm in BV, is given by

x€BV, > | x| sy, = |x(0)| + varj x.

It is evident that x: [0,1] — R, belongs to BV, if and only if any component x;,
i=1,2,..,n belongs to BV. Hence it is sufficient to consider only the space BV
instead of BYV,. All essential properties of BV are transferable to BV,

Let us consider some subspaces of BV which are of interest for the subsequent
investigations.

By NBV we denote the set of all functions ¢ € BV for which ¢(t+) = ¢(t) if
te(0,1) and ¢(0) = 0.

Similarly NBV ~ denotes the set of all functions ¢ € BV such that ¢(t—) = ¢(t)
for t€(0,1) and ¢(0) = 0. Further we denote by S the linear set of all functions
we BV such that w(t+) = w(t—) = ¢ = const. for every te(0,1), w(0) = w(0+)=c,
w(l)=w(l-)=c
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5.2. Proposition. The linear sets NBV, NBV ™, S are closed in BV.

Proof. Let {¢}, I = 1,2,... be a sequence with ¢, € NBV, such that llm lo: — @ sy
= 0 for some ¢ € BV. For te(O 1) we have

lo(t+) — o(t) = lo(t+) — oft+) — (o(t) — )] < [0 — @] av

for any natural | since ¢, € NBV. Hence ¢(t+) = ¢(t). Similarly for any | we have

l0(0)] = |@(0) — @(0)] < [l¢, — @]

and consequently ¢(0) = 0 and ¢ € NBV. The closedness of NBV ~ and S can be
proved by the same reasoning.

We denote by AC the linear set of all absolutely continuous functions on [0, 1].
If xe AC then by definition there exists & > 0 such that for every system [a;, b;],
i = 1,..., k of nonoverlapping intervals on [0, 1] with

n[\/]:e

(b—a) 1)

we have

™M=

Ix(b) — x{a)| < 1

1

]

i
If we subdivide the interval [0, 1] into m intervals by the division points 0 = c,
<¢; <..<cp=1 such that ¢; —¢;_; <d, i=12,..,m, then vari x <1

m
for i =1,2,...,m and consequently var}x = Z vary_ x < m. Hence xe BV and

i=1
the inclusion AC = BV holds.

5.3. Propeosition. The linear set AC is closed in BY.
Proof. Let klim lew — @|sy =0 for 9BV and ¢, € AC, k =1,2,.... For an

arbitrary system [a;, b;], i = 1,...,k of nonoverlapping intervals in [0, 1] we have
k
i; le(b) — ola) < Z lodb) — o(b) — (edar) — ola)) + Z lodb) — oda)]

< o — ollay + zk: lodby) = o)

forany I'=1,2 .. Lete>0 be given. Let us choose an integer /, > 1 such that
le: = olls < e/2 for I > l,. For any fixed | > I, there is 6 > 0 such that if

S (b — a) < 6

i=

then

N

lodb:) — ea) < e.

i=1
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Hence by the inequality given above we have Z Iq)(b,») - (p(a,—)‘ < ¢ and @€ AC.
i=1

5.4. Remark. From 5.2 and 5.3 it is evident that if the closed linear sets NBV, NBV ~,
S, AC in BV are equipped with the norm (5,1) of BY, then they are Banach spaces.

By NBV,, NBV,”, S,, AC, we denote the closed linear subsets in BV, which are
defined similarly as NBV, NBV ", S, AC for n-vector functions. For the same reason
as above NBV,, NBV,", S,, AC, equipped with the norm of BV, are Banach spaces.

Let us now assume that x € BV and define w(0) = w(1) = x(0), w(t) = x(t) — x(¢+)
+ x(0) for te(0,1). Then evidently wesS, since the difference x(t) — x(t+) is
nonzero only on an at most countable set A < (0, 1) and

vargw =23 |x(t+) — x(t)] < 2varj x < oo.
teA

Further let us set ¢(r) = x(t) — w(¢) for te€[0,1]. It is ¢(0) = x(0) — w(0) = 0,
@(t) = x(t+) — x(0) for te(0, 1), (1) = x(1) — x(0), i.e. p € NBV.
In this way we have obtained

X=¢+w

for any xe BV where ¢ € NBV and weS. Since evidently NBVn S = {0}, this
decomposition is unique. Hence the Banach space BV can be written in the form
of the direct sum of closed subspaces NBV and §, i.e.

(5.3) BV =NBV@®S.
Similarly it can be shown that also the decomposition

BV=NBV~® S
holds.
For any x e BV and € BV we can define the expression

(54) flx) = ~le(t) dy(e).

By 4.19 the integral on the right-hand side in (5,4) exists. The functional f is evidently
linear. Further it is

10 = | 00w

(see 4.27). Hence if f is given by (5,4) with ¢ € BV, then fe BV*.

= s%pllx(t)| varg ¥ < [ x|y [V v
te[0,1

5.5. Proposition. Assume that w € BV. Then

(5,5) Jlx(t) dw(t) =0

0
for any xe BV if and only if weS.
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Proof. Let us suppose that [§ x(t)dw(t) = 0 for any xe BV. For a given a€ [0, 1]
we define x,(t) =0 if te[0,1]\{a}, x,(«)= 1. Then evidently x,e BV and we
obtain by the assumption -

Jl.x,(t) dw(t) = wa+) — w(o.c—) =0,

0
ie. wo+)=wa—) for any ae(0,1) and [§x,(r)dw(t) = w(l) — w(l=) =0,
[6 xo(t) dw(t) = w(0+) — w(0) = O (cf. 4.22). This means that w differs from a con-
tinuous function only on an at most countable subset in (0, 1).

Assume that w¢ S. Then there exist two points a, f € [0, ]], o < f8 such that o, f8
are points of continuity for w and w(x) + w(B). We define x, ,,(1) = 1 for 1€ [, §]
and X 4(t) =0 for te[0,1]\[«, . Evidently x, 4z BV. Using the properties
of the integral we obtain the relation

0 a

[ ekt 0 = wte) o)+ [ 0wt + () < w00
= [t = ) — vt + 0

which contradicts the assumption. Hence we S. Let us assume that we S; w is
evidently a break function with Aw(t) = w(t+) — w(t—) = 0 for every t€(0, 1)
and A*w(0) = w(0+) — w(0) = 0, A"w(1) = w(1) — w(1 —) = 0. Hence by 4.23 we
have [} x(t) dw(t) = O for every x e BV.

5.6. Corollary. Let y € BV be given. Using (5,3) ¥ can be uniquely written in the form
Y =@ + w where e NBV, we S and

le(t) dy(r) = le(t) do(t)
for every x € BV.

Let us define for x € BV, ¢ € NBV the relation
1
(5.6) (X, 9) = f x(t) do(z).
0

This relation evidently defines a bilinear form on BV x NBYV.

5.7. Lemma. Let ¢ € NBV. If {(x,¢)> =0 for every xe€ BV, then ¢ = 0.
Let xe BV. If {x,®) = 0 for every ¢ € NBV, then x = 0.

Proof. (1) If <x,@) = 0 for every xe BV, then ¢ €S by 5.5. Hence pe NBV N S
and by (5,3) we obtain ¢ = 0.

(2) Assume that <{x,¢)» =0 for every ¢ e NBV but x #+ 0. Then either there
exists ae (0, 1] such that x(a) + 0 or x(t) = 0 for all te(0,1] and x(0) + 0. In the
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first case we set ¢(t) = 0 for te€[0,a), ¢(t) =1 for te[a, 1]. Evidently (peNBV
and ¢ is a simple jump function (see 420) By 4.21 we have {x,¢) = [} x(t) do(t)
= x(a) # 0 and this contradicts the assumption. For the second case we set (o(t) =1
for te(0,1], ¢(0) =0, then ¢ e NBV is also a simple jump function (¢ = V)
and by 421 we have {x, @) = [§ x(t)de(t) = x(0) + 0. Again we have obtained
a contradiction and our lemma is proved.

5.8. Proposition. The pair of spaces BV, NBV forms a dual pair (BV, NBV) with
respect to the bilinear form (., .) given by (5,6).
Proof follows immediately from 5.7 and from the definition of a dual pair given

in 3.1.

5.9. Remark. It follows easily from 5.8 that (BV,, NBV,) is a dual pair with respect
to the bilinear form

xeBV,, e NBV, - (x, @) = Jx* )de(t) = Z J(r)d(pj)

Let us mention that for every fixed ¢ € NBV, by {(x, @) a bounded linear functional
on BV, is defined. In fact, we have by 4.27

[ 0000 =

for every x e BV, and ¢ € NBV,.
The space BV, has important subspaces called the Sobolev spaces WP (1 <p < )
including in particular the space AC, of absolutely continuous functions on [0,1].

(sup |x(t))) (varg @) = (varg @) || x]| gy,
te[0,1]

|<x, @)| <

5.10. Definition. Given a real number p, 1 < p < oo, WP denotes the space of all
absolutely continuous functions x: [0, 1] — R, whose derivatives x’ are I*-integrable
on [0, 1]. Furthermore,

el = <00 + (| @l ar) "= w0

(WP = W? and instead of ||. | ,» we write ||.|,,.)

for any xe W?F.

5.11. Remark. Evidently, any W (peR, p > 1) equipped with the norm |.|,.,
is a linear normed space.

5.12. Remark. It is well-known that any x € BV, possesses a.e. on [0, 1] a derivative
x'(t) which is L-integrable on [0, 1] (x’€L}). Furthermore, x € AC, if and only if
there is ze L such that

x(t) = x(0) + J;z(r) dt  on [0,1],
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ie. W' = AC,. Given x€AC,, we have varyx = ||x'||,, and therefore also the
norms |.| 4 and |.|, are identical (cf. e.g. Natanson [1]).

5.13. Proposition. Given pe R, p > 1, the space W} is isometrically isomorphic
with the product space LI x R, and its dual space is isometrically isomorphic with
L% x R¥, where q=pl(p — 1) if p>1and g= o0 if p=1.

Proof. (a) The mapping xe W’ —(x’, x(0))eL? x R, and its inverse (z, ¢)eL? x R,
— x(t) = ¢ + [, z(r)dre W7 establish an isometrical isomorphism between W
and L? x R,.
(b) Let f be an arbitrary linear bounded functional on W? and let us put for any

ceR, and zeL? f,(z) = f(¥Yz) and f,(c) = f(Pc), where

t

'I’:zeLf,—»Jz(r)dzeW,,", P: ceR,—>ut) =ceWr.

0
Then f, and f, are linear bounded functionals on L2 and R,, respectively, while
f(x) = f(¥x + ®x(0)) = f,(x') + f2(x(0)) for any xe W?. Consequently, given
f€(Wp)*, there exist uniquely determined y*e LZ (g=p/(p —1)if p>1, g= o0
if p=1)and A*€ R} such that (cf. 3.10)

1
flx) = j y*(t)x'(f)dt + 4* x(0)  for any xeW/?.
0
Furthermore,

14 = sue 1A= ly*lee, [f2] = sup| ()] = 4%
and hence v

1=, 5017 = " #s = Iy + 44
x Wp= .
5.14. Remark. In accordance with 3.6 we denote for x e WP, y*e L? and 4* e R}
1

x, (y*, A%y = X, y*>, + A* x(0) = J y*(¢) x'(¢) dr + A* x(0).

0

Let us notice that x € WP — (x, (y*, A*))y is the zero functional on W} if and only
if y*(t) =0 ae. on [0,1] and A* = 0. As a consequence we have

5.15. Proposition. If y* € LI and i* € R*, then

1
J y*e)x'(t)dt + 2*x(0) =0  forany xe W}
0o

or

1
J y*t)z(t)dt + A*¢ =0  forany zel? and ceR,

0

if and only if y*(t) =0 a.e. on [0,1] and A* = 0.
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5.16. Proposition. Se B(W?, R,) if and only if there exist an m x n-matrix M and
an m x n-matrix valued function K with ||K|,, <o (@=p/lp—1) if p>1,
q = if p=1) such that

Sx = M x(0) + J K(t)x'(t)dt  for any xe WP,

5.17 Lemma. Let fe BV be right-continuous on [0, 1) and left-continuous at 1 and
J(1) = 0. Then

J]x(s) df(s) =0  forany xe W’ with x(0)= x(1)=0

0
if and only if f(t)=0 on [0, 1].
Proof. Let us assume that f(¢{) %0 on [0,1], e.g let f(t,) + 0. Then var} f
> | f(1) = f(to)] = | f(to)] > O. Let & > 0 be such that « = varg f > 3¢ > 0. By the
definition of a variation there exists a subdivision {0 =1, <1, <...<t, =1}
of [0, 1] such that

SIaf] = Y1)~ Sl > o=

for any of its refinements ¢ = {0 = 5, < s, <... <s, = 1}. In virtue of the one-
sided continuity of f there exist t;€(0,1) (j =1,2,...,m) such that 0 <7, <
<t <<t <Lt <t <t;(j=12...m=1)¢t, <7, <1,<t,=1

m—1

and

S0 = 1)+ 110) = flea) < 3, vari £+ vard, /<.

Putting x(0) = 0, x(t) = sign(f(¢;) — f(t;-,)) for te[7;_,t;] (j=1,2,...m—1),
x(t) = sign(f(t,) — f (tm-y)) for te[t,-,, 7], x(1) =0 and extending the defi-
nition of x to the whole [0, 1] in such a way that x is linear on the rest of [0, 1],
we obtain

m—1

5 [ soats) + | el

L‘x@)

A+ e = a5, [ 50000 + | el

m—1
< Y vary f+ var) f<e.
i=o

Hence

> L AS) = S )l + | f(5) = Sl = 2> TS| = 26> 2 = 36> 0,

ji=1
where 6 ={0=1,<1y<t, <74 <...<lpy < Tpoy < Tp <1, = 1}. Since
obviously xe W? and x(0) = x(1) = 0, this completes the proof.
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6. Variation of functions of two variables

Various definitions of the variation of functions of two or more variables are known.,
In our considerations we use one of them, the so called Vitali variation. This section
is devoted to the definition of this sort of variation for functions of two variables
and to the fundamental properties of functions with finite variation in this sense.

Let a nondegenerate interval I = [a,b] x [¢,d] = R, be given. We consider
a real function k: I - R defined on .

For a given subinterval J = [d,b'] x [¢,d]cl,a<a <b' <b, c<' <d' <d
we set

(6.1) myJ) = k(b', d') — k(b', ¢') — k(a', d') + k(' ¢').
Let us define
(6.2) v,(k) = sup |Z|mk(-]i)| ’

where the supremum is taken over all finite systems of nonoverlapping intervals
J; =1 (ie. for the interiors J? of the intervals J, we assume that J) nJ9 =0
whenever i + j).

6.1. Definition (Vitali). The real function k: I — R is of bounded variation on I
if v,(k) < + oo.

6.2. Remark. If on the interval I = [a,b] x [c,d] ann x n-matrix K(s, t) = (k;{s, t))
(i,j = 1,...,r) is given, ie. K: I - L(R,), then we can set

me(J) = Kb, &) - K(t/, ¢) — K(a', &) + K(d, c)

as above and define the number v,(K) = sup ) |m(J,)| in the same way as in (6,2)

where the norm in the sum on the right-hand side is some norm of an n x n-matrix
(cf. 1.1). For the case of the norm defined in 1.1 we have evidently v,(k;;) < v,(K)
forall i,j=1,2,...,n

6.3. Remark. Assume that a =y <o, <.. <o, =b, c=p, <y, <...<y =d
are some finite subdivisions of the intervals [a, b], [c,d] respectively. The finite
system of subintervals

Jiy=loi-no] x [v-ny],  i=L.oLk, j=1,..1

is called a net-type subdivision of the interval I = [a,b] x [c,d]. Evidently every
net-type subdivision of I is a finite system of nonoverlapping intervals.

It is easy to see that for every finite system of nonoverlapping intervals J; = I
there is a net-type subdivision of I such that every J; is the union of some of its
elements. Using this fact it is not difficult to show that for the definition of v (k)
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from (6,2) the supremum can be taken over all finite net-type subdivisions and the
number v,(k) remains unchanged.

6.4. Examples. Assume that fe BV[a, b], ge BV[c,d]. Then for ks, 1)
= f(s) g(t): [a,b] x [c,d] - R we have by definition

b
Let us set Vla.mx[c,al(k) = var, fvarlg < w .

h(s,t) =0 for 0<t<s<1,  hst)=1 for 0<s<r<l.

Then for every net-type subdivision J;; = [a;_y, 0] x [o;_y,05], i,j=1,..,k,
0=0ay<a; <..<o =1 wehave
k k k
,Z,lmh(lf.j)l Z'ZJmh(Ji.i)' + ,Zzlmh(" i) =2k — 1
ij= i= i=
since my(J, ;) = 1, m(J;;—,) =1 and my(J; ) = 0 if j % i,i— 1. Hence V(o 1;x(0.1)(h)
cannot be finite.
The following lemma can be easily verified.

6.5. Lemma. If I;c I <R, j=1,...m is a finite system of nonoverlapping in-
tervals in I and k: 1 — R, then

s

(6,3) vi (k) < vilk).

1

]

J

6.6. Lemma. Let k: I =[a,b] x [c,d] > R be given such that v (k) < oo,
vart k(., 7o) < 0o for some y,€[c,d], ie. k(., 7)€ BV[a,b] for some y,€[c,d].
Then k(., y)€ BV[a, b] for all y€[c,d] and

(6:4) varb k(., 7) < vi(k) + varj k(., 7).

If k: [a,b] x [c,d] = R and ye[c,d] is fixed, then we denote the usual variation
of the function k(s,y) in the interval [a,b] by varik(.,y). Similarly for vard k(a, .)
where o€ [a,b] is fixed.

Proof. For any y,7,€[c,d], o;_,,a;€[a,b] we have
Ik(“j’ y) — ka1, y)' = lm-’j(k)| + |k(°‘j, o) — Kkl@- 15 Vo)'

where J; = [o;_;,a;] X [70,7]. Hence for each finite decomposition a = a, < a,
<..<ao =b wehave

k
.Zl|k(°‘j’ ¥) = ko1, 7))
i
k k
< Zl|m 5, (k)| + lek(af’ Vo) — k(&tj— 1, Vo)| < Vi(k) + varb k(., 7o)
j= j=
and this inequality implies (6,4).
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For a given k: I - R, I = [a,b] x [c,d] we put

(6.5) o(a) =0,  y(0) = Vg xiak) for oe(ab]
and similarly
(6,6) 0y(c) =0,  @y(1) = Vpapyxpeqglk)  for te(c,d].

6.7. Lemma. The function w,: [a,b] > R from (6,5) is nondecreasing on [a,b],
w,(b) = v,(k); hence w,eBV[a,b] if v,(k) < +o0. Similarly for the function
w,: [¢,d] = R from (6.,6).

The proof follows easily from the definitions.

6.8. Lemma. If k: I >R, I=[ab] x [c,d], vik) < oo and varlk(.,c) < oo,
then the set of discontinuity points of k in the first variable s lies on a denumerable
system of lines in I, which are parallel to the t-axis.

Proof. For any s,s,€[a,b], te[c,d] we have
|k(s, £) — k(so, 1) < |k(s, ) — k(s, ¢) — K(so, t) + k(so, )| + |k(s, c) — k{so, c)|
< |oy(s) — @,(so)| + |vari k(., c) — vari k(., ¢)|
where ,: [a,b] — R is given by (6,5). Since w, € BV[a, b] by 6.7 and the function
var$ k(., ¢) is also of bounded variation on [a, b], the above inequality gives that
there exists an at most denumerable set of points M < [a, b] such that lim (s, t)

= k(so,t) whenever so€[a,b]\M and te[c,d] are arbitrary. This yields our
proposition.

6.9. Lemma. If k: I > R, v,(k) < co, varjk(., c) < oo, var! k(a, .) < oo, then the
set of discontinuities of k in I = [a,b] x [c, d] lies on a denumerable set of lines in I
parallel to the coordinate axes.

This proposition is proved in Hildebrandt [1], 1I1.5.4. If k(s,¢) satisfies the
assumptions of 6.8 then h(s,t) = k(s,t) — k(a, t) satisfies the assumptions of 6.9
and 6.8 is a corollary of 6.9.

6.10. Lemma. If k: [ > R, I = [a,b] x [¢,d], v,(k) < + o0, then for an arbitrary
subdivision ¢ =7y, <7y, <...<7y, =d and any two points s,s,€[a,b] we have

1

> [var (k(., v) = k(. y;-1)) — varit (k(-, 7)) = k(- 7;- )| < [@i(s2) = @4(s,)]

=1
where w,: [a,b] > R is defined by (6,5).

Proof. Let us set h(s,t) = k(s, t) — k(s,c) for (s,¢)el. Then h(s,c) =0 for any
se[a,b] and by 6.6 var h(., t) < oo for any t € [c,d] because evidently v,(h) < co.
Hence vars k(., t) is finite for any se[a,b], te[c,d]. For any j = 1,...,] we have
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h(s,y;) = h(s, ;- 1) = k(s,7;) — k(s, 7;-,) and var} (k(., 7;) — k(., 7,-,)) is also finite
for every se[0,1]. This implies that for any j = 1,...,] we have
[var? (k(.. 7)) = k(- vj-1)) = varit (k(., 7)) = K(-. 7;- 1)
< |varjf (k(’ yj) - k(’ yj— l))| < V[s;,.\zlxl)',—hv_;](k)’

By 6.5 we obtain the inequality
]
‘Zlvlm.xz] <ty 1) = Vi sarxiealk)
i<

= |"[a.szlx[c.-11(k) - V[a.mx[c.dl(k)i = |w1(52) - (1)1(51)1

which yields our result.

6.11. Lemma. If k: I > R, I =[a,b] x [¢,d], v,(k) < oo and for some s, € [a,b]
the relation

(6,7) lim [k(s, t) — k(so, t)| = 0

s—sot

holds for all t € [c,d]. then
(6,8) lim w,(s) = w,(so)

s—sot
where w,: [a,b] - R is defined by (6.5).
This is proved in Schwabik [2], Lemma 2.1.
6.12. Remark. If for k: I - R we have v,(k) < oo and var k(., ¢) < oo, then by
6.8 the relation (6,7) is satisfied for all s, €[a,b] except for a denumerable set of
points in [a, b]. Moreover, in this case k(., t)e BV[a,b] for every te[c,d] (cf. 6.6).
Hence by the elementary properties of functions of bounded variation the onesided
limits lim k(o, 1) = k(s,+, 1), lim k(o,1) = k(sy—, t) exist for every s, € [a,b),
g—+so+ [camd I
S € (a, b], respectively, and for every te[c,d].

6.13. Lemma. If k: I - R (I = [a,b] x [c,d]) is given, then for every s,, s, €[a, b]
we have

(6.9) var? (k(s, .) — k(sy, ) < |oy(sy) — wy(s,)|
where w,: [a,b] — R is defined in (6,5).
Proof. For an arbitrary subdivision ¢ =y, <7y, <...<y, =d we have by 6.5
j§1|k(52’ 7i) = K1 7)) = kl(s2,75-1) + K(s1.v;-1)
< Vs eal®) < Vasxealk) = Viesaxealk) = loi(s:) — o4(sy))

and proceeding to the supremum for all finite subdivisions of [, d] we obtain (6,9).
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6.14. Lemma. Assume that k: I - R (I = [a,b] x [c.d]) is given with v,(k) < o
and for some s, € [a, b) the limit

(6,10) lim k(s, 1) = k(so+, t)

s—*sot+

exists for every t€[c,d]. Then

lim var? (k(so + 0, .) — k(so+, .)) = 0.

-0+
Proof. Define k°: I - R such that k%s,t) = k(s, 1) if (s,t)e I, s + s, and k%(so, 1)
= k(so+, t). Since var?(k(so+, .) — k(so, .)) < o0 we obtain v,(k°) < oo. Let
) [a,b] > R, wia) =0, 0) = Viaoxieaq(k’) for o€ (a, b). Since
lim +(ko(s, t) — k%so, 1)) = 0 for every t € [c, d], we have by 6.11 Slﬂiin*wo(s) = 0)(s,)-

For every 6 > 0 such that s, + & € [a,b] we have by 6.13
vard (k%(so + 6, .) — k°(so, .)) = vard (k(so + 3, .) — k(so+, .))
< |@(so + &) — @(s)| -
The limitation process 6 — 0+ yields our result.
6.15. Corollary. If k: I >R (I =[a,b] x [c,d]) is such that v,(k) < o and
var) k(., ¢) < oo, then for any s, € [a,b) we have
varg (k(so+, -) = K(so, -)) < @i(so+) — @y(so)
where w,: [a,b] = R is given by (6.5).

Proof. The assumptions assure by 6.6 that var} k(., t) < oo for every te[c,d]
and consequently the limit lim k(s,t) = k(so+, t) exist for every te[c,d]. The
s—so+

statement follows immediately from 6.13.

6.16. Corollary. If k: I > R, v,(k) < oo, varb k(., ¢c) < co, then for any s,€[a,b)
we have
lim  sup |k(so + 6, t) — k(so+, 1)) =0,

-0+ tefed]
aljrgl+k(so + 0, t) = k(so+, t) uniformly in [c,d].
Proof. For any t€[c,d] we have evidently
|k(so + 0, t) — k(so+, t)| < |k(so + 8, ¢) — k(so+, ¢)| + var? (k(so + 3, .) — k(so+, .))

and our result follows immediately from the fact that lim k(s, c) = k(so+, c)
exists and from 6.14. s~s0+

6.17. Remark. It is easy to see that the statements from 6.14, 6.15 and 6.16 are
also reformulabie for the case of left-hand limits.
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Further it is clear that 6.4—6.16 are also valid if the real function k: I - R is
replaced by a matrix valued function K(s, t) = (k;{s, t)). If some continuity properties
are needed, then the usual norm of a matrix is used. Compare also 6.2.

6.18. Theorem. Let k: I > R, I =[a,b] x [c,d] be given. Let us suppose that
vi(k) < + 00 and var! k(a, .) < oo.
If ge BV[c,d], then the integral

(6,12) rg(t) d/[ (s, 1)]

c

exists for every se[a,b]. For any se[a,b] the inequality

[[ot0 0

<

(6,13)

j lg(2)] d,[vart k(s, .)] < sup [g )| var? k(s, .)

holds and moreover

019 vart( 000 1) < [t dout) < sup o] v

<

where w,: [¢,d] — R is defined by (6,6). Thus the integral (6,12) as a function of the
variable s belongs to BV[a, b].

Proof. By 6.6 k(s, .)e BV[c,d] for every se[a,b]. Hence by 4.19 the integral
(6,12) exists for every se[a, b], The inequality (6,13) follows immediately from
4.27. In order to prove (6,14) we assume that an arbitrary subdivision a = «, < o,
<...< o = b of the interval [a,b] is given. By 4.27 we have

j "gl0) 4kt 1) — Ko, )]

<

< (‘oo dvar e ) - K1)
Consequently

(6,15) i

j "g(0) Ko ) — Koy, 0]

< f|g(x)| d (i‘;var’c (Ko ) — Kot .))).

Using 6.10 we obtain for all t,t€[a,b]

[t = 7| lo(o)

i‘;vari (ke ) — Kl s, ) — zvar (koo ) — Kot _)),
< (t = 1) |9(0)] (@2(t) — 5(v))
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since ,: [¢,d] - R is nondecreasing and consequently 4.26 gives the estimate

flg(rn d (Z (ko -) = Kl 1, -”) = f'g(')' ol

Since this holds for every subdivision of [a, b] we get by (6,15) the inequality

var} (J'dg(t) d[k(., t)]) < Jd|g(t)| dw,(t).
By 4.27 we have
J lg(¢)| dev,(r) < sup |g(1)] varé w, = sup |g(t)| v,(k).

te[c,d) tefe,d)

6.19. Corollary. If the assumptions of 6.18 are satisfied, then

£ "ol0) 4 [Ks. 0]

< sup |g(¢)| (var? k(a, .) + v,(K)).

te[c,d]

(6.16) sup

sefa,b]

Proof. For any se[a,b] we have by 4.27
[0 ats.0) < | [ "0 afsta 1| + varz ([ a0 a s 1)
< sup |g(t)| var? k(a, .) + var® ( J dg(t) d,[K(., t)])

tefc,d] c

<

(6,16) follows now easily from (6,14).

6.20. Theorem. Let k: I = [a,b] x [c,d] - R be given. Suppose that v,(k) < oo,
vard k(a, .) < oo and varb k(.,.c) < oo. If fe BV[a,b], ge BV|[c,d], then

@) [awa([ws00w)=['([wamea)eo

holds and the integrals on both sides of (6,17) exist.

Proof. By 6.18 [?g(z)d,[k(., t)]€ BV[a,b] and 4.19 yields the existence of the
integral on the right-hand side of (6,17). By 6.6 we obtain (., t)e BV[a,b] for
every te[c,d] and by 4.19 also the existence of the integral {5 k(s, t) df(s) for any
telc,d]. Let ¢ = yo <7, <... <7 =d be an arbitrary subdivision of [c,d]. For
any se[a,b] and i = 1,...,] we have
ks, 72) = kls, 7i-)|
< Ik(S, 'y,~) - k(a, 7.') - k(S, Yi- 1) + k(a, Yi- 1)| + |k(a, 7.') - k(a, Yi- 1)|
=< V(ﬂ-t]*[r.--x.v.-)(k) + lk(a’ 7:') - k(a, Yi- I)I .
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1.6

Hence by 4.27 and 6.5

3 | - o

= .; (Ve <t palk) + |Ka, v:) — Ka, v;-4)[] varg f
< (vilk) + var? k(a, .)) var® f < 0.

Taking the supremum over all finite subdivisions of [c,d] on the left-hand side
of this inequality we obtain

o9 v ([ ) 019) £ (0 + vk ety < o

a

From 4.27 the existence of the integral on the left-hand side of (6,17) follows.

Let now ae[c,d] and let y;(t) be the simple jump function defined for ¢ € [c,d]
(see 4.20). By 4.21 we have

fw:(r) 4 [k, )] = ks, d) — K{s,a+)

and

(6,19) r (jdwj (¢) d,[k(s, t)]) df(s) = ‘r (k(s, d) — k(s, ot +)) df(s).

a c a

On the other hand, we have by 4.21

620 [w00] [Ms009|= [Meda - im [Hs.or) a9

c a

= Jim, | 6.0~ Ks.a+8) 470,

By 4.27 we have

~r(k(s, a+) — ks, o + 8)) df(s)

< sup |k(s, o +) — k(s, o« + 5)| var® f
sela,b)

and by 6.16 we obtain

al_i'rgk Jb(k(s, a+) — k(s, o« + ) df(s) =
Hence by (6,20)

[w0a] [Hs.0909] = [[666.0 - ks.xt )ty

and this together with (6,19) yields that for g =y, the equality (6,17) is satisfiec
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1.6

In the same way it can be proved that (6,17) holds if we set g(t) = ¥ (t), where
y, is the simple jump function given by (4,13). From these facts and from the linearity
of the integral it is now clear that (6,17) holds whenever ge BV|[c,d] is a finite
step function (cf. 4.20).

Let now ge BV[c,d]. There is a sequence g,€ BV[c,d], | = 1,2,... of finite step
functions such that lim g/(t) = g(t) uniformly on [c,d] (see Aumann [1], 7.3.2.1).

Since by (6,18) it is [*k(s, .) df(s) € BV[c,d], we have by 4.17

) g [o0a([000) = [0 (] kena).

Further by 6.19 we obtain

f‘lg(t) ~ o) d[Ks. 0]

< suplg(t) — g/(t)| (vars K(a, .) + v(k)).

tefc,d)

sup
sela,b]

d

tm [*ai) 4l 01 = [ o) [kt )

(4

Hence

uniformly on [a, b] and by 4.17 the relation

62 im ([ a0t on)o = [ ([ a0 a0 o

a < a <

holds. Since g, are finite step functions we have for any I =1,2,...

[ ([atra0s.00) ) = [‘aty ([ s 169

as was shown above. Consequently, by (6,21) and (6,22) we obtain the desired
equality (6,17) and the proof is complete.

6.21. Remark. If all assumptions of 6.20 are satisfied, then it can be proved that
the equality

6 [wa([ e = [ ([ aameo)
also holds (see Schwabik [2]).
6.22. Theorem. Let K(s,t): I = [a,b] x [c,d] - L(R,) be given, K(s, t) = (ki{s, t)),

i,j=1,...,n. Suppose that v/(K)< co, var?K(a, .) < o, variK(.,c) < oo. If
x e BV,[c,d], ye BV,[a,b], then the equality

029 [ ([[armenx0) v = [0 0 (] K60009)

holds and the integrals on both sides of (6,24) exist.
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Proof. By definition we have

(629 [/ ([ atxs.01x0) ans
(% [oattsn)ans = £ £ ['([0atesan)ans.

i=1 j=1 Ja
Since all x;, y;, k;j, i,j =1,...,n satisfy the assumptions of 6.20 we can use this
theorem for the interchanging of the order of integrations in the expression (6,25).
If we do this we obtain

[[([atwsonxo) avs = 3 3 [t ([ s ant0)
-3, [ (], Epsan >)=fx*<t> o[ an9)

and (6,24) is proved.

it

6.23. Remark. A similar formulation in terms of a matrix valued function K and
vectors x, y can be given for the equality (6,23) from 6.21.

6.24. Remark. In this paragraph only such results on functions of bounded variation
in two variables are presented which are in some manner used in the forthcomming
investigations of integral equations in the space BV,. For the reader interested
in this topic we refer to further results contained in the book Hildebrandt [1], I11.4.
(for example Helly's Choice Theorem, Jordan decomposition, etc.).

6.25. Remark. Let I = [a,b] x [c,d] be given. Let us denote by SBV(I) the set
of all functions k: I — R such that v/(K) < oo, varbk(., ¢) < oo, vardk(a, .) < c.
SBV(I) is evidently a linear set. SBV/(I) can be normed by setting
[k]| = |k(a, c)| + varbk(., c) + var? k(a, .) + v/(k).
Evidently
k(s,t)] < ||k|  for every (s, t)el.

The same holds even if the functions on I are matrix valued.

7. Nonlinear operators and nonlinear operator equations
in Banach spaces

This section provides the basic tools for the investigation of nonlinear boundary
value problems for ordinary differential equations contained in Chapter V. The

reader interested in more details concerning differential and integral calculus on
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Banach spaces is referred to the monographs on functional analysis (e.g. Kantorovi¢,
Akilov [1]).
Throughout the paragraph, X, Y and Z are Banach spaces.

7.1. Preliminaries. Given a Banach space X with the norm |.||x, ¢o > 0 and

xo€ X, B(x,,0,; X) denotes the set of all xe X such that ||x — xo[/x < go.
Let F be an operator acting from X into Y and defined on D < X (F: D - Y).

F is lipschitzian on D, = D if there exists a real number 4, 0 < 4 < o, such that

[Fix) = Fx')ly < A% = x| x

for all x',x"eD,. If A < 1, F is said to be contractive on D,

The operator F: D = X x Z — Y is said to be locally lipschitzian on D, < D
near z = z, if for any x,€ D, there exist g5 >0, 6, >0 and A > 0 such that
x', x" € B(x,,00; X) and ze B(zy, 0y; Z) implies (x',z)eD, (x",z)eD and

|Fix', 2) = Fix", 2)]ly < A% = x"[ x.

7.2. Giteaux derivative. The opefator F acting from X into Y and defined on
D < X is Gdteaux differentiable at x, € D if there exists a bounded linear operator
Ge B(X, Y) such that for any ée X

F(x, + 9&) — F(x,)

li
m 9

$-=0

=0.

Y

— G¢

G is the Gdteaux derivative of F at x = x, and is denoted by G = F/(x,). If F(x)
exists for all xe D', where D' = D is an open subset in X, and the mapping

F: xeD,— F(x)e B(X, Y)

possesses the Gateaux derivative H e B(X, B(X, Y)) at x = x, €Dy, M is said to
be the second order Gdteaux derivative of F at x = x, and H = F'(x).

In general, if H is the k-th order Gdteaux derivative of F on D, « D < X and
L is the Giteaux derivative of H at x = x, € D,, then L is the (k + 1)-th order
Gateaux derivative of F at x, and L = F**1(x,).

Let X,, X,,..., X, be Banach spaces. Let F: (x,, x,,...,x,) > F(x,,x,,...,x,)€ Y
be an operator from the product space £ = X, x X, x ... x X, into a Banach
space Y. The derivative of F at a point x = (x,, X,, ..., x,) with respect to the j-th
variable (i.e. if we fix the other variables and F is considered as an operator from
X into Y) is denoted by F{x) or F; (x). (F(x) is defined and continuous on the open
subset D < E if and only if F{x) (j = 1,2,...,n) are defined and continuous on D.
Then for any xeZ and & = (§,,&,,..,&,) €&

[F(]¢ = 3 [F(c) & ).
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If on D = £ F possesses all the derivatives F}”J"(x) (j = 1,2,...,n) which are con-
tinuous in x on D, we shall write Fe CP*-?>-P«D). If F is continuous on D, we
shall write Fe C(D).
Let us summarize some basic properties of the Gateaux derivative.
(i) Any linear mapping A€ B(X,Y) is Gdteaux differentiable on X and A'(x)=A
for any xe X.
(ii) If the operators F,F,: X - Y are Gdteaux differentiable at x,e X and
oy, €R, then also a,F, + a,F, is Gdteaux differentiable at x, and

(@, F, + oyFy) (%) = a,Fi(xo) + a2F3(xq) .

(iii) Let the operators F: X - Y and G: Y —» Z be Gdteaux differentiable on open
subsets D = X and Dg < Y (Dg > F(Dy)), respectively. Then, if the mapping

yeDs < Y- G'(y)eB(Y, B(Y, Z))

is continuous (G e C'(Dg)), then the composed operator T = GF: X —> Z is
Gateaux differentiable on D . If, moreover, Fe C'(D ), then also Te C'(D).

(iv) If the operator F: X — Y is Gdteaux differentiable at any point x of the domain
D in X and ||F(x)|px.yy <M < o0 for any x €D, then F is lipschitzian on D
(with the Lipschitz constant M).

7.3. Abstract functions. The operators acting from R into a Banach space Y are
called abstract functions.

The derivative f' of the abstract function f: R — Y at the point t, € R is defined by

f(t) — f(to)

t—to

lim
t—to

~ f(to)

Y

Let the abstract function f: R — Y be defined and continuous on the interval
[a,b] (=0 <a < b < ). Then there exists y €Y such that given & > 0, there
is a 6 > 0 such that for any subdivision ¢ = {a =t, <t; <...<t, =b} of the
interval [a,b] with (t; — t;_,) <6 (j=1,2,..,m,) and for an arbitrary choice
of tje(tj_y, 1) (j = 1,2,...,m,) it holds

mq

L) —t-0) —y

j=1

<eée.
Y

We denote
b
y= J f(t) de

and y is said to be the abstract Riemann integral of f(t) over the interval [a, b].
The abstract Riemann integral possesses analogous properties as the usual
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Riemann integral of functions [a,b] - R. In particular, if ||f(1)Hy <M< ¢ on

[a, b], then \
[t0a

Furthermore, if f’ exists and is continuous on (, f) = [a, b], ther

< [ a < me - .

Y a

7.4. Lemma (Mean Value Theorem). Let X, Y, Z be Banach spaces, and x,e€ X,
z,€Z. Let the operator F: X x Z — Y be defined and Gdteaux differentiable on
B(x0, 005 X) x B(2o, 003 Z) (20 > 0, o > 0). Then for any x;, X, € B(xg,00; X)
and z,,2,€B(zo,00; Z)

Fx;,2,) — F(x;,2,) = Ll[";(xl + 9(x; — x,), 2, + Yz, z)))] (x; — x;)d9

1
+ J [F (¢, + 8(x; — x,), 2, + Nz, — 2,))] (2, — 2,)d9.
(4]
(The mapping
9e[0,1] - [Flx; + 9(x; — x,), z; + Hz, — )] [(x2, 22) — (x4, 2,)]
= [Flx; + 8(xy — x;), 2, + 3z, — 2)))] (x, — xy)
+ [F(xy + 9(xy — x;), 2z, + 8z, — 2,))] (z, — ;)€ ¥
is an abstract function.)
7.5. Theorem (Implicit Function Theorem). Let X, Y and Z be Banach spaces,

xo€X, z0€Z, 9o >0, 6o > 0. Let the operator F: X x Z > Y be defined and
continuous on B(Xo, 00; X) X B(zo, 0¢; Z), while

(i) Flxo, zo) = 0;
(i) FeC°(B(xg, 005 X) X B(zg, 00; Z)) (cf. 7.2);
(iii)  Fi(xo,2o) possesses a bounded inverse operator.

Then there exist ¢ > 0 and ¢ > 0 such that for any z € B(zo,0; Z) there exists
a unique solution x = @(z) € B(x,, ¢; X) to the equation

(7,1) Fix,z)=0.
Moreover, the mapping z € B(zo, 0; Z) — ¢(z) € B(xo, 0; X) is continuous.

(Proof follows easily by applying Corollary 7.7 of the Contraction Mapping
Principle 7.6 to the equation

x = x — [F(xo,20)] " Fx,2).)
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7.6. Theorem (Contraction Mapping Principle). Let X be a Banach space and let
D = X be closed. Let the operator T: X — X be contractive on D and T(D) < D.
Then there exists a unique x € D such that x = T(x).

(The sought solution is the limit of successive approximations
x,=Tx,,) (n=12.),

n

where x, may be an arbitrary element of D.)

7.7. Corollary. Let X and Z be Banach spaces. Let xy€ X, o€ Z, 9o > 0, a4 > 0,
0 < A< | and let T be a continuous mapping of B(xo, 005 X) x B(zo, 0¢; Z) into X
such that

(i) [T0x1, 2) = Tlxs, 2)][x < A2y — x2x
for all x,,x, e B(xq,00; X) and z€ B(zy,0,; Z);

(ii) [ T(x0, 2) — X0 x < @o(1 — 4)
for all zeB(zy,04; Z).
Then, given z € B(z,, 64; Z), there exists a unique element x = ¢(z) € B(x,, 0o; X)
such that x = T(x, z).
The mapping z€ B(zo,0o; Z) — @(z) € B(xo, 005 X) is continuous.

Another version of the Implicit Function Theorem which is of interest for our
purposes is the following theorem which also follows from the Contraction Mapping
Principle.

7.8. Theorem. Let X and Y be Banach spaces. Let xo€ X, 0o > 0 and »y > 0.
Let the operators F: X > Y and G: X x [0,%,] — Y satisfy the assumptions

(i) F(xo) = 0;
(i) FeC'(B(xo, 00; X));
(iii) F(xo) possesses a bounded inverse operator;
(iv) G is locally lipschitzian on B(xo,0,; X) near ¢ = 0.

Then there exist ¢ > 0 and x > 0 such that for any ¢€[0,x] there is a unique
solution x = (&) € B(xy, 0; X) of the equation

(7.2) F(x) + ¢ G(x,e) = 0.

Moreover, the mapping €€ [0, x] — ¢(e) € B(xo, ¢; X) is continuous.

7.9. Quasnlmear equation — noncritical case. Of special interest are quasilinear
(weakly nonlinear) equations of the form

(7.3) Lx — eN(x,¢) =0,
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where L is a linear bounded operator acting from a Banach space X into a Banach
space Y with the definition domain D(L) = X (Le B(X,Y)) and N is in general
a nonlinear operator acting from X x R, into Y.

The case when L possesses a bounded inverse operator is called noncritical case.
In such a case the equation (7,3) is reduced to the equivalent equation

(7.4) x =¢L™! N(x,¢).

For ¢ = 0 (7.4) has the unique solution x, = 0. To solve it for ¢ > 0 we may apply
Theorem 7.8, where F=L and G = —N.

7.10. Quasilinear equation — critical case. A linear bounded operator Le B(X, Y)
possesses a bounded inverse if and only if N(L) = {0} and R(L) = Y (cf. Bounded
Inverse Theorem 3.4).

In a general case when either dim N(L) > 0 or R(L) & Y the projection method
may sometimes be used to consider the equation (7,3).

Let Le B(X, Y) be such that

(7.5) R(L) is closed, «L)= dim N(L) < o0,
B(L) = codim R(L) < o0

(L is said to be noetherian). Then there exist linear bounded projections P of X
onto N(L) (PeB(X), R(P)= N(L), P> =P) and Q of Y onto R(L) (QeB(Y),
R(Q) = R(L), Q*= Q) such that R(I —P) is closed in X, dim R(I — Q) = (L) and

(7.6) X=NL)®R(I-P), Y=R(L)®R(I - Q)

(cf. Goldberg [1] 1L.1.14 and 11.1.16). Thus Lx = & N(x, ¢) if and only if both

(7.7) Q(Lx — eN(x,¢)) = Lx — eQ N(x,) = 0
and
(78) (1 - Q)(Lx — ¢ N(x,5)) = —¢(l — Q)N(x.¢) = 0.

Any x € X may be written in the form x = Px + (I — P) x. For x € X let us denote
u = (I — P)x and v = Px. Then the system (7,7), (7,8) becomes

Liu—eQN(uv,e)=0, (I—Q)Ny(uv,e)=0,
where
L,: ueR(l — P)> LueR(L) = R(Q)
and
N(u,v,&) = N(u + v, ¢)

for ueR(I — P), ve N(L) and &€[0,%,]. Clearly, L, € BR(I — P), R(L)) is a one-
to-one mapping of R(I — P) onto R(L). (L,u =0 implies ueR(P) and since
R(P)nR(I — P) = {0}, u = 0).
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7.11. Theorem. Let Le B(X,Y) fulfil (7,5) and let PeB(X) and Qe B(Y) be the
corresponding projections of X onto N(L) and of Y onto R(L)., respectively. Let
heR(L) and Lx, = h.

Let 0o >0, %5 >0 and D = B(xy,00; X) x [0,%,], Let NeC"(D), N(x,,0)
€ R(L) and (I — Q) N'\(xo,0) possesses a bounded inverse.

Then there are x > 0 and ¢ > 0 such that for any €€ [0, x] there exists a unique
solution x = ¢(g) € B(xo, 0; X) of the equation

(7.9) Lx = h + ¢N(x,¢).
The mapping ¢: ¢€ [0, %] > ¢(c) € B(xo, 0; X) is continuous.
Proof. Let us denote U = R(I — P), V = R(P) = N(L). Then U and V are Banach
spaces with the norms induced by |.|x. Given x€X, let us put u = (I — P)x
and v = Px. In particular, uy, = (I — P) xo, v, = Px,. Since he R(L), (I — Q)h=0
and (7,9) becomes

Lu—h—eQN@u+v,e)=0, (I—Q)N(u+v,¢) =0,

where L, = L|, € B(U, R(L)) possesses a bounded inverse. Let D, = U x V' x [0, %]
denote the set of all (u,v,e)e U x Vx [0,%,] such that |ju — up|y < 30, and
v — vo|x < 300 Given (u,v,e)eD,, (u + v, ¢)e D and we may define

Liu—h—cQN(u+v,e)

T(u,v,¢) = R(L R(I — .

(u,v.2) < (- Q)N(u+v,e) €R(L) x R(I = Q)

Clearly, T is a continuous mapping of D, = U x V x [0,%,] into Y x Y. Moreover,
for any (u,v,e)eD, and (§,7)eU x V

: _ (L& —eQ[N,(u+v, &) (£ + )
[T(u.v)(u’ v, 8)](6’ ") - ((, _ Q) [N’x(u +v, 8)] (é + ”)>’

a

the mapping (u,v,e)e Dy = T, ,(u,v,e)e B{U x ¥, Y x Y) being continuous.
Since N(u, +v,, 0)e R(L) and Lyu, = h, T(uy, v,,0) = 0. Moreover,

y : Llf
[Tiun(uos ¥o, 0)] (&, 1) = <(I — Q) Ni(x,,0) (¢ + 'l))

for any (&,n)e U x V. It is easy to see that for any peR(L) and qeR(l — Q)

[Tt vo, 0)] (&) = C)

ifand only if & = L7 'p and 5 = [(I — Q) Nx(x,,0)] ' q — & Applying the Implicit
Function Theorem 7.5 we complete the proof.
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II. Integral equations in the space BV,[0, 1]

1. Some integral operators in the space BV/,[0, 1]

In this paragraph we assume that on the twodimensional interval I = [0, 1] x [0, 1]
< R, an n x n-matrix valued function K(s,t) = k;{s,)), i,j =1,2,...,n is given,
ie. K: I - L(R,). Moreover let the twodimensional variation of K: I — L(R,) be
finite, ie. (cf. 1.6.1)

(L,1) v(K) < .

The operator j d,[K(s, 2)] x(¢)

0

Let us assume that x € BV,[0, 1] = BV, is given, i.e. x(t) = (x,(t), x5(t), ..., x,(t))*;
te[0,1]. If it is assumed that

(1,2) var§ K(0, .) < o0,

then by 1.6.6 we obtain var} K(s, .) < v/(K) + varg K(0, .) < + oo forevery se[0,1].
This yields by 1.4.19 the existence of the Perron-Stieltjes integral

(13) j a4 [K(s. 0] ) = (5)

0

for any se[0,1]. The integral (1,3) evidently defines a function y: [0,1] - R,.
By 1.6.18 we have

(1) varly < sup [x(9)] v(K)

te[0,1]

and consequently y e BV,. Hence the integral (1,3) defines an operator acting in
the Banach space BV,. Let us denote this operator by

(1,5) Kx = Jld,[K(s, )] x(r), xeBYV,.
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1.1. Theorem. If K: I — L(R,) satisfies (1,1) and (1,2) then the operator K defined
by (1,5) is a bounded linear operator on BV, (K€ B(BYV,)) and

(1,6) | K|l sisv,y < varg K(O, .) + v,(K).

Proof. The linearity of the operator K is evident. Further for any x e BV, it is

Jld,[K(O, t)] x(t)| + var} (Jld,[K(., 1)] x(t))

< sup |x(t)| (vars K(0, .) + v/(K)) < (varg K(0, .) + v/(K)) [ x| sy,

te[0,1]

L P

where (1.6,13) and (1.6,14) from 1.6.18 was used. This implies the boundedness of K
and the inequality (1,6). .

1.2. Lemma. If K: I - L(R,) and K: I — L(R,) satisfy (1,1) and (1,2), then

(1) [ w10 = | ek 1)
0 0
for every x € BV, and s€[0,1] if and only if the difference
W(s, t) = K(s, t) — K(s, t)

satisfies

(1,8)  W(s,t+)=W(s,t—) = W(s,1—) = W(s5,0+) = W(s, 1) = W(s,0)

for every se[0,1] and te(0,1).

Proof. The assumptions on K, K guarantee that for W: I — L(R,) we have
v(W) < oo and vary W(0, .) < co. Hence by 1.6.6 also varg W(s, .) < oo for every

s€[0,1]. The equality (1,7) can be written in the form [§d,[W(s, )] x(t) = 0.

The assertion of our lemma follows now immediately from 1.6.5 since (1,8) is

equivalent to the fact that for every se[0,1] the elements of the matrix W(s, .)
belong to S[0, 1].

1.3. Corollary. If K,K: I —» I(R,) satisfies (1,1) and (1,2) where for the difference
W(s, t) = K(s, t) — K(s t) the chain of equalities (1,8) holds for any se[0,1] and
t€(0, 1), then the operator K € B(BV,) defined by the relation

Kx = Jld,[k(s, t)] x(t), xe BV,

is identical with the operator K e B(BV,) defined by (1,5).
If we define for any se€[0,1]

(1,9) K(s,t) = K(s,t+) — K(s,0)  for te(0,1),
K(s,00=0, R(s,1) = K(s, 1) — K(s,0),
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then v,(R) < o, var}K(0,.) < oo and the difference W(s, 1) = K(s, t) — K(s, t)
satisfies (1,8) for any se[0,1] and te(0, 1). Hence the operator

Kx = Jld,[k(s, )] x(t), xeBY,

is the same as the operator K e B(BV,) defined by (1,5), i.e. K = K.

Proof. The first part of this corollary simply follows from 1.2. For the second part
it is necessary to show that K: I - L(R,) from (1,9) satisfies (1,1) and (1,2).

Assume that 0 = ay < @, < ... <o, =1 is an arbitrary subdivision of [0, 1]
and J;; = [o;_y, 0] x [@;-y,;], i,j=1,...,k is the corresponding net-type sub-
division of I (see 1.6.3). We have for any given § > 0

k
2 |Kla, o + ) — Kle, o) — K(oi— g,y + 8) + K(oti— 1, o)

i=1
k k
+ Y Y |K(e o+ 8) — Ko, ;g +6) — K(o—y, 0+ 0) + K(o— g, ;- + 6)] < v,(K)
j=2 i=1
where we assume that K(s,t) = K(s, 1) if ¢ > 1. Since for K: I - L(R,) (1,1) and
(1,2) hold, the limit 6lixgl+K(s, t+0) = K(s, t+) exists for every se[0,1], te[0,1].

Passing to the limit § - 0+ in the above inequality we obtain for K the inequality
k k

- ” 1|’"K(JU)|
3 ¥ Rl n) - Rz, ) — Rz z) + Kooy < vi(K)

which holds for every net-type subdivision J;; of I. Hence (see 1.6.3) we obtain
v/(K) < v/(K) < oo. Since var§ K(0, .) < oo and K(0, t) = K(0, t+) — K(0,0) differs
from K(0,) — K(0,0) only on an at most countable set of points in [0, 1], the
variation var} K(0, .) is finite. For W(s,t) = K(s, ) — K(s, ) we have evidently

W(s, t—) = K(s,t—) — K(s, t—) = K(s, t ) — lim K(s, 7+) + K(s, 0) = K(s,0)

if se[0,1], te(0,1). Similarly also W(s,t+)= W(s,1—) = W(s,1) = W(s,0+)
= W(s,0) = K(s,0) holds and the assertion of the second part of the corollary is
valid.

1.4. Remark. The corollary 1.3 states that we can assume without any loss of gener-
ality that the kernel K: I — L(R,), which defines by (1,5) the operator K e B(BV,),
satisfies

(1,10) K(s,t+) = K(s,f) forany se[0,1], te(0,1)
and
(L,11) K(s,00=0  forany se[0,1].
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It is clear that if in (1,9) the right-hand limit K(s, t +) is replaced by the left-hand
limit K(s, t—), then 1.3 holds too. This justifies the possibility of replacing the con-
dition (1,10) by

(1,10) K(s,t—) = K(s,t)  forany se[0,1], te(0,1).

Hence without any restriction it can be assumed that the kernel K: I — L(R,)
defining the operator K e B(BV,) by (1,5) satisfies (1,10') and (1,11), K remaining
unchanged also in this case.

Moreover, any operator K e B(BV,) given by (1,5) with K: I — L(R,) satisfying
(1,1) and (1,2) can be represented by a kernel K: I — L(R,) satisfying the additional
assumptions (1,10), (1,11) (or (1,10°), (1,11)). Using the notations from 1.5 the ad-
ditional assumptions (1,10), (1,11) ((1,10'), (1,11)) state that the elements k;s, t) of
K: I - L(R,) as functions of the second variable ¢ belong to the class NBV
(NBV™).

1.5. Theorem. If K: I — L(R,) satisfies (1,1) and (1,2), then the operator K € B(BV,)
defined by (1,5) is compact, i.e. K € K(BV,,).

Proof. For proving Ke K(BV,) we use 1.3.16. Let {x,}, x,€BV,, k= 1,2,... be
an arbitrary sequence with

[ %/l v, = |%i0)] + varg x, < C =const.,, k=1,2,....

By Helly’s Choice Theorem (cf. 1.1.4) there exists a function X € BV, and a sub-
sequence X, | =1,2,... of {x,} such that lim x, (t) = %(t) for any te[0,1].
Let us put e
(1) = x, (t) — X(), te[0,1], I=1,2,....

Then |z sy, < C+ |%|py, < 0, z€BY,, I =1,2,... and
(1,12) lim z(t)=0 forany te[0,1].
Using 1.6.18 (see (1.6,14)) we have

(L13)  varl ( le,[x(., 0] (xu6) f((t))) = varl ( L A K( )] z,(t))
< [0l douty

where ®,: [0,1] — R is nondecreasing, @,(0) = 0, w,(1) = v/(K), (see 16.7). For
every te[0,1] and I = 1,2,... we haveevidently 0 < |z()| < ||z,] sy, < C + | %[5y,
and the real valued function |z(t): [0,1] - R belongs to BV[0,1] for every
I =1,2,...,. Hence by 14.19 the integral {5 |2(t)| dw,() exists for every | = 1,2, ...
1.4.24 implies by (1,12)

lim Jllz,(t)| dw,(t) = 0

- 0
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and this together with (1,13) leads to the relation
1 1
(1,14) lim varg (j d,[K(., )] x,, (1) — J d[K(.,1)] i(r)) =0.
e 0 0
By (1.6.13) we have further

Uold.[K(O, 1) z(t)| < Ll|z,(t)| d[var}, K(0, .)]

and the same argument as above gives by (1,12)

(1,15) lim -0.

J, a0, 0700 - [tk %0

|

Let us now denote ¥(s) = 3 d,[K(s, )] X(z). By 1,1 evidently §e BV, and by
(1,14) and (1,15) we obtain

llirg |IKxi, — Fllsv, = ’hjg {IKx,.(0) — ¥(0)| + varg (Kx,, — §)} =0,

i.e. the sequence {Kx,} contains a subsequence which converges in BYV,. Hence

K e K(BV,).
1

The operator J K(s, 1) de(s)

0
Let us assume that @ € BV, is given, ¢(t) = (¢,(t), @,(t), ..., @.(t))*, te[0,1]. If

(1,16) varg K(., 0) < oo,
then by 1.6.6 we obtain varj K(., t) < v,(K) + var K(., 0) < oo for every t€[0,1]
provided (1,1) is fulfilled. In this case by 1.4.19 the Perron-Stieltjes integral

(L,17) flK(s, t) do(s) = ¥(t)

0
exists for every te[0,1].
Let us show that the function y: [0,1] > R, defined by (1,17) is of bounded
variation on [0, 1] if (1,16), (1,1), (1,2) are assumed.
Let 0 =9, <7y, <..<7 =1 be an arbitrary subdivision of [0, 1]- By 14.27
we have

W) = i) = L‘u«s, 7) = K(s 7e-1) dols)

< sup |K(s, 7;) — K(s, Vie1)| varg @ < (Vio.11x tre-vyalK) + K(0, 7;) — K(0, 7i-1)]) varg @

se(0,1]
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because for every se [0, 1]
|K(s, 7) = K(s,i-1)|
< |K(s, 7)) = K(57:-1) = K(O,7:) + K(O, 7:-)| + [K(0, 7)) = K(O,7:-,)]
< ViopxievsalK) + [K(0,7,) = K(0 7))
(cf. 1.6). Hence by 1.6.5
(1,18)

-

' |'/’(V.) - '/’(Yi~1)|

Si;("m.l]xlv.‘-,‘m(’() + ‘K(O’ 7)) — K(0,7:- 1)|) vary @
< [vi(K) + varg K(0, )] varg @ < [v/(K) + vars K(0, .)] | s,

for all subdivisions 0 =y, <7y, <...<7y,=1 and so vary¥ < co. In this way
the integral (1,17) defines an operator acting on BV,; we set

1
(1,19) Ko = j K(s,t)do(s), e@eBY,.

0

1.6. Theorem. If K: I - L(R,) satisfies (1,1), (1,2) and (1,16), then the operator K
defined by (1,19) is a bounded linear operator on BV,; i.e. Ke B(BV,) and

(1,20) K|l 5sv,, < |K(0,0)] + vard K(.,0) + vary K(0, .) + v/(K).
Proof. The linearity of K is obvious. For any ¢ € BV, by 1.4.27 we have

[ 5,00t

0

< s[1(1)p1 ]|K(s, 0)| vary @ < (|K(0,0)| + varg K(.,0)) || sy, -

Using (1,18) we obtain

HR‘P"m =

[ 50100t + var [ s )

< [IK(0,0)| + var§ K(0, .) + vary K(.,0) + v/(K)] ||@] s, -
Hence K € B(BV,) and (1,20) holds.

1.7. Lemma. Let M: [0,1] —» L(R,) be an n x n-matrix valued function such that
(1,21) vargM < 0.
Assume that a fixed o€ [a,b] is given. Define for x € BV, the operators

Mx = M(t) x(o), M*x=M()Ax(c), M x=M(t)A x(o)
where A*x(0) = x(6+) — x(0), A"x(0) = x(6) — x(0c—). The operators M, M*, M~
are compact linear operators on BV,, ie. M,M*, M~ € K(BV,).
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Proof. Since evidently
[Mx][ 5y, = [M(0) x(0)] + varg (M(.) x(a)) < [|M(O)] + varo M] |x(s)|
< [|M(0)] + var; M] ||x][ 5y,
we have M e B(BV,) and
M| 58y, < [IM(O)] + varo M].

The same argument gives also M*, M~ € B(BV,) and the inequalities
1M [sov,y < [IMO) + vargM], M7 || ppy,, < [IM(O)] + varg M].

Let us denote by B = {xeBV,; ||x|, <1} the unit ball in BV, M*(B)
= {yeBV,; y =M*x, xeB} is the image of B under the map M". Let y,e M*(B),
k = 1,2,... be an arbitrary sequence in M*(B), i.e. there is a sequence x, € B such
that y, = M*x,. Since x,€B, k= 1,2,... we have

|A* xy(0)| < varg x, < [[x,[py, < 1

and there is a subsequence {x,}, ! =1,2,... such thatlim A*x,(0) = ze R, and
M(¢) z € BY,,. Since evidently e
[M*x,, = M() 2], < (MO) + vars M) [A"x,, -
we obtain that
lim y,, = lim M'x,=M()z in BY,
and M™ e K(BV,).
For an analogous reason the results Me K(BV,), M~ € K(BV,) are derivable.

1.8. Lemma. Let {6,};2, be an arbitrary sequence of real numbers in [0, 1]. Suppose
that M;: [0,1] - L(R,), | = 1,2,... is a sequence of n x n-matrix valued functions
satisfying

(1,22) Y. (M(0)] + vary M) < oo .
I=1
Define for x € BV, the series
(1,23) Rx =Y M(t) A*x(a)),
=1
(1,24) Lx =) M(t) A" x(a)

where A*x(c) = x(o+) — x(c), for 0€[0,1) A”x(0) = x(0) — x(c—), for 6 €(0, 1]
A*x(1) = 0, A~x(0) = 0.
Both expressions (1,23) and (1,24) define compact operators on BV, i.e. R, Le K(BV,)
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Proof. We prove this lemma only for R; the proof for L is similar. First let us prove
that Re B(BV,). The linearity of the operator Risevident. Let 0 = oty <o, < ... <o, =1
be an arbitrary subdivision of [0, 1]. We have

Z Z |M(«; a;_,)| varg x

j=11=1

k

)

j=1

o0

Y (M) — Mo, ,)) A" x(o))

=1

o k 0
= i Y M) — M(o; - 1)|> vary x < Y, vary M, varg x
1=1 j=1

1=1
Hence

varg Rx < (i varg M,) varg x < (i vary M,) [ x| 5, -
=1

1=1
Further

2. M(0) A" x(a))
I=1
and consequently

R, < [‘i(w,(o)l + var} M,)] [xlay,, ic. ReB(BY).

< 5 M) vartx < ( £ M0 xlr.

Let us now define for every N = 1,2, ... the operator
Ryx = ZMI() x(o)), x€BY,.

1.7 implies that R, is compact for every N = 1,2,... because Ry is a finite sum
of compact operators. Further for every x € BV, we have

Rx — Ryx = Y M(t)A*x(o)
and as above also =

IRx — Ryl < | 5 (M) + vart M) | [l

Hence by the assumption (1,22) we obtain that JlimRy = R in B(BYV,) and therefore
by 1.3.17 we get Re K(BV,).

1.9. Theorem. If K: I — L(R,) satisfies (1,1), (1,2) and (1,16), then the operator
K e B(BV,) defined by (1,19) is compact, i.e. K e K(BV,).

Proof In 1.6 we have proved that K e B(BV,). The assumptions guarantee by 1.6.5
that var} K(., t) < oo for every t € [0, 1]. Hence by the integration-by-parts formula
1.4.33 we get

129 [ Ksdots) = - | 401009 + KL ) ol1) ~ K0, 0

— Y AKo,)Atele)+ ¥ AIK(o, ) A elo)

0<o<1 O<o<t
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for any te[0, 1], where A+K(6 t)=K(o+,t)—K(o,1), A; K(o,t) = K(a, t) — Ko —, 1),
A*g(o) = @(a+) — ¢(0). A" () = 9(o) — (o).

By 1.5 the integral [} d,[K(s, )] @(s) defines a compact operator on BV,. Further
by (1,1) and (1,2) we have varg K(s, .) < oo for any se [0, 1] (cf. 1.6.6). Hence by 1.7
the expressions K(1, t) ¢(1), K(0, t) (0) determine compact operators on BV,. If we
prove that the last two terms on the right-hand side in (1,25) define compact operators
on BV,; then K € B(BV,) is expressed by (1,25) in the form of the finite sum of compact
operators and is therefore also compact.

Let us consider the term
(1.26) Y AIK(e.1) A*glo) = Re

0<o<1
from the expression (1,25). Since (1,1) and (1,16) are assumed, the set of discontinuity
points of K(s, t) in the first variable lies on an at most denumerable system of lines
parallel to the t-axis (see 1.6.8) i.e. there is a sequence ¢, [ =1,2,..., 0,€[0,1]
such that A} K(o,t) = 0 whenever ¢ + 0, | =1,2,..,0€[0,1), and te[0,1] is
arbitrary. Hence the sum R¢ from (1,26) can be written in the form

Ry = Z A K(o), 1) A" glo)).
I=1
By 1.6.15 we have
vary AfK(o, .) < w,(0,4) — wy(0y),

where @,: [0,1] - R is defined by (L6,5) for K: I - L(R,). Hence (see 1.6.7)

Ms

l;var(’, AfK(oy, ) < Y (0,(01+) — o4(ay)) < varg o, = v((K).

1

1

Further evidently

M8

|AS K(o}, 0)| < varg K(.,0) < oo

l

1

by (1,16). Hence
[A K(o,, 0)| + vary AfK(s;, .)) < o0

HFﬂg

All assumptions of 1.8 bemg satisfied we obtain that R is a compact operator acting
on BV,. In a similar way we can show that the expression Y, A;K(o,t) A~ ¢(o)

O<eox<1
from (1,25) also defines a compact operator on BV, and this yields our theorem.
From 1.9 the following can easily be deduced.

1.10. Theorem. If K: I — L(R,) satisfies (1,1), (1,2) and (1,16) and moreover

(1,27) K(s,t+) = K(s,t)  forany se[0,1], t€(0,1),
K(s,0) =0 for any sef0,1]}
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then the expression

1
(1,28) Ko = j K*(s, t) do(s) , ¢ e NBY,

0
defines a compact linear operator acting on NBYV,, ie. K'e K(NBV,). (By K*(s,t)
the transposition of the matrix K(s, t) is denoted.)

Proof. Using the properties of the norm of a matrix (see 1.1.1) we easily obtain
that for K*: I — L(R,) we have varg K*(0, .) < oo, var§ K*(.,0) < o0, v,(K*) < oo,
K*(s,t+) = K*(s, t) for any se€[0,1], te(0,1) and K*(s,0) = 0 for any se[0, 1]
whenever the assumptions of the theorem are satisfied. By 1.9 the operator Ky
= [§ K*(s,t)dy(s), ¥ € BV, belongs to K(BV,). The operator K’ given by (1,28) is
evidently a restriction of K to the closed subspace NBV, c BV, (cf. 15.2). For an
arbitrary ¥ € BV, we have by (1,27)

1
J K*(s,0)dy(s) =0  and for any te(0,1)
0

1 1
lim j K*(s, t + ) dy(s) = J K*(s, t) dy(s)
=0+ Jo 0

since by 1.4.27 we have

< sup |K*(s, t + 8) — K*(s, t)| |¥| s,

se[0,1]

Jl(K*(s, t+6) — K*(s, 1)) dy(s)

0

and by 1.6.16
lim sup |[K*(s, t + 6) — K*(s,#)] = 0.

520+ sef0,1)

Hence the above mentioned operator K e K(BY,) maps BV, into NBV, when (1,27)
is satisfied and its restriction K' to the closed subspace NBV, < BV, consequently
belongs to K(NBV,).

Let us now consider the pair of Banach spaces BV,, NBV, which form a dual
pair (BV,, NBV,) with respect to the bilinear form

(1,29) (X, @) = j x*(t)de(t), xeBV,, @eNBYV,
0
(see 1.5.9). By the results from 1.3 we have
1 1
Kx = ‘[ d [K(s, 1)] x(t) = j d[K(s, 1)) x(t),  se[0,1]
0 (]

for every x e BV, where K(s, t) is defined by (1,9) and K(s, t) evidently satisfies (1,1),
(1,2), (1,16) and (1,27) (i.e. the assumptions of 1.10). Hence

Kx, @) = <le,[k(-, )] x(t), ¢>
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for every x e BV,, ¢ € NBV,. Using 1.6.22 we obtain

1
(Kx, @) = <x, J K*(s, .) d(p(s)> for every xeBV,, ¢eNBV,,
0

ie.
(Kx, 9> = {x,K'¢p)
" where
1
(1,30) Ko = J K*(s,t)de(s), te[0,1], @eNBYV,
0

and K’ is a compact operator acting on the space NBYV,. Resuming these results
we have :

1.11. Theorem. If K: I — L(R,) satisfies (1,1), (1,2), then for the operator K € K(BV,)
given by (1,3) we have
<Kx, ¢> = <{x, K'¢)

for every x € BV,, @ e NBV, where K' € K(NBYV,) is given by (1,30) and the bilinear
form {x, > on BV, x NBY, is given by (1,29).

2. Fredholm-Stieltjes integral equations

In this section we consider the Fredholm-Stieltjes integral equation

x(t) — J;lds[K(t, s)] x(s) = f(r)

in the Banach space BV,[0,1] = BV,
The fundamental results concerning equations of this kind are contained in the
following

2.1. Theorem. If K: I - L(R,) (I =[0,1] x [0,1] = R,) satisfies
(2,1) v(K) < o0,

(2,2) var} K(0, .) < o0,

then either

I. the Fredholm-Stieltjes integral equation

1

(2.3) x(t) — j d,[K(z, 5)] x(s) = £(¢), te[0,1]
0

admits a unique solution in BV, for any f e BV, or
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I1. the homogeneous Fredholm-Stieltjes integral equation
1

24 () [ 4K = 0
0

admits r linearly independent solutions x, ..., x, € BV, where r is a positive integer.

If moreover it is assumed that

(2,5) vary K(.,0) <

(2,6) K(t,s+) = K(t,s)  forany t€[0,1], se(0,1)
and

(27) K(z,0) =0 for any te[0,1],

then in the case 1. the equation

1
(2.8) o(s) — J K*(t, s) do(t) = ¥(s)

0
admits a unique solution in NBV, for any y € NBYV, and in the case 11. the corresponding
homogeneous equation

(29) o(s) — flK*(t, s)de(t) = 0

0
admits also r linearly independent solutions @y, @,,...,¢,€ NBV,.

Proof. Let us denote by

Ax = (I — K)x = x(t) — J:dS[K(t, s)|x(s), xeBY,

the linear operator corresponding to the Fredholm-Stieltjes integral equation (2,3).
By I we denote the identity operator on BV, and K is the operator defined by (1,5).
Since 1.5 implies K e K(BV,), we have by 1.3.20 ind A = ind (I — K) = 0 and this
implies the first part of our theorem immediately.

Under the assumptions of the second part we have by 1.11 {Kx, ¢)> = {x, K'¢)
for every x e BV,, ¢ € NBV, where K'¢ = [§ K¥(t,s) dg(t) is a compact operator
acting on NBV, (see 1,10). Hence ind (I — K’) = 0 and by 1.3.20 we have ofl — K)
= ofl — K') = B(I — K) = B(I — K’). This completes the proof.

2.2. Theorem. If K: I — L(R,) satisfies (2,1), (2,2), (2,5), (2,6) and (2,7), then the
equation (2,3) has a solution in BV, if and only if

(2,10) Llf*(t) de(t) =0
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for any solution ¢ € NBV, of the homogeneous equation (2,9) and symmetrically the
equation (2,8) has a solution in NBV, if and only if

(2,11) jlx*(t) dy(t) =0

0

for any solution x € BV, of the homogeneous equation (2,4).

Proof. In the proof of 2.1 it was shown that all assumptions of Theorem 1.3.2 are
satisfied. Hence this statement is only a reformulation of the results from 1.3.2.

2.3. Remark. 2.1 and 2.3 represent Fredholm theorems for the Stieltjes integral
equations (2,3) and (2,8). It is of interest that the corresponding integral operators
occuring in these equations are not connected with one another by the usual concept
of adjointness. In this concrete situation the difficulties with the analytic description
of the dual BV,* obstruct the analytic description of the adjoint K*. Fortunately
the concept of the conjugate operator K' with respect to suitably described total
subspace NBYV, works in our case and the results are given in an acceptable form.

2.4. Remark. Let us mention that in accordance with 1.4 in the same way the con-
jugate equation (2,8) in NBYV, can be replaced by the same equation working in
NBYV,” when instead of (2,6) we assume that K(t,s—) = K(t, s) for any t€[0,1],
s€(0,1).

2.5. Theorem. Let K: I =[0,1] x [0,1] » L(R,) satisfy (2,1), (2,2) and (2,5). If the
homogeneous Fredholm-Stieltjes integral equation

(2:4) x(t) — J‘Olds[K(t, s)] x(s) =0, te[0,1]

has only the trivial solution x = 0 in BV,, then there exists a unique n X n-matrix
valued function I'(t,s): I — L(R,) such that

(2.12) vl < oo,
(2,13) vary I'(.,0) < o,
(2,14) varg I0, .) < oo,

and for all (t,s)eI the equation
1

(2,15) r(t,s) = K(t,s) + J‘ d,[K(t,7)] I'(r,s)
0

is satisfied.
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Moreover for any f € BV, the unique solution x € BV, of the Fredholm-Stieltjes
integral equation (2,3) is given by the formula

(2,16) x(t) = f(r) + J:ds[l‘(t, s)] f(s),  tefo,1].

Proof. Let us set A=1I— KeB(BY,) where Kx = (! d[K(t,s)]x(s), xeBY,
and | is the identity operator on BV, By assumption we have N(A)= {0}. Since
K e B(BV,) is compact by 1.5, we have 0 = a(A) = B(A) = dim (BV,/R(A)) by 1.3.20.
Since R(A) is closed, we obtain R(A) = BV,. Hence the Bounded Inverse Theorem
.34 implies that the inverse operator A~'e B(BV,) exists and for any fe BV,
the unique solution of (2,3) is given by A™'f and for this solution the estimate

(2.17) Ixlsv., < Clf[sv.,

holds where C = |A™"| gy, is a constant.
Let us consider the matrix equation (2,15). Evidently the I-th column I3(t, s) of
r(t,s): 1 - L(R,), | = 1,2,...,n satisfies the equation

(2,18) It s) = Kt s) + le,[K(t, )] Lir. s).,

i.e. I(t, s) satisfies in the first variable the equation (2,3) with f(t) = K¢, s) for any
se[0,1]. We have fe BV, since by 1.6.6 varj K(., s) < v/(K) + varg K(., 0) and
(2,1), (2,5) are assumed. By 2.1 the equation (2,18) has exactly one solution for any
fixed se [0, 1] and consequently the same holds also for the matrix equation (2,15).

Let us now consider the properties of the matrix I'(z, s) defined by (2,15). By (2,17)
the inequality

ITi(-, s)ll v, < C||K, 5)| 5w,

holds for every se[0,1], I =1,2,...,n. Hence (from the definition of the norm in
BV,) we obtain for any se [0, 1] the inequality

IF(0, s)| + vary I'(., s) < C(K(0, s)| + varg K(., s))

which yields (2,13). )
Let 0 = ¢y < o; <... < o = 1 be an arbitrary decomposition of [0, 1]. If I'(z, s)
satisfies (2,15), then for any j = 1,...,k and t€[0,1] we have

It o)) — It ;) = K(t, o) — K(t, ;) + le,[K(t, N](0(r, o) = I(r, 2;-1)),

i.e. the difference I'(z,a;) — I'(t, a;_,) satisfies a matrix equation of the type (2,15)
and consequently by the Bounded Inverse Theorem 1.3.4 we have as above

(2,19) |F(0, a;) — I(0, a;_, )] + var (I'(., ) — (., 2;-4))
< C(IK(O, a,) — K(0, ;)| + vard (K(.. %) — K(., ;).



Hence

j:i,'r(o’ #) - [(0,2,_,)| < C(var} K(0, .) +j§lvar(‘, (K(. ) = K(.,551))

< C(varg K(0, .) + v,(K)),

and since the subdivision 0 = oy < o, < ... < oy = 1 was arbitrary we get (2,14)
by passing to the supremum over all finite subdivisions of [0, 1].

Let now J;; = [a;_y, 0] x [o;_,0;], i,j = 1,2,...,k be the net-type subdivision
of I corresponding to the arbitrary subdivision 0 = @y < a; < ... < o = 1 of [0,1].
For I': I - L(R,) satisfying (2,15) we obtain by (2,19) the following inequality

k

2 meT) = % M (o, ) — (o, 05— 1) — T(ot— g, ) + oy, 05-4)|

ij=1 ij=1 B

<

ivekd

vary  (I(., o) — I'(., 2_4)) =jgvar(‘) (r(.,o) — I(.,2-,))

< CI:ZI(|K(0, ;) — K(0,a;_,)| + varg (K(., 2;) — K(., 2;,)))
< C(varg K(0, .) + v,(K)).

This inequality yields evidently (2,12) and the first part of the theorem is proved.

Now we prove that by (2,16) really the unique solution of (2,3) is given Since
I': I - L(R,) satisfies (2,12) and (2,14), by 1.6.18 the integral [y d [I(z, s)] f(s) exists
for any f e BV, and t € [0, 1]. Putting (2,16) into the left-hand side of (2,3) we obtain
the expression

10+ [ atrea 19 - [ o) () + [ alres1 19) = 10,
Hence )
It) = f(r) + Lds[l’ (¢, s) — K(2, s)] (s) — Ld,[K(t, ] Lds[r (r, s)] £(s)-

Using 1.6.20 we obtain
[tk [ arresn g = o ([ alxenreg)ro. e
0 =10+ [ 0] 169 - k69 + [ alen 1.9 | 169 = 100

0

since I': I - L(R,) satisfies (2,15) and consequently (2,16) gives the solution-of (2,3).
This concludes the proof of our theorem.

2.6. Remark. The matrix valued function I(t,s): I > L(R,) given in 2.6 is the
resolvent of the Fredholm-Stieltjes integral equation (2,3). This resolvent gives
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by (2,16) the unique solution of (2,3) for every fe BY,. For the existence of the re-
solvent I'(t, 5) the assumption oA) = dim (I — K) = 0 is essential.

Further let us investigate the equation (2,3) when r = oA) = dim (I — K) # 0.

By assertion II. from 2.1 the homogeneous equation (2,4) admits in this case r
linearly independent solutions x, ..., x,€ BV, and R(I — K) % BV,, ie. (2,3) has
no solutions for all fe BV,

The following theorem holds in this situation. Let K: I = [0,1] x [0,1] - L(R,)
satisfy (2,1), (2,2), (2,5) and K(z, s+) = K(t, s) for any t€[0,1], s€(0,1), K(,0) =0
forany t e [0, 1]. Then there exists ann x n-matrix valued function (¢, s): I - L(R,)
such that v,(F) < oo, var I(.,0) < oo, var} [0, .) < co and if the Fredholm-
Stieltjes integral equation (2,3) has solutions for fe BV, (ie. if fe R(I — K), see
also 2.3), then one of them is given by the formula

(2,20) x(t) = f(r) + Jlds[f(t, s)] f(s), te[0,1].
0
The general form of solutions of (2,3) is

x(t) = f(t) + les[f(t, s)] £(s) +i; o, x{(1)

where x', i = 1,...,r are linearly independent solutions of the homogeneous equation
(24) (cf. 2.1) and oy, ...,0, are arbitrary constants.

The proof of this assertion is based on some pseudoresolvent technique using
projections in BY,. The theorem is completely proved in Schwabik [6].

3. Volterra-Stieltjes integral equations

In this section we consider integral equations of the form

(1) x(t) - ﬁds[x(t, g1x) = ), te[0,1]

in the Banach space BV,[0,1] = BV, with’ fe BV,. Equations of the form (3,1)
are called Volterra-Stieltjes integral equations.

Throughout this paragraph it will be assumed that K: I = [0,1] x [0,1] - L(R,)
satisfies

(3.2) v/(K) < o0
and
(33) varg K(0, .) < o0.

Let us mention that (3,3) can be replaced by varg K(to, .) < oo, where t,€ [0, 1]
is arbitrary. This follows from 1.6.6.
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Since (3,2) and (3,3) are assumed, for every fixed te [0, 1] we have var} K(t, .) < oo
by 1.6.6. Hence for any x € BV, and t€[0,1] the integral [}, d,[K(t,s)] x(s) exists
by 1.4.19.

Let us show that the equation (3,1) is a special case of the Fredholm-Stieltjes
integral equation considered in the previous Section 11.2.

To any given kernel K: I — I(R,) satisfying (3,2) and (3,3) we define a new
“triangular” kernel K*: I - L(R,) as follows:

(34) KA(t, s) = K(t, s) — K(t,0) if 0<s<t<l,
K4z, s) = K(t,1) — K(,0) = Kr,1)  if 0<t<s<l.
It is obvious that K(z,0) = 0 for any te [0, 1] and K*(0,s) = K%(0,0) = 0 for any
se[0,1]. Let
=[o- o] x [ 05],  Gj=1,...k
be an arbitrary net-type subdivision of the interval I corresponding to the sub-
division 0 = 0y < &; < ... < o = 1 of [0, 1]. By definition (3,4) of K* we have
mealJj) =me(J;) if 0<j<ic<k,
myald ;) = 0 if 0<i<j<k
and
mya(J;;) = Ko, o) — K(og, 04-4)  for i=1,2,

(For my(J) see 1.6.2.) Hence

Z |’"KA u| i ii |mK(J,-j)| +i§1|'<(“i= o) — K, ai—l)l

i,j=1 i=1 j=1

= Z Z mi(J35)| + jl K(es, ;) — Ko, ;- 4) — K(0, o) + K(0, 0, )|

i=1 j=1

k.

+ Z |K(0,- K(0, o; )| < v/(K) + varg K(0, .).
Consequently we obtain by definition (cf. 1.6.1, 1.6.3)
(3,5) v,(K*) < v,(K) + vary K(0, .) < o

Since K*(t, s) is by definition constant on the interval [, 1] for every te[0,1],
we have

(3:6) Jlds[KA(t, s)] x(s) = 0

t

for every x € BV,. Further
t t
st[KA(t, s) — K(t, s)]x(s) = — st[K(t, 0)] x(s) =0,
0 0
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Le.

[l 569 = [[ame 269,

Using (3,6) we obtain for an arbitrary Te[0,1] the equality

(7) [[a o5 = [ ot 9109

for any x e BV, and t€[0, T].
Let us summarize these results.

3.1. Proposition. Let K: I — L(R,) satisfy (3,2), (3,3). Then for the triangular kernel
K: I — L(R,) defined by the relations (3, 4) the following is valid.

(a) vary K*(.,0) =0, vary K*0,.) =0, v,(K* < oo,
(b) for every xe BV, Te[0,1] and te[0, T] the equality (3,7) holds, i.e. by the

relation
(3.8) Kx = J:ds[K(t, s)] x(s) = L d K%t s)] x(s),  xeBY,

an operator on BV, is defined and by 1.5 we have K e K(BV,).

3.2. Remark. Proposition 3.1 states that the Volterra-Stieltjes integral equation (3,1)
is equivalent to the Fredholm-Stieltjes integral equation

(39) 0 - [ ol =10, refo].

Hence by Theorem 2.1 either the equation (3,1) admits a unique solution in BV,
for every fe BV, or the correspondirig homogeneous equation

(3,10) x(t) — ﬁdS[K(t, s)|x(s)=0, te[0,1]

has a finite number of linearly independent solutions in BV,. Our aim is to give
conditions under which the equation (3,1) is really of Volterra type, i.e. when the
equation (3,10) admits only the trivial solution x = 0 in BV,

3.3. Theorem. Let the kernel K: I — L(R,) satisfy (3,2), (3,3) and
(3,11) lim |K(t, o) — K(t, )| = 0

for any te[0,1], se(0,1]. Then the homogeneous Volterra-Stieltjes integral equation
(3,10) has only the trivial solution x = 0 in BY,,
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Proof. Let K%: I - L(R,) be the triangular kernel corresponding to K by the
relations (3,4). Since (3,11) holds we have also

(3,12) lim |K4(t, 0) — K3(t, 5)| = 0
for any te[0,1], se(0,1]. Let us set
03(0) =0,  @3s) = Vo1 x0(K*)  for se(0,1].

The function wj: [0,1] — R is evidently nonnegative and nondecreasing (see 1.6.7).
Since (3,12) holds we have wj(s—) = w3(s) for every se(0,1] by L1.6.11, ie. w5 is
left continuous on [0,1].

Assume that x e BV, is a solution of (3,10). Then evidently x(0) = 0 and

|x(s)| < |x(0)] + var} x = var§ x

for every se[0,1]. Using (b) from 3.1 we get

var x = var ([ 01t 1 9 ) = var [t x6)

for every £€[0,1]. If (1.6,14) from 1.6.18 is used then we obtain

varx = vart ([ 4K, 91 x9) < [t o < [ vars ot

and 1.4.30 yields the inequality varjx < 0 for every £e[0,1]. Hence x(s) =0
on [0,1], ie. x= 0€ BV,

3.4. Example. Let us define h(t) =0 if 0 <t <3 h(t) =1/t if <t <1, g(s)=0
if 0<s<3 g(s)=s if $<s <1 Evidently h,ge BV. If we set k(t,s) = h(t) g(s)
for (t,5)eI =[0,1] x [0,1], then clearly v,(k) < oo (cf. 1.6.4), vargk(0,.) < oo
and varg k(.,0) < co. Let us consider the homogeneous Volterra-Stieltjes integral
equation

x{t) = J:ds[k(t, 9] x(s) = k(o j «9)dgls),  te[0,1].

0

Let us set y(s) =0 for 0 <s <4, ys)=1 for 3 < s < 1. By easy computations
using 1.4,21 we obtain

t
.Jy(s)dg(s)=0 if 0<t<i,
0

t t
jy(s)dg(s)=%y(%)+'[ Ws)ds=1t if $<e<1
V] 1/2
and consequently

0 [ 900 = 10
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for every t € [0, 1]. Hence y e BV is a solution of the homogeneous Volterra-Stieltjes
integral equation and y # 0. The condition (3,11) is in this case affected. In fact,
lim (k(t, 6) — k(t,3)) = 3h(t) and h(t) + 0 e.g. for t = }.

a—+1/2 -

3.5. Remark. Example 3.4 shows that for K: I — L(R,) satisfying (3,2) and (3,3)
the corresponding homogeneous Volterra-Stieltjes integral equation (3,10) need not
have in general only trivial solutions, i.e. for the corresponding operator K e K(BV,)
we can obtain in general a nontrivial null space N(I — K). If (3,11) is assumed,
then this situation cannot occur. The condition (3,11) is too restrictive as will be
shown in the following. We shall give necessary and sufficient conditions on
K: I — L(R,) satisfying (3,2) and (3,3) such that the equation (3,10) has only the
trivial solution in BV,.

3.6. Proposition. Let M: I = [0,1] x [0,1] - L(R,) satisfy  v,(M) < oo,
varg M(0, .) < co. Then for any a€[0,1] there exists a nondecreasing bounded
function &: [a,1] = [0, +00) such that for every be[a, 1] and x e BV, we have

(3,13) var (J:ds[M(t, s)] x(s)) < |x(a)| (&(a+) — &a) + ||x|| sy, ané(b) — Ea+))-

Proof. Let M*: I —» L(R,) be the triangular kernel which corresponds to
M: I - L(R,) (see 3.1). For any te[a, b] we have (see (3,7))

t b
(3,14) j d,[M(t, s)] x(s) = j d,[MA(t, s)] x(s) .
Let us define the function
1) = Via1yx 1@a(M®) for te(a, 1], &a)=0.

¢: [a,1] > R is evidently nondecreasing and bounded on [a, 1] (cf. 1.6.7).
From (1.6,14) in 1.6.18 we obtain

(3.15) var® (J a,[M(t, )] x ) f Ix(s)] ()

Using 1.4.13 we have
b

G1o [ o)) = o etat) — )+ Jim, [ oot

a+d

and for any 0 < é < b—a by 1.4.27
b
j 6"‘(5" dé(s) < (S‘ipa b]|X(S)‘ (&(b) — &a+9)) < [ x] v,garn(€(b) = Elat))-
Hence (3,15) and (3,16) imply (3,13).

9%



I1.3

3.7. Proposition. Let H: [0,1] - L(R,) be such that

(i) vargH < oo,
(ii) there is an at most countable set of points t; € [O, 1], i=1,2,... such that

Hit)=0  for te[0,1], t#¢, i=12..,
(iii) the matrix I — H(t) is regular for all t [0, 1]. Let us define the linear operator
(3,17) Tz=[l-H()] '2(t), te[0,1] for zeBV,.
Then there exists a constant C > 0 such that
(3,18) |Tz||py, < C|\z|pv,  for every zeBY,,
ie. TeB(BY)

Proof. By (iii) the inverse matrix [I — H(t)] ™" exists for every t€[0, 1] and the
operator T from (3,17) is well- deﬁned

Since 1= (I —H(t)[I - ] Y=[1-H(@)] ' = HE[I - H(E)] ' for any
te[0,1], we have [l Ht] ' =1+H [I ]”1 and for any zeBY,
we have
(3.19) Tz=z+u
where
(3,20 @O [1—H@O] =), rtel01].

The assumption (ii) implies u(t) = 0 for any te[0,1], t ¢, i=1,2,.... Hence
evidently

(321) varbu = 23 Jus)] = 2.5 [H) [1 — H()] " =)

< 2alan, 3 MO 11 = He] Y.

By (i) and (ii) we have

M8

IH(t)| < [HO)| + |[H(1)| +2 Y |H(t) = vargH < o0 ;

i=1 t;e(0,1)
hence there exists an integer i, > 0 such that |[H(t;)| < 3 for any i > i,. This implies
’ 1
[=HH] <1+ HE)| + ...+ HE))+ ... = ———~ <2

for i > i, and immediately also the inequality
=] ig ]
3 IHG) [0 = HE) L < 3 ) (- HET T +2 3 HG)

< (_max |1 = HEJ | + 25 )| = Co < oo

i=1
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which yields by (3,21)
varg u < 2C,||z| v, -
Hence (see (3,19))

IT2llav., = It = HO)] ™" 2(0) + vars Tz < ([ = HO)] 7| + 1 + 2Co) [ 2] av,
and (3,18) is satisfied with C = 1 + 2C, + |[I — H(0)] |-

3.8. Proposition. Let us assume that K: I =[0,1] x [0,1] > L(R,) satisfies (3,2)
and (3,3). Define M: I — L(R,) as follows:
(3,22) M(t,5) = K(t,s) if (t,s)el, t&*s,
M(t, 1) = K(t,t—) if te(0,1],
M(0,0) = K(0,0).
Then

(i) v/(M) < oo, varyM(0,.) < o0
(i) if x€BY,, then for any fixed te[0,1] we have

lim J:ds[M(t, ] x(s) = J:ds[M(t, 9] x(9),

Lind S

i.e. the integral [ d,[M(t, s)] x(s) does not depend on the value x(t)eR,,
(iii) for every x € BV, and te[0,1] we have

(623) ([t x6) = [‘amc 916 + 0 0
where
(3,24) H(t)
H(0)
(iv) for H: [0,1] - L(R,) given by (3,24) there exists an at most countable set of
2,.

points t;€[0,1], i = 1,2,... suchthat H(t) = 0 for te[0,1], t 1, i = 1,2,.
and vary H < co.

I

K(t,t) — K(t,t—)  for te(0,1],
09

Proof. In order to prove (i (i) let us mention that M(0, s) = K(0, s) for all s [0, 1]
and consequently varg M(0, .) = vary K(0, .) < co. Further let 0 =a,<a, <...
< o = 1 be an arbitrary subdivision of [0, 1] and let

Jij= [“i—l’“i] X [“j—l, aj] > Lj=1,...,k

k
be the corresponding net-type subdivision of I. We consider the sum Y. |m(J;))|
where b=t
mp(J ;) = M(o;, ;) — M(e;, “i—l) - Moy, 0) + M(e;_,, “1—1)



I1.3

for i,j = 1, ..., k. Usual considerations using the definition of M in (3,22) give

k

i Im(J35)] < vi(K) + 42{ K, @) — Ko, a;—)].

Since o "
j; [K(ay, ;) — K(ey 0~ )|
< 3 Kt t) ~ Klop,-) = K(0.5) + K(0.5-)] + 3 [K(0.2) = K(0.3,-)
< v,(K) + var; K(0, .),
we obtain

Zk: [mp(J;)| < 5v/(K) + 4 vari K(0, .) < o0

iLj=1
and (i) holds since J,; was an arbitrary net-type subdivision.

Let t€(0,1] be ﬁxed x,y € BV, x(s) = y(s) for se[0,t). By 1.4.21 and from the
definition of M we obtain

[ 906~ i) = M)~ M) x0) ~ y(0) = 0.
Hence

T t
[[ame s = [‘a 1m0yt
0 0
or in other words: for all x € BV, we have

lim f A [M( )] x(s) = Jo A [M( 5)] x(5).

P

For t = 0 the statement is trivial. Hence (ii) is proved.
Further for any t€(0,1] and x € BV, we have

t
fds[K(t, s) — M(t,s)] x(s) = [K(z,t) — M(t, 1) — K(t,t—) + M(t, 1 —)] x(z)
0
= [K(t, 1) — K(t, t—)] x(t) = H(z) x(¢) ,
and (3,23) holds. For ¢ = 0 the equality (3,24) is evident. Hence (iii) is valid.

By 1.6.8 the set of discontinuity points of K(t, s) in the second variable s lies on
an at most countable system of lines in I which are parallel to the ¢ axis, ie. there
is an at most countable system ¢, i=1,2,... of points in [0, 1] such that H(t)
= K(t,t) — K(t,t—) =0 for all te[0,1], t*1¢, i=12,..

For any te[0, 1] we have evidently

M) = IKie ) — Ko~
< |K(t,t) — K(t,t—) — K(0, 1) + K(0,t—)| + |K(0,2) — K(0,z—)|.
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Let 0 =0y < o; <... <oy =b be an arbitrary finite subdivision of [0, 1]. Then

iél”(“i) = Ho;_y)| < 2(_2 |H (o)
< 23 [|K(os o) — Ko, =) — K(0, o) + K(0, 0= )| + |K(O, ;) — K(0, ¢, )|]
< 2(v,(K) + varg K(0, .)) < o0

and (iv) is also proved.

3.9. Theorem. Let the kernel K: I — L(R,) (I =[0,1] x [0,1]) satisfy (3,2) and
(3,3). Then the homogeneous Volterra-Stieltjes integral equation (3,10) has only the
trivial solution x = 0 in BV, if and only if the matrix 1 — (K(z, t) — K(t, t—)) is regular
for any te(0,1] *).

Proof. By (iii) from 3.8 the equation (3,10) can be written in the equivalent form

(3,29) x(t) = J;ds[M(t, s)] x(s) + H(t) x(), te[0,1]

where M: I - L(R,), H: [0,1] - L(R,) are defined by (3,22), (3,24) respectively.
Hence if we assume that for any te[0, 1] the matrix I — H(t) =1 — (K(¢, t) — K(z, t—))
is regular, then the inverse [I — H(t)] ™' exists for any t€[0,1] and (3,25) can be
rewritten in the equivalent form

(3,26) x(t) = [1 — H(¥)]™* J d[M(t,s)] x(s), te[0,1].

This equality can be formally written in the form x = TMx where

Tz =[I-H@)] '2zt) for zeBY,
and

Mx = J:dS[M(t, s)] x(s)  for xeBY,.

Assume that x € BV, is a solution of (3,10). Then evidently x(0) = 0 and by 3.7,
3.6 we have for any 6 (0 < < 1)

(3.27) I 8v,10.61 = |x(0)| + varg x = | TMx| gy, (0.6 < C|Mx] 5y, 0.5

— cvar [ M09 x69)) < RO (€0+) = 50D + [l l0) 0

= C(¢(6) — &0+)) [x|av 0.0

*) In this case we have K(0,0) = K(0,0—) if we use the agreement K(0,s) = K(0,0) for s <0, ie.
in fact I — (K(0,0) — K(0,0—)) =1 is also regular. Nevertheless this is not used in the proof of the
theorem and the result does not depend on the behaviour of K(0.0) — K(0,0—).
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where ¢: [0,1] - [0, + o0) is bounded and nondecreasing by 3.6 and C > 0 is
a constant (cf. 3.7). The function ¢ is of bounded variation and has consequently
onesided limits at all points of [0,1]. Hence we can find a 6 > 0 such that
C(&(d) — &(0+)) < 3 and by (3,27) we obtain
1% [l av.0.01 < 3 x[l8v,g0.01
ie. x(t) = 0 for all te[0,5].
Let us now assume that t*€[0, 1] is the supremum of all such positive & that

the solution x € BV, of the equation (3,10) equals zero on [0, 5]. Evidently x(t) = 0
for all t € [0, t*). Since by (ii) from 3.8 we have

J:diM(r*, s)] x(s) = lim J:dS[M(t*, s)] x(s) = 0

and [I — H(t*)] ™" exists, we have by (3,26) x(t*) = 0, i.e. x(t) = 0 for te{0,t*].
Now assuming t* < 1 we have

()= [1 = HOT" [ aTMie 1) = [ = HOI [ M0 9] x6)

for all ¢e[r* 1]. Using the same procedure as above we can determine a & > 0
such that the inequality

(%[ 8.+ 01 < 3| vt o1

holds and consequently x(t) =0 for te[t* t*+6]. Hence we obtain a con-
tradiction to the property of t*. In this way we have t* = 1, ie. x(t) = 0 for all
t€[0,1] and the “if” part of the theorem is proved.

For the proof of the “only if” part of the theorem we refer to the Fredholm alter-
native included in 2.1. (cf. also 3.2) which states that either (3,10) has only the trivial
solution x = 0 in BV, or there exists fe BV, such that the equation (3,1) has no
solutions in BV,

Let us now assume that the matrix I — (K(,t) — K(t,t—)) = I — H(¢) is not
regular for all ¢ € (0, 1]. This may occur only for a finite set of points 0 < ¢, < ... < ¢,
in (0, 1] because vargH < oo by (iv) from 3.8 and consequently [H()| < £ for all
te[0, 1] except for a finite set of points in (0, 1]. Hence [I — H(t)] ™" exists for all
te[0,1], t*t, i=1,2,...,k, and I —H(t;), i=1,2,...,k is not regular. Evidently
there exists y € R, such that y ¢ R(I — H(t,)), i.e. the linear algebraic equation

(- He)x =y
has no solutions in R,. Let us define
f)=0 for te[0,1], t+t,, f(t;)=y

and consider the nonhomogeneous equation (3,1) with this right-hand side. Let us
assume that x € BV, is a solution of this equation. In the same way as in the proof
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of the “if” part we can show that x(t) =0 for all te[0,¢,) since [I — H(t)] ™" exists
for all t€[0,t,). Using the expression (3,23) and (ii) from 3.8 for {4 d,[K(¢,, s)] x(s)
we obtain

U—MMAm=qummmwﬂm=y

and x(t,) cannot be determined since y ¢ R(I — H(t,)) and consequently there is no
x € BV, satisfying (3,1) with the given fe BV,. By the above quoted Fredholm
alternative the equation (3,10) possesses nontrivial solutions and our theorem is
completely proved.

3.10. Theorem. Assume that K: I = [0,1] x [0,1] - L(R,) satisfies (3,2), (3,3) and
the matrix 1 — K(t,t) — K(t,t—)) is regular for any te(0,1].

Then there exists a uniquely determined I': I — L(R,) such that the unique solution
in BV, to the Volterra-Stieltjes integral equation (3,1) with fe BV, is given by the
relation

(3.28) X0 =10+ [alrCo . cefo.),
0
The matrix I'(t, s) satisfies the integral equation
(3.29)  I(t,s) = K(t,s) — K(z,0) + J‘td,[K(t, nN]I(r,s) for 0<s<t<l.

We have I(t,s)=TI(t,t) for 0<t<s<l, I(,0)=0, vargI'(0,.) < o0 and
v(I') < . '

Proof. By 3.1 the equation (3,1) can be written in the equivalent Fredholm-Stieltjes
form

(3,30) x(t) — les[KA(t, s)] x(s) = £(¢), te[0,1]

where K*: I — L(R,) is the corresponding triangular kernel given by (3,4). By 3.9
the homogeneous equation

x(r) — J:ds[KA(t, s)|x(s)=0, te[0,1]

has only the trivial solution x = 0 in BV, Since K satisfies evidently all assumptions
of 2.6, we obtain by this theorem the existence of I': I - L(R,) such that the
solution of (3,30) and consequently also_of the equivalent equation (3,1) is given by

631) X0 =10+ [ alreal 9. refo.n
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where I'(t, s) satisfies the matrix integral equation
I(t,s) = K*(t,s) + Jld,[KA(t, 1] I(r,s) forall (1,s)el.
0
Using the definition (3,4) of K*(t, s) and (3,8) we have
r(t,s) = K(t,s) — K(t,0) + frd,[K(t, n]r(r,s) for 0<s<t<1
0
and (3,29) is satisfied. For 0 <t < s < 1 we have similarly

res) = ke + [ 0K s
and

I(t, 1) = K4t 1) + ~[ld,[K(t, ] r(r,t).
Hence ’

I(t,s)— It = J:d,[K(z, ] ([(r,s) — I(r,1)),

ie. I(t,s)=TI(t,t) since Theorem 3.9 yields that the homogeneous equation
x(t) — [ d,[K(t, s)] x(s) = 0 has only the trivial solution x = 0€ BV, Similarly
we obtain I'(t,0) = 0 for all ¢ € [0, 1]. The inequalities varg I'(0, .) < oo, v/(I') < o0
are immediate consequences of 2.5.

From the equality I'(t,s) = I'(t, t) valid for t < s we get

1 t
([ atre. 919 = [ atrt 919
o 0
for all x € BV, and hence by (3,31) we obtain (3,28).

3.11. Theorem. Let K:1=1[0,1] x [0,1] - L(R,) satisfy (3,2), (3,3) and let
to€[0, 1] be fixed. Then the integral equation

t
(3,32) x(t) = J d[K(t,s)] x(s), te[0,1]

to
possesses only the trivial solution x = 0 in BV, if and only if for any te(to, 1] the
matrix | — (K(t, t) — K(t, t—)) is regular and for any te[0.t,) the matrix
I + K(t, t+) — K(t, t) is regular.

The proof of this statement can be given by a modification of the proof of 3.9.
Since serious technical troubles do not occur we add only a few remarks on this
proof. It is evident that x(t,) = 0 for any solution of (3,32). The proof of the fact
that x(t) = 0 for te(to, 1] if and only if I — (K(¢,t) — K(z,t—)) is a regular matrix
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for te(to, 1], follows exactly the line of the proof of 3.9. For proving “x(t) = 0
for te[0,t,) if and only if I + K(t,t+) — K(z, ) is regular for all t€[0,t,)", the
decomposition (t€[0,¢,))

[ 1) = [ M1 x5~ (1) = Kte0) )

to to

valid for any x e BV, can be used where the integral [} d[M(z,s)] x(s) does not
depend on the value x(t). This can be done in the same way as in 3.8 when it is assumed
that M(t, s) = K(t, s) if (t,s)el, t s, M(t,t) = K(t, t+) if t€[0,1), M(1, 1) = K(1, 1).
Using the above decomposition of [;, d,[K(z, s)] x(s) the approach from 3.9 can be
used in order to prove the result.

3.12. Corollary. Let K: I — L(R,) satisfy (3,2), (3,3) and let t,€[0,1] be fixed.
Then the integral equation

(3,33) x(t) = J:' d,[K(z, 5)] x(s) + £(z), te[0,1]

has a unique solution for every fe BV, if and only if for any te(to, 1] the matrix
I — (K(¢,t) — K(t,t—)) is regular and for any te[0,t,) the matrix I+ K(t,t+)
— K(t, t) is regular.

Proof. Let us define a new kernel K: I — L(R,) as follows.
If to < t < 1, then

K(t, s) = K(t, s) for to<s<t,
K*(t, s) = K(t, ) for t<s<l1,
K*(t,s) = K(t,t,) for 0<s<t,
and if 0 <t < t,, then
K*(t,s) = —K(t,s) for t <s<t,,
K(t,s) = —K(t, 1) for 0 <s<t,
K(t,s) = —K(t,t,) for to<s<1.

It is a matter of routine to show that v,(K*) < oo, varg K"(0, .) < oo and

[[ake s 6 = [ ot 116

0 0

for every t€[0,1] and x € BV,. Hence the equation (3,33) can be rewritten in the
equivalent Fredholm-Stieltjes form

x(t) — les[K"’(t, s)] x(s) = £(1), te[0,1].
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By 3,11 the corresponding homogeneous equation

x(t) — les[K"’(t, s)] x(s) =0, te[0,1]

has only the trivial solution if and only if the regularity conditions given in the
corollary are satisfied. The corollary follows now immediately from 2.1.

Notes

The Fredholm-Stieltjes integral equation theory is based on the investigations due to Schwabik
[2]. [5).

The case of Volterra-Stieltjes integral equations was considered by many authors in terms of product

integrals, the left and right Cauchy integral or other types of integrals. See e.g. Bitzer [1], Helton [1],
Herod [1], Honig [1], Mac Nerney [2].
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III. Generalized linear differential equations

1. The generalized linear differential equation
and its basic properties

We assume that A: [0,1] » L(R,) is an n x n-matrix valued function such that
vary A < oo and ge BV,[0,1] = BV,
The generalized linear differential equation will be denoted by the symbol

(1,1) dx = d[A] x + dg

which is interpreted by the following definition of a solution.

1.1. Definition. Let [a,b] = [0,1], a < b; a function x: [a,b] — R, is said to be
a solution of the generalized linear differential equation (1,1) on the interval [a, b]
if for any t,t,€[a, b] the equality

(12) i) = x(to) + j "A[AS] ) + g0 — ()
is satisfied. ’

In the original papers of J. Kurzweil (cf. [1], [2]) on generalized differential
equations and in other papers in this field the notation

dx
4 — DlLAW) x + (0]
was used for the generalized linear differential equation.

It is evident that the generalized linear differential equation can be given on an
arbitrary interval [a,b] < R instead of [0, 1].

If xoeR, and toe[a,b] = [0,1] are fixed and x: [a,b] > R, is a solution
of (1,1) on [a,b] such that x(t,) = x,, then x is called the solution of the initial
value (Cauchy) problem

(1,3) dx =d[A]x +dg,  x(t)) = x,
on [a,b].
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1.2. Remark. If B: [0,1] - L(R,) is an n x n-matrix valued function, continuous
on [0, 1] with respect to the norm of a matrix given in L1.1 and h: [0,1] - R, is
continuous on [0, 1], then the initial value problem for the linear ordinary dif-
ferential equation

(1.4) x' = B(t)x + h(t), x(to) = X,
is equivalent to the integral equation

1

x(t) = x, + J B(s) x(s) ds + th(s) ds, tel0,1].

If we denote A(t) = {f, B(r)dr, g(t) = [, h(r)dr for te[0,1], then this equation
can be rewritten into the equ1valent Stlelt]es form

T
x(t) = xo + j d[A(s)] x(s) + g(t) — glto), te[0,1].
to

The functions A: [0,1] - L(R,), g: [0,1]— R, are absolutely continuous and
therefore also of bounded variation. In this way the initial value problem (1,4) has
become the initial value problem of the form (1,3) with A, g defined above and both
problems are equivalent. Essentially the same reasoning yields the equivalence of the
problem (1,4) to an equivalent Stieltjes integral equation when B: [0,1] — L(R,),
h: [0, 1] - R, areassumed to be Lebesgue integrable and if we look for Carathéodory
solutions of (1,4).

1.3. Theorem. Assume that A: [0,1] — L(R,) is of bounded variation on [0,1],
ge BV, Let x: [a,b] - R, be a solution of the generalized linear differential equation
(1,1) on the interval [a,b] = [0, 1]. Then x is of bounded variation on [a, b].

Proof. By the definition 1.1 of a solution of (1,1) the integral [ d[A(s)] x(s) exists
for every t,to€[a,b]. Hence by 1.4.12 the limit hm It d[A s)] x(s) ex1sts for

toe[a,b) and lim [ d[A(s)] x(s) exists for t,€(a, b] Hence by (1,2) the solution
t—=to—

x(t) of (1,1) possesses onesided limits at every point ¢, € [a,b] and for every point
to € [a, b] there exists 6 > 0 and a constant M such that |x(f)] < M for
te(to — 0, to + &) n [a, b]. By the Heine-Borel Covering Theorem there exists a finite
system of intervals of the type (t, — 9, to + 8) covering the compact interval [a, b].
Hence there exists a constant K such that |x(t)] < K for every te[a,b]. If now
a=ty,<t; <..<t =b is an arbitrary subdivision of [a, b], we have by 1.4.27

[RECOET

< Kvarli A+ |g(t) — g(ti-y)|

x(t) — x(t;-,)] <

+ |g(t:) — glti- )|
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forevery i =1, k. Hence

k
.;|x(ti) — x(t;- )| < Kvart A + var’ g

and var} x < oo since the subdivision was arbitrary.
Throughout this chapter we use the notations A*f(t) = f(t+) — f(t), A f(¢)
= f(t) — f(t—) for any function possessing the onesided limits f(t+) = 11m f(r),

f(t—) = lim f(r). This applies evidently also to matrix valued functions.
[dnd

Since by definition the initial value problem (1,3) is equivalent to the Volterra-
Stieltjes integral equation

1,

(1,5) x(t) = x, + fd[A(s)] x(s) + glt) — glto), te[0.1],

the following theorem is a direct corollary of 11.3.12.

1.4. Theorem. Assume that A: [0,1] — L(R,) satisfies varj A < oo. If t,€[0, 1),
then the initial value problem (1,3) possesses for any g € BV,, x, € R, a unique solution
x(t) defined on [t,, 1] if and only if the matrix | — A~ A(t) is regular for any t € (t,, 1].
If to€(0,1], then the initial value problem (1,3) possesses for any ge BV,, x,€R,
a unique solution x(t) defined on [0, to] if and only if the matrix | + A*A(t) is regular
for any te[0,t,). If to€[0,1], then the problem (1,3) has for any ge BV,, x,€R,
a unique solution x(t) defined on [0, 1] if and only if |1 — A”A(t) is regular for any
te(to, 1] and 1+ A*A(t) is regular for any te|[0,t,).

1.5. Remark. Let us mention that by 1.3 the solutions of the problem (1,3) whose
existence and uniqueness is stated in Theorem 1.4 are of bounded variation on their
intervals of definition. Further, if in the last part of the theorem we have t, = 0,
then the regularity of 1 + A*A(0) is not required. Similarly for t, = 1 and for
the regularity of I — A7A(1).

Let us mention also that Theorem 1.4 gives the fundamental existence and unicity
result for BV,-solutions of the initial value problem (1,3).

Let us note that if A: [0,1] — L(R,) is of bounded variation in [0, 1], then there
is a finite set of points ¢ in [0, 1] such that the matrix I — A™A(t) is singular and
similarly for the matrix I + A*A(z). In fact, since vary A < oo the series Y. A~A(t)

te(a.b]

converges. Hence there is a finite set of points t € [0, 1] such that |A"A(t)] > . For
all the remaining points in [0, 1] we have |A”A(f)] < 3, and consequently

[1— A A(r)]"' = Y (A"A(t))* exists since the series on the right-hand side con-
k=0

verges at these points. For the matrix I + A*A(¢) this fact can be shown analogously.
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1.6. Proposition. Assume that A: [0,1] - L(R,), varjA < oo, ge BV, Let x be
a solution of the equation (1,1) on some interval [a,b] = [0,1], a < b. Then all the
onesided limits x(a+), x(t+), x(t—), x(b—), te(a,b) exist and

(1,6) x(t+) = [1+ ATA(t)] x(t) + A*g(t) forall te[a,b),

=[1—AA(t)] x(t) — A"g(t)  forall te(a,b]
holds.

Proof. Let te[a,b). By the definition of the solution x: [a,b] - R, we have
t+4
x(t + 8) = x(t) + J d[A(s)] x(s) + g(t + o) — g(1)
t

for any 6 > 0. For é - 0+ we obtain by 1.4.13 the equality
x(t+) = x(t) + (A(t+) — At) x(1) + gle+) — g(t)
= x(t) + AT A(t) x(t) + A*g()
where the limit on the right-hand side evidently exists. The second equality in (1,6)
can be proved similarly.

1.7. Theorem. Assume that A: [0,1] > L(R,), varqA < oo, to€[0,1] and that
I + A*A(t) is a regular matrix for all t€[0,t,) and | — A"A(t) is a regular matrix
for all te(ty, 1]. Then there exists a constant C such that for any solution x(t) of the
initial value problem (1,3) with ge BV, we have

(L,7) |x(r)] < )exp (Cvari A)  for te[to,1]
and
(1,8) |x(t)] < Cl|xo| + varf g) exp (C var° A)  for te[0,1o].

Proof. We consider only the case ¢ < ¢, and prove (1,8). The proof of (1,7) can be
given in an analogous way. Let us set B(t) = A(t+) for t€[0,t,) and B(z,) = A(t,).
Hence B(t) — A(t) = A*A(t) for te[0,1,), B(to) — A(to) =0, ie. B(t) — A() =0
for all t€ [0, t,] except for an at most countable set of points in [0, t,) and evidently
varg (B — A) < oo. Hence for every xe BV, and te[0,t,) we have by 1.4.23

to
f d[B(s) — A(s)] x(s) = —A*A(z) x(t)
t
and by the definition we obtain

x(t) = xo + fod[B(s)] x(s) — ATA(t) x(¢) + g(t) — glto),  te€[0,2,)

19) x(0)=[1+a"A01* (xo + 60 - g0 + [ 9[BO ). reloe).
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Let us mention that for all re [0, t,) we have
(1.10) 1+ A*A(1)] Y| < C,  C=const
This inequality can be proved using the equality [I + A*A(t)]™" = Y (— 1) (A*A(t))

R

which holds whenever |A*A(t)| < 1. Hence
1
I —[ATAQ)

provided |A*A(t)] < 4, i.e. for all € [0, 1,) except for a finite set of points in [0, t,).
The estimate (1,10) is in this manner obvious. Using (1,10) we obtain by (1,9) the
inequality >

[0+ A% AW < 3 AT A = <2

0] = (bl + I — tel + | B9

to

te[0, to]. This inequality together with 1.4.27 yields
to
(1,11) |x(r)] < C<[x0| + vary g + J |x(s)| d var} B>

= C(|xo| + vary g) + Cj |x(s)| dh(s)

where h(s) = vary B is defined on [0,¢,] and is evidently continuous from the
right-hand side on [0, ¢,) since B has this property by definition. Using 1.4.30 for
the inequality (1,11) we obtain
|x(t)] < Cl|xo| + varg g) exp (C(h(to) — h(t)))
< C(|xo| + vary g) exp (C(var§ B — var, B))
= C(|xo| + var§ g) exp (C var}° B)
and this implies (1,8) since vari° B < var® A.

Remark. A slight modification in the proof leads to a refinement of the estimates
(1,7), (1,8). It can be proved that

|x(t)] < C(jxo| + var, g)exp (C varj, A)  for te([t,,1]
and
|x(1)] < C(jxo| + vari® g)exp(CvaricA)  for te[0,1,]

holds.
1.8. Corollary. Let A: [0,1] — L(R,) fulfil the assumptions given in 1.7 for some

to€[0,1], g, g€ BY,, xq,X,€R,. Then if xe BV, is a solution of (1,3) and X € BV,
is a solution of

dx = d[A] x + dE, x(to) = i() >

108



L1

we have
(1,12) |x(r) — g)exp(CvaritA)  for te[0,1,]
|x(t) — %(1)] < C(|xo — %o| + var. (g — 8))exp(C vari A)  for e[ty 1],

to

i(’)l < C("‘o - iol + varg (g —

where C > 1 is a constant. Hence
(1,13) |x(r) — %(t)] < K(|xo — %o| + var} (g — )

for all te[0,1] where K = Cexp(C var} A).

1.9. Remark. The inequality (1,13) yields evidently x(t) = %(¢) for all te[0,1]
whenever x, = X, and varj (g — g) = 0. In this way the unicity of solutions of the
initial value problem (1,3) is confirmed.

1.10. Theorem. Assume that to€[0,1] is fixed. Let A: [0,1] - L(R,) be such that
varg A < oo, I — ATA(t) is a regular matrix for t€(to, 1] and 1 + A*A(t) is a re-
gular matrix for te[0,t,). Then the set of all solutions x: [0,1] > R, of the homo-
geneous generalized differential equation

(1,14) dx = d[A] x
with the initial value given at the point t, e [0, 1] is an n-dimensional subspace in BV,

Proof. The linearity of the set of solutions is evident from the linearity of the integral.
Let us set e® =(0,...,0,1,0,...,0*eR,, k=1,...,n (the value 1 is in the k-th
coordinate of e¥ e R,) and let ¢*: [0,1] » R, be the unique solution of (1,14)
such that ¢®(t,) =e®, k=1,...,n (they exist by 1.4). The unicity result from 1.4

yieldsthat ) ¢, ¢*(t) =0, c,eR ifandonlyif ¢, =0, k = 1,...,n.Ifx: [0,1] > R,
k=1

is an arbitrary solution of (1,14), then clearly

o) = 3. xlto) o)

for all te[0, 1], ie. x is a linear combination of the linearly independent solutions
0¥, k=1,...,n and this is our result.

1.11. Example. We give an example of a generalized linear differential equation
which demonstrates the role of the assumptions concerning the regularity of the
matrices | + A*A(t), I — AA(t) in 1.4. Let us set

-8 -2
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for 0<t<3 I<t<1 respectively; for this 2 x 2-matrix A: [0,1] — L(R,)
we have evidently A*A(t) = 0 for all te[0,1), A"A(t) =0 for all te(0,1], ¢t +4

and
0,0
AAg)=(.").
n (0, 1)

ow=(i)

is not regular. We consider the initial value problem

Hence

(1,15) dx = d[A] x, x(0) = x,

where x, = (¢, ¢,)* € R,. For a solution x(t) of this problem we have

x(t) = xo + J:d[A(s)] x(s) = xo = (¢, c;)* if te[0,3).

Further, by 1.6 we obtain x(3—)=[1— A" AQ)] x(3), i.e. (¢, ¢,)* = [1 — A~ A(3)] x(3)
= (x,(3), 0)*. This equality is contradictory for ¢, % 0. Hence the above problem
(1,15) cannot have a solution on [0,3] when x, = (¢, ¢,)*€ R, with ¢, * 0.

Let us now assume that x, = (c;, 0)* € R,. Then we have for t > 3

() = xo + |/ A8 ) = xt) + || aTAG o) = ).
By 1.6 necessarily
(- 8 g = (¢ o)) = 6= (5 ).

Hence x(3) = (c,,d)*, where deR is arbitrary, satisfies this relation. It is easy to
show that any vector valued function x: [0,1] — R, defined by x(t) = (c,, 0)*
for 0 <t <3 x(t) = (cy,d)* for § <t < 1, satisfies our equation.

Summarizing these facts we have the following. If x(0) = (c,,¢,)* and ¢, %0,
then a solution of (1,15) does not exist on the whole interval [0, 1]. If x(0) = (c,, 0)*,
then the equation (1,15) has solutions on the whole interval [0, 1] but the uniqueness
is violated.

If we consider the initial value problem dx = d[A]x, x(3) = (c;,c,)* for the
given matrix A(z), then it is easy to show that this problem possesses the unique
solution x(t) = (c,, 0)* if t€[0,3), x(t) = (c,, c;)* if t€[3, 1]. Hence the singularity
of the matrix I — A™A(¢) for ¢ = is irrelevant for the existence and uniqueness
of solutions to the initial value problem mentioned above.

110



1.2

2. Variation of constants formula. The fundamental matrix

In this section we continue the consideration of the initial value problem
(2,1) dx =d[A]x +dg,  x(t,) = x,
with A: [0,1] - L(R,), varj A < o0, geBV,[0,1] = BV,, 1,€[0,1], x,€R,.

2.1. Proposition. Assume that A: [0,1] - L(R,), varj A < oo, t,e[0,1] is fixed,
the matrix | — A™A(t) is regular for all te(to, 1] and the matrix |+ A*A(t) is
regular for all te [0, t,).

Then the matrix equation
(2.2) X(t) = X + f d[A(r)] X(r)

1

has for every X e L(R,) a unique solution X(t)e L(R,) on [t,,1] provided t, <'t,
and on [0,t,] provided t, < t,.

Proof. Let us denote by B, the k-th column of a matrix Be L(R,). For the k-th
column of the matrix equation (2,2) we have

(2,3) X (t) = X, + fd[A(r)] X(r), k=1,..,n.

If t, < t,, then for every te(t,,1] the matrix I — A”A(t) is regular. Hence by 1.4
the equation (2,3) for X,(r) has a unique solution on [z, 1] for every k = 1,...,n
and this implies the existence and unicity of an n x n-matrix X(¢): [t,,1] - L(R,)
satisfying (2,2). The case when ¢, < t, can be treated similarly.

2.2. Theorem. If the assumptions of 2.1 are satisfied, then there exists a unique
n X n-matrix valued function U(t, s) defined for t, < s<t<1land 0 <t <s<t,
such that

(2:4) ut,s)=1+ j td[A(r)] U(r,s).

S

Proof. Ife.g. t, < s < 1 and s is fixed, then the matrix equation

25) X)) =1+ J:d[A(r)] ()

has by 2.1 a uniquely determined solution X: [s, 1] — L(R,). If we denote this
solution by U(t,s), then U(t,s) is uniquely determined for t; <s<t <1 and
satisfies (2,4).

Similarly if 0 < s < t,, s being fixed, the matrix equation (2,5) has by 2.1 a unique
solution X: [0,s] — L(R,) which will be denoted by U(t,s), and U(t,s) evidently
satisfies (2,4) for 0 <t < s < t,.
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2.3. Lemma. Suppose that the assumptions of 2.1 are fulfilled. Then there exists
a constant M > 0 such that |U(t, s| <M forall t,s such that 0 <t <s <ty or
to < s <t < 1. Moreover we have

(2,6) |U(t,, s) — U(ty, s)| < M varz A

forall 0<t, <t,<sif s<tyand all s<t, <t, <1 if ty <s. Consequently
vary U(.,s) < Mvarj A, var! U(.,s) < Mvarf A if 0<s<t, t,<s<I
respectively.

Proof. Since U(t, s) satisfies (2,4) in its domain of definition, the k-th column
(k = 1,...,n) of U(t, s) denoted by U,(t, s) satisfies the equation

Uyt s) = e® + fd[A(r)] Udr, s)

s

for every te[0,s] when s < t, (% means the k-th column of the identity matrix
le L(R,), i.e. Uy(t,s) is a solution of the problem dx = d[A]x + dg, x(s) = e%).
Hence by 1.7 we have

|U,(t, s)| < Cle®|exp(C var; A) < Cexp(Cvarg A), k=1,..,n
for every 0 <t < s <t, where C > 1 is a constant and evidently also
|U(t,s)) < ¥ |Ut, 5)] < nCexp(Cvarg A)= M.
k=1
If t, <s, then 1.7 yields the same result for s <t <1 and the boundedness of

u(t, s) is proved.
Assume that 0 < t, <t, < s <t, Then we have by 1.4.16

U29) - Ut 5] = | [“arae vt - [ arae) vt

< Mvar2A.

fd[A(r)] Ur.s)

1

A similar inequality holds if t, < s < ¢; <t, <1 and (2,6) is proved.

2.4. Theorem. Suppose that the assumptions of 2.1 are fullfilled and t, € [0, 1]. Then
the unique solution of the homogeneous initial value problem

(2,7 dx =d[A]x, x(t,)=%

defined on [t,,1] if t, < t, and on [0,t,] if t; < t, is given by the relation
(2.8) x(t) = U(t, t,) %

on the intervals of definition, where U is the n x n-matrix from 2.2 satisfying (2,4).
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Proof. Under the given assumptions the existence and uniqueness of a solution
of (2,7) is quaranteed by 1.4. Let us assume that 1, < t,. Since by 2.2 U(t,1,) is
uniquely defined for ¢, <t < 1, by (2,8) a function x: [r,,1] — R, is given. By 2.3
we have var/ U(.,t;) < o and consequently var, x = var, U(..1,)% < ». For
x: [t;,1] = R, given by (2,8) the integral (i d[A(s)] x(s) evidently exists (see 1.4.19)
for every t€[t,, 1] and by (2,4) we have

[ LA x() = fdws)] Ul 1) % = (Ul 1) — % = x() - %,

1

ie. x(t) = U(t,t;) X is a solution of (2,7) on [¢,, 1]. The proof of this result for the
case t; < t, is similar.

2.5. Corollary. If the assumptions of 2.1 are satisfied and U(t, s) is the n x n-matrix
determined by (2,4) for to <s<t<1and 0 <t <s<t,, then

(2,9) u(t, s) = Ul r) U(r, s)
fto<s<r<t<lor0<t<r<s<t,and
(2,10) Uit =1

for every te[0,1].
Proof. Leteg. 0 <t <r < s < t,, then by (2,4) we obtain

ue,s) =1+ Jtd[A(g)] Ulg,s) =1+ jrd[A(g)] Ulo,s) + J;td[A(g)] U(e, s)

= U(r,s) + fd[A(g)] Ulo, s)

for every 0 < t < 7. Hence U(t, s) satisfies the matrix equation

X() = Ulr.) + j 4[AQ)] X(0)

for 0 <t <r and by 2.4 this solution can be expressed in the form U(t,r) U(r, s),
ie. (2,9) is satisfied. If 1, <s <r <t <1, then (2,9) can be proved analogously.
The relation (2,10) obviously follows from (2,4).

2.6. Lemma. If the assumptions of 2.1 are satisfied, then for U(t,s) given by 2.2
we have
(2,11) |U(t, s,) — U(t,s,)] < M?var2 A

for any sy, s, such that ty <s; <s, <t<1lor0<t<s, <s,<t, where M is
the bound of U(t, s) (see 2.3). Hence var,, U(t, .) < M? var} A ift, <t and vari° U(t, .)
< M?var A if t < t,.
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Proof. Let us consider the case when ¢, < s; <'s, < t. By (2,4) we have
t
Ut s) = Ules) = [ a0A0) Utns) — [ o[ Ut s)
t
 [[atae vt - [ apaei vtnsy) - [“atae) utes).
i.e. the difference U(t,s,) — U(t,s,) satisfies the matrix equation
52 t
x0 = - [ st utr.s) + [ et xe
for s, <t < 1. Hence by 2.4 we obtain

s = U = U (- [ o040 tesy)

and by 2.3 and 1.4.16 it is

|U(t,s,) — U(t,s,)] < M < M?varf?A.

£ " d[AR)] U )

The proof for the case 0 <t <s, <s, <t, can be given similarly and (2,11) is valid.

2.7. Lemma. Suppose that the assumptions of 2.1 are satisfied. Let us define

(2,12) O, s) = U(t, ) for ty<s<t<l,
O@ts)=Utt)=1 for ty<t<s<l,
and
(2,13) O(,s) = U(t, s) for 0
O@s)=Urt)=1  for 0
where U(t, s)e L(R,) is given by 2.2.
Then for the twodimensional variations of U on the squares [t,, 1] x [t,,1] and

[0, 2,] x [0, t,] on which @ is defined we have Vi, 1) 10.1(0) < 0 and Vg, «10.a(U
< 0.

<t

I/\
©
IA
s

I/\
I/\
IA
s

Proof. Assume that t, =0 < ®; <... <o =1isan arbitrary subdivision of the

interval [t,,1] and J;; = [ 1 0] X [a, ], ij=1,..,k the corresponding
net-type subdivision of [, 1] x [to, 1]. We consider the sum (see 1.6.2, 1.6.3)

5 natral = 5, (Tl + Incts + 3 o)
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0 k
where we use the convention that Z Img(Ji)l =0 and Y |my(J,)| = 0. By (2,12)

Jj= j=k+1
we have mg(J;;) = my(Jyy) if j<i—1,

my(J:) = O, o) — O, 1) — Oy, ) + 00— 1, - )
= U(ozi, o) — U(ai, ;) = Ul o) — Uy, ;)

and mgy(J;;) =0 if i + 1 <j. Hence

k
(2.14) 2__: Img(J)| = Z Imy(J3;)| + Z |U(es, o) — Uty ;- )] -
If j<i—1,then o;_; <a;<o;_; <o; and by 2.5

my(J;;) = Ul ) — Ulo, - 1) — Uleg—y, ) + Uy, a5 4)

= U(o, o) Ulot— g, o)) — Ule—y, ) — Ul o) Uiy, - ) + Ule—y, - 4)

= [Ule, 1) = 1] Ul g, o) = [Ulors ) — ’] % p, 1)
= [0 o-) = 1] [Ueie1,%) — Yoo 1251 )]
= [Ulo, ;- 1) = Uiy, 04-)] [Ulei s ) — Uiy, 05-4)] -

Hence by 2.3 and 2.6 we obtain

lmu(-’ij)l = |U°‘i’ %-q) — U(“i—n“-‘—x)| |U(oci_1,ct,-) - U(“-'—v“j—l)‘

< M(vary_ A)M?vary A= M>vary_ Avary_ A
and

i—-1
Z Z Imy(J;)| < M3 Zvar:; A Y vary A< M3(var A).
i=1

i=1 j=1

Further, by (2,11) from 2.6 we have
k k
‘,§1|U(<li, fli) - U((li, ai—x)' siglMZ var_ A= M?2 var,oA
Hence by (2,14) we have

k
Y Img(J;)| < M3(varl A + M? var} A

ij=1

and since the net-type subdivision was chosen arbitrarily, we have by the definition

also
3 0 2 2 1
v[,o,”x[,o'u(ﬁ) < M3(var) A + M?var} A < o0

The finiteness of Vg, ;.0.,,(U) can be proved similarly.
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2.8. Theorem (variation-of-constants formula). Let A: [0,1] — L(R,) satisfy the as-
sumptions given in 2.1 where t,€[0,1] is fixed. Then for every x,€R,, geBYV,
the unique solution of the initial value problem (2,1) can be expressed in the form

(2,15) x(t) = U(t, to) xo + g(t) — glto) — fds[u(f’ s)] (g(s) — g(to))

where U is the uniquely determined matrix satisfying (2,4) from 2.2.

Proof. We verify by computation that x: [0, 1] - R, from (2,15) is really a solution
of (2.1). Let us assume that ¢ < t,. Then

(2.16) fdwr)] () = f A[AR)] Ulr 1) xo + j'dw)] (&) — £(0)

0 0 o

- [[atan [ st g - )

o to

(Ut to) — %o + f "ALA)] () — () - fd[A(r)] j "4 LU 5] (g5 — )

fo

since U satisfies 2.4. Let us now consider the last term from the right-hand side
in (2,16). We have

[/ atae [ ot o1 a9 - st = [ et |0t gt - et

0 o t

where U is defined in 2.7 and satisfies by 2.7, 2.3 and 2.6 the assumptions of 1.6.20
on the square [t,1,] x [¢,t,]. Hence we interchange by 1.6.20 the order of integration
and obtain by the definition of U

[ atae) [ aute s e~ oo = || ["aran 06:9 et - et
- f"ds [ f d[AM] O, 5) + J tod[A(r)] o, s)] (&s) — g(to)
- [[a[ [latarn .9 + ['araen e - et

s

= [ty - 1+ 49 - A o) - g0

to

= [[arute.91(e) ~ st + | a0 56) - gt

to to
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Using this expression we obtain by (2,16)

fﬁ%ﬂWbumMM—m+f%MWWFAM)

0 to

—fMWmmw%ﬂw—fqmmwwaw

1

= (1, to) xo + g(t) — &lto) — J AUl 5] (g5 — () — (€00 — (to) — xo

o

= x(t) — xo — (g(t) — g(to))-

Hence x(t) is a solution of (2,1) for t < t,. For the case t, <t the proof can be
given analogously. Using 1.4 the solutions of (2,1) are uniquely determined and this
completes the proof.

2.9. Remark. Let us mention that the operator x € BV, — (i d[A(s)] x(s) appearing
in the definition of the generalized linear differential equation (2,1) can be written
in the Fredholm-Stieltjes form [§ d, [K(t, s)] x(s) where K: [0,1] x [0,1] - L(R,)
is defined as follows: if t, <t < 1, then
K(t,s) = At,) for 0 <s<t,,
K(z, s) = Als) for t,<s<t,
K(t, s) = A(r) for t <s<1,
and if 0 <t < ¢, then
K(,s) = —A(r) for 0 <s<t,
K(z,
K(t,s) = —A(t,) for to<s<1.

]
~—

= —A(s) for t <s<t,,

If this fact is used and II.2.5 is taken into account, then the solution of the equation
(2,1) can be given by the resolvent formula (I1.2.16) in the form

@17)  x(t) = xo + g(t) — glto) + les[l' (2, 5)] (xo + g(t) — g(to)),

for t€[0,1] since (2,1) has a solution uniquely defined for every x,€R,, ge BV,
The resolvent kernel I': [0,1] x [0,1] —» L(R,) satisfies

I(t,s) = K(t,s) + J:d,[K(t, 1] I(r,¢).

If we set U(t,s) = I + I'(t,s) — I'(t,t), then the variation-of-constants formula (2,15)
can be derived from (2,17).
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In the following we consider the initial value problem (2,1) with the assumptions
on A: [0,1] - L(R,) strengthened.

2.10. Theorem. Assume that the matrix A: [0,1] — I(R,), vary A < oo is such that
I — A™A(¢) is regular for all te(0,1] and 1 + A*A() is regular for all te[0,1).

Then there exists a unique n x n-matrix valued function U: [0,1] x [0,1] - L(R,)
such that

(2,18) ut,s) =1+ jd[A (r)] U(r, s)
for all t,s€[0,1].
The matrix U(t, s) determined by (2,18) has the following properties.
(i) Ut t)=1 forall te[0,1].
(i) There exists a constant M >0 such that |U(t,s)| < M for all t,5€[0,1],
varg U(t, .) < M, varg U(.,s) < M for all t,s€[0,1].
(ii) For any r,s,t€[0,1] the relation
(2,19) u(t, s) = U(t, r) U(r, s)
holds.
(iv) U(t+,s)=[1+ A+ At)] U(t, 5) for te[0,1), se[0,1],
Uit—,s)=[1 — A"AR)] U(t,s)  for te(0,1], se[0,1],
U, s+) = t,s)[l + A*A(s)]" for te[0,1], se[0,1),
U(t,s—) = U(t,s)[I — A"A(s)]™" for te[0,1], se(0,1].
(V) The matrix U(t, s) is regular for any t,se [0, 1].

(vi) The matrices U(t, s) and U(s, t) are mutually reciprocal, i.e. [U(t,s)] ™' = U(s, t)
for every t,se[0,1].

(vii)  The twodimensional variation of U is finite on [0,1] x [0, 1], i.e. Vi, 17x0.1)(U)
< o0.

Proof. By 2.1 for every fixed se[0, 1] the matrix equation
t
X(t) =X + jd[A(r)] X(r), XeL(R,)
has a unique solution X: [0, 1] — L(R,), which is defined on the whole interval [0, 1].

Hence the existence of U(t, s) satisfying (2,18) is quaranteed.

(i) is obvious from (2,18). (ii) follows immediately from 2.3 and 2.6. For (iii) we
have

Ults) =1 + £d[A(Q)] Ue,s) = 1 + J '4[A(0)] Ule, 5) + j d[A(Q)] Ule, )

= U(r,s) + J:d[A(Q)] Ulo,s),
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ie. U(t, s) satisfies the matrix equation

t
X(t) = U(r,s) + jd[A(r)] X(r).
Hence by 2.4 we obtain U(t,s) = U(t,r) U(r, s) for every r,s,te[0,1], and (2,19)
is satisfied.
The first two relations in (iv) are simple consequences of 1.6. To prove the third
relation in (iv) let us mention that for any te[0, 1], se[0, 1) and sufficiently small
0 > 0 we have by definition

U(t, s+6) — U(t,s) = J

s+o

t

d[A(r)] U(r, s+ ) — jld[A(r)] U(r, s)

_ j " d[AM] (Ul 5+ ) — Ulr, 5)) — J " AAr)] U ),

s+ s

ie. the difference U(t, s + ) — U(t, s) satisfies the matrix equation

xt) = - | atm vt + | el xi)
and consequently by 2.4 it is

U(t, s +6) — U(t, s) = U(r, s+5)(—J

s

s+

d[A(r)] U(r, s)) )
For 6 —» 0+ this equality yields
Ut, s+) — U(t,s) = —U(t, s+) AT As) Us,s) = —U(t, s+) A*A(s).

Hence U(t,s) = U(t,s+) [I + A*A(s)] for any te[0,1], se[0,1) and the as-
sumption of the regularity of the matrix I + A* A(s) gives the existence of the inverse
[/ + A*A(s)]~* and also the third equality from (iv). The fourth equality in (iv)
can be proved analogously.

By (iii) we have U(t,s)U(s,t) =1 and U(s,t) U(t,s) = I for every t,5€[0,1].
Hence U(t,s) = U(s,t)”" and U(s,t) = U(t,s)"" and (vi) is proved. From (vi) the
statement (v) follows immediately. (In this connection we note that a direct proof
of (v) can be given without using (iii), see Schwabik [1].)

Finally by (iii) we have U(t,s) = U(t,0) U(0,s) for every (t,s)e[0,1] x [0, 1].
By (ii) it is var) U(.,0) < oo and var) U(0,.) < oo. Hence by 1.6.4 we have
Vio,11x10,1(U) < oo and (vii) is also proved.

2.11. Corollary. If A: [0,1] - L(R,), varj A < oo, satisfies the assumptions given
in 2.10, then

(2,20 U(t,s) = X(t) X" (s)  for every s,te[0,1]
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where X: [0,1] > L(R,) satisfies the matrix equation

(2,21) X =1+ £d[A(r)] X(r), te[0,1].

Proof. Since the matrix equation (2,21) has a unique solution, it is easy to compare
it with (2,18) and state that X(t) = U(t,0). By (iii) from 2.10 we have U(t,s)
= U(t,0) U(0, s) and by (vi) from 2.10 it follows U(0,s) = [U(s,0)] ' = X (s).
Hence (2,20) hold.

2.12. Remark. If the matrix A: [0,1] - L(R,) satisfies the assumptions of 2.10,
then evidently the assumptions of 1.4, 2.1—2.8 are satisfied for every t,€ [0, 1].
Hence by 1.4 the initial value problem (2,1) has for every t,€[0,1], x,€R,,
g € BV, a unique solution x: [0,1] - R, defined on the whole interval [0, 1].

The variation-of-constants formula 2.8 leads to the following.

2.13. Theorem (variation-of constants formula). Let us assume that A: [O, 1] - L(R,,)
satisfies the conditions given in 2.10. Then for any t,€[0,1], x,€R,, ge BV, the
solution of the nonhomogeneous initial value problem (2,1) is given by the expression

(1) = Ult 1) xo + £(0) — lto) ~ f 4[] (@) - glto). ref0.1]

where U(t,s): [0,1] x [0,1] - L(R,) is the matrix whose existence was stated
in 2.10.

The proof follows immediately from 2.8.

2.14. Corollary. [f A: [0,1] — L(R,) satisfies the assumptions from 2.10, then the
above variation-of-constants formula can be written in the form

(2.22) x(z) = g(t) — g(to) + X(2) {X “to) X0 — J: 'ds[X “1(s)] (g(s) — g(to))}

0

for te[0,1] where X: [0,1] - L(R,) is the uniquely determined solution of the matrix
equation (2,21).

The proof follows immediately from 2.13 and from the product decomposition (2,20)
given in 2.11.

2.15. Proposition. [f A: [0,1] - L(R,) satisfies the assumptions given in 2.10 and
X: [0,1] > L(R,) is the unique solution of the matrix equation (2,21), then

(2,23) X_l(s) =1+ A(O) - X~ 1(5) A(s) + J:d[x_ 1(r)] A(r)
for every se[0,1].
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Proof. For X: [0,1] — L(R,) we have by (2,21)

X(s) =1 = Lsd[A(r)] X(r) = Ed[A(r)] (X(r) = 1) + A(s) — A(0)

for every se[0,1]. Using the variation-of-constants formula (2,22) in the matrix
form we get

X() = 1= ) = 40) - X9 [ 9[x" ) 40 - A0)
~ 49) = A0) = X() [ a[X" ) ) + X6 X9~ X (0] 0

 A6) = X(5)0) = X() [ 9[x0) A0,
0
Multiplying this relation from the left by X~ !(s) we obtain for every se€[0,1]

I — X" '(s) = —A(0) + X~ '(s) As) — J:d[x_'(r)] A(r)
and (2,23) is satisfied.

2.16. Definition. The matrix U(z, s): [0,1] x [0,1] — L(R,) given by 2.10 is called
the fundamental matrix (or transition matrix) for the homogeneous generalized linear
differential equation dx = d[A] x.

2.17. Remark. If B: [0,1] - L(R,) is an n x n-matrix, continuous on [0, 1] and
x = B(t)x is the corresponding ordinary linear differential system, then in the
theory of ordinary differential equations the transition matrix @(t,t,) is defined
as a solution of the matrix differential equation

X' = B(t) X
satisfying the condition X(t,) = I € L(R,). Hence for & we have

D(t,t0) =1+ JlB(t) D(1,t,) dr,

to
i.e. @ satisfies the generalized matrix differential equation
t
D(t, 1)) =1 + J d[A(7)] Dz, t,)
to
where A(f) = [ B(t)dr (see also 1.3). The variation-of-constant formula for the
generalized linear differential equation

dx = d[A] x +dg,  x(to) = %,
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where g(t) = i h(s)ds, which corresponds by 1.3 to the ordinary linear system
x = B(t)x + h(t), x(to) = x,
has the form

(1) = Bt t0) xo + 1) — lto) — j "4 (e, 9] (gls) - glea)

to

_ Bt 1) xo + j ;h(s) ds + J (1, 5) d < f "h(o) da) — o) jlh(s) ds

0 0 to
t
= @(t, to) Xo + J b(t, s) h(s) ds .
to
This is the usual form of the variation-of-constants formula for ordinary linear
differential equations.

2.18. Definition. The n x n-matrix U(t, s) defined for t,s€ [0, 1] is called harmonic
if varg U(t, .) < oo for every te[0,1], varg U(.,s) < oo for every se[0,1].

(2,19) U(¢,s) = U(t,r) U(r,s)  for any three points r,s,t€[0,1],
(2,24) U0 =1 forany re[0,1].

For the concept of harmonic matrices see e.g. Hildebrandt [2], Mac Nerney [1],
Wall [1].

As was shown in 2.10 for A:[0,1] - L(R,), varjA < co with the matrices
I — A™A(¢), I + A*A(t) regular for te(0,1], te[0, 1) respectively, the corresponding
fundamental matrix U(t, s) is harmonic (see (i), (i) and (iii) in 2.10). In other words,
to any n x n-matrix valued function A: [0, 1] —» L(R,) with the above mentioned
properties through the relation

uit,s) =1+ [d[A(r)] Ur,s), tse[0,1]

a uniquely determined harmonic matrix U(t, s) corresponds. In the opposite direction
the following holds.

2.19. Theorem. If the n x n-matrix U(t,s): [0,1] x [0,1] - L(R,) is harmonic, then
there exists A:[0,1] > L(R,) such that vary A < oo, the matrices | — A™A(t),
I + A*A(t) are regular for all te(0,1], te[0,1), respectively and U satisfies the
relation

t
(2,25) Ut,s)=1+ ~[\d[A(r)] u(r, s), t,se[0,1],

s

i.e. U(t, s) is the fundamental matrix for the homogeneous generalized linear differential
equation with the matrix A (see 2.16).
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Proof. Let us set
4
At 1) = Jd,[U(r, )] U(z,7)
0

for t,7e[0, 1]. This integral exists for every t,7 by 14.19. For every t, 1€ [0, 1]
we have by (2,19) and (2,24)

Alt,7) = ﬂd,[U(r, 1) U(7, 0)] U(0, 7) U(z, r) = J:d,[U(r, 0)] U(0, r) = A(t,0).

Hence the matrix A(t, 7) is independent of 7 and we denote A(t) = A(t, 1) = A(t, 0)
for te[0,1]. Evidently varj A < oo by 1.4.27. Further we have by the definition
of A, by the substitution theorem 1.4.25 and by (2,19), (2,24)

£ d[AKY] Upr, ) = Jld, [ J "4,[U(e 0)] U, Q)] U, s)

= ﬁrd,[U(r, 0)] U(0, r) U(r,s) = '[td,[U(r, 0)] U(0, 5)
= (U(t,0) — U(s,0)) U(0,s) = U(t,s) — I,

ie. U(t, s) satisfies (2,25) for every ¢, s € [0, 1]. Finally we show that A:[0,1] - L(R,)
satisfies the regularity conditions for I — A~A(t), I + A*A(z). By definition we have
for te(0,1]

A™A(t) = A(t) —,,‘ifg*f(t - 9)

- ﬁd,[u(r, 0] U(0.1) - Jlim J:—ad,[U(r, 0)] U,

t
=6l_{rgl+ ~[;éd,[U(r, 0)] U(o,7) =él_{r(§1+(U(t, 0) — U(z — 6, 0)) U(0, 1)

= U(t,0) U(0, 7) = Jim U(t—96,0)U(0,1) =1 — lim Ui-9,1),
where 1.4.13 was used. Hence

(2,26) I — A™A(r) = lim Ut—-96,1) = Ulr—,1)

for every t (0, 1]. Since U is assumed to be harmonic, we have U(t — 8, t) U(t, t — §)
= | for any sufficiently small 6 > 0. U(t, s) is of bounded variation in each variable,
the limits 6li1;)n+U(t —6,t)=U(t—, 1) and Jim U(, t — 6) = U(t, t—) exist. Hence
Uit—, ) U, t—) = Jim Uie—0, Ut t—9)=1
-0+

and the matrix U(t—,t) is evidently regular since it has an inverse [U(t—,)]"!
= U(t, t—). This yields by (2,26) the regularity of I — A~ A(t) for every te(0,1].
The regularity of I + A*A(t) for every te[0,1) can be proved analogously.
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3. Generalized linear differential equations on the whole real axis

In this section let us assume that A: R — L(R)) is an n x n-matrix defined on the
whole real axis R and is of locally bounded variation in R, i.e. var? A < oo for every
compact interval [a,b] = R. We consider the generalized linear differential equation

(3.1) dx = d[A] x + dg

where g: R > R, is of locally bounded variation in R.
The basic existence and uniqueness result follows from 1.4.

3.1. Theorem. Assume that A: R — L(R,) is of locally bounded variation in R and
I — ATA(1), I + ATA(t) are regular matrices for all teR. Then for any ty€R,
xo€R, and g: R — R, of locally bounded variation in R there is a unique solution
x: R > R, of the equation (3,1) with x(to) = x, and this solution is of locally bounded
variation in R.

Proof. This theorem follows immediately from 1.4 and 1.7 since evidently the as-
sumptions of 1.4 are satisfied on every compact interval [a, b] < R.

In this way our preceding arguments on generalized linear differential equations
are applicable to the case of equations on the whole real axis R. Especially the
fundamental matrix U(t, s) determined uniquely by the equation

ut,s) =1+ J:d[A(r)] u(r, s)

is defined for all t,se R, has the properties (i), (iii), (iv), (v), (vi) from 2.10 and is
of locally bounded variation in R in each variable separately (see (ii) in 2.10). More-
over, the twodimensional variation of U on every compact interval I = [a, b] x [c,d]
< R, is finite.

Now we prove a result which is analogous to the Floquet theory for linear systems
of ordinary differential equations.

3.2. Theorem. Assume that A: R — L(R,) is of locally bounded variation in R such
that 1 — A™A(t), 1 + A*A(t) are regular matrices for every t€ R. Moreover let

At + w)— At)=C  forevery teR

where > 0 and Ce L(R,) is a constant n x n-matrix. If X: R — L(R,) is the solution
of the matrix equation

t
X)) =1+ Jd[A(r)] X(r), teR
0
(ie. X(t) = U(t,0)) then there exists a regular n x n-matrix P: R — L(R ), which is
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periodic with the period w (P(t + w) = P(t)) and a constant n x n-matrix Q€ L(R,)
such that
X(t) = P(t)e'?
is satisfied for every te R.
Proof. By definition we have

X(t+w)=l+j

0

t+ +w

" A[AR)] X() = X(o) + j a[AK)] X()

w

= X(w) + ‘[;d[A(r + )] X(r + ) = X(w) + J:d[A(r) + C] X(r + w)

= X(w) + J:d[A(r)] X(r + w)

for every te R. Using the variation of constants formula 2.14 in the matrix form
we get
X(t + 0) = X(t) X(w)  forevery teR.

By (v) from 2.10 the matrix X(w) = U(w, 0) is regular. Using the standard argument
we conclude that there is a constant real n x n-matrix Q € L(R,) (Q is not unique)
such. that X(w) = €“? (see e.g. Coddington, Levinson [1], IIL.1), ie.

X(t + w) = X(r)e“°.
Let us define P(t) = X(t) e '@ for every teR. We have
P(t + w) = X(t + w)e™ % = X(r)e*Re e ' = X(t)e ' = P(t)
for all teR, ie. P is periodic with the period w. The regularity of P(t) is obvious
by the regularity of X(t) and e'? Hence X(t) = P(t)¢'? and the result is proved.

Remark. This theorem is a basis for more detailed considerations concerning the
linear system (3,1) with A: R — L(R,) satisfying the “periodicity” condition
A(t + w) — A(t) = const. Some special results are contained in Hnilica [1].

4. Formally adjoint equation

Let B: [0,1] —» L(R,), var} B < oo and ge BV, Let us consider the generalized
linear differential equation for a row n-vector valued function y*

(4,1) dy* = —y*d[B] + dg* on [0,1],

which is equivalent to the integral equation

s

Y*(s) = y*(so) — f y*(t)d[B(2)] + g*(s) — 8*(s0)>  s.50€[0,1].

So
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Obviously, y*: [0,1] - R, is a solution to (4,1) on [a,b] = [0,1] if and only
if y verifies the equation

“2) y(s) = ylso) — f a[BH1] () + £(5) - glso)

for every s, s €[a, b]. Thus taking into account that I — A~(—B*)s) = [I + A~ B(s)]*
on (0,1], I+ A*(—B*)s)=[I — A*B(s)]* on [0,1) we may easily obtain the
basic results for the equation (4,1) as consequences of the corresponding theorems
from the foregoing sections.

Given y} € R}, the equation (4,1) possesses a unique solution y* on [0, 1] such
that y*(1) = y§ or y*(0) = y¥ if and only if

(4,3) det[I —A*B(s)] 0 on [0,1)
(44) det[I+ A"B(s)] 0  on (0,1],

respectively (cf. 1.4).

If (4,3) holds, then by 2.2 there exists a unique n x n-matrix valued function W(t, s)
defined for t,s€[0,1] such that s > ¢ and fulfilling for all such ¢, s the relation

W(t,s) =1 — j A[B¥)] Wi, ).

Furthermore, given t,s€[0,1], vary W(., s) + var; W(t, .) < o0, W(t+,s)
=[1—-A*B(t)]* W(t,s) if t<s and W(t—,s)=[I+ A B(t)]* W(t,s) if t<s
(cf. 2.10). It follows that the function V(t,s) = W*(s,t) for ¢ > s is a unique n x n-
matrix valued function which fulfils for ¢, s e [0, 1], t > s the relation

(45) Vit o) =1 + £V(t, ") d[B()].
Moreover, given t,s€ [0, 1]

varg V(t, .) + var! ¥(.,s) < o0

and
(4.6) Vit,s+) = V(t,s)[1 — A*B(s)]  if t>s,
47 Vit,s—)=V(ts)[1 + A B(s)] if t>s.

If y§ € R} is given, the unique solution y* of (4,1) on [0, 1] with y*(1) = y} is given
on [0,1] by

9 O =rvg+ 0 - o)+ [0 - 20 oY)
(cf. 2.8). |
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If (4,4) holds, then the fundamental matrix V(t, s) for (4,1) is defined and fulfils
(4,5)for t < s,(4,6) holds for ¢t < s and (4,7) holds for ¢ < s. Furthermore, var} (., s)
+ var} V(t,.) < oo for all t,s€[0,1] and given y}e R¥, the unique solution y*
of (4,1) on [0, 1] with y*(0) = y$ is given on [0, 1] by

(49)  y*(s) = ys V(0,5) + g*(s) — g*(0) - J(z*(l) — g*(0) d,[V(, s)] -

0
If both (4,3) and (4,4) hold, then there exists M < oo such that given t,s€ [0, 1]
Ve, s)| + vard V(z, .) + varg (., s) + Viosixpo.(V) < M < 0.

Moreover, in this case, given t,s,re [0, l] s
(4,10) V(t,r) V(r,s) = V(t,s) and V(t,t)=1
(cf. 2.10).

The equation (4,1) is said to be formally adjoint to (1,1) if
(4,11) B(t+) — A(t+) = B(t—) — A(t—) = B(0) — A(0) on [0,1].
(According to the convention introduced in 1.3 we have

B(0—) — A(0—) = B(0) — A(0) = B(1+) — A(1+) = B(1) — A(1).)

The condition (4,11) ensures that
1

(4,12) J y*(t) d[B(t) — A(t)] x(t) =0  forall x,ye BV,
0

(cf. 1.4.23). (4,11) hoids e.g. if B(t) = A(t) on [0,1] or
(4,13) B(r) = A, () = A(t—) + A*A() on (0, 1),
BO) = A,0)= AQ),  B(1) = A,(1) = A().

Without any loss of generality we may assume that A(0) = B(0).

4.1. Theorem. Let the n X n-matrix valued functions A, B be of bounded variation
on [0, 1] and such that (4,11) with A(0) = B(0) holds.

@ ¥
(4,14) det(l — A™A(t)) det (I — A*B(t))det (I + A*A(t)) £0  on [0,1]
(4,15) det(l — A™A(t))det (I — A*B(¢))det (I + A"B(t)) £ 0  on [0,1],
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then the fundamental matrices U(t, s) to (1,1) and V(t, s) to (4,1) fulfil the relation
(4,16) V(t,s) = U(t s) + V(t, s) [A(s) — B(s)] — [A(r) — B(e)] U(t, )

t

4+ V(t,5) A" B(s) A* A(s) — A~ B(t) A~ A1) U1, 5)
+ Y V(t,1)[AB(t)A*A(r) — A"B(1) AA(r)] U(x,s) if t>s,

V(t, t) = U(t,t) = 1.
(i) 1f

(4,17) det(l + A*A(t))det (I + A™B(t))det (I — A*B(t)) =0  on [0,1]
(4,18) det(l + A*A(t))det (I + A™B(r))det(I — A"A(t)) + 0 on [0,1],
then
(4,19) V(t,s) = (t s) + V(. s) [A(s) — B(s)] — [A(z) — B(r)] ULz,

+ V(t,s) A™B(s) A~ A(s)—A*B(t) A*A(R) U, s)

+ Y V(t,7)[AB(r)A"A(r) — A*B(r) ATA(1)] U(tr,s) if t<s,

t<t<s
V(t,t) = U(t,t) = 1.
(In (4,14)—(4,19) A~A(0) = A™B(0) =0 and A*A(1) = A*B(1) =0.)
Proof. Let e.g. (4,14) hold. Then Uz, s) is defined for all ¢,s€[0,1] and V(z,s) is
defined for t > s. Let ¢t,s€ [0, 1], t > s be given and let us consider the expression

w=fﬂ%@ﬂhﬁ+£mﬂqun

Inserting into W from (2,4) and (4,5) and making use of the subsitution theorem
1.4.25 we easily obtain

W=£Mmmum_mmu@q

and according to (4,11) and 1.4.23
W = V(,s)[A*A(s) — A*B(s)] U(s, 1) + [A™A(r) — A™B(t)]
= — V(¢ 5) [A(s) — B(s)] Uls, 2) + [A(r) — B(t)]

because the components of A(f) — B(t) are evidently break functions on [0, 1].
On the other hand, the integration-by-parts theorem 1.4.33 yields

W=1-V(s)U(st) — ATV, s) AT U(s, t) + A V(5 ) AT U, 1)
. [AZ V(1) AT U(T, t) — AFV(t, 1) AT U(, 1)],

s<t<t
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where Af Z(t,s)= Z(t+,s) — Z(t, s), A; Z(t, s) = Z(t, s+ ) — Z(t, 5), A Z(t,s) = Z(t, s)
— Z(t—,s) and A; Z(t,s) = Z(t,s) — Z(t,s—) for Z = U and Z = V. Taking into
account the relations (4.6), (4,7), (4,10) and 2.10 we obtain immediately (4,16).

The remaining cases can be treated similarly. If (4,17) or (4,18) holds, then instead
of the expression W we should handle the expression

£dt[V(s, )] U(, s) + £ V(s, ) d [U(z, 5)] .

4.2. Theorem (Lagrange identity). Ler A: [0,1] - L(R,) and B: [0,1] > ) be
of bounded variation on [0, 1] and let (4,11) hold. Then for any x € BV, left- contmuous
on (0,1] and right-continuous at 0 and any y € BV, right-continuous on [0, 1) and
left-continuous at 1

20 [ 0 o[ x0 — [[atasn =]+ [ o[y - 'y atmon] s
= y*(1) x(1) — y*(0) x(0).
Proof. Applying the substitution theorem 1.4.25 the left-hand side of (4,20) reduces to

[ y0at1 + [ ety 0+ [ 0 a0 - A0 0

0

The integration-by-parts formula 1.4.33 yields

Lly*(t)d[X(t)] + le[)'*(t)] x(e) = y*(1) (1) — y*(0) x(0)

whence by (4,11) and (4,12) our assertion follows.

4.3. Remark. The relations (4,16) and (4,19) are considerably simplified if
(4,21) © A'B(t)A*A(r) = A"B(t)A"A(t)  on [0,1].

This together with (4,11) and A(0) = B(0) is true e.g. if
() B=A and (A*A(t))> =(AA(t))* on [0 1], or

(i) B=A, (f (413) (A*A0)=(A"A(1)?=0 and A*A(r)A-A(f)
= AA() A*A(r) on (0,1).

5. Two-point boundary value problem

Let M and N be m x n-matrices and r € R,,. The problem of determining a solution
x: [0,1] >R, to

(51) dx = d[A] x + df
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on [0, 1], which fulfils in addition the relation

(5.2) Mx(0)+ Nx(1)=r,

is called the two-point boundary value problem.

5.1. Assumptions. Throughout the section, A,B are n x n-matrix valued functions
of bounded variation on [0,1]. Moreover we suppose that (4,11) with A(0) = B(0),
(4,21) and at least one of the conditions (4,14), (4,15), (4,17), (4,18) are satisfied. (In

particular, the assumptions of 4.1 are fulfilled.) M and N are m x n-matrices, f € BV,
and reR,,, m> 1.

Making use of the variation-of-constants formula (2,15) we may reduce the
boundary value problem (5,1), (5,2) to a linear nonhomogeneous algebraic equation.

5.2. Lemma. If (4,14) or (4,15) holds, then x: [0,1] — R, is a solution of the problem
(51), (52) if and only if

(53 x0 = U60)e+ 10— 10) - [4[Ue) (1) - 10)  on [0.1]
where c€ R, is a solution to the algebraic equation
[M+NV1L0)]c=r+ N{V(I,O) f(0) — f(1) + Jlds[V(l,s)] f(s)}
I (4,17) or (4,18) holds, then x: [0,1] - R, is a solution too (5.1), (5.2) if and only if

x(t) = U, 1) c + f(t) — f(1) + J:lds[U(t, )] (f(s) — f(1))  on [0,1],

where

[MV(0,1)+ N]c=r+M {——f(O) + V(0,1) f(1) — J:dS[V(O, s) f(s)}.

Proof. Let (4,14) or (4,15) hold. Then by 2,15 x: [0,1] - R, is a solution of the

given problem if and only if it is given by (5,3), where ce R, fulfils the equation
1

M+NUQLO)]e=r+ N{U(l,O) f(0) — f(1) + I d,[U(1, s)] f(s)}.

0

By (4,16) and (4,21)

(54) V(1,5) = U(1,5) + V(1,5)(A(s) — B(s)) + V(1,s) A*B(s) AT A(s)

and thus

V(l,s+) — U1, s+) = V(1,s—) — U(1,5s-)
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for any se[0,1]. (In particular V(1,0) = U(1,0), V(1,1) = U(1,1).) This implies
by 1.4.23

leS[U(l, s)] vls) = J: d[¥(1,s)]v(s) forany veBYV,

wherefrom our assertion follows.
The cases (4,17) and (4,18) could be treated analogously. (¥(0,s) = U(0,s)
+ V(0, s) (A(s) — B(s)) + V¥(0,s) A™B(s) A”A(s) on [0,1])

5.3. Remark. Consequently, in the cases (4,14) or (4,15) the problem (5,1), (5.2)
has a solution if and only if

(5.5) #[M+NV(1,0]=0
implies
(56)  A*N V(1,1)f(1) — A*N ¥(1,0) f(0) — j d,[A*N (1, 5)] f(s) =
0
Let us denote y¥(s) = A*N ¥(1,s) for se[0,1] and AeR,,. Then (5,6) becomes
1
Y2 £0) = y20)10) - | oDy 19 = 27
By (4,8) for any 4* e R and s,s5,€[0,1]
y26) = vioo) + [ v 8]
Moreover, if A*e R} verifies (5,5), then y}(0) = A*N ¥(1,0) = —A*M and y¥(1)

= A*N. Analogously, if (4,17) or (4,18) holds, the problem (5,1), (5,2) possesses
a solution if and only if A*[M V(0,1) + N] = 0 implies

yi() £(1) - y3(0) £0) - j dly36)] £(9) = i

where y¥(s) = —4*M V(0,s) on [0, 1].

5.4. Lemma. Let g € BV, and p, q€R,. If (4,14) or (4,15) holds, then y*: [0,1] —» R}
is a solution to the generalized differential equation

(5,7) dy* = —y*d[B] + dg*  on [0,1]
and together with A* € R}, verifies the relations
(5.8) y*(0) + A*M = p*, y*(1) — A*N = q*

if and only if
(59) y*(9) = (1*N + g V(1 3) + g — g*(1) + f (&) - £*(1) V(e )]
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on [0,1] and
A[M + N U(1,0)]
1

~ p* 4" U(L0)— g0~ (1) Ul10) + [ 70 6 [U10)].

0
(By (4,16) V(t,0) — U(t,0) = (A(t) — B(t)) U(t,0) + A~ B(t) A~ A(t) U(t,0).)

If (4,17) or (4,18) holds, then y*: [0,1] - R¥ and A* e R} verify the system (5,7),
(5.8) if and only if

S

(5.10) y*(s) = (p* — A*M) V(0, ) + g*(s) — g*(0) — L(g*(t) — g*(0) d,[ V(1. 5)]
on [0, 1]
and A*[MU((0,1) + N]

~ p U0.1) - 4"+ (1) - £°0) U0, 1)~ [ ) 6 [ 1],

0

(V(t, 1) — U(, 1) = (A(t) — B(t) U(t, 1) + V(t, 1) A*B(t) A*A(t) by (4,19))

Proof. In virtue of our assumption (4,21) the fundamental matrices U(t,s) and
V(t, s) fulfil the relation (5,4). Inserting (4,8) or (4,9) into (5,8) we complete the proof.

5.5. Theorem. Under the assumptions 5.1 the given problem (5,1), (5,2) possesses
a solution if and only if ’

1) PO 10) -y 10) - [ by 10 = 2
for any solution (y*, A*) of the homogeneous system

(5,12) dy* = —y*d[B] on [0,1],

(5,13) y¥0) + *M =0,  y*(1)— A*N = 0.

Proof follows immediately from 5.2 (cf. also 5.3).

5.6. Theorem. Let A, B, M, N fulfil 5.1. Then given g BV, and p, qe R, the system
(5,7), (5,8) possesses a solution if and only if

1

(1) (1) - £70) () - [ 56)aLxt)] = 4 x() ~ $*x0)

0

for any solution x of the homogeneous equation

(5,14) dx =d[A]x on [0,1]
which fulfils also
(5,15) Mx(0) + Nx(1)=0.
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Proof. If (4,14) or (4,15) holds, then by 5.4 the system (5,7), (5.8) possesses a solution
if and only if

(5,16) [M+NU1,0]c=0

implies
1

g %)~ px(0) = ') %) - £°0)%(0) [ £ aLxt]
where x(t) = U(t,0) c for te[0,1] and ceR,. By 5.2 x: [0,1] - R, is a solution
to (5,14), (5,15) if and only if x(f) = U(z,0) ¢ on [0, 1] where ce R, verifies (5,16).
Now, our assertion follows readily.

5.7. Definition. The system (5,12), (5,13) of equations for y*: [0,1] - R¥ and
A* e R} is called the adjoint boundary value problem to the problem (5,1), (5,2) (or
(5,14), (5,15)).

5.8. Definition. The homogeneous problem (5,14), (5,15) (or (5,12),(5,13)) has exactly k
linearly independent solutions if it has at least k linearly independent solutions on
[0, 1], while any set of its solutions which contains at least k + 1 elements is linearly
dependent on [0, 1].

Another interesting question is the index of the boundary value problem, ie. the
relationship between the number of linearly independent solutions to the homo-
geneous problem (5,14), (5,15) and its adjoint.

5.9. Remark. Without any loss of generality we may assume rank [M,N] = m.
In fact, if rank [M, N] = m; < m, then there exists a regular m x n-matrix @ such

that
M., N,
M,N]| = R
O[M.N] [0, 0]

where M, N, € L(R,, R,,) are such that rank [M;, N,] = m,. Let reR,,

Or = <r1 , rieR, and r,eR, _, . Then either r, + 0 and the equation for
ra
deR,,
(5.17) [M,N]d=r

possesses no solution or r, = 0 and (5,17) is equivalent to [M,,N,]d =r,.

5.10. Theorem. Let A, B, M, N fulfil 5.1 and rank [M, N]| = m. Then both the homo-
geneous problem (5,14), (5,15) and its adjoint (5,12), (5,13) possesses at most a finite
number of linearly independent solutions on [0, 1]. Let (5,14), (5,15) possess exactly k
linearly independent solutions on [0, 1] and let (5,12), (5,13) possess exactly k* linearly
independent solutions on [0, 1]. Then k* — k = m — n.
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Proof. Let us assume e.g. (4,14). By 5.2 the system (5,14), (5,15) possesses exactly
k = n — rank [M + N U(1,0)] linearly independent solutions on [0, 1]. (If ¢;e R,
are linearly independent solutions to (5,16), then since U(0,0) = I, the functions
x{t) = U(t,0) ¢; are linearly independent solutions on [0, 1] of the system (5,14),
(5,15))

On the other hand, the equation (5,5) has exactly m — rank [M + N U(1,0)] = h
linearly independent solutions. Let A denote an arbitrary h x n-matrix whose rows
AY,A%,.., AF are linearly independent solutions of (5,5). Let us assume that the
functions y¥(s) = A*N V¥(1,s) are linearly dependent on [0, 1], ie. there is a€ R,
@ # 0 such that a*AN V¥(1,s) = 0 on [0, 1]. In particular, 0 = a*AN V(1, 1) = a*AN
and 0 = a*AN V(1,0) = —a*AM. Since (5,17), a*4 = 0 and by the definition
of A it is @ = 0. This being a contradiction, k* = m — rank [M + N U(1,0)] and
k* —k=m—n.

5.11. Definition. Given m x n-matrices M, N with rank [M, N] = m, any
(2n — m) x n-matrices M, N° such that

M, N
5,18 det ’
(5,18) e [MC, N‘] +0

are called the complementary matrices to [M, N].

5.12. Proposition. Let M, N e L(R,, R,), rank [M,N] = m and let M, N°
€ L(R,, R;,_,) be arbitrary matrices complementary to [M,N]. Then there exist
uniquely determined matrices P,QeL(R,,_,,R,) and P*,Q°e L(R,, R,) such that

Pe
(519) det[ ; °] +0

Q. Q
and yix, —y§xo = (y§P° + y1Q) (Mx, + Nx;) + (y§P + yiQ)(Mx, + Nx,)
Jor all xo,x,,y,,y, € R,.

Proof. Let P,Qe L(R,,,, R,) and P, Qe L(R,, R,) be such that

(520) M N [-P, —P

’ MmN | Q@ Q)
Then

(5.21) ~PM—PM =1, —PN-PN=0,

QM+ QM =0, QN +QN =1,
and

(522) [P‘, P:H:M, N]_[—I", o]
Q. QM N | o 1]
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Thus, given Xg, Xy, Y0, Y1 €R,,

-1

w0l (x
yix — yix, = (y&, y’,")[ 0 ,J (x?)

= (y(:n): y}:)[Pc, P] I:M, N :| <X0>
QY @ I me, Ne | \x,
= (y8P° + y1Q) (Mxo + Nx,) + (y%P + y*Q) (Mx, + Nex,).

5.13. Remark. It follows from (5,20) that according to 5.12 the matrices P, Q
€ L(R,,_ R,) and P, Qe L(R,, R,) associated to M, N, M¢, N¢ fulfil besides (5,21),

(5,22) also
[—M, NP P,
_MC’ Nc QC, Q = "2n>
(5,23) —MP° + NQ* =1, —MP + NQ =0,
(5.24) ~MP + NQ =0, —-MP+NQ=1I,,,,.

The following assertion is evident.

5.14. Proposition. Let M,Ne L(R,, R,), rank [M, N] = m and let P, Qe L(R,, _,., R,)
and P, Q°€ LR, R,) be such that (5,19) and (5,23) hold. Then P,,Q, € L(R,,_ ., R,)
and P;,Q\ € L(R,, R,) fulfil also (5,19) and (5,23) if and only if there exist a regular
matrix E€ L(R,,_,) and FE (R, R,,_ ) such that

(5,:25) P, = PE, Q, = QE
and
(5,26) "~ P: =P+ PF, ¢ = Q° + QF.

5.15. Definition. Let M,NeL(R,,R,) and let P,QeL(R,,_,,R,) and P Q°
€ L(R,,, R,) be such that (5,19) and (5,23) hold. Then the matrices P, Q are called
adjoint matrices associated to [M,N] and the matrices P, Q° are called com-
plementary adjoint matrices associated to [M, N].

5.16. Remark.If M,NeL(R,,R,), rank [M,N] =m and if P,QeL(R,,_,.,R,)
are arbitrary adjoint matrices associated to M, N, then

(5,27) rank [P:I =2n—m
Q

and the rows of the m x 2n-matrix [ — M, N] form a basis in the space of all solutions
d* € R%, to the equation

(529) a* [” ] —o.
Q
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5.17. Remark. Let M,NeL(R,, R,) and rank [M,N] = m. Let P,Q and P, Q°
be respectively adjoint and complementary adjoint matrices to [M,N]. If
y*: [0,1] - R¥ and i* e R} fulfil (5,13), then

(5.:29) y*OP+y*1)Q=0
and
(5,30) y*(0) P* + y*(1) Q° = 4*.

On the other hand, if y*: [0,1] - R} fulfils (5,29), then there exists i* € R such
that (5,13) and consequently also (5,30) hold (f. 5.16).

5.18. Corollary. Let the assumptions 5,1 be fulfilled. Then the boundary value problem
(5.1), (5,2) has a solution if and only if

(5:31)  y*(1) (1) — y*(0) £(0) — J:d[)’*(s)] f(s) = [y*(O) P + y*(1) QT r

for any solution y*: [0,1] > R* of the system (5,12), (5,29) where P, Q and P*, Q"
are respectively adjoint and complementary adjoint matrices associated to [M, N].

Proof follows immediately from 5.5 and 5.17.

5.19. Remark. If P,,Q, and P, QS are also adjoint and complementary adjoint
matrices associated to [M, N7, then by 5.14 there exist a regular matrix E € L(R,,_,,)
and FeL(R,,R,,_,) such that for all y¥ yfeR} we have y}P, +y}Q,
= [y$P + yIQJE and y¥P + y1Qi = y§P° + y1Q° + [ysP + yfQ] F. Thus
yéP + y¥Q = 0 and y}P° + y¥Q° = A* if and only if also y¢P, + y¥Q, = 0 and
y&P¢ + y¥QS = A*. This means that neither the boundary condition (5,29) nor
the condition (5,31) depend on the choice of the adjoint and complementary adjoint
matrices associated to [M, N].

5.20. Remark. The matrix valued functions A: [0, 1] - L(R,) and B: [0,1] - L(R,)
of bounded variation on [0, 1] fulfil 5.1 e.g. if
(i) A is left-continuous on (0, 1] and right-continuous at 0, det [I + A*A(f)] + 0

on [0,1] and B = A, (cf. (4,13)), or

(i) (A*A(0))> = (ATA(1)* =0, (A*A(t))*> = (A~ A(t)* on (0, 1), det [I — (A* A(r)]?
#+0 on [0,1] and B = A, or

(i) A*A(t)= A"A(t) on [0,1], (A*A(z))* =0 on [0,1] and B = A.

(In the case (iii)

[+ AYAQ) [1 — AA@)] =1 — (ATA@)* =1.)
We shall see later that the problems of the type (5,1), (5,2) cover also problems with
a more general side condition (cf. V.7.19).
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Notes

The theory of generalized differential equations was initiated by J. Kurzweil [1], [2], [4]. It is based
on the generalization of the concept of the Perron integral; special results needed in the linear case are
given in 14. Differential equations with discontinuous solutions are considered e.g. in Stallard [2].
Ligeza [2].

The paper by Hildebrandt [2] is devoted to linear differentio-Stieltjes integral equations. These
equations are essentially generalized linear differential equations in our setting where the Young integral
is used for the definition of a solution. Some results for the equations of this type can be found in
Atkinson [1], Hénig [1], Schwabik [1], [4], Schwabik. Tvrdy [1], Mac Nerney [1]. Wall [1].

Boundary value problems for generalized differential equations were for the first time mentioned in
Atkinson [1] (Chapter XI). They appeared also in Halanay, Moro [1] as adjoints to boundary value
problems with Stieltjes integral side conditions. A systematic study of such problems was initiated in
Vejvoda, Tvrdy [1] and Tvrdy [1], [2]. Further related references are Krall [6], [8], Ligeza [1] and
Zimmerberg [1], [2].
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IV. Linear boundary value problems
for ordinary differential equations

1. Preliminaries

This chapter is concerned with boundary value problems for linear nonhomogeneous
vector ordinary differential equations

(1,1) x — At)x = f(r)
and the corresponding homogeneous equation
(1,2) x —A@f)x=0.

The differential equations (1,1) and (1,2) are considered in the sense of Carathéodory.

In the theory of ordinary differential equations the locution “boundary value
problems” (BVP) refers to finding solutions to an ordinary differential equation
which, in addition, satisfy some (additional) side conditions. In general, such con-
ditions may require that the sought solution should belong to a prescribed set of
functions. Very often this set is given as a set of solutions of a certain, generally
nonlinear operator equation. In this chapter we restrict ourselves to the case of
linear Stieltjes-integral side conditions of the form

(L,3) -Sx = Mx(0) + N x(1) + Jld[K(t)] x())=r
(1.4) M x(0) + N x(1) + Jld[K(t)] x(t)=0.

Throughout the chapter the following hypotheses are kept to.

1.1. Assumptions. A: [0,1] —» L(R,) and f: [0,1] — R, are L-integrable on [0, 1]
(feL!); M and NeL(R,R,) reR,, m>1 and K:[0,1] > L(R,,R,) is of
bounded variation on [0,1].
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1.2. Definition. A function x: [0,1] - R, is a solution to the equation (1,1) on
[0, 1] if it is absolutely continuous on [0, 1] (x € AC,) and verifies x'(1) — A(r) x(1)
= f(f) ae. on [0, 1].

1.3. Remark. Consequently x: [0,1] - R, is a solution to (1,1) on [0,1] if and
only if for any t,t,€[0,1]

x(t) = x(to) + J

to

t t

A(s) x(s) ds + J f(s)ds,

to

ie. (1,1) is a special case of the linear generalized differential equation
t t

(1,5) dx =d[B]x +dg (B() = JA(S) ds, glt)= jf(s) ds).
0 0

1.4. Definition. A function x: [0,1] —» R, is a solution to the nonhomogeneous
boundary value problem (BVP)(1,1),(1,3) (verifies the system (1,1),(1,3)) if it is a solution
of (1,1) on [0, 1] and satisfies (1,3). The problem of finding a solution x: [0,1] - R,

of the homogeneous equation (1,2) on [0, 1] which fulfils also (1,4) is called the
homogeneous BVP (1,2), (1,4).

1.5. Notation. Throughout the chapter U: [0,1] x [0,1] —» L(R,) is the funda-
mental matrix for the equation (1,5) defined by 111.2.2 and X(t) = U(t,0).
Let us recall that det X(t) + 0 on [0,1], U(t,s) = X(t) X~ *(s) on [0,1] x [0,1],

t

(1,6) X)X~ (s) =1+ jA(r) X(t)X"*(s)dr  forall t,se[0,1]

and

t

(L,7) X(e) X~ (s) =1+ JX(t)X“(t) Ar)dr  forall se[0,1].

s

Both X(r) and X~ !(s) are absolutely continuous on [0, 1]. The variation-of-constants

formula reduces to
t

(1,8) x(t) = U(t, to) x(to) + J U(t,s)f(s)ds  forall ¢,t,e[0,1].

to
1.6. Remark. Since A(t) is supposed to be L-integrable on [0, 1], for any x e AC,

the function x'(t) — A(r) x(¢) is defined a.e. on, [0, 1] and is L-integrable on [0, 1].
Hence the operator

(L9) L:xedC,—»Lx, (Lx)(t)=x(t)— Alf)x(t) ae. on [0,1]

maps AC, into L}. Obviously it is linear and

s = [ bet0 — a0 01 < [ o) -+ ([ a0 ) sup bt

0 0 0 tef0,1]

<(1+ ] 1m0l at) e
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for any x e AC,. Moreover, for a given x€ C,

M x(0) + N x(1) + le[K(t)] x(t)

and the operator

< (M| + |N| + var} K) | x]|c

1

(1,10) S: xeC,—» Mx(0) + N x(1) + J d[K(t)] x(t) e R,
0
is linear and bounded. Consequently, under the assumptions 1.1
Lx
. xeAC,,—»[ :|GL1, X R,
Sx

is linear and bounded. The given BVP (1,1), (1,3) may be now rewritten as the linear

operator equation
Lx = <f>
r

1.7. Proposition. Given c€R, and fe L), the unique solution x to (1,1) on [0,1]
such that x(0) = ¢ can be expressed in the form .

x(t) = (Uc)(¢) + (VF)(t)  on [0,1],

where

(L,11) U: ceR, - X(t)ce AC,

and
t

(1,12) V:fell - X(t)JX“(s) f(s)dse AC,
0

are linear and bounded operators.

Proof. The linearity is obvious. Let ce R, and fe L. Then

U] ac < (1 ' J01|X’(t)| dt> | = fel, x5 < o0

Vfc = j

0

and

dt

xt)( [ x 1 as) + 100

<[ ([ ctlar) sup P +1 [l = s <o

1.8. Remark. By the Riesz Representation Theorem an arbitrary linear bounded
mapping S: C, - R,, may be expressed in the form (1,10), where M = N = 0.
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If K(¢) is the sum of a series of the simple jump functions of bounded variation
on [0, 1] with the jumps AK; at t = 7,€[0,1] (j = 1,2, ...), then (1,3) reduces to the
infinite point condition (cf. 1.4.23)

Mx(0) + Y AK;x(t;)) + Nx(1) =r (Z]AKJ.I < ).
= =
In particular, if K(z) is a finite-step function on [0,1] (K(t) = K; for 1,_, <t <1,
(i=12..,p=-1),Kl)=K,forz,_, <t<1 where0—10< Ty <. < 1, = 1),
then (1,3) reduces to the multipoint condition

M x(0 +ZAKx()+Nx(l) r  (AK
=1
or even to the two-point boundary conditions (if AK; =0, j=12,...,p— 1).
The problem of determining a function x: [0,1] - R, absolutely continuous
on each subinterval (t;,7;4,) (j=0,1,...,p—1, 0=1,<71, <...<71,=1) and
such that x'(t) — A(t) x(t) = f(¢) a.e. on [0,1] and

Mx(0) + 3 [M x(t,+) + N, x(z,1—)] + Nx(1) = r

j=o

is called the interface problem and is to be dealt with separately.

1.9. Remark. If we put K(z) = K(t+) — K(1—) for t€[0, 1) and Ko( ) = 0, then

K — K, is of bounded variation on [0,1], A*K,(tf) = 0 on [0,1), K ( —) = Ky(1)
=0, K(t+)—Kyt+)=K(t—)—Kyt—)=0 on [0,1], K(1) — K(1) = K(1),
K(0) — Ky(0) = —A*K(0) — K(1—) and hence for any xeC, (cf. 1.4.23 and 1.5.5)

1 1
M x(0) + N x(1) + j d[K(t)] x(t) = Mq x(0) + Ng x(1) + j d[Ko(2)] x(¢)
0 0
(Mg =M — AK(0) - K(1—), N, =N + K(1),)
Thus, without any loss of generality we may add the following hypotheses to 1.1.

1.10. Assumptions. K() is right-continuous on [0,1), left-continuous at 1 and
K(1) = 0.

1.11. Definition. The side condition (1,3) (Sx = r) is linearly dependent if there
exists g€ R,,, q # 0 such that ¢*(Sx) = 0 for all x € AC,. It is linearly independent
if it is not linearly dependent.

1.12. Proposition. Let M, N and K(t) fulfil the hypotheses 1.1 and 1.10. Then the
side condition (1,3) is linearly dependent if and only if there is q€ R,,, q % 0 such that

q*M =q*N =q*K()=0 on [0,1].
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Proof. Let q #+ 0 and let
1

(1,13)  q*[M x(0) + N x(1) + J d[K(t)] x(f)] =0  foreach xeAC,.
0o

Then for every x e AC, with x(0) = x(1) = 0 we have

1
|, ata* k1 x00 = 0.
0
By 1.5.17 this implies q* K(t) = 0 on [0, 1] and hence (1,13) reduces to
q*[Mc + Nd] =0  forall c,deR,.

Choosing ¢ = 0 and de R, arbitrary or d = 0 and ce R, arbitrary, we obtain
g*N = 0 or q*M = 0, respectively.

1.13. Definition. The side condition (1,3) is said to be nonzero if the corresponding
operator S given by (1,10) is nonzero. Given reR,, the side condition (1,3) is
reasonable if q*r =0 for any qeR,, such that q*(Sx) =0 for all xe AC,.

(Obviously, given < f) eL) x R,, BVP (1,1), (1,3) may be solvable only if the side
r

condition (1,3) is reasonable.)

Given xe AC,, let Sx (j=1,2,.., m) denote the components of the vector
SxeR,. Then S;: xe AC,— S;xe R are linear bounded functionals on AC, and
the side condition (1,3) may be rewritten as the system of equations S;x =r;
(/ =1,2,...,m), where r; are components of the vector r. The side condition (1,3)
is linearly dependent if and only if the functionals S;e AC¥ (j =1,2,...,m) are
linearly dependent. Since the linear subspace of AC, spanned on {S,,S,,..., S}
is finite dimensional, the following assertion is obvious.

1.14. Proposition. If the side condition (1,3) is nonzero and reasonable, then there
exist a natural number I, matrices My, Noe L(R,,R), roeR, and a function
Ky: [0,1] - L(R,, R)) of bounded variation on [0, 1] such that the condition

1
Sox = M, x(0) + N, x(1) + J d[Ko(t)] x(t) = ro
0
is linearly independent, while Sx =r for xe AC, if and only if Sox = r,.
Henceforth let us assume that the side condition (1,3) is reasonable, linearly
independent and fulfils the hypotheses 1.1 and 1.10. Let us denote by p the dimension

of the linear subspace spanned on the rows of K(t). If 0 < p < m, then there exists
a regular m x m-matrix X, such that

£, K(0) = [R‘:t)] on [0,1],
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where the rows of K: [0,1] - L(R,, R,) are linearly independent on [0, 1]. Let us
denote my = m — p and let the matrices My, Ny € L(R,, R, ) and M,Ne L(R,, R,)

be such that
M, N, O
X, [M,N,K(1)] = [MO N" R(z)]‘

If there were a*[Mg, Ny] =0, then B*Z,[M,N,K(:)] =0 or according to 1.12
B*X, = 0 should hold for p* = (a* 0)e R¥. As X, is regular, p*X, = 0 implies
p* = 0 and hence also a* = 0. This means that the m, x 2n-matrix [M,, N, ] has
a full rank (rank [Mo, No] = m,). If rank [M,N] = m, + m,, ie.

M,, N, ]
rank l:lVlf) FJO_ =mo+m  (0<m <p),
then there exists a regular p x p-matrix X2, such that
_ ‘M,. N
'm » 0 M09 NO ’ °
o, 5lm & |=|Me N
. ’ 2.4 LY "o’ o
where M, N, € L(R,, R,, ) are such that
M,, N
(1,15) rank [M?, N?] =my + m,.
Denoting 1.0
=" z,
0, %,
we obtain ‘
My, Ny, 0
(1,16) O[M,N,K(1)] = | M,, N, K,(¢) |,
0, 0, K1)

where K, [0,1] = L(R, Ry,), Ky: [0,1]  L(R, Ry,) (m, + m, = p) are given by

K,(2) -
= K%t) = Z,K(t 0,1].
Ki]=k0=280 o [on
As X, is regular, the rows of the p x n-matrix K°(t) are linearly independent on [0, 1].
Finally, let us notice that the m x m-matrix @ is regular. To summarize:

1.15. Theorem. Any linearly independent and reasonable Stieltjes-integral side con-
dition (1,3) fulfilling 1.1 and 1.10 is equivalent to the system

(L,17) M, x(0) + N, x(1) =r,,

M, x(0) + N, x(1) + le[Kl(t)] x(t)=ry,

Jld[Kz(t)] x(t)=r,,

0
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where roeR,,, ri€R,, r,eR,, and the my, x n-matrices My, Ny, the m; x n-
matrices M, N, K,(t) and the m, x n-matrix K,(t) are such that (1,15) holds and the
rows of the (m, + my) x n-matrix [K¥(t), K%(t)]* are linearly independent on [0, 1].
There exists a regular m x m-matrix © such that (1,16) and @r = (r§, r¥, r¥)* hold.

1.16. Definition. The system (1,17) associated to (1,3) by 1.15 is said to be the
canonical form of (1,3).

1.17. Remark. By 1.5.16 the general form of the linear bounded operator S: AC,—»R,

1S
1

(1,18) S: xe AC, » M x(0) + J K(t) x'(t) dt,

0
where MeL(R,,R,) and K: [0,1] > L(R,,R,) is measurable and essentially
bounded on [0, 1]. If K is of bounded variation on [0, 1], then by integrating by
parts we may easily reduce S to the form (1,10).

Most of the results given in this chapter may be extended to BVP with the side
operator S of the form (1,18). Some of them are formulated and proved in the fol-
lowing chapter for more general BVP which include integro-differential equations,
the rest is left to the reader.

2. Duality theory

Let us consider BVP (1,1), (1,3), i.e. the system
(L1)  x' — A@t)x = f(), (L,3) Mx(0) + N x(1) + J:d[K(r)] x())=r,

where A: [0,1] - L(R,), M and NeL(R,R,) and K: [0,1] > L(R,, R,) fulfil
1.1 and 1.10. Moreover, we suppose that (1,3) is nonzero and reasonable (see 1.13).

Let feL! and reR,. By the variation-of-constants formula 1.7 a function
x: [0,1] - R, is a solution to BVP (1,1), (1,3) if and only

x=Uc+ Vf
and

(2,1) (SU)e=r—(SY)f,

where U: R, - AC, and V: L. — AC, are the linear bounded operators respectively
given by (1,11) and (1,12),

) SU = MX(0) + N X(1) + Jld[K(t)] (1)

02 (sr=nx() |

0

1

X~1(0) f(e)de + J:d[K(r)] X(1) Lx 1(5) f(s) ds
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This yields immediately the following necessary and sufficient condition for the
existence of a solution to BVP (1,1), (1,3).

2.1. Theorem. BVP (1,1), (1,3) has a solution if and only if

(2.3) A¥(SU)=0
implies
(2:4) AX(SV) f = A*r.

2.2. Remark. Applying the Dirichlet formula 1.4.32 to (2,2) we obtain for any fe L},
1

29 (01 = | Ao g,
where

(2,6) F(t) = (N X(1) + J 1d[K(s)] X(s)) X~Yt)  on [0,1].

t

Hence the condition (2,4) may be rewritten as

Jll* F(t) f(t)dt = A*r.

By (IIL 4,8) the n-vector valued function y*(t) = A* F(t) is for any 4* € R} a unique
solution of the initial value problem

(27) dy* = —y*d[B] — d(4*K) on [0,1] (B(t) = J'A(s) ds),  y*(1)=A*N.

0

(In fact, if he BV, is right-continuous on [0, 1) and left-continuous at 1, then in-
tegrating by parts (cf. 1.4.33) we reduce the variation-of-constants formula for the
initial value problem

dy* = —y*d[B] — dh*, y*1) =y}
to the form

e v =(vrxe - j “d[hs)] X(s))x-%t) on [0.1])

Furthermore, if *(SU) = 0, then

y*(0) = a* (N X(1) + L 1d[l((t)] x(:)) = — M.

On the other hand, it follows from the variation-of-constants formula that if
y*: [0,1] > R¥ and A*e R solve (2,7) on [0, 1] and

(2.8) y*0) + A*M =0,  y*(1) — 2*N =0,
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then
(29) y*¢)=4*Ft) on [0,1] and A*SU)= —y*(0) + y*0)=0.

This completes the proof of the following theorem.
2.3. Theorem. BVP (1,1), (1,3) has a solution if and only if

(2,10) le*(t) f(¢)dt = A*r

0o
for any solution (y*, A*) of the system (2,7), (2,8).

2.4. Definition. The system (2,7), (2,8) of equations for y*: [0,1] —» R} and A*€ R},
is called the adjoint boundary value problem to BVP (1,1), (1,3) (or (1,2), (1,4)).

The following assertion provides the necessary and sufficient condition for the
existence of a solution to the nonhomogeneous BVP corresponding to BVP (2,7),
(2,8).

2.5. Theorem. Let p,q€ R, and let ge BV, be right-continuous on [0,1) and left-
continuous at 1. Then the system

(2,11) dy* = y*d[—B] — d(i*K) + dg*  on [0,1],
(2,12) y*(O) + A*M = p*, y*(l) — A*N = q*

has a solution if and only if .
1
|| ctaen 50 = 4 x0) - =0

for any solution x of the homogeneous BVP (1,2), (1,4).

Proof. Inserting (2,7a), where h*(t) = A* K(t) — g*(¢) into (2,12) we easily obtain
that y*: [0,1] - R¥ and A*e R}, verify (2,11), (2,12) if and only if

@)y =2 )+ @ X)X 0 - [ deEIXEX ) on [0.1)

(F(z) given by (2,6)) and '
#(5U) = p X0) - 9° X() + | a1 X0)

Since all the solutions of BVP (1,2), (1,4) are of the form X(t) ¢ where (SU)¢ — ¢
the theorem follows immediately.

’

2.6. Remark. Let us notice that under our assumptions all the solutions y*: [0, LR
of (2,11) on [0, 1] are of bounded variation on [0, 1], right-continuous of [ ljl
and left-continuous at 1.
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2.7. Theorem. The homogeneous problems (1,2), (1,4) and (2,7), (2,8) possess exactly
k =n — rank (SU) and k* = m — rank (SU) linearly independent solutions, re-
spectively.

Proof. The homogeneous algebraic equation
(2,14) (SU)c=0

has exactly k = n — rank (SU) linearly independent solutions. Let C, be an arbitrary
n x k-matrix whose columns form a basis in the space of all solutions to (2,14).
((SU)C, = 0 and rank (C,) = k.) This obviously implies that the columns of the
n x k-matrix valued function

Xo(t) = X(1)C,  on [0,1]
form a basis in the space of all solutions of BVP (1,2), (1,4).

The latter assertion follows from the fact that y*: [0,1] - R} and A*eR}
verify the system (2,7), (2,8) if and only if y*(t) = A* F(t) on [0, 1] and (2,3) holds
(cf. 2.3 and its proof). In fact, since (2,3) has exactly k* = m — rank (SU) linearly
independent solutions, BVP (2,7), (2,8) has also exactly k* linearly independent
solutions on [0,1]. In particular, given an arbitrary A,e L(R,, R,.) whose rows
form a basis in the space of all solutions to (2,3), the rows of (4, F(t), 4,) form a basis
in the space of all solutions to BVP (2,7), (2,8).

2.8. Remark. From the proof of 2.7 it follows that all the solutions to BVP (1,2),
(1,4) or BVP (2,7), (2,8) are of the form .

x(t) = Xo(t)d, deR, or (y*(t), A*) = 6%(4, F(t), 4,), 6*eR},
respectively. Furthermore, by the definition of X(t), 4o, F(t)
rank (Xo(t)) =k and  rank (4, F(t), 4,) = k* on [0,1].

2.9. Remark. The number k* — k = m — n is called the index of BVP (1,2), (14).

2.10. Remark. If we added one zero row to the matrices M, N, K(t) in (1.4),
we should obtain the equivalent problem. Let us assume that it has exactly k
linearly independent solutions. Then by 2.8 its adjoint should have exactly both
k +m —n and k + (m + 1) — n linearly independent solutions. This seems to be
‘confusing. But we must take into account that while in the former case the adjoint
problem has solutions (y*, 4*) with 4* € R%, in the latter case the adjoint has solutions
(y*, u#*), where p* is an (m + 1)-vector, with an arbitrary last component. Nevertheless
it can be seen that it is reasonable to remove from (1,4) all the linearly dependent
rows and to consider the given BVP with linearly independent side conditions.
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2.11. Remark. Given x € AC,, y*e L® and A* € R%, we have by 1.4.33

@15) [\y*0Dx(0) — A0 260t — 22 Mx0) + N x() + [ ol 0]
= [[[ro+ [ o aas + w00 - m |«

+ Uly*(s) Als)ds — (M + N — K(O)):| x(0).

0

In particular, applying again 1.4.33 to the right-hand side of (2,15), we obtain that
(2,16) L ly"‘(t) [x'(t) — A(t) x(z)] dr — 4* [M x(0) + N x(1) + le[K(t)] x(t):}
- j‘d [—y*(r) +y ) [ v A a5 - 22K | ()

0

— [y*(0) + A*M] x(0) + [y*(1) — A*N] x(1) for all xe AC,, yeBV,, A*eR*.
4 n

The formulas (2,15) and (2,16) will be called the Green formulas.

The adjoint BVP (2,7), (2,8) is a system of equations for an n-vector valued function
y*(t) of bounded variation on [0, 1] and an m-vector parameter. Our wish is now
to disclose the relationship between y* and 4* if (y*, *) solves BVP (2,7), (2.8).
To this end it appears to be convenient to consider BVP (1,1), (1,3) with the side
condition in its canonical form (see 1.16)

(2,17) M, x(0) + N, x(1) =ry,
M, x(0) + N, x(1) + j:d[Kl(t)] x(t)=ry,
[ et =) = .

In this case the adjoint BVP (2,7), (2,8) reduces to the system of equations for
yeBY,, x§eRY, xfeRY and »*eR},

(2,18) dy* = y*d[ -B] — d(x}K, + »*K,)  on [0,1],
(2,19) y*(©0) + x§M, + xtM, =0, y*(1) — 4N, — xfN, = 0.
2.12. Remark. Let @ be a regular m x m-matrix such that

Mo, No, 0
O[M,N,K(1)] = | M, N,, K,(?) on [0,1].
0, O Kz(t)

Given A* € R, let x§ € R}, »f € R% and »* € R, be such that A* = (x¥, x}, x*) ©.
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Then
A*M = xtM| + M, , A*N = x}N, + «IN,
and
A*K(t) = of Ky(t) + x* Ky(t)  on [0,1].
It follows that y*: [0,1] — R} and A*eR} satisfy (2,7), (2,8) if and only if
(y*, =3, »t, »*), where x} e R%, x%eRY and x*e R} are such that A*

mg>

= (2§, 2%, 2*) O, satisfy (2,18), (2,19).

2.13. Notation. In the following C and D denote the [ x n-matrices such that
C* = [M} M¥] and D* = [N% N¥] (I = m, + m;), M® and N° being arbitrary
(2n — 1) x n-matrices complementary to [C, D] (cf. IIL.5.11). Let P,Qe L(R,,_,, R,)
and P, Q° € L(R,, R,) be associated to C, D, M, N® by I11.5.12.

Furthermore, let P, Qe L(R,,,R,) and P{, QjeL(R,,,R,) be such that P
=[P, P{] and Q° = [Q%, Q%] (By 1.16 rank [C,D] = I)

Let us recall that according to I11.5.12

—-M,, N 1,0, 0
0 0 Pé, Pf, P 0
(2,20) -M, N, || & ol= 0, I,,0
—M:, N¢ o e 0, 0, |I,,_,
and
P:;, P, P1[M, N
(2,21) [ . ] o0 —1,0
0’ 1> Q Ml’ Nl = o ’ .

Mc’ N¢

Analogously as in ITL5.17 it is easy to show on the basis of (2,20) that (2,19) holds
if and only if

(2.22) y*O)P +y*1)Q =0,
y*(0) P§ + y*(1) Q5 = =¥,
y*(0) P{ + y*(1) Q5 = ¥ .

This implies that BVP (2,18), (2,19) is equivalent to the problem of determining
y*: [0,1] - R¥ and »* € R%, such that y* is a solution to
(223) dy* = y*d[—B] — d[(y*(0) P; + y*(1) Q%) K, + »*K,]  on [0,1]
and
(2,29) y*O)P + y*(1)Q = 0.
In particular, if (y*, »*) is a solution to (2,23), (2,24) and x§ € R}, and x}eR%
are given by (2,22), then (y*, ¥, »¥, »*) is a solution to (2,18), (2,19). On the other

hand, if (y*, »%, #¥, %*) is a solution to (2,18), (2,19),then (y*, »*) solves (2,23), (2,24)
and »¥ € R% and xfe R}, are given by (2,22).
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2.14. Corollary. BVP (1,1), (2,17) has a solution if and only if
1
j y*(0) fle) de = (y*(0) Ps + y*(1) Q%) ro + (y*(O) P + y*(1) Q}) ry + %*r,

for any solution (y*, »*) of BVP (2,23), (2,24).

Proof follows immediately from 2.3 and (2,22).

2.15. Remark. It is easy to see that BVP (2,23), (2,24) also possesses exactly k*
= m — rank (SU) linearly independent solutions.

2.16. Remark.The m, x m,-matrix

T= Jle(t) K3(t) dt

0

is regular. In fact, if there were d*T = 0 for some d* € R, then we should have
also d*Td = 0, i.e.

1 n 1
0= J h*(e)h(r)dt = ) J (h{t))* dt,
0 i=1Jo
where h*(t) = (hy(¢), ha(t), ..., h(t)) = d* K,(2) is of bounded variation on [0,1].
This may happen if and only if h*(t) = d* K,(t) = 0 a.e. on [0, 1]. Since by the

assumption K, is right-continuous on [0, 1) and left-continuous at 1, we have even
d* K,(t) = 0 on [0, 1] and in virtue of the linear independence on [0, 1] of the rows

in K,(¢), it is d* = 0.
Let us put

Ly(t) = — J:K;(s) T 'ds on [01].

For K,(1) = 0 and L,(0) = 0, the integration-by-parts formula 1.4.33 yields

(229) L A[K, (0] L) = ( L Ko K2(0) dt) T =TT ' =1,,.

This enables us to express also the parameter x* in (2,23), (2,24) in terms of y*. Let
(y*, »*) verify (2,23) on [0, 1], then by (2,25)

@y = [ o[y - [y ~ 0Pt + v @) K0 a0

_ fo [t K] Lafe) = »*.
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The operator y € BV, >,y eRY is linear and bounded. In fact, given ye BV,

@,y| < [vargy* + ( s[l:)p”|y (J |A(s)| ds + (|P¢| + |Q¢|) vary K )( sup |L,(1)))
tefo, te[0,1]

1
< [1 + J |A(s)| ds + (|P;| + Q) vary K ] sup |L o) lly*|| sy -
0
The adjoint BVP (2,23), (2,24) to BVP (1,1), (2,17) may be thus written in the form
dy* = y*d[-B] — d[(®,y)K, — (®,y)K;]  on [0,1],
yOP+y*(1)Q =0,

where @;: BV, > R} (j=1,2) are known linear bounded operators
(@,y = y*(0) P} + y*(1) Q).

3. Generalized Green’s functions

Let us continue the investigation of BVP (1,1), (1,3). In addition to 1.1 we assume
throughout the paragraph that 1.10 holds (K is right-continuous on [0, 1) and
left-continuous at 1 and K(1) = 0).

Let & denote the linear bounded operator

| (1) — A1) x() 1
6 ixedcs|, x(0) + N x(1) + [3 d[K()] x(r)]e b Ky

(cf. 1.6). It may be shown from 2.3 that its range R() is closed in L} x R,, and
consequently R(<Z) equipped with the norm of L} x R, becomes a Banach space.
We shall show this fact directly, without making use of Theorem 2.3. The symbols
U, V are again defined by (1,11) and (1,12).

3.1. Theorem. The range R(Z) of the operator (3,1) is closed in L, x R,,

Proof. A couple <f> e L! x R, belongs to R(%) if and only if (2,1) has a solution

ceR, ie. if and only if r — (SV) fe R(SU). R(SU) being finite dimensional, it is
closed. Since

w: (i)eL}, x R,—>r —(SY)feR,

is a continuous operator, the set W_,(R(SU)) = R(Z) of all (t)eL}, x R,, such
that W(f)e R(SU) is also closed.
r
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The concept of the generalized inverse matrix introduced in the Section 1.2 and
in particular theorems 1.2.6 and 1.2.7 enables us to give the necessary and sufficient
condition for the existence of a solution to BVP (1,1), (1,3) in the following form.

3.2. Theorem. BVP (1,1), (1,3) possesses a solution if and only if
1. — (SU)(SU)*] [r - (SV)f] =0,
where (SU)* is the generalized inverse matrix to (SU). If this condition is satisfied,
then any solution x of BVP (1,1), (1,3) is of the form
(2 () = X()[1, - (SU)* (sU)] o
+ X(t)(SU)* [r — (SV) f] + (Y)()  on [0,1],
where d € R, may be arbitrary.

Proof follows by 1.2.6 and 1.2.7 from the equivalence between BVP (L,1), (1,3)
and the equation (2,1) ((SU)e = r — (SV)f).

3.3. Remark. By 2.3 the homogeneous BVP (1,2), (1,4) has only the trivial solution
if and only if rank (SU) = n. Consequently, BVP (1,1), (1,3) is uniquely solvable

for any <f> € R(#) if and only if rank (SU) = n.
r

On the other hand, BVP (1,1), (1,3) has a solution for any fe L) and reR,, if
and only if (SU) c = q is solvable for any qe€R,, ((2,1) has to be solvable for any
reR, and f(t) =0 on [0,1].) This holds if and only if (2,3) has only the trivial
solution, i.e. if and only if rank (SU) = m.

In particular, BVP (1,1), (1,3) has a unique solution for any fe L} and reR,
if and only if m = n and det(SU) * 0.

3.4. Theorem. Let BVP (1,1),(1,3) have a solution. Then all its solutions are of the form

1 \

(33) x(t) = xo(t) + Ho(t) r + L Go(t,s) f(s)ds  on [0,1],

where x(t) = X(t) [I — (SU)* (SU)]d (deR,) is an arbitrary solution to the homo-
geneous BVP (1,2), (1,4),

(34) Hy(t) = X(¢)(SU)*  for te[0,1],
Go(t,s) = X(t) A(t, s) X~ *(s) — X(t) (SU)* F(s)  for t,se[0,1],
Alt,s)=0  for t<s, Alt,s)=1, for t>s
and

(3.9 F(s) = [N X(1) + J

N

1d[K(1:)] X(t):l X~Ys) for se[0,1].
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Proof follows immediately from 3.2 and (2.5), (2,6).

3.5. Remark. Let us notice that the representations (3,2) or (3,3) of the solutions
to BVP (1,1), (1,3) are true even if the generalized inverse matrix (SU)* to (SU)
is replaced by an arbitrary n x m-matrix B such that (SU) B(SU) = (SU) (see 1.2.11).

3.6. Lemma. The n x m-matrix valued function H(t) = H(t) and the n x n-matrix

valued function G(t,s) = Gy(t, s) defined by (3,4) possess the following properties

(i) H(t) is absolutely continuous on [0,1],

(i) G(t,s) is measurable in (t,s) on [0,1] x [0,1], var§G(.,s) < o for ae.
se[0,1] and G(t, .) is for any te[0,1] measurable and essentially bounded
on [0,1],

(i) y(s) = |G(0, s)| + var§ G(.,s) is measurable and essentially bounded on [0, 1],

(iv) G(t,s) = G(t,s) — Gy(t,s) on [0,1] x [0,1], where for any se[0,1] G,(.,s)
is absolutely continuous on [0,1] and Gy(.,s) is a simple jump function with
the jump I, at t = s.

Proof. The assertions (i) and (ii) are obvious. Furthermore, F is of bounded varia-
tion on [0, 1] and for any se [0, 1]
As) < [XTHs)| + |(SU)*| [Fs) + (vars X) (X *(s)] + [(SU)*] |F(s)])
< (1 + varg X) sup (|X~*(s)| + |(SU)*| |F(s)|) = » < o0
se[0,1]

The last assertion is proved by putting G,(t,s) = Gy(t, s) if t > s, G,(t,s) = Go(t, 3)
+1,ift <sand Gyt,5) =0if t > s, Gyt,s) = I, if t < s.

3.7. Remark. Let us notice that actually we have proved that (s) is bounded on [0, 1]
and hence also G(t,s) is bounded on [0,1] x [0,1] (]Go(t, s)| <ys)<x <o
on [0,1] x [0,1]). Moreover, by (3,4) varg Gy(t, .) + var Gf., s) < oo for all
t,se[0,1].
3.8. Lemma. Let H: [0,1] » L(R,, R,) and G: [0,1] x [0, 1] —» L(R,) fulfil
(i)—(iii) from 3.6. Then for any couple : € L} x R,, the n-vector valued function

: 4

h(t) = H(t) r + J G(t, 5) f(s) ds

o

is of bounded variation on [0, 1] and the linear operator

M <f>eL}, x R, - heBY,
r

is bounded.

153



Iv3

Proof. Given feL;, reR, and a subdivision {0=t,<t, <...<t,=1} of [0,1],

£ |[ a0~ [ ot e + |[ s0.9 )0

i=11Jo 0 0

+

< [ (16609 - 61,91 + [60.5] 9 0

< [0 as = sup o s < Il

Hence also

< ||fu

ward(| .9 6)as) + |[ 60,9 160

() ()

1
c=x+ |H(O)| + j |H ()| dt < 0.
0o

and

< o(|fllp + ) =c
BV L'xR
where

3.9. Remark. Let the operator £ ® be defined by

1

(3.6) o (f)e LL x R, - Ho()r + j Gult,5) f(s) ds € AC, ,

r 0

where the matrix valued functions Gz, s) and H,(t) are given by (3,4) (R(£®) = AC,
due to 3.4). According to (3,2) and (3,4)

»°® (i) = U(SU)* (r — SYf) + Vf = U(SU)* r + Vf — U(SU)* (SV) f

for any feL, and reR,,. Consequently £® is linear and bounded (cf. also 3.6
and 3.8). Moreover, for any f € L} and r € R,, such that BVP (1,1),(1,3) has a solution

((i)eR(,‘f)) LL® <f> = (f> and hence LL®Lx = ¥Lx for any xe AC,,
r r
ie. PL°L = & (£° is a generalized inverse operator to ). "
In particular, if m = n and rank (SU) = n, then by 3.3 #® becomes a bounded
inverse operator to . In this case the functions G(t, s), H(¢) are called the Green

couple of BVP (1,1), (1,3) (or (1,2), (1,4)), while the function Gy(t, s) is the Green
function of BVP (1,1), (1,3).

3.10. Definition. A couple G(t, s), H(t) of matrix valued functions fulfilling (i)— (iii)
of 3.6 is called the generalized Green couple if for all fe L., reR,, such that BVP
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(L,1), (1,3) has a solution, the function

is also a solution to BVP (1,1), (1,3).

3.11. Remark. By 3.4 and 3.6 the couple G,(t, s), Ho(t) given by (3,4) is a generalized
Green couple of BVP (1,1), (1,3).

3.12. Theorem. A linear bounded operator £*: R(£) — AC, fulfils LL*L =%
if and only if there exists a generalized Green couple G{(t,s), H(t) such that £ is

given by
1

(3.7 <z <f> eR(&L) - H(t)r + J G(t, s) f(s) dse AC, .
r 0
Proof Let L¥L*¥ = & and let £® be given by (3,6). According to 3.9
L(Lr - £9) <f> =0, ie (£ — 29 <f>eN($) for each feL, and reR,,
r r

In particular, £* = £® on R(¥) if N(&) = {0}. If k = dim N(£) = n — rank (SU)
> 0, let X,(t) be defined as in the proof of 2.7. Then rank (X,(s)) = k on [0, 1]

(cf. 2.8) and given <f> € R(Z), there exists d € R, such that
r

(38) (& - 29 C) ()=X0)d on [01].

By 1.2.6, 1.2.7 and 1.2.15 this is possible if and only if

d=X2() (2" — 2°) (f) ) on[0.1].

By the definition X,(t) = X(t) C, on [0, 1], where C,€ L(R,,R,) has a full rank
(rank (C,) = k). According to 2.16 X§(t) = €§ X~ (z). It follows immediately that

the mapping
o (f f) ()eR,

>eR(.,‘?)—> d=X§(t) (L - ,‘?@)(

r
is a linear bounded vector valued functional on R(&). Let ¥ be its arbitrary ex-
tension on the whole space L. x R, (¥ is defined and bounded on L} x R,, and
Y = & on R(Z)) Then there exist a function @,: [0,1] —» L(R,, R,) essentially
bounded and measurable on [0, 1] and @, € L(R,, R,) such that

4 (i) = Jlel(s) f(s)ds + @,r  for all (i)eL}, X R,,.

0

r
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Together with (3,6) and (3,8) this yields (3,7), where
(39) G(t,5) = Go(t,s) + Xo(t) @,(s)  forall te[0,1] and ae. se[0,1],
H(t) = Ho(t) + X,(t)©,  on [0,1]

obviously fulfil the conditions (i)— (iii) of 3.6.
The proof will be completed by taking into account the obvious fact that if

G(1, s), H(z)is a generalized Green couple, then the operator (3,7) fulfils XL * L = £.
3.13. Proposition. A couple (z*, A*)e Ly x R} fulfils

(3,10) f OO dt = 2% for all (f)eR(S’)

0
if and only if there exists y*: [0,1] — R¥ such that y*(t) = z*(t) a.e. on [0,1] and
(y*, A*) is a solution of BVP (2,7), (2,8).

Proof. Let z*e LY and A*€ R} Then by the Green formula (2,15), (3,10) holds
if and only if for any xe€ AC,

(3,11) f 1 [z*(t) + f 2(6) Als)ds + A#(K(D) — N):l x(t) dt
[ j s)ds — A(M + N — K(O))} x(0)=0.

In particular, if x(t) = x ( ) on [0,1], (3,11) means that

for each ceR,, ie.
(3,12 f z*(s) A(s)ds = A*(M + N — K(0)).

0

s)ds — A*(M + N — K(o))] =0

Q_}

Consequently (3,11) holds for each x € AC, if and only if

J 1 [z*(t) « J’ lz*(s) A(s)ds + A*(K(z) — N)] v()dt =0  forany velL!

or z*(t) = u*(t) a.e. on [0, 1], where

(3.13) u*(t) = — fz*(s) A(s)ds — A*(K(t) — N)  on [0,1].

Let us put y*(z) = u*(¢) on (0, 1), y*(0) = u*(0+) and y*(1) = u*(1—). Then owing

to (3,13) and (3,12)
' y*(1) = A*N and y*0) = —4*M
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and (z*, A*) fulfils (3,10) if and only if z*(t) = y*(t) a.e. on [0, 1]. The proof will be
completed by taking into account that

le*(s) A(s)ds = fz*(s) A(s)ds  forany te[0,1]

and hence
1

y*(6) = y*(1) + J y*(s) A(s)ds + A*K(t)  on [0,1].

t

The latter implication follows from 2.3.

The set of all generalized Green couples is characterized in the following theorem.

If k = n — rank (SU) > 0, then C, is an arbitrary n x k-matrix whose columns
form a basis in the space of all solutions to (SU) ¢ = 0 and X,(t) = X(t) C, on [0, 1].

If k* = m — rank (SU) > 0, then A, is an arbitrary k* x n-matrix whose rows
form a basis in the space of all solutions to A*(SU) =0 and Y,(t) = 4, F(t) on
[0, 1], where F(t) is given by (3,5).

3.14. Theorem. A couple G: [0,1] x [0,1] - L(R,), H:[0,1] > L(R,,R,) is a
generalized Green couple to BVP (1,1), (1,3) if and only if there exist a function
0,: [0,1] » L(R,, R,) essentially bounded and measurable on [0,1], a function
Z: [0,1] > (R, R,) of bounded variation on [0,1] and @, € L(R,, R,) such that
(3,14) G(t, s) = Golt, s) + Xo(t) O4(s) + Z(t) Yols)
forall te[0,1] and ae. se[0,1],
H(t) = Ho(t) + Xo(t) @, — Z(t) 4,  on [0,1],

where G(t,s) and H(t) are given by (3,4), the terms Xo(t) @,(s) and X(t) @,
vanish if k = O and the terms X(t) Yo(s) and 2(t) A, vanish if k* = 0.

Proof. Let us assume that k > 0 and k* > 0.
(a) Let G(t,s), H(t) be a generalized Green couple of BVP (1,1), (1,3). Then by
3.12 and its proof there exist @,: [0,1] - L(R,, R,) essentially bounded on [0, 1]

and @, € L(R,, R,) such that for all <f> eR(2)
r

H()r + JIG(t, 5 f(s)ds

= [Ho(t) + Xo(t) @] r + Jol[Go(t, s) + Xo(t) ©4(s)] f(s)ds  on [0,1].

By 3.13 and 2.8 this holds if and only if there exists Z: [0,1] - L(R,., R,) such
that (3,14) holds. According to 2.8 and 1.2.15 [Y(s), 4] [Yo(s), 46]* = I« for
any se[0,1]. The functions P(z,s) = G(t,s) — Go(t,s) — X,o(t) @4(s) and Q(r)
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= —H(t) + Hy(t) + X,(t) @, as functions of ¢ for ae. se[0,1] are of bounded
variation on [0, 1]. Therefore the function X(z) = [P(t,s), Q(s)] [Yo(s), 4o]* for
all te[0,1] and ae. se[0,1] (cf. 1.2.6 and 1.2.7) has also a bounded variation
on [0, 1].

(b) Let ©,: [0,1] - L(R,, R,) be essentially bounded on [0,1], @,€L(R,, R,)
and let £: [0,1] - L(R,., R,) be of bounded variation on [0, 1]. Then the functions
G(t, s), H(t) given by (3,14) are sure to fulfil (i)— (iii) from 3.6 and since by 2.3

JIYO(t) f(o)dt = dor  for all (f)ex(,cz),

0

it is easy to verify that G{(t, s), H(t) is a generalized Green couple.
The modification of the proof if k = 0 and/or k* = 0 is obvious.

3.15. Theorem. Let G(t,s) and Hy(t) be given by (3,4). Then G(t,s) = Gy(t, s) and
H(t) = Hy(t) fulfil for any se(0,1) the relations
t

(3.15) G(t,s) — G(0,s) — JA(r) G(t,s)dt = A(t,s)  forall te[0,1],

0

(3,16) MG(0,s) + NG(1,s) + Jold[K(t)] G(t,s) = [I — (SU)(SU)*] F(s)

and
(3,17) H(t) — H(0) - J'A(t) H(t)dt=0 on [0,1],
(3,18) MH(0) + NH(1) + Jld[K(t)] H(z) = (SU)(SU)*.

Proof follows easily by inserting (3,4) into (3,15)—(3,18) and making use of (1,6)
and

le[l((t)] X(x) Az, s) X~ l(s) = J;ld[K(r)] X(t) X~ (s) + A*K(s)

(cf. also 111.2.13).

3.16. Remark. Let us notice that (1) = F(1—) = N and by (1,7) and the Dirichlet
formula 1.4.32

(3,19) LIF(G) A(c)do = F(s) — F(1) + K(s)  on [0,1].
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3.17. Theorem. The functions G(t,s) = Gy(t,s), H(t) = Ho(t) given by (3,4) fulfil
for any te (0, 1) the relations
(3,20 G(t,s) — G(t, 1) — JIG(t, o) A(o) do — H(1) K(s) = A(t, s)
for any se[0,1],
(321) G(t,0) — H(f)M = X()[I — (SU)* (SU)].  G(t.1) + H({{)N = 0.
Proof. Given te(0,1) and s€[0,1],
Go(t, s) = —Ho(t) N X(1) X~ 1(s)

- ) [ a1 X009 X9~ [ 040 X X,

s

Our assertion follows readily taking into account the variation-of-constants formula
for the initial value problem dy* = —y* d[B] — dh*, y*(1) = y¥ (cf. also the proof
of 2.3).

On the other hand, we have

3.18. Theorem. Let G: [0,1] x [0,1] — L(R,) and H [0,1] = L(R,, R,) fulfil for
any se(0,1) the relations (3,15)—(3,18) and let y(s) = |G(0,s)| + var} G(.,s) < y,
< o0 on [0, 1], G being measurable [0, 1] x [0, 1]. Then G{(t, s), H(¢) is a generalized
Green couple for BVP (1,1), (1,3).
Proof. Let <f>eR($) and

r

x(t) = H()r+JG(t,s)f()ds on [0,1].

J q A &t o ‘ds> de < j ) <leolf(5)| ds) dr
< ([ ot )l < o.

the Tonelli-Hobson theorem 1.4.36 yields
t 1 1 14
j A(7) <J G(z, s) f(s) ds) dr = J ( J A1) G(1, 5) df) f(s)ds
0 0 ] 0
for any te[0,1]. Consequently in virtue of (3,15) and (3,17)

x(t) — x(0) - J "A) x(z) dt = JIA(t, § f(s) ds = J o) de.

0 0 0
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f

r
1
[1 - (sU)(su)*] [r - J F(s) f(s) ds] =0
(4]
and applying 1.4.38 it is not difficult to check that x(¢) verifies also the side condition
(1,3).

3.19. Remark. By the variation-of-constants formula I11.2.13 for generalized dif-
ferential equations G: [0,1] x [0, 1] — L(R,) fulfils (3,15) and (3,16) for all s€(0, 1)
if and only if there exists C: [0, 1] —» L(R,) such that

G(t,s) = X(t) A(z, s) X" '(s) + X(t) C(s)  forall te[0,1] and se(0,1)

Finally, taking into account that ( )eR(ft’) if and only if (cf. 3.1)

and (SU) C(s) = —(SU)(SU)* Fs)  on (0, 1).
Hence according to 1.2.6 G(¢, s) fulfils (3,15) and (3,16) if and only if
(3,22) G(t, s) = Gy(t, s) + X,(t) D(s),

where X(¢) has the same meaning as in 3.14 and vanishes if k = n — rank (SU) =0
and D(s) is an arbitrary k x n-matrix valued function defined on (0, 1).

Analogously H: [0,1] - L(R,, R,) fulfils (3,17), (3,18) if and only if
(3.23) H(t) = Ho(t) + Xo(t) I on [0,1],
where I' € L(R,, R,) may be arbitrary.

Since rank (X,(t)) = k on [0, 1] (cf. 2.8), we have by 1.2.6.
(3.24) D(s) = X§(1)(G(t,s) — Go(t,s))  forall se(0,1) and te[0,1],

I = X3(t)(H() — Ho(t) forall te[0,1].

Now, let G(t, s), H(t) satisfy also (3,20), (3,21) for any t€(0, 1). Then var; G(t, .) < 00
for any te [0, 1]. Moreover, by (3,23) and (3,24)
(3.25) D(0+) = X& (1) (G(t,0+) — Go(t,0+)) = XF(¢) (H(z) — Ho(t) M =T'M
and
(3,26) D(1—)= —-IN.

Putting D(0) = D(0+), D(1) = D(1—), D will be of bounded variation on [0, 1].
By (3,20)
D(s) — D(1) — J D(t)A(r)dt — I'K(s)=0  on [0,1].

s

This together with (3,25), (3,26) may hold if and only if there is W € L(R,., R,) such
that D(s) = WY,(s) on [0,1] and I' = WA, (cf. 2.8). To summarize:

G: [0,1] x [0,1] - L(R,) and H: [0,1] > L(R,,R,)
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satisfy (3,15)—(3,18) for any s€(0, 1) and (3,20), (3,21) for any ¢ €(0, 1) if and only if
G(1,5) = Go(t,s) + Xo(t) WY,o(s)  on [0,1] x [0,1],
H(t) = Ho(1) — Xo(t) WA, on [0, 1],
where W e L(R,., R,) may be arbitrary.

3.20. Remark. By the definition (3,4) of G,(t, s) and H,(t) and 3.17

(327)  Goft, 0+) — Ho(t) M = X(1)[I — (SU)* (SU)]  if >0,
G,(0,0+) — Hy(O)M = —(SU)* (SU).
Got, 1-)+Ho() N =0 if t<1,
GolL1-) + Ho(I)N = 1.

In particular, for any ge BV, right-continuous on [0, 1) and left-continuous at 1

029) | dlg(0) (6u0+) — il M) = | alg(e]) X0 1 — (50" (su)]
and

(3,29) J:d[g*(r)] (Go(t, 1=) + Hy(t)N) = 0.

We shall conclude this section by proving that the couple Gz, s), Ho(t) has
also the meaning of a generalized Green couple for the adjoint nonhomogeneous
BVP (2,11), (2,12).

3.21. Theorem. Let ge BV, be right-continuous on [0, 1) and left-continuous at 1
and let p,q e R,. Then, if BVP (2,11), (2,12) has a solution, the couple (y*, A*) given by

(3,30) y*(s) = q* 60(1, s) — p* Gy(0, 5) — le[g*(t)] Gy(t,s)  on (0,1),
Y 0) =y*0+), ¥ 1) =y*1-),

= —qrH(l) + p HY0) + L‘d[g*(r)] Ho(o)

is also its solution.

Proof. (a) By (34) G(1,s) = X(1)(X™(s) — (SU)* F(s)) on [0,1] and owing to
(1,7) and (3,19) .
J; G(1,0) A(o) do

= X(1) X~ *(s) — X(1) (SU)* F(s) — I + X(1)(SU)* F(1) — X(1) (SU)* K(s)

(3,31) Gy(1,5) = Gy(1,1) + leo(l, 0)A(c)do + Hy(1)K(s)  on [0,1].
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Let us notice that G(l,1—)=G(1,1)=1— X(1)(SU)* F(1) and G(1,0+)
= G,(1,0) = X(1) — X(1)(SU)* F(0), F(1)= N, F(0)=(SU) — M. Furthermore,
Go(0,0) = I — (SU)* F0) = I — (SU)* (SU) + (SU)* M,

Go(0,5) = —(SU)* Fly)

if s> 0. In particular, Go(0,1—) = Go(0,1) = —(SU)* F(1) = —(SU)* N. Hence,
making use of (3,19)

(3,32) JIGO(O, 0) A(0) do = Gy(0,5) — Go(0,1) — Ho(0) K(s)  on [0, 1].

Now, if y*: [0,1] » R* and 4*e R¥ are given by (3,30), then by (3.15), (3,20),
(3,31), (3,32) and 1.432

1

y¥(s) — y*(1) - j y*(0) Alo) o + 4% K(s)

- — L‘d[g*(r)] (Go(r, s) — Gz, 1) — L Gy(t,0) A(0) do — H,() K(s))
=g*s)—g*(1) on [0,1].

(Here we have also made use of the assumption g*(1—) = g*(1), g*(0+) = g*(0)
and of the fact that Go(0,s+) = Go(0, s) if s > 0 and Gy(1,5—) = Gy(1,s) if s<1.)
(b) By (3.21), (3,27) and (3,29)

y*(1) — A*N = q*[Go(1, 1-) + Ho(1) N] — p*[Go(0, 1-) + H,(0) N]
- jold[g*(t)] (Golr, 1—) + Hy(r) N) = q*.

(c) Finally, by (3,21), (3,27) and (3,28)
y*(0) + A*M = q*[G(1,0+) — Ho(1) M] — p*[G(0,0+) — Ho(0) M]

- [N Gls.04) - Hol9 M

=+ [ x() - p - [ alg e x0) |11 - (50" (sui.

Since x,(t) = X(¢)[1 — (SU)* (SU)] is a solution to the homogeneous BVP (1,2),
(1,4), the last expression reduces to p* (cf. 2.5).

Notes

Canonical form of Stieltjes integral conditions (IV.3.15) is due to Zimmerberg [2]. Section IV.2 is
based on Vejvoda, Tvrdy [1] and Tvrdy, Vejvoda [1]. In IV.2.16 the idea of Pagni [1] is utilized. For
writing V.3, the paper Brown [1] was stimulating.
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Bryan [1], Cole [2], Halanay, Moro [1], Krall [1]—[4] and Tucker [1] are related references to IV.2,
while Reid [2], [3], Chitwood [1], Zubov [1], [2] and Bradley [1] concern IV.3. For a historical survey
of the subject and a more complete bibliography the reader is referred e.g. to Whyburn [2], Conti [2],
Reid [1] and Krall [9]. More detail concerning some special questions (as e.g. two-point problems,
second order and n-th order equations, selfadjointness, expansion theorems) as well as examples may be
found in the monographs Coddington, Levinson [1], Reid [1], Najmark [1] and Cole [1].

The interface problems were treated in Conti [3], Krall [2], [3], Parhimovi¢ [3], Stallard [1] and
Zettl [1]. Boundary problems in the L-setting were dealt with in Krall [1]—[8], Brown [1], [3], Brown,
Krall [1], [3]. Expansion theorems for problems with a multipoint or Stieltjes integral side conditions
are to be found in Krall [5], Brown, Green, Krall [1] and Coddington, Dijksma [1]. For applications
to controllability, minimization problems and splines see Brown [2], Brown, Krall [2], Halanay [1]
and Marchio [1].
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V. Integro-differential operators

1. Fredholm-Stieltjes integro-differential operator

The most part of this chapter is devoted to the Fredholm-Stieltjes integro-differential
operators of the form

x - x'(t) — Jlds[P(t, s)] x(s).

0

The kernel P(t,s) is assumed to be an n x n-matrix valued function defined for a.e.
te[0,1] and any se[0,1] and such that P(.,s) is measurable on [0, 1] for any
se[0,1],

(L,1) o(t) = |P(t, 0)| + var§ P(t, .) = ||P(t, .)|l;v < 0 ace. on [0, 1]

and

(12 leo = (| tetiyrar) < .

where 1 < p < 0.
Such kernels will be called L?[ BV ]-kernels.

1.1. Remark. For L' < I* if p <r, any L[BV]-kernel is also an L[ BV ]-kernel
for each p, 1 < p < r. Furthermore

IP(t, s)| < |P(2,0)] + |P(t, s) — P(t, 0)| < oft)
for all se€[0,1] and a.e. t€[0,1]. Hence by (1,2)

1
f |P(t,s)|Pdt < oo forany se[0,1].
0
1.2. Proposition. If P(t,s) is an L?[ BV ]-kernel, then the function
. 1
Px: te[0,1] > J d,[P(t, s)] x(s)e R,
0
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belongs to L” for any x € BV, and the operator

1

(1,3) P: xe BV, - j d,[P(1, s)] x(s)e L1,
0

is linear and bounded.

Proof. By 1.4.27 and 1.4.37 Pxe L and

(14) |(Px) (6)] < () ( sup [x(s))  ae. on [0,1]

se[0,1]

for any xeBV,. Since gel” and sup |x(s)| < | x|z, our assertion follows im-
mediately. sel0.1]

1.3. Remark. Since (1,4) holds also for any x € C,, the mapping x — Px is bounded

as an operator C,— LF as well. Let us notice, furthermore, that if x,,xeC,

(k=1,2,...) and lim |*, — x||c = 0, then in virtue of (1,4) lim (Px,)(t) = (Px)(1)
- k=

ae. on [0,1]. In other words, P maps sequences converging uniformly on [0, 1]

onto seugences converging a.e. on [0,1]. It was shown in Kantorovi¢, Pinsker,
Vulich [1] that

xeC, - JldS[P(t, s)] x(s)e L,

0
with the L'[BV]-kernel P(t,s), is a general form of operators C, — L} possessing
this property. .

1.4. Proposition. If P(t,s) is an I[![BV]-kernel, then the operator P: BV,— L!
given by (1,3) is compact.

Proof. Let x,€BV, and ||, <1 for each k = 1,2,.... By the Helly Choice
Theorem the sequence {x,}, contains a subsequence {x, }iZ, such that

lim x,(t) = x(r) ~ on [0,1]
for some x € BV,. For t,5€[0,1] let us denote

plt, s) = vary P(t, .)
and

(0= | 007691 )~ 0.
Given [ = 1,2,... and s€[0,1],

i) = x(5) < lx, = {15y < [y + [xv < 1+ [x]y < o0
and hence by 1.4.27

|2e)| < (varo P(&, .)) (1 + |x| ) < (1 + || %[ v) o)  ae. on [0,1].
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Moreover, according to 1.4.24
llirg z(t)=0  ae on [0,1].

By the assumption g € L and hence applying the classical Lebesgue Convergence
Theorem we obtain

(L,5) lim r|z,(t)}" dt=0.

=00 0

Since for any I = 1,2,...

Ll jlds["(" )] (xi,(5) — x(s))

0
and this completes the proof.

p 1
dt < J |z(e)P de,
0

(1,5) implies
lim [Px,, — Px||, =0

1.5. Notation. Throughout the chapter P denotes the operator defined by (1,3)
or its restriction on W? (1 < p < o), where W/ stands for the Sobolev space defined
in 1.5.10. Furthermore,

(L6) D: xeWr-x'el?
and
(1,7) L=D-P: xeWf—>x' —Pxel?

for any peR, p > 1.

1.6. Remark. Clearly, D is linear and bounded for any peR, p > 1. Hence if
P(t,s) is an I’[ BV ]-kernel, then L is also linear and bounded. We shall show that
it has a closed range and hence by 1.3.14 it is normally solvable.

1.7. Proposition. Let P: [0,1] x [0,1] —» L(R,) be an L?[ BV ]-kernel (1< p < o).
Then the operator L: WP — L% given by (1,7) has ‘a closed range in L.

Proof. Let fe L2 Then fe R(L) if and only if there exists x € W? such that

(19 ()~ x0) - [ (] atpte.n x9) e = [ 0c

Hence denoting
T

(1,9) y: heLf,’AJ‘h(t)dte we,

0

II: xe WP - z(t) = x(0)e W7,
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we have fe R(L) if and only if ¥f e R(I — (IT + ¥P)), where I stands for the identity
operator on WP.

The operators IT and ¥ are evidently linear and bounded. As R([7) is finite dimen-
sional, IT is compact (cf. 1.3.21). Since, given xe W?, || x|z, < || x| ws, it follows from
1.4 that also P: WP — LF is compact. Hence the operator @ =IT + ¥YP: WP - WP
is linear bounded and compact. Consequently R(I — @) is closed (cf. 1.3.20).
Since ¥(R(L)) = R(I — ©), R(L) is closed.
1.8. Proposition. If P(t,s) is an L?[ BV ]-kernel, then

n < dim N(L) < o,
while dim N(L) = n if and only if R(L) = L%,
Proof. By the proof of 1.7 the equation Lx = f is equivalent to the equation

x — Ox = Yf,

where @ = IT + YP: W —» WP is defined by (1,9). Since @ is compact, by 1.3.20
we have dim N(L) = dim N(I — ©) < o and
(1,10) dim N(L) = codim R(I — ©) = dim W}[R(I — ©).
It follows from the definition of @ that
R(l — ©) < {geWpP; g(0) =0} = V7.
Consequently
dim WP [R(I —

) >
If {e,,e,,...,e,} is a basis in R, and &{1)
system of equxvalence classes &+ VP (j
Hence

m Wp|VP.

; on [0,1] (j =1,2,...,n), then the
2 ..n) forms a basis in Wr[vp.

dim WF[VP =n
and by (1,10) dim N(L) = n if and only if
dim W?/V? = dim W?[R(I — ©).
Since R(I — @) = V? if and only if R(L) = L%, the proof will be completed by
means of the following assertion.
- 1.9. Lemma. Given a Banach space X and its closed linear subspaces M, N such that
M c N c X, dim X/M = dim X/N < o holds if and only if M = N.
Proof. Let dim X/M = dim X/N = k < co and let xe N\ M. Let £;=¢;+ N
(j=1,2,..,k) be a basis in X/N and let
k
ax + ) AgeMc N
i=1
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for some real numbers a, 4; (j=1,2,.., k). Since ax e N, this may happen only if
ME + A8 + ...+ L& eN, ie. A, =4, =...=4,=0. Thus axe M and for
x¢ M, o = 0. This means that the classes {x +M, &+ M; j=1,2,.., k} are
linearly independent in X/M and dim X/M > k+ 1 > dim X/N. This being con-
tradictory to the assumption, we have M = N.

1.10. Remark. By 1.8 there exists an n x k-matrix valued function X (k = dim N(L))
such that xe W/ is a solution to Lx = 0 if and only if x,(t) = X(r)c on [0,1]
for some ceR,. Unfortunately, even if k = n, it need not be det(X(t)) + 0 on
[0, 1]. For example, the equation

(1,11) x(t) — 4 jlx(t) dt=f(r) ae on [0,1]

0

possesses for any fe L. and ce R, the unique solution

x(t) = I(1 - 41)c + 41 Ll (J:f(f) dr) ds + L f()dc  on [0,1]

such that x(0) = ¢. In particular, x € AC, is a solution of the corresponding homo-
geneous equation if and only if x(t) = I(1 — 4t) ¢ for some ce R, and X(t) = I(1 — 4t)
is the fundamental matrix solution for (1,11). Let us notice that X(z) = 0.

1.11. Remark. Putting R(z,s) = P(t,s+) — P(z,1) for se(0,1), R(t,0) = P(t,0) — P(t, 1)
and R(, 1) = 0, we would obtain

R(t,s+) = P(t,s+) — P(t,1) if se[0,1),
R(t,s—) = P(t,s—) — P(s, 1) if se(0,1]
and hence according to 1.5.5

les[P(t, s)] x(s) = J;) 1ds[R(t, s)] x(s)  for each xeAC,.

Given a subdivision ¢ = {0 =5, <s; <...<s, =1} of [0,1] and 6 > 0 such
that 0 = sy <so+0 <5, <$;+5<... <Sp_y <Sp_1+06<s, =1, we have

m—1
t) = |P(t, so + 8) — P(t,0)| + Y. |P(z, 5;+ &) — P(t, s;— 1 + 5|
j=1

+ |P(t,1) = P(t, 5, +8) < o(t) ae. on [0,1].
Consequently

™=

IR(t, 5;) = R(t, 55-1)| = Jim Vi(t) < eft)

]

j=1

and vary R(r, .) < o(t) a.e. on [0,1]. Since |R(t,0)| < 2¢(t) ae. on [0,1] (cf. 1.1),

it follows that R: [0,1] x [0,1] — L(R,) is also an L”[BV]-kernel.
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This means that without any loos of generality we may assume that P(1, .) is
right-continuous on (0, 1) and P(t, 1) = 0 for almost all te[0,1].

1.12. Remark. Let
—A(t)—C(t) — D(t) if s=0,

—A(r) — D(t if 0<s<t,
Plt.s) = (1) = D(1) i s

—D(r) if t<s<l1,

0 if s=1,

where A, C, D are n x n-matrix valued functions whose columns are elements of L?.
Then
var} P(t, .) = |A()| + |€(0)] + [D()]  ae. on [0, 1]

and hence P(t,s) is an L”[ BV ]-kernel. Furthermore, given x € AC,,
1
f d,[P(t, s)] x(s) = A(t) x(¢) + C(t) x(0) + D(t) x(1)  a.e. on [0,1]
0

and the integro-differential operator L = D — P reduces to the differential-boundary

operator
xe WP — x'(t) — A(t) x(t) — C(t) x(0) — D(t) x(1) € L.

2. Duality theory

Our wish is now to establish the duality theory for BVP

1
(2.1) x'(¢) — J d[P(s,s)] x(s) = f(t) ae. on [0,1],
. 0

1
(2.2) Sx = Mx(0) + j K(t) x'(t)dt = r.

(0]
In particular, we shall show the normal solvability and eyaluate the index of this
boundary value problem under the following assumptions.

2.1. Assumptions. P: [0,1] x [0,1] - L(R,) is an LP-[BV]-kernel, 1 <p < oo,
fell, MeL(R,R,), K: [0,1] > L(R,R,). |K|L <o, ¢=p/(p—1)if p>1,
g=o if p=1and reR,.

2.2. Definition. A function x: [0,1] - R, is said to be a solution of BVP (2,1),
(2,2) if xe AC, and (2,1), (2,2) hold for a.e. te[0,1].

2.3. Remark. According to 1.13 we may assume that for a.e. t€[0,1] P(t,.) is
right-continuous on (0,1) and P(t,1) = 0. Furthermore, let us mention, that if
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P(t,s) is an L”[BV]-kernel and fe L%, then obviously x'eL? for any solution
x € AC, of the integro-differential equation (2,1). Thus given a solution x of BVP
(2,1),(2,2), xe Wp.

2.4. Notations. The operators D € B(W?, L%) and P e K(W?, L%) are defined by (1,3)
and (1,6),

1
S: xe WP > Mx(0) + j K(t) x'(t)dteR,,
and 0
Dx — Px
Sx

Making use of 2.4, we may reformulate BVP (2,1), (2,2) as the operator equation

(24) Px = <f>

r

(2,3) .%’:er,,"-*[ ]eLﬁme.

It appears to be convenient to handle instead of (2,4) the operator equation for

§—<X>GW"><R
- d n m

(2.5) E-Te=9,
where

1
(2,6) 'I’:ueL‘,i—»J‘u(r)dteVl{f’, D: xe WP - v(t) = x(0)e WP,
0
P YP b4
T:(x>eW,,"xR,,,—»[ X+ er,,”xR,,, and ¢p=< f)eW,,"xR,,,.
d d — Sx r
Clearly, x e W? is a solution to BVP (2,1), (2,2) if and only if for an arbitrary deR,,
the couple & = (:) is a solution of (2,5). In particular,
(2,7) dim N(I — T) = dim N(&) + m.
¥f

i )eR(I—T).

As according to 1.4 and 1.3.21 the linear operator T given by (2,6) is compact and

Furthermore, C)GL’,{ x R,, belongs to R(%) if and only if (

b4
the linear operator W: (:)eLﬁ x R, —->< rf>e WP x R,, is obviously bounded,
we have

2.5. Proposition. Under the assumptions 2.1 the operator £ given by (2,3) has a closed
range in L? x R,

Since by 1.5.13 the dual space (W?)* to WP is isometrically isomorphic with
L? x R¥ and (L2 x R,)* is isometrically isomorphic with Lf x R} (cf. 1.3.9 and

170



V.2

1.3.10), the adjoint operator to & may be represented analytically by the linear
bounded operator

(2,8) &L*: (y*, A*¥)e L x R — (L¥(y*, 4*), L%(y*, 4*))e L¢ x R*
which is defined by the relation

(2,9) le*(t) [Dx — Px](t)dt + A*[Sx] = J: L¥(y*, 4%)(¢) x'(t) dt + L¥(y*, 4*) x(0)

0
forall xeWpP, y*eL? and A*eRX.

Analogously, the operator
(2,10 T*: (y* x* 4*)e LI x R* x R¥
| - (THy* % 4%), T3(y*,»*, 4*%), T3(y* »*, 2*))e L x R} x R}
defined by
(2,11) le*(t) (Px) (¢) dt + x* x(0) + A*(d — Sx)

0
1
= f TH(y*, o*, A*) x'(t) dr + TH(y*, »*, 4*) x(0) + T¥(y*, »*, 4*)d
o
forall xeWpP, deR,, y*elLl, x*eR}, A*eR}

represents analytically the adjoint operator to the operator T.

2.6. Theorem. If 2,1 holds and P(t,1) =0 a.e. on [0,1], then the operator
£L*: LT x RE — Li x R} given by (2,8) verifies (2,9) if and only if
: 1

(212) Li(y* A%)() = y>*(t) + L y*(s)P(s,t)ds + A*K(t)  a.e.on [0,1],

(2,13) Li(y*, 4*) = *M + J‘ y*(s) P(s, 0) ds..
]
Proof. Let xe WP, y*eL? and A* € R}. By 1.4.38
1 1 1
J y*(©) (Px) () dt = J d, I:f y*(s) P(s, ) ds:l x(1).
0 0 0

Furthermore, integrating by parts (1.4.33) and taking into account the assumption
P(t,1) = 0 a.e. on [0, 1], we obtain

[ roE0a = ([ yorsoe)xo - [ ([ rorsis)xoa.

0 0 [ 0
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Hence 1
J y*(t) [Dx — Px](f)dt + A*(Sx)

0

= [l*M + J]y*(s) P(s, 0) ds:| x(0) + Jl [y*(t) + J‘y*(S)'P(s, t)ds + A* K(t):i x(¢) dt

0 0 0
for all xe WP, y*e Ll and A* e R}.
In virtue of (2,9) this yields that

J | [L’i‘(y*, (1) - y*(o) - JIY*(S) Pls, ) ds — 4 K(t)] akioe

0 + [Lﬁ(y*, A¥) — A*M _OLIY*(S) P(s, 0) ds:l x(0) = 0

holds for all xe W?, y*e LI and i* e R}.

The proof will be completed by making use of 1.5.15.
Similarly

2.7. Proposition. If 2.1 holds and P(t,1) =0 a.e. on [0,1], then the operator
T*: L¢ x R¥ x R¥ - LI x R¥ x R* given by (2,10) verifies (2,11) if and only if

TT(Y*, x*, A*) (t) = ——L’{‘(y*’ }.*) (t) + y*(t) ae. on [0’ 1:] ,
TH(y*, 2% 4%) = —LE(y* 4%) + %, Tily*,»5 4% = a*

for all y*e L, x*e R} and i*eR}.

2.8. Corollary. dim N(£*) = dim N(I — T*) — n < o0.
Proof follows readily from 2.6, 2.7 and 1.3.20.

2.9. Theorem. If 2.1 holds and P(t,1) = 0 a.e. on [0, 1], then
ind (&) = dim N(£*) — dim N(&) =m — n.

Proof. By 2.5 and 1.3.15 codim R(£) = dim N(£*). Hence by (2,7) and 2.8 and
1.3.20
ind(&)=dimN(I —=T*)—n—dimN(I —T)+ m=m—n.

2.10. Remark. The relation (2,9), where L¥(y*, 4*) and L¥(y*, i*) are given by (2,12)
and (2,13) is the Green formula for BVP (2,1), (2,2).

2.11. Remark. Let A, C,D: [0,1] > L(R,) be Lebesgue integrable on [0, 1], let
P: [0,1] x [0,1] - L(R,) be an L'[BV]-kernel and let K: [0,1] - L(R,, R,,) be
of bounded variation on [0,1] and M, N € L(R,, R,). Let us consider the problem

172



V.2

of determining x € AC, which verifies the system

(2,14)  x'(r) — A(t) x(t) — [€(¢) x(0) + D(r) x(1)] — J:ds[P(t, s)] x(s) = £(r)

a.e. on [0,1]

and
1

(2,15) M x(0) + N x(1) + J d[K(t)] x(t) = r,

0

where fe L} and reR,,. Again we may assume that P(t, .) is for almost all ¢ € [0, 1]
right-continuous on (0, 1). Moreover, if we put

P(#,0+) — P(t,1—) if s=0,
Po(t,s)=[P(t,s) —-Pt1-) if 0<s<1,
0 if s=1
and Cy(r) = C(t) — [P(t,0+) — P(t,0)], Do(t) = D(t) — [P(¢, 1) — P(t, 1—)], for any

x € AC, we should obtain
1

C(t) x(0) + D(¢) x(1) + L d [ P(z, s)] x(s)
= C,(t) x(0) + Dy(t) x(1) + les[PO(t, s)] x(s) -

Hence, without any loss of generality we may assume that for almost all ¢€[0,1]
P(t, .) is right-continuous on [0, 1), left-continuous at 1 and P(t, 1) = 0. Analogously,
K may be assumed right-continuous on [0, 1), left-continuous at 1 and K(1) = 0.

According to 1.12 we may rewrite the equation (2,14) in the form

(2,16) x(t) — fOIdS[R(t, s)] x(s) = f(r)  ae.on [0,1],
where
—A() — C(t) — D(r) if s=0,
T R St
0 if s=1

is again an L'[ BV ]-kernel. Furthermore, applying the integration-by-parts formula
and taking into account that K(1) = 0 and

1
x(l) = x(O) + j x’(r) dr for any xe AC,,
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we transfer the side condition (2,15) into

(2,17) H x(0) + J lF(t) x(f)dt =r,

where H=M+N-KO0), Fi=N—K(.

The system (2,16), (2,17) may be written as the operator equation

- (;)

with Z: AC, - L. x R,, defined in an obvious way. Now, proceeding analogously
as in the close of the proof of IV.3.13 we may deduce from 2.6 that (y*, A*) e N(#*)
if and only if there exists ze BV, such that z(t) = y(t) a.e. on [0, 1], z(0+)= z(0),
z(1—) = z(1) and

1
(2,18) z*(t) + j z*(s)R(s,t)ds + A*Ft) =0  on (0,1),

0

1
(2,19) A*H + J z*(s)R(s,0)ds = 0.

0
As F(1—-)=F1)=N and R(t,1—)= —D(r) for almost all te[0,1], we have
by (2,18)

1
(2,20 *(1) = j z*(s) D(s)ds — A*N..

0o
Since F(0+)= F(0) = N — K(0) and R(1,0+) = P(t,0) — A(t) — D(t) for almost
all te[0,1], the relations (2,18) and (2,19) imply

2%(0) = — rz*(s) P(s,0)ds + f

0 0

1 1

z*(s) D(s) ds + J z*(s) A(s) ds — A*N + A* K(0)

0

- - [m-l + le*(s) R(s, 0) ds] - J lz*(s) C(s)ds + A*M

0 0

= - le*(s) C(s)ds + A*M.

0
By the definition of R and F we have for any ze BV, and A€ R, fulfilling (2,20)

jlz*(s) R(s, t)ds + A* F(t)

0

- (m« - le*(s) D(s) ds) - J 2(s) Als) ds + L 249 Pls, £ ds — 4* K({)

= —z%(1) - J:lz*(s) A(s)ds + j z*(s)P(s,t)ds — A*K(t)  on [0,1].

0

174



V.2

Thus, the adjoint problem to BVP (2,14), (2,15) is equivalent to the problem of de-
termining z € BV, and 4* € R} such that

1

(2,21) z*(r) = z*(1) + fz*(&) A(s)ds — j z*(s) P(s,t)ds — 4*K(t)  on [0,1]

0
1

(2,22) z*(0) + A*M + L z*(’s) C(s)ds =0,

z*(1) — A*N — J z*(s)D(s)ds = 0.

0

2.12. Theorem. Let us assume 2.1 and P(t,1) = 0 a.e. on [0,1]. Then for given
feL: and reR, BVP (2),(22) possesses a solution if and only if

1
J y*(t) f(r)de + A*r =0
0
for any couple (y*, A*)e L8 x R* which verifies the adjoint system

(2,23) y*() + 1y*(s) P(s,t)ds + A*K(t) =0  ae. on [0,1],

0

(2,24) MM + J 1y"‘(s) P(s,0)ds =0.

0

Proof follows from 2.5, 2.6 and 1.3.14 (cf. 1.3.23).

2.13. Theorem. Let us assume 2.1 and P(t,1) =0 a.e. on [0,1]. Then for given
g*e Ll and q* € R}, the system

y*() + le*(s) P(s,t)ds + A*K(t) = g*(t)  ae on [0,1],

0

0

1
M + J y*(s) P(s,0)ds = q*
possesses a solution (y*, A*)e L% x R¥ if and only if

Jwg*(t) x'(t) dt + q*x(0) =0

0o

holds for any solution x € WP of the homogeneous problem ¥Lx = 0.

Proof follows again from 2.5, 2.6 and 1.3.14.

2.14. Remark. Let us notice that the side condition (2,2) is linearly dependent if
there exists q € R,, such that ¢*M = ¢* K(t) = 0 a.e. on [0, 1] (q*(Sx) = O for all
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x € WP implies that
1
xe Wz q($6) = (M)x0) + | (a" K0 X0 creR
o
is the zero functional on W}).

Analogously as in the case of Stieltjes-integral side conditions (cf. IV.1.14, where
no use of the special form of side conditions was made), we can also show that to
any nonzero linear operator S,: W?” - R, and r,eR, such that q*S,x) =10
for any xe AC, implies q*r, = 0, there exist m <k, S§: W? > R, and reR,
such that the condition Sx = r is linearly independent and equivalent to S,x =r,,.

2.15. Remark. It follows from the proof of IV.1.15 that if (2,2) is reasonable and
linearly independent, then there exists a regular m x m-matrix @ such that
M, 0
O[M,K(1)] = | My, K,(t)
0, K1)
where Mye L(R,, R, ), M, and K,(t)e L(R,,R,,) and K,(t)e L(R,, R,,,) are such
=m

M, K,(¢)
that my, + m; + m, = m, rank M o + m; and the rows of are
1

ae. on [0,1],

K1)
linearly independent in L, i.e.

Kl(t)]
* =0 ae. on [0, 1
7 [Kz(t) [o.1]
implies g* = 0. The system
M, x(0) = ro,
1 o
M, x(0) + J K@) x()dt=r, (| r,]|=06r),
0 r,

Jle(t) x'()dt =r,

0

is the canonical form of the side condition (2,2).

2.16. Remark. Another possible functional analytic way of attacking BVP (2,1),
(2,2) with reR,, fixed consists in considering the linear operator &, defined on
D(&Z) = {xeWP; Sx=r} c WP by

%, xeD(¥,)—>Dx — Pxelf.
BVP (2,1), (2,2) may be rewritten as the operator equation
Zx=f.
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As R(<Z,) is the set of all fe L? for which <f>eR($) and R(£) is closed by 2.5,
r
R(Z,) is also closed. By 2.12 R(,) is the set of all fe L? which fulfil the relation

jly*(t) f(t)de + A*r =0

0

for all couples (y* A*)e N(£*) < LI x R¥. In particular, if N} denotes the set
of all y*e L? for which there exists 4* € R¥ such that (y*, 4*)e N(Z*), then

R(&,) = “(N})
(the set of all fe L% for which <f, y*), = 0 for any y*e N¥).

2.17. Proposition. R(L,)* = N§, where R(ZL,)" denotes the set of all y* e L% such
that

le*(t) f()dt =0  forany feR(Z,)

and N¥ is the set of all y* € L2 for which there exists A* € R* such that (y*, 4*) € N(£¥)
(i.e. (2.23), (2.24) hold).

Proof. Let y*e L% Then y* e R(Z,)" if and only if

0= fly*(t) [Dx — Px] () dt

- [[ro+ [y P( 9as [xar+ | [ v pis0)as |x0)

holds for every x e D(%,) = N(S).

This is true if and only if (u*, v*) € N(S)*, where

(2,25) u*(t) = y*(t) + le*(s) P(s,t)ds  on [0,1],

0

v = le*(s) P(s,0) ds.

0

' Since R(S) is a linear subspace in R,, it is certainly closed and thus according to
1314 N(S)* = R(S*), where

S*: A* e R¥ — (STA*, S¥A¥)e L x R}

is the adjoint of S defined by the relation

1
IX(Sx) = j (§%4%) (1) x(¢) dt + (S34*)x(0)  forall xeW? and i*eRj.

0
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Obviously, (S¥A*)(t) = A*K(t) ae. on [0,1] and $%4* = A*M. This means that
(u*,v*)e N(S)" if and only if there exists A* € R} such that

u*(t) = A*K(t) ae.on [0,1], v*=A*M,
wherefrom R(Z,)* = N§ follows immediately by (2,25).

2.18. Remark. Since by 2.8 dim N} < oo, Proposition 2.17 is a consequence of
the following general assertion due to J. Dieudonné (cf. Goldberg I1.3.6).
If Y is a linear normed space, N < Y*, dim N < oo, then (*N)* = N.

3. Green’s function

Let us continue the investigation of the operator

Dx — Px

& er,,"~+|:
X

]equm

given by (2,15). (cf. also (L,6), (1,3) and (2,2).) We assume again that 2.1 holds. More-
over, we assume that P(t,1) = 0 a.e. on [0, 1] (cf. 1.15 and 2.2).
Of particular interest is the case when the operator equation

(3.1) Px = (f)

r

or BVP (2,1), (2,2)) has a unique solution for any fe L? and reR,,.
( (2.1), (22) q y felf m

3.1. Notation. Throughout the section ! = dim N(D — P), X(t) is an arbitrary
n x k-matrix valued function whose columns form a basis in N(D — P) and (SX) is

the m x [-matrix
1

(32 (SX) = MX(0) + J K(t) X(t) d.

0
(According to 1.8 n <1< 0.)

3.2. Lemma. dim N(&) = [ — rank (SX).

Proof. By the definition of X(t) we have xe N(£) if and only if x(r) = X(f)c
on [0, 1], where ce R, is such that

(3.3) (SX)c=0.

Obviously, the functions X(t)¢; with ¢;e R, (j = 1,2,...,v) are linearly dependent
in W? if and only if the vectors c; (j =12,.., v) are linearly dependent. The
assertion of the lemma follows immediately.
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3.3. Remark. Since rank (SX) < m and I > n, 3.2 implies
dmN(&) > n—m.
3.4. Lemma. R(¥) = L? x R,, if and only if dim N(£)=n — m.
Proof. Since by 2.5 R(&) is closed in L? x R,, R(£)= L% x R,, if and only if
(34) 0 = codim R(&) = dim ((LZ x R,)/R(£)) = dim N(£*)
(cf. 1.3.11). According to 2.9
dim N(£*) = dimN(&L) + m —n

wherefrom by (3,4) the assertion of the lemma follows.

3.5. Corollary. BVP (2,1), (2,2) possesses a unique solution for any fe L and reR,,
if and only if

(3,5) m=n and dimN(&L)=0.
Proof follows from 3.4 taking into account that (3,1) has a unique solution for any
<i>e R(£) if and only if dim N(&Z) = 0.

Analogously as in the case of ordinary differential equations we want to represent
solutions to (3,1) in the form

1

(3,6) x(t) = J‘ G(t,s) f(s)ds + H(t)r  on [0,1].
0

3.6. Definition. A couple of functions G: [0,1] x [0,1]— L(R,) and H: [0,1]>L(R,)

is said to be a Green couple of BVP (2,1), (2,2) if for any t € [0, 1] the rows of G(t, .)

are elements of L2'and the function (3,6) is for any feL? and re R, the unique

solution of BVP (2,1), (2,2).

Clearly, (3,6) verifies (3,1) for any fe L% and reR, if and only if

() ()= [ 6tes)| ¥ - [ atpts. o1 (0|0

0
1

K(s) x'(s) ds] . on [0,1]

holds for any x e W?. If for any t€[0,1] the rows of G(t, .) are elements of L%,
then by 1.4.33 and 1.4.38

J: G(t, o) (les[”(o, s)] x(s) do) = J:d, UolG(t’ o) P(o, 5) da] x(s)
S <LIG(t, o) P(c,0) do) x(0) — r <le(t, o) P(a, s) do') x(s) ds

0 0

+ H(t) [M x(0) + j

0
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for any te[0,1] and any x € W?. (We assume P(t, 1) = 0.) Consequently the right-
hand side of (3,7) becomes

|, [ste9+ [ 0Pl ao + 9| 95

0 0

+ [H(t)M + j 'G(t, ) P(0, 0) da] x(0).

0

Thus, since for any x e W

x(t) = x(0) + j () dt = x(0) + JIA(t, 9x(s)ds  on [0,1],

where
(3.8) A(t,s) = {

the relation (3,7) may be rewritten as follows

(39) Jl l:G(t, 9+ JlG(t, o) P(, ) do + H(1) K(s) — A(t, s)] x(5) ds

0 0

0 if t<s,
] if t>s,

+ [H(t)M + j 1G(t, o) P(c,0)do — 1] x(0)=0 forany xeWp.

0

Applying 1.5.15 we complete the proof of the following

3.7. Proposition. Let us assume 2.1 and P(t,1)=0 a.e.on[0,1]. Let G: [0,1] x [0, 1]
- L(R,) and H: [0,1] > L(R,) and let G(t, .) be *-intergrable on [0, 1] for any
te[0,1]. Then G(t,s), H(t) is a Green couple of BVP (2,1), (2,2) if and only if (3,5)
holds and for any t€[0,1]

(3,10) G(t,s) + LIG(t, 0)P(o,s)do + H(t)K(s) = A(t,s)  for ae. se[0,1],

H(O)M + j G(t,0)P(0,0)do =1,

0
where A(t, s) is given by (3,8).

Moreover, we have

3.8. Proposition. Let the assumptions of 3.7 be satisfied. If m = n and for any
te[0,1] G(t,s) and H(t) satisfy the system (3,10), then G(t, s), H(t) is a Green couple
of BVP (2,1), (2,2).

Proof. Since (3,10) implies that (3,9) and consequently also (3,7) hold for any
x € WP, it is easy to see that then (3,6) is a solution to BVP (2,1), (2,2) for any couple
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<f>eR(.5£). Furthermore, if x,,x,e WFf and ¥x, = ¥x, = (i), then inserting
r
x = x; and x = x, into (3,7) we obtain

x,(1) = JIG(t, s)f(s)ds + H(t)r = x,(t)  on [0,1],

]

ie. dimN(ZL)=0. If m=n, then by 29 codim R(%Z) = dim N(&) = 0. Thus
R(Z) = L% x R,, (cf. 1.9) and this completes the proof.

Let &£*: L1 x R} — LI x R¥ denote again the analytical representation of the
adjoint operator to & given by 2.6.

3.9. Lemma. If (3,5) holds, then dim N(£*)=0 and R(£*)= L% x R}.

Proof. By 2.9 (3,5) implies 0 = dim N(&) = codim R(£*) = dim N(£*) and the
proof will be completed by means of 1.9.
Lemma 3.9 together with the Bounded Inverse Theorem 1.3.4 yields

3.10. Proposition. The operator £*: LI x R* — L1 x R* defined by 2.9 possesses
a bounded inverse.

3.11. Theorem. Let us assume 2.1 with P(t, 1) =0 ae. on [0, 1] and (3,5), Then
there exist functions G: [0,1] x [0,1] - L(R,) and H: [0,1] - L(R,) which verify
the system (3,10) for any te [0, 1]. Moreover,

(i) given te[0,1], |Gt )| <o (g=plp—1) if p>1, g=o0 if p=1),
(i) there exists p€R such that

IG(t, ). + |HEO) < B< o0 forany te[0,1],

(i) if G:[0,1] x [0,1] > L(R,) and A: [0,1] - L(R,) also fulfil (3,10) for any

te[0,1], (i) and (ii), then Gi(t,s) = G(t,s) and F(t) = H(t) for all te[0,1]
and for a.e. se[0,1].

Proof. Let &¥(t,s) and e} (j = 1,2,...,n) be the rows of A(t, s) and I, respectively.
By 3.10 any equation from the system

(3,11) LHeg*h*) =05t ). e), te[0,1], j=1,2,...n
has a unique solution (g}(t, .), h}(t)) in L2 x R* and
612 g6 Mow + W) < (306 oo + )

for any t€[0, 1] and j=1,2,...n,
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where x = [|[(£*)7!| < 0. Let us put
609 = [g.(e: ) £al.5) o 691 on [0.1] x [0.1],
H() =[hy() hye) ... h()]* on [0,1].
Then, given t € [0, 1], the couple (G(t, s), H(t)) verifies (3,10). By (3,12)
IG(t, )| + [H(t) < nx < o0 forany te[0,1]

whence (ii) follows. The assertion (jii) is a consequence of the uniqueness of solutions
to the equations (3,11).

3.12. Corollary. Under the assumptions of 3.11 the given operator & possesses
a bounded inverse .
L <:>6Lﬁ X R,,,—»J G(t,s) f(s)ds + H(t) re Wp.

0
3.13. Theorem. Let us assume 2.1 with P(t, 1)
G(t, s), H(t) given by 3.11 is a Green couple of BVP
couple to (3,1), then G(t,s) = G(t,s) and H(t) =
all se[0,1].

Proof follows from 3.7 and 3.11.

(3

0 and (3,5). Then the couple
1). If G{(t, s), A(t) is also a Green
) for all te[0,1] and almost

H(e
3.14. Remark. Let r € R,. According to the definition 3.1 of X, x € W? is a solution to

(3,13) Dx — Px =0, Sx=r

if and only if x(t) = X(t) ¢ on [0, 1], where ce R, fulfils (SX) ¢ = r. In particular,
if we assume (3,5), then by 1.8 | = n and by 3.2 det(SX) + 0, i.c. xe W7 verifies
(3,13) if and only if x(t) = H(t)r on [0, 1], where

A() = X (sX)*  on [0,1].

On the other hand, if G(t,s), H(t) is the Green couple of BVP (2,1), (2,2), then
x(t) = H(t) r on [0, 1] is for any r € R,, the unique solution of (3,13) on W?. Hence
(H() — AH(t)) r = 0 on [0,1] for any reR, or :

H(t) = X() (SX)"*  on [0,1].

Let us notice that the columns of X being elements of W?, the columns of H(r) are
also elements of W?.

4. Generalized Green’s couples

If P: [0,1] x [0,1] —» L(R,) is an L*[BV]-kernel, then obviously
1 1
j |P(z, s)|* dz + j |P(¢, 0)|*> do < o0
0 0
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for almost all t,s€[0,1] (cf. 1.1). Moreover, according to the assumptions (1,1)
and (1,2) (where p = 2)

Ll (.[:'P(t’ I ds) de < Llez(t) dt < oo,

By the Tonelli-Hobson Theorem 1.4.36 this implies that if an L?[ BV ]-kernel P(t, s)
is measurable in (t,s) on [0, 1] x [0, 1], then

@y el [ rearaas= [ (] Reores)a< .

[0,1]x[0,1]
4.1. L?-kernels. The function P: [0,1] x [0,1] — L(R,) is said to be an L*-kernel
if it is measurable in (t,s) on [0, 1] x [0, 1] and fulfils (4,1). Given an L*-kernel P,
Pl is defined by (4,1).
Let us recall some basic properties of L?-kernels and of Fredholm mtegral
equations for ue L2

(42) u(t) - JIP(t, s) u(s) ds = g(t)

0
with an L?-kernel P. (For the proofs see e.g. Dunford, Schwartz [1] or Smithies [1].)

Let P: [0,1] x [0,1] - L(R,) be an L*-kernel. Then for any u e L2, the n-vector
valued function

glt) = Ll P(z, s) u(s) ds, te[0,1]

is L*-integrable on [0, 1] and the mapping ue L2 — ge L2 is linear and bounded.
(This may be shown easily by making use of the Cauchy inequality and the Tonelli-
Hobson Theorem 1.4.36.) Moreover, a linear operator @: L% — L2 is compact if
and only if there exists an I?-kernel T: [0,1] x [0, 1] - L(R,) such that

1
©:uell —»J T(t, s) u(s)dse L.
(4]
If ||P|| < 1, then the equation (4,2) possesses for any ge L2 a unique solution u
in L% and there exists an L?-kernel R: [0,1] x [0,1] — L(R,) such that for any
g e L2 the unique solution ue L2 of (4,2) is given by

u(t) = g(t) + LlR(t, s)g(s)ds, te[0,1].

R is called the resolvent kernel corresponding to P.

Finally, given an L*-kernel P, there exist a natural number n', functions P, : [0, 1]
— L(R,,R,) and P,: [0,1] - L(R,,R,) L*integrable on [0, 1] and an L2-kernel
P,: [0,1] x [0,1] - L(R,) such that

@3)  IPol <1 and P(t,s) = Poft,s) + Pi(e) P(s) on [0,1] x [0,1].
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Let us turn our attention to BVP (2,1), (2,2) fulfilling 2.1 with p=g4~=2 and
P(t,1) = 0 ae. on [0,1]. (P(t,s) is an L*[ BV ]-kernel, K is L*-integrable on [0, 1]
and fell)

A function x € W is a solution to BVP (2,1), (2,2) if and only if

where x = ®c + Yu + Yf,

1
(4.4) ®: ceR, > 2(t) = ce W7, 'I’:ueLf,—»J‘u(-c)drve

o

and the couple (u) e L2 x R, verifies the system
c

(4,5) u — Pdc — PYu = PYf,
(4,6) Sdc + SWu =r — SYf.

In fact, if xe W? is a solution to BVP (2,1), (2,2), then x = & x(0) + ¥YPx + ¥f
and Sx = S® x(0) + S¥YPx + S¥Yf=r. Consequently, u=Px and ¢ = x(0)
satisfy (4,5) and (4,6). (Clearly u € L)) On the other hand, if (u) e L% x R, is a solu-
c
tion to the system (4,5), (4,6) and x = ®c + Yu + ¥f, then x(0) = ¢, Px = Pdc
+ P¥u + PYf = u and hence x — @ x(0) — YPx = ¥f and Sx =r.
Let us mention that in virtue of 1.4.33, the composed operator P¥: L% — 2
is given by
1
(4.7) PY: uell— — j P(t, s)u(s)dse L.
0
Now, let a natural number n', an L*-kernel P,: [0,1] x [0,1] - L(R,) and
L*-integrable functions P;: [0,1] —» L(R,, R,) and P,: [0,1] —» L(R,, R,) be such
that (4,3) holds. Furthermore, let R,: [0,1] x [0,1] - L(R,) be the resolvent
kernel corresponding to P,. The symbols Py, P,, P, and R, will denote the linear
operators

1
(4.8) Py: ueLl — — | Py(t,s)u(s)dseLZ,
Jo
P:deR,.—  —P()del?,
1
P,: uel? — P,(s) u(s) dse R,
JO
1
Ry: uelZ — — | Ry(t,s)u(s)dse L2,
Jo

as well. All of them are obviously compact.
By (4,3) and (4,8) we may write

P¥Y =P, + PP,
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and the equation (4,5) becomes

u — Pou = P®c + P,P,u + PYf.
Accordingly

(49) u — [I + Ro] (P®c + P,Pu) = [I + R,] P¥f.

Let us denote
d = qu .

Then the equation (4,9) reduces to
(4,10) u= [’ + RO] Pdc + [l + RO] P.d + [l + RO] PYf.

Applying P, to (4,10) and inserting (4,10) into (4,6) we reduce the system (4,5), (4,6)
to the system of equations for ce R, and deR,.

i) ola)=(: 2

where

—P,[1 + Ry | PP I -
(412) B: <c> R, - ( ,[1 + Ro] P®Pc + (I — P,[1 + Ry] P,)d €R,..
d S(I — P[I + Ry P) ®c + SY[I + Ry P,d

and
(4,13) F: feL:— Pl + R,]P¥feR,.,
F,: fel2—> SY(I+ [l + R,|PY)feR,,.

The operator B may be represented by a uniquely determined (m+n') x (n+n')-
matrix. Let us denote this matrix again by B.

Thus BVP (2,1), (2,2) possesses a solution x € W,? if and only if the system (4,11)
. (e . .
possesses a solution d €R,,, and x is then given by

(4,14) x = (® + P[I + R,]P®) c + P[I + R,] Pod + ¥[I + R,] P¥f + Pf.

Let 4,,eL(R,,R,), 4,,€L(R,,R,), 4,,€L(R,) and 4,,€eL(R,,R,) be
chosen in such a way that

4,4, 4
Bt = 1,1 1,2 EL(R,,H.,,‘, R,H.,,\)
AZ,I’ A2,2

fulfils BB*B = B (e.g. B* = B*). Then if (4,11) has a solution, the couple
(4,15) c=[4,,F —4,,R]f+4,,reR,,
d=[4,,F —4,,F]f+ 4,,reR,,

is also its solution.

185



\Z:

Inserting (4,15) into (4,14) we obtain that if BVP (2,1), (2,2) has a solution, then

(4,16) x = ®[G,f + H,r] + Y[l + Ry] (G,f + H,r) + Pf
with
(4’17) G, =Al,1F1 "Al,ina H1 =A1,2,

G, = P®(4, ,F, — A, ,F,) + P,(4, ,F, — 4,,F,) + P¥,
H, =P®4,, + P4, ,
is also its solution. As G,: L2 — R, is a linear bounded n-vector valued functional

on LX and [I + R,] G, eK(L2), there exist an L*-integrable function G,: [0,1]
— L(R,) and an L*-kernel G,: [0,1] x [0,1] - L(R,) such that

(4,18) G,:fel2— JIGI(S) f(s)dseR,,
0
[I +Ry]G,: feLl— leZ(t, s) f(s)dse 2.

0

Applying the Tonelli-Hobson Theorem 1.4.36 we may show that

[([eseormefi- [ [oeredrne

for any fe L2 and te[0,1], ie.
1 t

(4,20) Y[l + R ] G,: felZ— J (J G,(7,5) dt) f(s)dse w;2.
o \Jo

Furthermore, by (4,3), (4,4) and (4,8) there exist an L*-integrable function H,: [0, 1]
— I(R,,, R,) such that

H,=P®A, , + P A,,: reR,— H,(t)re?.

Consequently,

(4.21) Y[l + R]H,: reR,, — (J:Hz(r) dr) r,

where
1

H,(t) = A () + j Ro(t,7) Ay(c) dr,  te[0,1]

0o

is also L?-integrable on [0, 1]. Inserting (4,18), (4,20) and (4,21) into (4,16) we obtain
that if BVP (2,1), (2,2) has a solution, then also

(422) x(t) = JlGo(t, s)f(s)ds + Ho()r,  te[0,1],

0
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with
(423)  Golts) = Gifs) + J Gy(rs)de + 4(ns)  on [0,1] x [0,1],

Alt,s)=0 if t<s, A s)=1 if t>s,
t
Hy(t)=H, + JHZ(‘L')d‘C on [0,1]
0
is a solution to BVP (2,1), (2,2). It follows from the definition of the functions
Gy(t, s) and H,(t), that the linear operator

(4.24) P+ <f>e L2 x R, - JlGo(t, 9 £(5)ds + Holt)re W2

r 0

is bounded. The results obtained are summarized in the following theorem.

4.2. Theorem. Let the assumptions 2.1 with p = q = 2 be fulfilled and, moreover,
let P(t,s) be measurable in (t,s) on [0,1] x [0,1]. Then there exist functions
Go: [0,1] x [0,1] - L(R,) and H,: [0,1] - L(R,, R,) such that for any feI?
and r € R,, the function x(t) given by (4,22) belongs to W;? and the linear operator L+
given by (4,24) is bounded. Furthermore, if BVP (2,1), (2,2) possesses a solution, then

(422) (ie. x=2" C)) is also its solution.

4.3. Remark. According to the definition IV.3.10 we may say that Gy(t, s), Hft)
is a generalized Green’s couple of BVP (2,1), (2,2). The operator £* given by (4,24)
fulfils the relation XL+ ¥ = L.

4.4. Proposition. The functions G(t, s) and H,(t) defined by (4,23) have the following
properties
(i) H, possesses a.e. on [0,1] a derivative which is L-integrable on [0,1],

) Gy is an L?-kernel, Gy(., s) is of bounded variation on [0,1] for a.e. se[0,1],
(iii) ¥(s) = |Go(0, )| + varg G-, s)e L2,

) for almost every se[0,1] the columns of Gy(.,s) — A(.,s) belong to the
space W2,
Proof follows from the construction of the functions Gy(t, s) and Hy(t) (Go(0, s)
= G,(s), varg A(.,s) < 1 and hence

¥s) < |Gy(s) + Jolle(T, s|dt+1 ae on [0,1]))

4.5. Remark. If k = dim N(£) > 0, let X,, denote the n x k-matrix function whose
columns form a basis in N(&). If k* = dim N(£*) > 0, let ¥,: [0,1] —» I(R,, R,.)
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and A,€L(R,, R,.) be such that the couples (y¥ A¥) (j=1,2,...,k*) of their
rows form a basis in N(&£*). Then evidently for any L*-integrable function @, : [0, 1]
— L(R,, R,), any matrix @,€eL(R,,R,) and any function X: [0,1] - L(R,., R,)

of bounded variation on [0, 1]

(4,25) G(t,s) = Go(t, s) + Xo(t) Oy(s) + 2(t) Yols),  t,se[0,1],
H(t) = Ho(t) + Xo(t) @, + Z(1) 4,

is also a generalized Green’s couple of BVP (2,1), (2,2) and fulfils (i)—(iv) from 4.4
in place of Gy(t, s) Hoft).

4.6. Definition. Generalized Green’s couples of the form (4,25) will be called standard
generalized Green’s couples.

4.7. Remark. It is easy to verify that given a standard generalized Green couple
G(t, s), H(t), the operator

(4.26) @+ (f) €2 x R, - J 'Glt,5) f(5)ds + H({) r

0

is bounded and fulfils the relation L *'¥ = £. *)

4.8. Remark. Making use of the equivalence between BVP (2,1), (2,2) and the linear
algebraic equation (4,11) we could obtain (under the assumptions 2.1 with p=q=2)
the basic results of the Section V.2 in a more elementary way. An analogous procedure
can be applied also to BVP

(427)  x'(¢) — A(t) x(t) — C€(t) x(0) — D(t) x(1) — les[R(t, s)] x(s) = f(¢) ‘
ae. on [0,1],
(4,28) M x(0) + J K(e)x'()dt =r,

where A is supposed to be only L-integrable on [0, 1] and K is measurable and es-
sentially bounded on [0, 1]. (In general BVP (4,27), (4,28) cannot be rewritten as
the system of the form (2,1), (2,2) fulfilling the assumptions of this section.) If X(r)
denotes the fundamental matrix solution of the equation x'(t) — A(t)x(t) = 0,
then BVP (4,27), (4,28) will be transferred to a system of integro-algebraical equations

*) Since in general we may not assume that X,(t) has a full rank on [0, 1] (cf. 1.10), we may not apply
the procedure from 1V.3.12 to show that £ * € B(L} x R, W?) fulfils LL*¥ = & ifand only if £*
is given by (4,26), where G(t, s), H(t) is a standard generalized Green’s couple.
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for ue I2 and ceR, of the form (4,5), (4,6) (with an L*-kernel) by means of the
substitution

o) = €0 0)+ DX + [ 4R 9] 9
c = x(0).
On the other hand,

x(t) = X(t) ¢ + X(t)j

0

t t

X~ 1(s) u(s) ds + X(t) J X~1(s) f(s) s,

0
ie. x = Uc + Vu + Vf.

S. Best approximate solutions

We still assume that P: [0,1] x [0,1] - L(R,) is a measurable L*[BV ]-kernel,
P(t,1) = 0 ae. on [0, 1], the columns of K: [0,1] - L(R,, R,,) belong to L2, felL?
and reR,,. Given x,ue W2, let us put

(5.1) (x, u)y = Jlu*(t) x(f)dteR.

0

Clearly, x,ue W;? - (x,u)xeR is a bilinear form on W? x W2, while (x,u)y
= (u, x)x for all x,ue W, and (x, x)x = 0 if and only if x(t) = 0 on [0, 1]. It means
that (., .)y is an inner product and x e W;” - ||x||x = (x, x)¥? is a norm on W2.

Analogously,

(5.2) ¢ = (f) Y= (5)6&. X R = (0,¥)y = <@, ¥*) 12xr

r

- [e0rou+ grer

0

is an inner product on L} x R, and @eL} x R, — |o|, = (¢, 9)}/* is a norm
on L% x R,,. Moreover, as |¢| < |¢|, = (c*¢)'/? < n|¢| for any ceR,,

f

r

(e (o)« ) 5 (o) )= )

forall fel? and reR,.
On the other hand,

[(ioeac s o ([ i) "1 = o

2

Y
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and hence
f 2 1 1 1/2 2 f 2
o) (rs) o) 0
r/lly 0 0 r/llL2xr
ie.
1
(53) ~lely < lelexr < V@ loly  foreach @elixR,.

It follows immediately that the space L% x R,, endowed with the norm .|y is
complete, i.e. it is a Hilbert space.

5.1. Notation. In the subsequent text X stands for the inner product space of
elements of W,;> with the inner product (5,1) and the corresponding norm |.||x.
Y denotes the Hilbert space of elements of L2 x R, equipped with the inner product
(5,2) and the corresponding norm |.|y. The operator xe X —» Lxe Y (cf. (2,3))
is denoted by /.

5.2. Remark. Evidently o/ € (X, Y), R(«/) = R(&) and N(&/) = N(£). It follows
easily from (5,3) and 2.9 that R(s#) is closed in Y.

5.3. Remark. Let us notice that in general &/ is unbounded.

5.4. Notation. If k = dim N(£) > 0, then X, denotes the n x k-matrix valued
function whose columns form a basis in N(%). If k* = dim N(£*)>0 and (y;, 4¥)
eLZx R%(j=1,2,...,k*) is a basis in N(Z*), let us put Y&(t) = [y,(¢), y2(t), .- yie(t)]
on [0,1] and A = [A1,4,, ..., A ).

5.5. Lemma. If k* > 0, then the k* x k*-matrix

1

C= J Yo(t) Y& () dt + ApAd
0

is regular. If we put

(5.4)
t Yt !
n,: (f>e Y — <f( )> - [ a1 ):I c! [j Yols) f(s) ds + Aor:le Y if k*>0,
r r A o
O,=1 if k*=0,
then I1, is an orthogonal bounded projection of Y onto R(&4).

Proof. If there were 6*C =0 for some d€R,., then it would be also 0=6*CJ, i.e.

0= Jl(é* Yo(t) (Y&(2) 8) dt + (5*A,) (A%0) = ||(Y&(t) 6, A%0)||3 -

0
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This may hold if and only if §*[Yo(t), 40] = 0 a.e. on [0, 1]. Hence 6*C = 0 implies
o* =0.
Furthermore, it follows easily from 2.12 that IT,¢ € R(s#) for any ¢ €Y and

I1,¢ = ¢ if ¢eR(). Finally, given (pe(f)e Y and ¥ = <g>eR(d), we have
by 2.12 r 9

1 1
(o~ Mo v =| [ a0 0@+ aa e [ v s + aur | = 0.
0 0
The boundedness of I1, is obvious.

5.6. Lemma. If k > 0, then the k x k-matrix

D= Jlx;';(t) Xo(z) dt

is reqular. The mapping

(5.5) 1,: xeX_,xo(t)Dﬂ(j

1

0

M,=0 if k=0

X¥(s) x(s) ds)eX if k>0,

is an orthogonal bounded projection of X onto N(sf).

Proof. The regularity of D follows analogously as the regularity of C. Obviously
R(IT,) = N(#). Furthermore, if 6€ R, and x(t) = X,(t) & on [0,1] (ie. x € N(Z)),

then
1

X3(s) Xofs) ds) 5 = Xo(t) 8 = x(t).

100 = %0 (|
0
Consequently R(IT,) = N(&#) and II} = II,. Finally, given xeX, deR, and

u(t) = xo(t) ’, (x — I, x, u)x

= &* (J:X;';(t) x(t) dt) —&* ( leg(t) X(t) dt) D! <leg(t) x(t) dt) =0.

5.7. Definition. A function u,e W? is said to be a least square solution or a best
approximate solution of BVP (2,1), (2,2), if it is a least square solution or a best ap-
proximate solution of the operator equation

(59) x = (f)

r
respectively.

Let us assume 2.1 with p=q =2 and let P(t, s) be measurable in (t, s)
on [0,1] x [0,1]. Then there exist a standard generalized Green’s couple G(t,s),
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H(t) of BVP (2,1), (2,2) such that for any fe L% and reR,,
1

(5,7) uo(t) = J G(t,s) f(s)ds + H(t)r  on [0,1]

0

is the unique best approximate solution of BVP (2,1), (2,2).

Proof. Let Gyft,s), Ho() be the generalized Green’s couple of BVP (2,1), (2,2)
given by 42 and let £*: 2 x R, — W? be the corresponding generalized inverse
operator to & given by (4,24). Let us define /™ : (f>e Y2t <f>e X and

r r

r

(58) ¥ <f>eY—>(l——H2)d+H1 <f>eX,

r
where IT, € B(Y) and IT, e B(X) are given by (54) and (5,5), respectively. Then
A el(Y,X), Ad*el(Y,X), oAt = o and according to 1.3.28 and 1.3.29
uy=o* f is the unique best approximate solution of (5,6) for every feL?

and r € R,,. Taking into account 4.4, (5,4), (4,24) and making use of 1.4.36 we obtain
that for any fe L2 and reR,,

(59) I, <:> (t) = Lla(z, 9f(s)ds + A r  on [0,1],
where

(510 &les) = Gotes) — (|

0

A() = Holt) — Ho(t) A3C~'4,  on [0,1].

1

G(t, 0) Y&(o) da) C 'Yys) on[0,1] x[0,1],

Obviously, G{t, s) is an L?>-kernel and G(t, s), H(t) is a standard generalized Green’s
couple of BVP (2,1), (2,2). By 4.2 and 1.4.36 we have

[t [ st aoe = [ (x50 6t 0) 190

Consequently, putting
1
(511) G(t,s) = G(t, s) — Xo(t)D‘lj X#(r)G(r,s)dr  on [0,1] x [0,1],
0
1

H(t) = H(t) — X,(t)D™* J X#(7) A(r) dt on [0,1],

0
we obtain

uo(t) = J:G(t, s)f(s)ds + H(t)r  on [0,1].
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5.9. Remark. Let us notice that ve X is a least square solution to BVP (2,1), (2,2)
if and only if

(5,12) 0= (.sﬂx, v — <f>> forany xeX.
Y

r

Since by the definition (5,2)

(oo~ (7))~ Gom (- ().,

= (X, LHLV)* — LHf* r*)) g forany xeW?,

the condition (5,12) is equivalent to
,T*(va)* = g*(f*, ,.*)

or

(5,13) V() + [P(t, 0) + J

0

1

P*(o, t) P(0,0) do + K*(t) M] v(0)

+ Jv1 [P(t, s) + P*(s, t) + JlP*(a, t) P, s) do + K*(t) K(s)] v/(s)ds

0 0

= f(t) + flP*(s, t)f(s)ds + K*¥¢)r  ae. on [0,1],

0

[M*M + J P¥(s,0) P(s, 0) da] v(0)

0

N J 1 [M* K(s) + P*(s,0) + JlP*(a, 0) P(o, s da] v(s)ds

0 0
= M*r + JIP*(S, 0) f(s) ds.
0

Let us notice that the system (5,13) of equations for u = v'e L2 and ¢ = v(0)e R,
may be treated in the same way as the system (4,5), (4,6) (cf. also Lemma 3.1 in Tvrdy,
Vejvoda [1]). If P(., s) and K are of bounded variation on [0, 1], then the system
(5,13) may be reduced to the form (2,1), (2,2).

5.10. Remark. Let re R, be fixed and let us define

D,={xeW?; Sx=r} and %: xeD,—»Dx —Pxel?.

Then R(&Z,) is closed in LZ (cf. 2.16). Hence if D, # 0, then by the Classical Projection
Theorem (Luenberger [1], p. 64) R(Z,) contains a unique element y of minimum
L*-norm and y € R(Z,)". It follows from 2.17 that |y|,. < ||f| .. for all fe R(Z)
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if and only if there exists A* € R¥ such that (y* A*)e N(£*). Thus ue D, fulfils

|Du — Pul|,. < |Dx — Px|,. for all xeD, if and only if there exists A*e R}
such that

L*(Du — Pu)*, 4*) =0.

6. Volterra-Stieltjes integro-differential operator

Let P:[0,1] x [0,1] > L(R,) be an I’[BV]-kernel and let for ae. t€[0,1],
P(t,s) = P(t,t) if 0 <t < s < 1. Then

P: xe WP~ Ll d,[P(t, 5)] x(s) = J;ds[P(t, s)] x(s)e L%,

and the Fredholm-Stieltjes integro-differential operator & = D — P defined in 1.5
reduces to a Volterra-Stieltjes integro-differential operator

(6,1) L =D—-P: xeWF->x(t) - J;ds[P(t, s)] x(s)e L%

If P(t,s) = P(t,£) = 0 for 0 <t <s < 1, then by 1.4.38

[(ftrensir  [simcre)s
= [[a] [te9ar |9 = 0] [te910e] 9.

Thus, if f e L2, then by integrating the Volterra-Stieltjes integro-differential equation
for xe WP

(62) x(t) - J:ds[P(t, ] x6) = ) ae on [0,1]

we obtain

6.1. Proposition. If P(t,s) = 0 for 0<t <s < 1, then a function x € BV, is a solution
to (6,2) if and only if

t

(6,3) x(t) — ﬂds[Q(t, s)] x(s) = x(0) + Jf(t) dt  on [0,1],

0

where

t e
(6.4) Q(t,s)=jP(r,s)dr if 0<s<t<1, Qs)=0 if 0<tr<s<l1.

s

(Obviously, if x e BV, fulfils (6,3), then x € W/?.)
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6.2. Remark. Let us notice that if Py(t,s) = P(t,s) — P(t,t) on [0,1] x [0, 1], then
Py(t,s) =0 for 0 <t <s<1 and

J:ds[Po(t, 9] x(6) = ﬁds[P(t, g]x(s) forany te[0,1] and xeC,.

This means that the assumption P(t,t) = 0 for every t€[0, 1] does not cause any
loss of generality.

6.3. Proposition. v, ;1x0.1(Q) < o0, Q(0,5) =0 0n[0,1]and Q(t,t—)=Q(t,1)=0
for any te(0,1].

Proof. Letanet-type subdivision {0=1t,<t; <...<t,=1; 0=5,<5, <... <5, = 1}
be given. Then

mi,J(Q) =

j:i_ (P(z,s;) — P(t,5;_,))de| < f: IP(r, s;) — P(t,s;- 1)‘ dr.

Hence

.; .;m,-_ Q) < ;1|P(r, sj) — P(t,55-,) dr < J o(r)dr

and consequently Vjo ;;x0.11(Q) < 0. The other assertions of the lemma follow
immediately from (6,4).

Making use of the results obtained for Volterra-Stieltjes integral equations in
the Section II.3 we can deduce the variation-of-constants formula for Volterra-
Stieltjes integro-differential equations.

6.4. Theorem. Let P: [0,1] x [0,1] - L(R,) be an IP[BV]-kernel such that for
ae. te[0,1] P(t,s)=0 if 0<t<s<1. Then for any ceR, and feL’ there
exists a unique solution x of the equation (6,2) in WP such that x(0) = e.

Furthermore, there exists a uniquely determined function U: [0,1] x [0,1] - L(R,)
such that for any f e L. and ce R, this solution is given by

t

(6.5) x(t) = U(t,0) ¢ + j u(t, s) f(s)ds, te[0,1].
0

The function U satisfies the equation

(6,6) %U(t, s) = J:d,[P(t, ] U(r,s) forany se[0,1] andae. te[s1].

Moreover, Vi 11,10.1/(U) + varg U(0, .) < oo, U(.,s) is absolutely continuous on
[0,1] for any se[0,1] and U(t,s) =1 if 0<t<s< 1.
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Proof. Let I': [0,1] x [0,1] - L(R,) correspond to Q by I13.10. In particular,
the function x: [0,1] > R, given by

M) =+ [1ar+ [afreon (e + [0

is for any ce R, and f € L% a unique solution to (6,3) such that x(0) = . Integration
by parts yields

67)  x(t)=[1+I(t.1)] e+ J(:[l + I(t,t) — I'(t,s)] f(s)ds  on [0,1].
Denoting

I+ I(t,t)-TIts) if 0<s<t<1,
(638) U(t,s)—{’ if 0<t<s<l,

the expression (6,7) reduces to (6,5). (Recall that I'(t,0) = 0 for every te[0,1])
In our case the function I satisfies for 0 < s <t < 1 the relation (cf. (I1.3.29))

(69)  I(ts)= J P, 5) de - Jp(r, 0)dr + Ld U:p(r, ) dr:l I(rs).

s 0
Taking into account that P(r,r)=0 if 0<t<r<1 and I'(r,s)=I(r,r) if
0 <r <s <1 and employing 1.4.38 we obtain for 0 < s <t <1

L:d, U:P(T, r) dr] I(r,s) = L:d, U;P(T’ ) dr] I(r, s)
- [, (et ) = [/ ([ atpenrees) o
- (menreopes [ tmenreale

It is easy to verify (cf. also (6,8) and (6,9)) that

e =1~ [ Pesa = [ ([ atptenl ) - o) ar

s s s

t

t

for 0<s<t<l.
On the other hand, it follows from (6,8) that.
J’ d,[P(z,r)] U(r,s) = —P(,s) — j d,[P(z, )] ([(r,r) — I(r,5))

for 0<s<t<1.
Thus (U(s,s) = 1)

U(t,s) = U(s, 5) + J (fd,[P(r, A U, s)) dt if 0<s<r<l,

which yields (6,6) immediately.
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As Vio,1yx(0,1() < 00 (cf. I1.3.10), also Vi 1yx0.1(U) < 0. The other assertions
of the theorem are evident.

6.5. Remark. Denoting for ceR,, fe L and t€[0,1]

t

(6,10) (@e)(t) = U(t,0)c and (¥f)() = J u(z, s) f(s) ds,

0

the variation of constants formula (6,5) for solutions of (6,2) becomes
(6,11) x(t) = (Pc)(t) + (PF)(1) on [0,1] (x = Pc + Pf).

By 6.4 the functions @c and ¥f belong to W? for every ce R, and f e L. More-
over, the linear operators ®: ceR, - ®PceW? and ¥: fel? » ¥Yfe WP are
bounded. Indeed, if fe L and y = Yf, then in virtue of 1.4.27, 1.6.6 and 6.4 we
have for a.e. te[0,1]

Wl = |[[atpesnwe + 10| < || atpteon (v ) + o)
< el). siv [0t I7l,+ 0]
Consequently o

196l = 1120 < (1+ leluo  sup UG 5)) £l

ie. ¥ e B(L%, W?P). Analogously we could obtain @ e B(R,, W/?).

6.6. Corollary. Let % be a linear normed space and let @€ B(%, L%).If P: [0,1] x [0,1]
— L(R,) is an L[ BV ]-kernel such that for a.e. te[0,1], P(t,s) =0 if se[t,1],
then for any ue %, fe L and c€ R, there exists a unique solution x € W} of

Dx - Px=0u+f, x(0)=c.
This solution is given by x = ®c + YOu + YPf. -

6.7. Remark.Let r>0 and let P: [0,1] x [—r,1] - L(R,) be an L[ BV ]-kernel
on [0,1] x [—r,1] such that P(t,s) = 0 if t < s and P(t,s) = P(t,t —r) if s<t—r.
Let ue BV,[ —r,0] and f € L%, be given and let us look for a function x € BV,[ —r, 1]
absolutely continuous on [0, 1] and such that x’ is [*-integrable on [0, 1] and

6.12) x(t) - J A[PIIX0) = ) s on [O.1],

x(t)=u(t) on [-r0].
If we put

@:uc’ BVH[—r, O] - J‘ids[P(t, S)] u(s) el?,
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then @ is a linear compact operator (cf. 1.4). For any x e BV,[ —r,1] and t€[0,1]

we have
0

[ atresnse = |

[Pl x) + L'ds[p(t, 9] x6).

Thus our problem may be formulated in the form of the operator equation
Dx — Px = Ou + f and according to 6.6 (with % = BV,[ —r,0]) the equation
(6,12) has for any ue BV,[—r,0] and x € L2 a unique solution x € W/ such that
x(t) = u(t) on [—r,0]. This solution is of the form x = ®,u + Pf, where
®,: ueBV,[—r,0] > P u(0) + POue W7 is a linear compact operator. (Let us
notice that in virtue of 1.4.38

(@ou) (1) = U(t,0) ul0) + J Ords [ j U(t, ) P, 5 dr] us)  on [0,1]

0

for any ueBV,[—r,0].) Thus, the variation-of-constants formula for functional-
differential equations of the retarded type (cf. Banks [1] or Hale [1]) is a con-
sequence of Theorem 6.2.

Analogously we may show that if 0 <r, <r (i=1,2,...,k), A;: [0,1] - L(R,)
i =1,2,..,k) are measurable and essentially bounded on [0, 1] and A,: [o, 1]
x [—=r,0] - L(R,) is measurable and essentially bounded on [0,1] x [—r,0],
then the system

@y x0-Sa0fl bl

ut —r) if t—r, <0

° (0 if t+s>0
- j _,Ao(t’ 9 1u(t +s) if t+s< O} ds
- L' [P 9] x(s) = f)  ae on [0,1]

has for any fe L2[0,1], ue L[ —r,0] and ceR, a unique solution x e L[ —r, 1]
such that x(t) = u(t) ae. on [—r,0], u(0)= ¢ and x|q.;;€ W?. This solution is
of the form x = &c + YOu + Yf, where

O:uelf[-r0]- {l_iAi(‘) ug—r) if t—r< 0}

0 if t—r>0
0 ult +s) if t+s<0}
At dseLr.
+J_, °(’S){o if t+s>0

(Functional-differential equations of the type (6,13) were studied in detail in
Delfour-Mitter [1] and [2].)
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6.8. Theorem. Let A be a Banach space, Se B(W}, A) and let P: [0,1] x [0,1]
— L(R,) be an I’[BV]-kernel such that for a.e. te[0,1], P(t,s) =0 if se[t,1].
Then the linear bounded operator

Dx — Px

X

,‘?:er,,"a[ :|eLﬂ><A

has a closed range.
Proof. By 6.5, <f>e L% x A belongs to R(&) if and only if r — S¥fe R(SP). As
r

w: <f>eLﬁ x A—>r— SPfeA is bounded and R(S®) is a finite dimensional
r

linear subspace in A (® € B(R,, WP)), it follows that R(Z) is closed.
7. Fredholm-Stieltjes integral equations with linear constraints

This section is devoted to the system of equations for x € BV,

1

(7.1)  x(t) — x(0) — f d,[P(t,s) — P(0,s)] x(s) = f(t) — f(0)  on [0,1],

0
1
(7,2) J d[K(s)] x(s) = r.
0
The following hypotheses are pertinent.
7.1. Assumptions. P: [0,1] x [0,1] - L(R,) and there are to,so€ [0, 1] such that
(7.3) Vio,13x(0,11(P) + varg P(to, .) + varg P(., s0) < oo,

K: [0,1] - L(R,, R,) is of bounded variation on [0,1], fe BV, and reR,,

7.2. Definition. Any function P: [0,1] x [0,1] — L(R,) fulfilling (7,3) is called an
SBV-kernel.

7.3. Remark. If P: [0,1] x [0,1] - L(R,) is an SBV-kernel and

_ JP(t,s) = P(0,s) for te[0,1] and se(0,1],
04 Qles)= {P(l, 0) —P(0,0) =1  for te[0,1] and s=0,

then obviously Q(t, s) is an SBV-kernel and
1 1

(7.5) x(0) + f d,[P(z, s) — P(0, )] x(s) = j d[Q(t,s)] x(s)  forany xeBY,
Y 0
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(cf. 1.4.23). It means that the equation (7,1) is a special case of Fredholm-Stieltjes
integral equations studied in Chapter II. Let us denote by Q the linear operator

(7.6) Q: xe BV, —» x(0) + les[P(t, s) — P(0, 5)] x(s) .

By (7,5) and IL.1.5 R(Q) = BV, and Q€ L(BYV,) is compact.
The following assertion follows analogously as 1.8 from 1.3.20 and 1.9.

7.4. Proposition. If P: [0,1] x [0,1] - L(R,) is an SBV-kernel and the operator Q
is given by (7,6), then n<dim N(I — Q) < oo, while dim N(I — Q)=n if and only
if the equation (7,1) has a solution x € BV, for any f € BV,

Let us mention that the following additional hypotheses do not mean any loss
of generality (cf. I1.1.4).

7.5. Assumptions. P(t, .) is right-continuous on (0, 1) and P(t, 1) = 0 for any t€[0,1]
and P(0,s) = 0 for any se[0,1]; K is right-continuous on (0, 1) and K(1) = 0.

Analogously as in the case of BVP (2,1), (2,2) for Fredholm-Stieltjes integro-
differential operators we rewrite the system (7,1), (7,2) of equations for xe BV,

x
as the system of operator equations for & = d eBV, x R,

o e (-(%)-C)

where Q € K(BV,) is defined by (7,6),

1
(7.8) S: xe BV, - J d[K(s)] x(s) e R,,,
0
(7.9) T (* eBV,,me—»< QX \eBy xR,
d d — Sx
and ¥ is now given by
(7,10) ¥: fe BV, - f(t) — f(0)eBY,.

7.6. Proposition. If x € BV, is a solution to (7,1), (7,2), then & = (:) is a solution

to (1,7) for any d € R, If x € BV, and there exists d € R,, such that & = <:) verifies
(7,7), then x is a solution of (7,1), (7,2).

7.7. Proposition. Under the assumptions 7.1 the operator Te L(BV, x R,,) defined
by (7.,6), (7.8) and (7.9) is compact.
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Proof. As obviously Se B(BV,, R,) = K(BV,, R,) (cf. 1.3.21) and Qe K(BV,), it is
easy to see that Te K(BV, x R,,).

Our wish is now to establish the duality theory for problems of the form (7,1),
(7,2). To this end it is necessary to choose a space BV, of functions [0,1] - R}
and an operator T'e L(BV, x R}) in such a way that (BV, x R, BV, x R}) is
a dual pair with respect to some bilinear form [ ., .] (cf. 1.3.1) and

(7,11) [r <:> (2%, ,1*)] _ [(:) (e, x*)]

for all <:>EBV;, x R, and (z* A*)eBV, x R%.

According to 1.5.9 the spaces BV, and NBYV, form a dual pair with respect to the

bilinear form
1

xeBV, ¢ NBY, —»J d[e*(t)] x(r)eR.
0

For the purposes of this section a slightly different choice of the space BV, is more
suitable.

7.8. Definition. BV, denotes the space of all functions z*: [0,1] - R¥ of bounded
variation on [0, 1], right-continuous on (0, 1) and such that z*(1) = 0.

7.9. Proposition. The space BV, defined in 7.8 becomes a Banach space if it is endowed
with the norm z*e BV, - | z*|| gy = |2*(0)| + var} z*. Moreover, (BV, x R,,, BV, x R¥)
is a dual pair with respect to the bilinear form

7,12 *)eBV. x R,,, (z*, ) BV, x RX
d

. [(’;) (=, ,1*)] - L [z x() + 7*deR.

or the proofs of analogous assertions for NBV, see 1.5.2 and 1.5.9.
For th fs of anal ions for NBY, 1.5.2 and 1.5.9
In the following the bilinear form [ ., .] is defined by (7,12).

7.10. Proposition. If the hypotheses 7.1 are fulfilled, Q: [0,1] x [0,1] — L(R,) is
defined by (7,4) and

1
* p—
(7.13) T': (z*,A4*)e B, x R% - Ld[z ] Q(t,s) — 4* K(s) ’
l*
then (7,11) holds. If 1.5 is also assumed, then R(T)= BV, x R* and T'eK(BV, x R,).
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Proof. Let us denote
1

Q: zeBV,~ f Q(t, s) d[z(1)] -

0

As Q(t, s) is an SBV-kernel, Q'€ K(BV,) (cf. I1.1.9). Moreover, by 1.6.20

[, etz ([ atetexs) + 2 (a - [ i)

— Ld Uld[z*(z)] Qlt, s) — i* K(s)] x(s) + A*d

0

for any x € BY,, deR,, z*€ BV, and A* e R}. If P(t, .) is right-continuous on (0, 1),
then according to 1.6.16 and 1.4.17 also Q'z e BV, is right-continuous on (0, 1) for
any ze BV,. Consequently, R(T") = BV, x R} provided that 7.5 is satisfied. The
compactness of T'e L(BV, x R¥) follows readily from the compactness of Q.

The operators T and T' being compact,
(7,14) ind(l = T)=ind(1 - T)=0
(cf. 1.3.20) and we may apply Theorem 1.3.2.

7.11. Theorem. If the hypotheses 7.1 and 1.5 are satisfied, then the system (7,1), (7,2)
has a solution x € BV, if and only if

(1.19) [, at 65 - 100) + 37 =0

0

for any z* € BV, and A* € R} such that

1

(7,16)  z*(s) — j d[z*(t)] P(t,s) + A*K(s)=0 on [0,1], z*0)=0.

0

Proof. By 1.3.2 the system (7,1), (7,2) has a solution if and only if (7,15) holds for
any z* e BV, and A* e R} fulfilling the equation

(7,17) z*(s) — L‘d[z*(t)] Q(t,s) + A*K(s)=0  on [0,1],
ie. (I — T')(z* 4*) = 0 (cf. 7.9, 7.10 and (7,14)). Given z* € BV,

049 Ll A1 Q) = Ll d[z*(0)] P(t.s) — {z*(l) —z40) if 5=0

0 if s>0
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(cf. (7,4) and 1.4.23). After the substitution (7,18), the equation (7,17) becomes

(7,19) 2%(s) — J:d[:*(t)] P(t,s) + *K(0)=0  on (0,1],

- J a[24(0)] P(t,0) + 4* K(5) = 0.

0

According to 7.5 P(0,5) = 0 on [0, 1]. Thus the value of each of the integrals

[[atrpes seton). [ aeneo - o)

does not depend on the value z*(0) (cf. 1.4.23). Consequently (z*, A*)e BV, x R}
is a solution to (7,19) if and only if (z¥, A*) with z¥(s) = z*(s) on (0, 1] and z(0) = 0
is also its solution. The proof is complete.

The following assertion is also a consequence of 1.3.2.

7.12. Proposition. Let 7.1 and 7.5 be satisfied and let he BV,. Then there exist
z* € BV, and A* € R}, such that

(7,20) z*(s) — J:d[z*(t)] Q(t,s) + 4* K(s) = h*(s)  on [0,1]

(1 — T)(z*, 4*) = (h*,0)) if and only if

le[h*(t)] x(t) = 0

holds for every x € N(&£), where
(7.21) 2 xeBV,,—»(x _stx>eBV,, xR, .

7.13. Theorem. Let us assume 7.1 and 1.5 and let £ € B(BV,, BV, x R,,) be given by

(7,6), (7.8) and (7,21). Then k = dim N(£) < oo and the system (7,16) has exactly

k* = k + m — n linearly independent solutions in BV, x R}.

Proof. By 74 k = dim N(£) < oo. Obviously dim N(I — T) = k + m. Since (7,14),
it is by 132 dim N(l — T") = dim N(I — T) = k + m. The set N' of all solutions
to (7,16) consists of all (z*, A*)e N(I — T) for which z*(0) = 0. So dim N
=dim N(I — T') — n = k + m — n. The proof is complete.

In addition to 7.1 and 7.5 we shall assume henceforth that
(7,22) P(t—,s)=P(t,s) forall (1,s)e(0,1] x [0,1],
P(0+,s) = P(0,s)  forall se[0,1].

In this case we may formulate the adjoint problem to (7,1), (7,2) in a form more similar
to (7,1), (7,2).
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Integrating by parts (1.4.33) we transfer the system (7,16) of equations for (z*, 4*)
€ BV, x R} to the form

(7,23) z*(s) + le*(t) d[P(t,s)] + A*K(s)=0  on [0,1],
' z*(0) = z¥(1) = 0.
As by (7,22) P(0+,s) = P(0,s) and P(1—,s) = P(1,s) for every se[0,1], the value
of each of the integrals
j“z*(t) d[P(ts)], se[0,1]
0
does not depend on the value z*(0) and z*(1). In particular, if z* € BV, z*(0) = 0,
A*e R} and
(724)  y*s)=2*s) on (0,1),  y*0)=z*0+), y*(1)==*(1-),
then the couple (z*, A*) solves (7,23) (i.e. (7,16)) if and only if

1

(7,25) y*(s) + j y*(t) d[P(¢t,s)] + 2*K(s)=0  on (0, 1),

0

0= le*(t)d[P(t, 0)] + A*K(0) (= z*0)).

0
Applying 1.6.16 and 1.4.17 we obtain

r0=yio+)= - |

0

() 4[P(,0+) — P(t,0)] — A4[K(O-+) — K(O)]
and

() = y(1-) = - [ 0 afP1-] - 2 k(1)

for every y e BV, and ieR,, fulfilling (7,25). If for t € [0, 1] we put

P(t,0+) if s=0, K(0+) if s=0,
(726) Poft,s) = {P(t,s) ifO0<s<1, Kofs)=1K(s) if0<s<l,
P(t,1-) if  s=1, K1-) if s=1,

C(t) = P(t,0+) — P(,0), D(t)= —P(t,1-),
M = K(0+) — K(0), N = —K(1-),
then system (7,25) becomes
(7.27)

y(s) = y*(1) - jly*a) a[Po(t. ) — Poft. 1] - [Kels) — Ko(1)]  on [0,1].
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(7,28) y*(0) + A*M + le*(t) d[c()] =0,

(7.29) y*(1) - #*N — J y*(t)d[D()] = 0.

0
Given ze BV, with z(0) = z(1) = 0 and y e BV, such that (7,24) holds, we have
in virtue of 1.4.23

[ st 16— 100 = [ a0 169 = v () 1) = y0) 10
This completes the proof of the following

7.14. Theorem. If the hypotheses 7.1, 1.5 and (7,22) are satisfied, then the problem
(7,1), (7.2) possesses a solution x € BV, if and only if

.30 PO 1) -y O 10) - | a9 19 = 2

for any solution y € BV,, A€R,, of (7,27)—(7,29), where P,, C, D, Ko, M and N are
defined in (7,26).

7.15. Remark. If (7,22) holds and f(¢t—) = f() on (0,1], f(0+) = £(0), then by
1.6.16 and 1.4.17 any solution x € BV, of (7,1), (7,2) is left-continuous on (0, 1] and
right-continuous at 0. On the other hand, if y € BV, and 4 € R,, satisfy (7,27)—(7,29),
then provided that 7.5 holds, y is right-continuous on [0, 1) and left-continuous
at 1 (cf. 7.24).

7.16. Remark. Let ge BV, be right-continuous on (0,1), p,qeR,. It is easy to
see that ye BV, and AeR,, satisfy (7,27), (7,28), (7,29) with the right-hand sides
g*(s) — g*(1), p* and q*, respectively, if and only if y is right-continuous on (0, 1)
and the couple (z* 4*), z*(s) = y*(s) on (0,1), z*(0) = z*(1) = 0, fulfils (7,20),
where h*(s) = g*(s) — g*(1) + z*(s) on [0,1], x*(0) = q* — p* 1*(s)=q* on
(0,1) and x*(1) = 0. It follows immediately from 7.12 that the system (7,27), (7,28),
(7,29) with the right-hand sides g*(s) — g*(1), p* and q*, respectively, has a solution
ye BV, ieR, if and only if (cf. (7,21))

le[g*(t)] x(t) = q* x(1) —p* x(0)  for each xeN(Z).

7.17. Remark. If P: [0,1] x [0,1]— L(R,) is an L'[ BV ]-kernel (|P(t,0)| + var} P(z, .)
= g(t) < o ae. on [0,1] and g€ L') and fe L}, then x: [0,1] - R, is a solution
to (2,1) on [0, 1] if and only if

x(t) — x(0) — fd[Rts Jf on [0,1],

Jo
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where

R(t,s) = jtP(t, s)drt on [0,1] x [0,1].

0

Given a subdivision {0 =1t, <t; <..<t,=1; 0=5,<s <..<s, =1} of
[0,1] x [0, 1], we have

k k
.; FZ]IR(% 5;) = R(t:—1,5) — R(ti, 5;-1) + Rti- 1, 5;-1)|

[ sy = e ] = [ (5 ptes) Py o

= Jlellz, < 0.

Consequently Vio 1yx0,1)(R) < 0. Clearly var§R(.,1) < co. (We may assume
P(t,1) = 0 a.e.on [0,1].) As R(0, .) = 0 on [0, 1], this implies that R is an SBV-kernel
and the Fredholm-Stieltjes integro-differential equation (2,1) is a special case of
the equation (7,1). ‘

7.18. Remark. Let A: [0,1] - L(R,), varjA < oo, M and Ne L(R,, R,,) and

A0) —Al) if0=s<t<T, -M-N if s=0,
P(t.s) = {A(s+) — A(t) f0<s<t<1, Ks=|-N ifo<s<1,
0 fo<t<s<i1, 0 if  s=1.

It can be shown that Vi 1,x(0.1y(P) < vary A. Furthermore, P(0,.) =0 on [0, 1],
varj P(.,0) = varj A and varg K = |M| + |N|. Since for any te[0,1]P(t, .) and K
are right-continuous on (0, 1), K(1) = 0 and P(t, 1) = 0, the assumptions 7.1 and 7.5
are satisfied in this case. If, moreover, A is left-continuous on (0, 1] and right-con-
tinuous at 0, then P(t—,0) = A(0) — A(t—) = A(0) — A(t) for 0 <t <1, P(t—,s)
= A(s+) — A(t—) = A(s+) — A(f) for 0 <s<t<1 and P(t—,s) =0 for
0 <t < s < 1. Finally, P(0+,s) =0 for any se[0,1]. Thus P fulfils also (7,22).
By 7.14 the system (7,1), (7,2) which is now reduced to BVP dx = d[A] x + df,
M x(0) + N x(1) = r has a solution if and only if (7,30) holds for all y e BV, and
AeR,, satisfying (7,27), (7,29). In our case P,(t,s) = P(t,s), C(t) = D(t) =0 and
K,(s) = —N. Moreover,

1 1
J y*() d,[P(t, 5)] = J y*(#)d[B(t)] forany yeBV, and se[0,1],
] s

where B(s) = A(s+) on (0,1), B(0) = A(0) and B(1) = A(1). It follows that under
the assumptions of this remark the adjoint system (7,27)—(7,29) to (7,1), (7,2) reduces
to BVP (II1.5,12), (IIL5,13). Let us notice that now no assumptions on the regularity
of the matrices (I + A*A(t)) are needed.
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7.19. Remark. Let the matrix valued functions A: [0,1]— L(R,), P,:[0,1]
— LR,,R,), P,:[0,1]>L(R,R,), C:[0,1]-L{R,), D:[0,1]- L(R,) and
K: [0,1] - L(R,, R,,) be of bounded variation on [0,1], M, Ne L(R,,R,), fe BV,
and re R, and let us consider the system of equations for x € BV,

(131) ()= x(0) + | 9[4S <69 + (€l) — €(0) x0) + (BL) — D(O) x1)
+ (R0~ P(O) | AP0 + 100~ 10)  on [0.1]

1

(7,32) M x(0) + N x(1) + J d[K(s)] x(s) = r.
0

Introducing new unknowns a, B, y, 4, ¥ by the relations

) = J(:d[K(s)] x), B = Ltd[PZ(s)] x(s),
¥(t) = x(0), &)= x(1),  x(e) = (1),
we reduce the given problem to the form
dx = d[A] x + d[P,] B + d[C]y + d[D]é + df,
de = d[K]x, dp=d[P,]x, dy=0, do=0, dy=0,
Mx(0) + Nx(1)+ a(l)=r, a0)=0, x(0)—y0)=0,
x(1) - 80)=0, B0)=0, p1)—-x0)=0
which may be expressed in the matrix version
dé¢ =d[U] E+dp, Me(0) + NE1) = ¢,

where &* = (x*,a*, p*, y* 0% ¢*) and A: [0,1] - L(R,) and M. NeL(R,R,)
are appropriately defined matrices, u =2m + 2n + 2p, v =m + 3n + 2p,

¢ = <£ ) and ¢ = (; ) By this var} A < oo. The complicated problem
v—n, n—m

(7,31), (7,32) was transferred to the two-point boundary value problem for a linear
generalized differential equation.

Notes

In the case p = 1 the compactness of the operator P and hence also the closedness of R(L) (V.1.4
and V.1.7) were proved by Maksimov [1] and independently by Tvrdy [4]. Theorem V.1.8 is due to
Maksimov and Rahmatullina [2]. Our proof follows a different idea. The proofs of the main theorems
of Section V.2 (V.2.5, V.2.6 and V.2.12) are carried out in a similar way as the proofs of analogous results
for ordinary differential operators in Wexler [1] (cf. also Tvrdy, Vejvoda [1], Tvrdy [3], Maksimov [1]).
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For more detail concerning Green’s couples see Tvrdy [6] Systems of the form (4,27), (4,28) were treated
in Tvrdy, Vejvoda [1]. Theorem V.6.4 follows also from the variation of constants formula for functional
differential equations of the retarded type due to Banks [1] Equations of the form (V.6,13) were introduced
in Delfour, Mitter [1], [2]. Section V.7 is based on the paper Tvrdy [5]. The transformation similar to
(7.33) was for the first time used in a simpler situation by Jones [1] and Taufer [1]. For more detail
concerning the systems of the form (7,31), (7,32) (Green’s function, Jones transformation, selfadjoint
problems etc.) see Vejvoda, Tvrdy [1], Tvrdy [1] and Zimmerberg [1], [2].

The oldest papers on the subject seem to be Duhamel [1], Lichtenstein [1] and Tamarkin [1]. Further
related references to particular sections are

V.1: Catchpole [1], [2];

V.2: Parhimovi¢ [1]—[3], Lando [1]—-[4], Krall [2], [5], Tvrdy [1];
V.3: Maksimov, Rahmatullina [1], [2];

V.6: Hale [1], Maksimov, Rahmatullina [1], Rahmatullina [1], Tvrdy ‘[4];
V.7: Krall [6]—[8], Honig [1], Tvrdy [2].

Related results may be found also in the papers by N. V. Azbelev and the members of his group
(L. F. Rahmatullina, V. P. Maksimov, A. G. Terent’ev, T. S. Sulavko, S. M. Labovskij, G. G. Islamov a.o‘)
which have appeared mainly in Differencial’nye uravnenija and in the collections of papers published
by the Moscow and Tambov institutes of the chemical machines construction.

In Lando [3], [4] and KultySev [1] the controllability of integro-differential operators is studied.
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V1. Nonlinear boundary value problems
(perturbation theory)

1. Preliminaries

In this chapter we shall prove some theorems on the existence of solutions to non-
linear boundary value problems for nonlinear ordinary differential equations of
the form

x = f(t,x) + eg(t,x.¢),  S(x) + eR(x,6) =0
under the assumption that the existence of a solution to the corresponding shortened

boundary value problem
x' = f(t, x), S(x)=0

is guaranteed. (S and R are n-vector valued functionals; xeR,, f: <R xR,—R,,
g DcRxR,x R->R, and ¢ > 0 is a small parameter.)
The present section provides the survey of the basic theory for the equation

(L1) x' = f(t,x).
The proofs may be found in many textbooks on ordinary differential equations
(e.g. Coddington, Levinson [1] or Reid [1]).
L.1. Notation. Let 2 « R,+, Uo€R, and vo€R,. Then
D, .,=1{veR, (Uo,v)eD} and P, ,={ueR,; (uv,)eD}.

If f maps @ into R,, then f(.,vo) and f(uo, .) denote the mappings given by

f(.>vo): ued.,,— fluvo)eRr,
and
f(u0’ ) ve“@(uw-) - f(uo’ V)E Rn .

1.2. Definition. Let 2 < R,+1 be open and let the n-vector valued function f(t, %)
be defined for (t, x) e 2.
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(a) We shall say that f fulfils the Carathéodory conditions on 2 and write
feCar(2) if
(i) for ae. teR such that 9., + 0, f(z, .) is continuous;

(i) given xeR, such that 9. ,, + 0, f(., x) is measurable;

(iii) given (to,Xo)€ 2, there exist &, >0, d, >0 and meL'[t, —d,, to+ ]
such that [to— &y, to+ 6] x B(xo,5,; R,) = 2 and [f(t, x)| < m(r) for a.e.
tefto— 9, to+6,] and any x € B(xo, 5,; R,);

(b) We shall write fe Lip (2) if

(iv) given (to, xo)€ 2, there exist 6, >0, 6, >0 and weL'[ty— &y, to+ 6]
such that [to— &y, to+6,] x B(xo,6,; R,) = 2 and [f(t, x,) — (1, x2)|
< oft)|x, — x,| for ae. te[to—3,, to+ ;] and all x,, x, € B(xo,3,; R,).

1.3. Definition. An n-vector function x(¢) is said to be a solution to the equation (1,1)
on the interval A = R if it is absolutely continuous on 4 and such that (t, x(t)) € 2
for a.e. te 4 and )

x(¢) = f(¢, x(t) ae. on 4.

1.4. Theorem (Carathéodory). Let 2 < R,,,; be open and feCar(2). Given
(to, €) € 2D, there exists & > 0 such that the equation (1,1) possesses a solution x(t)
on (to— 8, to + &) such that x(to) = c.

1.5. Remark. Obviously, if fe C(2), then feCar(2) and the equation (3,1) pos-
sesses for any (to, co)€ 2 a solution x(f) on a neighbourhood 4 of t, such that
x(to) = €. Since the function te 4 — f(t, x(t)) e R, is continuous on 4, it follows
immediately that x’ is continuous on 4 (x € C,(4)).

1.6. Definition. The equation (1,1) has the property (%) (local uniqueness)on 9 € R, 1,
if for any couple of its solutions x;(t) on 4, and x,(t) on 4, such that x,(t,) = X2(to)
for some to €4, N 4,, x,(t) = x,(t) on 4, N 4,.

1.7. Theorem. Let 9 < R,., and feLip(2). Then the equation (1,1) has the
property (%) on 9.

1.8. Definition. The solution x(t) of (1,1) on 4 is said to be maximal if for any
solution x,(z) of (1,1) on 4, such that 4 < 4, and x(t) = x,(t) on 4 we have
A=A,

1.9. Lemma. If the definition domain 9 of f(t, x) is open and the solution x(t) of (1,1)
on A is maximal, then A is open.
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1.10. Notation. Given (to,c)€?, @(.; to,c) denotes the corresponding maximal
solution of (1,1), 4(ty, ¢) its definition interval and

Q= {(t,to,c)€R X R x R,; (to,€)€ D, te Aty c)}.

1.11. Theorem. Let 9 < R, ., be open, feCar(2) and let the equation (1,1) have
the property (). Then for any (to,€)€ D there exists a unique maximal solution
x(t1) = olt; ty, ) of (1,1) on 4 = Aty €) = R such that x(t,) = c. The set Q
(cf: 1.10) is open and the mapping @: (t,to,c)e Q — (t; to,c)€ R, is continuous
(@ eC(Q).

1.12. Corollary. Let 9 = R,.;, feCar(2) and (1,1) have the property (). Let
(tor€0)€ P, —o0 <a<b< oo and let [a,b] = A(to, ¢o). Then there exists & > 0
such that |¢ — ¢o| < & implies (to,c)€ D and A(to, c) > [a, b], ie. for any
ce€B(co, 8; R,) the corresponding maximal solution @lt, t,,c) of (1,1) is defined on

[a, b].

1.13. Remark. Let us recall that if f: 2 — R, possesses on 2 partial derivatives
with respect to the components x; of x, then df /0x denotes the Jacobi matrix of f
with respect to x which is formed by the rows (0f/ox;) (j = 1,2,...,n). If the n x n-
matrix valued function (t, x)e 2 — (0f/0x)(t, x)e L(R,) fulfils the Carathéodory
condition (iii) in 1.2, then making use of the Mean Value Theorem 1.7.4 we obtain
easily that feLip(2).

1.14. Theorem. Let 9 < R,.;, feCar(2) and (0f|ox) e Car (2). Then the
equation (1,1) has the property (%) and hence there exist Q < R,., and the con-
tinuous mapping ¢: Q — R, defined in 1.11. Furthermore (dg[dc) (1, to, €) exists
and is continuous in (t, ty, €) on Q. For any (to, €)€ 2 the n x n-matrix valued
function A(t) = (0f[0x)(t, @(t, to, €)) is L-integrable on each compact subinterval of
Q100 = Aty, €) and U(t) = (0p[dc)(t, t,, €) is the maximal solution of the linear
matrix differential equation U’ = A(t) U such that U(t,) = I,.

1.15. Remark. It follows from 1.14 that (d¢/dc) (t, to, ¢) is for any (t,c)e 2 the
fundamental matrix solution of the variational equation

! 0f

u = <6—x (¢, o(t, to, c)))u
on A(ty,c). Consequently for any (t,t,,€)€Q it possesses an inverse matrix
(0p[01) (2, to, €) .

1.16. Theorem. Let 9 < R,.,, feCar(2), (0f/ox)eCar(2) and 0*f/(0x;0x))
eCar(2) for any i,j =1,2,...,n. Then the n-vector valued function ¢ from 1.11
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possesses on Q all the partial derivatives 9°¢[(dc;dc;) (i,j = 1,2, ..., n) and they
are continuous in (1,1, c) on Q (¢ € C*(Q)).

1.17. Remark. Let D = R; x R, x R, be open and let the n-vector valued function
h(t,u,v) map D into R,. The differential equation

(1,2) x' = h(t, x,v)
is said to be an equation with a parameter v e R,,. Let us put

& =(x,v) for xeR, and veR,,
h(t, &) = h(t,x,v)  for (t,&)=(t(x.v)eD

f(t,§)=(7,(t’¢)>eR,,+p for (1,&)eD.

oP

and

Now, applying the above theorems to the equation

P (x’ = h(t, x, v))

" =0

we can easily obtain theorems on the existence, uniqueness, continuous dependence
of a solution x(t) = ¢(t; to, c,v) of (1,2) on the initial data (¢, c) and on the pa-
rameter v as well as theorems on the differentiability of ¢ with respect to ¢, c and v.
The formulation of the general statements may be left to the reader. For our purposes
only the following lemma is needed.

1.18. Lemma. Let 9 < R,.; and D < R,., be open, x>0, 9 x [0,x] = D,
f: 2R, and g: DR, Let us put g(t,y) = g(t, x, &) for (t,x,£)e D and y = (x, ¢).
Let feCar(2), geCar(D) and let for any e€[0,%] the equation

(1,3) x = f(t, x) + € gz, x, €)
possess the property (%) on D. Then
(i) given (ty,c,e)€e 2D x [0,x], there exists a unique maximal solution x(t)
= Y(t; to, ¢, &) of (1,3) on the interval A = A(ty, ¢, €) such that x(t,) = c;

(ii) the set Q = {(t,10,¢,8); (to,€,€)€D x [0,%], ted(ty, € €)} = R,,; is open
and the mapping Y: Q — R, is continuous;

(ili) if —o<a<b< oo, (a,€)€P and [a,b] < A(a,co,0), then there exist
00 >0 and », >0, %o < x such that [a,b] < A(a, c, &) for any ceB(co, 0o; R,)
and e€[0,%,].

The following theorem provides an example of conditions which assure the

existence of a solution to the equation on the given compact interval [a, b] < R.
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1.19. Theorem. Let —o0 <a <b < o, [a,b] x R, € @ < R,.;, 2 open and let
the n-vector valued function f:9 — R, fulfil the assumptions

(i) £z .) is continuous on R, for a.e. te[a,b];
(i) f(., x) is measurable on [a,b] for any x € R,;
(iii) there exist «€R, 0 < a < 1, and L-integrable on [a,b] scalar functions p(t)
and q(t) such that

If (e, x)| < p(t) + q(t) |x|*  for any xek,, and ae. telab].

Let the n x n-matrix valued function A: [a,b] - L(R,) be L-integrable on [a,b].
Then for any to€[a,b] and ceR, there exists a solution x(t) of the equation

x' = A(t) x + f(t, x)
on [a,b] such that x(t,) = c.

This auxiliary section will be completed by proving the following lemmas which
illustrate the assumptions on the functions f and g employed in this chapter.

1.20. Lemma. Let 9 < R,,; and D < R,,, be open, » >0, [0,1] x R, < 2
and 9 x [0,%] = D. Furthermore, let us assume that the functions f: 2 — R, and
g: D> R, are such that feCar(2) and ge Car (D), where g(t,y) = g(t, x, ¢) for
(t,x,€)€D and y e (x, ). Let us put

(Fx)) (6) = £(e, x(t)  and (G(x, )) (c) = g(t, x(t). ¢)
Jor xeC,, ¢€[0,x] and te[0,1]. Then F(x)e L. and G(x,¢)e L} for any xeC,
and ¢€[0,x]. The operators F: xeC,— F(x)eL, and G: (x,e)eC, x [0,x]
— G(x, &) € L}, are continuous.
Proof. Itis sufﬁcieht to show only the assertions concerning G.
(a) Let ¢ > 0. Since geCar (D) (2(t,y) = g(t, x, &), where y = (x, ¢)), applying

the Borel Covering Theorem it is easy to find a function me L' such that

(L,4) |g(t, x, &) < m(t)  for any xeB(0,0; R,), ee[0,x]
and ae. te[0,1].

Let the functions x,: [0,1] — R, and the numbers & €[0,%x] (k=0,1,2,...) be
such that lim x,(t) = xo(t) on [0,1] and ’lim & = €. Under our assumptions
k= -

on g this implies that
(1.3) lim g(t, % t) &) = g{t: Xolth 7o) @ on [0,1].

If each of the functions %lf) = g, x(t), &) (k =0,1,2,...) is measurable on [0, 1]
and | Xk(t)! <o on [0, 1] for any k = 0,1,2,..., then by the Lebesgue Dominated
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Convergence Theorem

lim 1!g(t, x,(t), &) — g(t, Xolt), &o)| dt = 0.

k= Jo

(b) Let xoe C, and @ = ||x,|c + 1. It is well-known that there exist functions
x: [0,1] = R, (k= 1,2,...) piecewise constant on [0, 1] and such that |x(t) <e

(k=1,2,..) and }Lrgxk(t)zxo(t) on [0,1]. In particular, (1,5) with ¢ =&

(k =0,1,...) holds and since any function y,: te[0, 1] — g(t, x,(1).¢) (e€[0,x],
k = 1,2,...) is obviously measurable, y,: t€[0, 1] — g(t, x,(t), &) is measurable for
any ¢€ [0, %] and hence according to (1,4) y, € L;.

The continuity of the operator G follows easily from the first part of the proof.

1.21. Lemma. Let 9 < R, and f: 2 — R, satisfy the corresponding assumptions
of 1.20. In addition, let of|0x € Car(2). Then F defined in 1.20 possesses on C, the
Gateaux derivative F(x) continuous in x on C,. Given x,ueC,,

((F)]u) () = [g " x(t)):l u) forae te[0,1].

Proof. (a) Let us put for xe C, and te[0,1]

[A)] () = oF & x(0).

By 1.14 the n x n-matrix valued function A(x) is L-integrable on [0, 1] for any
xeC, If f; (j = 1,2,...,n) are the components of f, then

9; .
(A0 = Dexte) (=120
are columns of [A(x)](¢). By 1.20 the mappings
(L,6) xeC,—»Afx)eL, (j=12,..,n)
are continuous. Obviously, for any xe C,
J(x): ueC, - [A(x)] (¢) u(t)e L,
is a linear bounded operator. Moreover,
W) = sup [fx)ues < [A(x)[ = max [Afx)]w

llulle<1 ji=1,2,..,n

and consequently the operator x e C, — J(x)e B(C,, L}) is continuous.
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(b) By the Mean Value Theorem 1.7.4

(Fxo + 9u)) () = (Fxo) () _ £(r xolt) + Sult) — £t xo(0)
3 3

_ < j 1 j_i(t, xolt) + 49 u(t) dl) (o)

0

and

f

<L U

By the Tonelli-Hobson Theorem 1.4.36 we may change the order of the integration
in the last integral. The continuity of the mappings (1,6) yields

(6xol) + A9 ule) — o1 (1 xol0)

. t1of of .
sllrgl+ L x (¢, xo(t) + A9 u(t)) — x (&, xo(t))|dr =0
uniformly with respect to A€ [0, 1]. Consequently,
sl~1>rg]+ N B ](x) Y 7 0

for any x, € C, and ue C,. This completes the proof.

1.22. Remark. Given x € AC, and Le B(C,, LY), |x|¢ < |[x|4c, L€ B(AC,, LL) and

It sac,Lsy = SUP "",'"“L‘ < sup |Lull = |L]pc,.1t)
" llullacs1 llulles1

It follows readily that 1.20 and 1.21 remain valid also if in their formulations C, is

replaced everywhere by AC,.

1.23. Remark. If moreover 0°f[(dx;0x;)eCar(2) (i,j=1,2,...,n), it may be
shown that for any xe C,, F possesses the second order Géteaux derivative F'(x)
such that the mapping xeC, — F'(x)e B(C,, B(C,, L})) is continuous. Given

x,u,veC,, the components of the n-vector ([F'(x)u]v)(t) are given by

ii (; 5226’;]- (8, x(z)) ui(t)) vi(t), k=1,2,...,n.
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Let [0,1] x {0} x R, = Q. Let us put for ye C,

(L7) 2(y)(1) = o(t0,y(t) on [0,1],
2y)() = 200 e on [01],

2,0)() = 2 (,0.y(0) on [0.1].

It is easy to verify that & and F® are continuous mappings of C, into C, and L},
respectively, and @, is a continuous mapping of C, into the space of n x n-matrix
valued function which are continuous on [0,1] (cf. 1.14 and 1.20). Since [ly|
= |y(0)| + |ly’|.: for any y € AC,, it follows readily that @ is a continuous mapping
of AC, into AC,. Analogously @, is a continuous mapping of AC, into the space
of n x n-matrix valued functions absolutely continuous on [0, 1], ie. if @.(y)
denotes also the linear operator he AC, — @ (y)(¢) h(), then ye AC, » D(y) is
a continuous mapping of AC, into B(AC,). Let us notice that for any y € C,

19 220y = £ o(,0.90) = AOH)(O  ac on [0,1]
and by 1.14
(19) 2 (52 0050) = | L e 0.v0) | 22 0.0

= ((F(@(y)] 2(y))() ~ ae. on [0,1].
Moreover, for any ye AC,

D (y) (1) = F(@(y)) (1) + 2(y) (1) y'(2)

and thus @, is a continuous operator AC, — L.

Let y,he AC, and 9€(0,1). Then

(110 [P e
< |#0.0.¥(0) +3 hgo)) —¢0.0.y0) _ %% (0,0,y(0)) h(O)l

1o op
2 (00 + 9H0) - 000
| T~ 2L o) )
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—(£,0,y(¢) + 3 h(t)) I h(t)
+ j Jc o

3 ~ e (2,0, y(¢)) b'(e)| dt

(2, 0, y(1)) y'(¢) h(r)] de.

j‘ (?E (2,0, y(z) + 9 h(t)) — 2—?(% 0, Y(ﬁ)) y'(t) K
: 3 oc?

Obviously, the first and the third terms on the right-hand side of (1,10) tend to 0
as 9 —» 0+. Furthermore, by (1,8), (1,9) and the Mean Value Theorem the second
one becomes
1
|

- [g (& 08,0, y(t))):| (g—f (&0, y(t))> h(z)
<[(0

[ o000 | (32 0,900 ) ) )

It is easy to verify that this last expression tends to 0 as 3 — 0+. (Obviously, F®,
is a continuous operator C, — B(C,, L}).) Analogously, the Mean Value Theorem
yields that also the fourth term of the right-hand side of (1,10) tends to 0 as § — 0+.

ft, #(t, 0, y(1) + 9 h(t)) — £(t, o(t, 0, y(1))
3

dt

[2{ (t, o(t, 0, y(t) + 94 h(t)))} <g—‘: (£, 0, y(t) + 94 h(t)))

1.24. Lemma. Under the assumptions of 1.16, the operator ® given by (1,7) is a con-
tinuous mapping of AC, into AC, which is Gdteaux differentiable at any x e AC,.

Given y,he AC,, o0
@10 = | 22..0.40) | o).
The mapping y € AC, — ®'(y) € B(AC,) is continuous.

1.25. Definition. Let D < R,,, be open, » >0, [0,1] x R, x [0,%] = D and
g: DR, Let ¢e[0,%] and let for given te[0,1] and x,€R, there exist
8o = do(t, X0) > 0, @0 = 0ot, Xo) > 0, %o = xo(t, Xo) > 0 and we L*(t — S, t + )
such that |t — 1] < 8o, |x; — Xo| < @0, |X2 — Xo| < @0, €= 0 and |e — &| < %,
implies (7, x;,8)€D, (7, x,,¢)e D and

|g(z, x2, &) — g(t, X1, )| < (1) |x2 — x,].

Then g is said to be locally lipschitzian in x near ¢ = ¢, and we shall write
gGLlp (D’ 80)'
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1.26. Lemma. Let D < R, ., and g: D — R, satisfy the corresponding assumptions
of 1.20. In addition, let g€ Lip(D, ¢0) Then G defined in 1.20 is locally lipschitzian
in X near & = g,.

Proof follows from Definition 1.25 applying the Borel Covering Theorem.

1.27. Remark. In order that the operators F and G might possess the properties
from 1.20—1.26 locally, it is sufficient to require that the assumptions of the cor-
responding lemmas are fulfilled only locally.

2. Nonlinear boundary value problems
for functional-differential equations

Let » >0 and let F: C,—> L, G: AC, x [0,x] - L,, S: C,> R, and
R: AC, x [0,%] — R, be continuous operators. To a given ¢€ [0, %] we want to
find a solution x of the functional-differential equation

(2,1) x' = F(x) + ¢ G(x, £)

on the interval [0, 1] which verifies the side condition

(2,2) S(x) + eR(x,) = 0.

This boundary value problem will be referred to as BVP (£,). The limit problem
for e=0

(2.3) x' = F(x),

(24) S(x)=0

is denoted by ().

2.1. Definition. Let g€ [0, %]. An n-vector valued function x is a solution to (2,1)
on [0,1] if xe AC, and
x(t) = (F(x)) () + &(G(x, ¢))(r)  ae. on [0,1].

2.2. Remark. Let x,€C,, weL!, o > 0 and
(2.5) |(FOx2)) (6) = (Fex)) (0)] < oo(t) [lx2 = x4|c

for any x;, x, € B(xo,0; C,) and a.e. te[0,1]. Then

F(xo + 9u)(t) — F(xo)(t)
3

< oft) [ulc
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forany 9 > 0, ueC, and a.e. t [0, 1]. If F possesses the Gateaux derivative F(x,)
at x,, then

L [Fxo + 9u) () = Fixo) ()

90+ 3

— ([F(x0)]u)(t)] = O ae. on [0,1].

It follows easily that
[([F(x0)]u)(e)] < (t) |u|c  forany weC, andae te[0,1].

In particular, there exists a function P: [0,1] x [0,1] = L(R,) such that P(.,s)
is measurable on [0, 1] for any se[0,1], o(t) = |P(t,0)|+ vary P(t, .) < oo for a..
te[0,1], e L' (P is an L'[BV]-kernel) and

1
([F(xo)]u)(?) = j d[P(t,s)]u(s) forany ueC, andae. te[0,1]
0
(cf. Kantorovi¢, Pinsker, Vulich [1]).

2.3. Theorem. Let xq€ AC, be a solution to BVP (%,), where F: C,— L} and
S: C, > R, are continuous operators. Furthermore, let us assume that (2,5) holds
and F, S € C(B(xg,0; C,)) for some ¢ > 0. If the linear BVP for ue AC,

(26) = [F(xo)]u,
(2.) [S(xo)]u =0

possesses only the trivial solution, then there exists 9, > 0 such that there is no other
solution x of BVP (%) such that |x — Xo| 4c < o

Proof. Let us put

(2.8) ﬁ:xeAC,,—»(x ~ Fx) ell x R,.
S(x)
By the assumption #(x,) = 0 and F € C'(B(xo, ¢; AC,)),
‘ ’ —_ FI
(29) F'(x): ue AC, - <" (x) ">eL}, x R,
S(x)u

for any x e B(xo, 0; AC,).
Let #(x) = 0 for some x € B(xo,0; AC,), x + X,. By the Mean Value Theorem
1.7.4 we have

0= F(x) — F(xo) = J:[f’(xo + 3(x — xo))] (x — x0) d9.

By 2.2 and V.3.12 &'(x,) possesses a bounded inverse
r=[#(x)]': LL x R, > AC,.
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Hence

X — Xo = Jlr[?'(xo) — F'(xo + Y(x — x¢))] (x — xo) d9

0
and

(2,10) [x — xoflac < [T (;sup [[#(xo) = F (%0 + 8(x = o))} [|x — xo].ac-
Since the mapping
x € B(xo, 0; AC,) - F'(x) € B(AC,, L)
is continuous, there is ¢, > 0 such that go < ¢ and
|7/ (x0) — #(xo + 3x — xo))|| < ||~

for any x e B(xo,00; AC,) and 9e[0,1]. Consequently for xeB(x,,00; AC,),
x # x, (2,10) becomes a contradiction ||x — Xl 4o < [|x — o] 4c- This proves that
x = x, if F(x)=0 and x e B(x,,00; AC,).

2.4. Definition. Let x, € AC, be a solution of BVP (%) and let the operators F and S
fulfil the assumptions of 2.3. The problem of determining a solution ue AC, of (2,6)
which verifies the side condition (2,7) is called the variational boundary value problem
corresponding to x, and is denoted by (¥(xo)).

2.5. Remark. BVP
X=x+1, Sx)=(x(0)*+ (x(1) +1 —exp(1))>=0

indicates that in general the converse statement to 2.3 is not true. In fact, the solutions
to x' = x + 1 are of the form x(t) = cexp (t) — 1, where ¢ € R. The only solution to

(2,11) S(x) = (c — 1) + (c — 12 (exp(1) = 0

is ¢ = 1. Hence x,(t) = exp(t) — 1 is the only solution to (2,11). The corresponding
variational BVP is given by

(2.12) u=u, [x0(0)]u(0)+ [xo(1) + 1 — exp(1)]u(1) = 0.
Since xo(0) = 0, xo(1) = exp (1) — 1, u(t) = dexp () is a solution to (2,12) for any
deR.

2.6. Definition. A solution x, of BVP (%) is said to be isolated if there is gy > 0
such that there is no solution x to (%) such that x + x, and x e B(xo, 0o; AC,).
It is regular if the corresponding variational BVP (¥7(x,)) is defined and possesses
only the trivial solution.

2.7. Theorem. Let x,€ AC, be a solution to BVP (%,) where F: C,— L. and
S: C, - R, are continuous operators such that (2,5) holds and F, S € C*(B(xo, ¢; C,))
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for some ¢ > 0. Furthermore,x > 0 and G: AC, x [0,%] — L. and R: AC, x [0, x]
— R, are continuous operators which are locally lipschitzian in x near ¢ = 0.

If X, is a regular solution of (%,), then there exist &y > 0 and o > 0 such that
for any e€[0,e,] BVP(P,) possesses a unique solution x(g) in B(xo, 005 AC,).
The mapping €€ [0, &,] — x(¢) € AC, (x(0) = x,) is continuous.

Proof follows by applying 1.7.8 to the operator equation
F(x) + e%(x,e) =0,
where &#: AC, — L. x R, is given by (2,8) and
G(x, ¢)
R(x, ¢)

(Under our assumptions there exists a bounded inverse of %'(x,), cf. the proof
of 2.3))

4. (x,s)eAC,,x[O,x]—»( )eL},xR,,.

2.8. Remark. The conclusion of Theorem 2.7 may be reformulated as follows.

If x, is a regular solution of (%), then there exists for any & > 0 sufficiently small
a unique solution x(¢) of BVP (%) which is continuous in & and tends to x, as
e—0. ’ .
Theorem 2.7 assures the existence of an isolated solution to BVP (%,) which is
close to the regular solution x, of the limit problem (£,). If also the perturbations
G and R are differentiable with respect to x, then we can prove that for any ¢ > 0
sufficiently small this solution is regular, too.

2.9. Theorem. Let the assumptions of 2.7 hold. In addition, let us assume that G -
and R possess the Gdteaux derivatives G'(x, €) and R’ (x, €) with respect to x for any
(x, &) € B(xo, 0; AC,) x [0,%] continuous in (x, &) on B(x,,0; AC,) x [0, x].

Then there exists &;, 0 < &, < &, such that for any ¢€[0,¢,] the corresponding
solution x(g) of BVP (@) is regular.

Proof. Given &€ [0, &), the variational BVP (¥;(x(¢))) corresponding to the solu-
tion x(¢) of BVP () is given by

u' = [F(x(e)) + ¢ G'(x(¢), ¢)] u,
[S'(x(e)) + e R (x(e), e)Ju=0.
Let u be its solution, i.e.
F)u=[F'(x(e)) + ¢ ¥ (x(e) &) ]u=0.
Let I' = [#'(xo)] . Then u = I'[ #(0) — #(¢)] u and
lule < 7] 10) - 5@ lulac:
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Since the operators &€[0,¢,] — x(e)e AC, and (x,é¢)e B(xq, 0; AC,) x [0,%]
- F'(x) + ¢%'(x,¢)e B(AC,, L, x R,) are continuous, their composition ¢ e [0, & |
— J(¢)e B(AC,, L}, x R,) is also continuous.

Choosing ¢;, 0 <&, <&, in such a way that ¢€[0,¢,] implies || ,#(0) — #(¢)|
< |r||=* we derive a contradiction |u|4c < |u||4c Whenever u =+ 0.

2.10. Remark. The case when x, is a regular solution of BVP (%,) has appeared
to be simple. It is said to be noncritical. The case when x,, is not a regular solution
of (%,) is more complicated and said to be critical.

2.11. The critical case. Let x, € AC, be a solution to BVP (%), where F: C,— L},
and S: C, > R, are continuous operators such that (2,5) holds and F, S
€ C*(B(xo, ; C,) for some ¢ > 0. Furthermore, x > 0 and G: AC, x [0,%]— L,
and R: AC, x [0,x] - R, are continuous operators such that G,R
€ C"!(B(xo, 0; AC,) x [0,%]). In general, we do not assume that x, is a regular
solution of BVP (%,). Let us try to find a solution to (£,) in the form

(2,13) x(t) = xo(t) + & x(¢) .
Inserting (2,13) into (2,1) we obtain

xo + &x' = F(xo) + (F(xo + &x) — F(xo)) + ¢ G(x, + &, €),

1= J: [F(xo) + (F(xo + &37) — F(x,))] x d9
+ G(x0,0) + (G(xo + &1, &) — G(xo,0))
= [F(xo)] 1 + G(xo,0) + ¢ H(x, ¢),
where

H(y,¢) = <Ll (ﬁr”(xo + £9,97) d91> 9d91> 1

1 1
- + <J Gi(xo + €97, 9¢) d9> X+ j G(x, + &97, 9¢) d9.

0 0

Thus (2,13) is a solution to (2,1) on [0, 1] if and only if
(2.14) 1 = [F(xo)] 2 + G(x0,0) + e H(x ¢).

Analogously, (2,13) verifies (2,2) if and only if
(2,15) [S'(x0)] x + R(x0,0) + e Q(x. &) = 0,
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where

Q.9 = (Ll < Lss"(x0 +69,9) d.91> 9 dsx) 1

1 1
+ (j R, (xo + €9y, 9¢) d9> 1+ j Ri(x, + &9y, 9¢) dI.
0 0

It follows that the given BVP (%,) possesses a solution of the form (2,13) for any
¢ > 0 sufficiently small if and only if the weakly nonlinear problem (2,14), (2,15)
possesses a solution for any ¢ > 0 sufficiently small. In particular, a necessary con-
dition for the existence of a solution of the form (2,13) to BVP (#,) is that the linear
nonhomogeneous problem

¥ = [F(xo)]x + G(x0,0),  [S(xo)] x = R(xo,0)

has a solution. Applying the procedure from 1.7.10 to BVP (2,14), (2,15) we should
obtain furthermore that BVP (%) may possess a solution of the form (2,13) for
any ¢ > 0 sufficiently small only if there exists a solution y, of a certain (determining)
equation To(y) = 0 for a finite dimensional vector y and if, moreover, F and S e C3,
G and Re C*! and det ((0T,/37) (o)) =+ O, then such a solution exists (cf. 1.7.11).

The critical case will be treated in more detail in the following paragraph con-
cerning ordinary differential equations with arbitrary side conditions.

\

2.12. Remark. If P: [0,1] x [0,1]—>L(R,) is an L'[ BV]-kernel, fe L, Se B(AC,, R,,),
1
F: xe AC,—> J d[P(t,5)] x(s) + £(1),
0

G: AC, x [0,x] » L., R: AC, x [0,x] - R, then the weakly nonlinear BVP
(cf. V.2.4)

Dx — P G
(2,16) 2x = ( x =Py _ (1) _,(Slx2)
Sx r R(x, ¢)
becomes a special case of BVP (#,) studied in this section. In particular, if R and G
are sufficiently smooth and the limit problem (%,) possesses a unique solution for

any <i>eLﬁ x R,, then by 2.9 BVP (2,16) possesses a unique solution for & > 0

sufficiently small.

Since according to V.1.8, V.2.5 and V.28 2: AC,— L, x R,, verifies (1.7,5),
the procedure from 1.7.10 may be applied to BVP (2,16). Let us mention that in the
special case when P is an L?[ BV |-kernel, fe L2 and R(G) = L2 the transformation
of BVP (#,) to an algebraic equation exhibited in section V.4 may also be used
(cf. Tvrdy, Vejvoda [1]).
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3. Nonlinear boundary value problems
for ordinary differential equations

In this section we shall treat special cases of the problems (£,) from the previous
section, namely the problems of the form (I1,)

(3.1) x' = f(t, x) + eg(t, x, ¢),
(3.2 S(x) + eR(x,e) =0
and (I1,)

(33) x' = f(t, x),
(34) S(x)=0.

Our aim is again to obtain conditions for the existence of a solution to the perturbed
problem (I1,) under the assumption that the limit problem (IT,) possesses a solution.
In doing this only such solutions of BVP (I1,) are sought which tend to some
solution of BVP (IT,) as ¢ » 0+.

The following assumptions are pertinent.

3.1. Assumptions.

() 2<R,:, and DR, , are open, x>0 and [0,1]x R,c D, 2 x[0,x] = D;
(i) f: 2 >R, feCar(2), of/ox exists on D and Of[ox € Car(2) (cf. 1.2);
(i) g: D> R, geLip(2;0) (ie. g is locally lipschitzian in x near & =0,

of 1.25) and if B(t, y) = g(t, x, &) for (t,x,€)€ D and y = (x, ¢), then § € Car (D);
(iv) S is a continuous mapping of AC, into R,, SeC'(AC,), R is a continuous
mapping of AC, x [0,%] into R, which is locally lipschitzian in x near & = 0

(cf. 17.1).

3.2. Remark. Under the assumptions 3.1 for any (c,¢)eR, x [0,%] there exists
a unique maximal solution x(f) = Y(t; 0,c,¢) of (3,1) on 4 = 4(c, ¢) such that
0e4 and x(0) = ¢ (cf. 1.4, 1.7, 1.11 and 1.13). The set

G0y =8={t0,c¢); (ce)eR, x [0,%], tedc,e)}

is open and the mapping

& (t,e,e)eQy > Y(t; 0,¢,¢)eR,
is continuous.

3.3. Notation. In the sequel &(t; c,¢) = yY(t; 0,¢,¢) for (¢, ¢, )€, In particular,
n(t; €) = ¥(t; 0,¢,0) = ¢(t; 0,c) for ceR, and te 4(c,0).
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3.4. Remark. Given x € AC,, the corresponding variational BVP (‘Vo(x)) to (o) is
given by the linear ordinary differential equation

(3,5) u — [g ( x(t)):| u=20
and by the side condition
(3,6) [S(x)]u=0.

According to 1.14, given a solution x(t) = #(t; c) to (3,3) on [0, 1], the n x n-matrix
valued function

A) = [g (¢, m(t; c))]

is L-integrable on [0, 1]. Moreover, the n x n-matrix valued function

U= 2o

is the fundamental matrix solution to (3,5) on [0, 1] such that U(0) = I,.

3.5. Remark. Let us notice (cf. 1.20—1.27) that under our assumptions 3.1 the
operators F: AC,— L, and G: AC, x [0,%] — L} defined as in 1.21 fulfil all the
corresponding assumptions of theorems 2.3 and 2.7 (with AC, in place of C,).
Moreover, if x(t) = n(t; ¢) and the variational BVP (¥(x)) given now by (3,5),
(3,6) has only the trivial solution, then according to V.3.12 the linear operator

N u’ — [(of[ox) (&, x(t))] u
F'(x): ue AC, > < [S(x)]u

possesses a bounded inverse. Thus applying the same argument as in the proofs
of Theorems 2.3 and 2.7 we can prove the following assertion.

>eL}, x R,

3.6. Theorem. Let 3,1 hold. Let x, be a solution to BVP (Il,) and let the corresponding
variational BVP (¥(x)) possess only the trivial solution. Then X, is an isolated
solution of (I1,) and for & > O sufficiently small BVP (I1,) has a solution x(g) which
is continuous in € and tends to xy as ¢ > 0+.

To obtain some results also for the critical case we shall strengthen our hypotheses.

3.7. Assumptions. For any i,j = 1,2,...,n f possesses on 9 the partial derivatives
0*f/(0x; 0x;) with respect to the components x; of x and 0*f|(0x;0x;)e Car(2)
(i,j = 1,2,...,n). Furthermore, dg|0x exists on D and if h(t,y) = (0g/ox)(t, x, &)
for (t,x,)eD and y = (x,¢), then he Car (D).

SeC*AC,) and Re C*(AC, x [0,x]) (i.e. given (x,e)e AC, x [0,x], Ri(x,¢)
exists and the mapping (x,&)€ AC, x [0, %] — Ri(x,&)e B(AC,, R,) is continuous).
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The following lemma provides the principal tool for proving theorems on the
existence of solutions to BVP (IT,) in the critical case. It establishes the variation-
of-constants method for nonlinear equations.

3.8. Lemma. Let 3.1 and 3.7 hold. Let the equation (3,3) possess a solution x|t)
= n(t; o) on [0,1]. Then there exist g > 0 and %o > O such that for any (c,¢)
€ B(co, 00; R,) % [0,%,] the equation (3,1) possesses a unique solution x(t) on [0, 1]
such that x(0) = c. This solution is given by

(3,7) x(t) = &(t; ¢, &) = n(t; B(t; c,€)  on [0,1],
where for any (c, €)€ B(co, 00; R,) x [0,%0] b(t) = B(t, ¢, ¢) is a unique solution to
on

(38) b= [a—c (t: b)]_ "t n(t: b), <)

on [0,1] such that b(0) = c. The mapping (t,c,e)eB = [0,1] x B(co, 00; R,)
x [0,%,]— B(t; ¢, €) € R, is continuous and possesses the Jacobi matrix (0p|oc)(t: ¢, ¢)
continuous in (t, c, &) on B.

Proof. (a) According to 1.12 there exist an open subset Q€ R, and § > 0 such
that y(¢; c) is defined for any (t, ¢)e @ and [0, 1] x B(co, §; R,) = Q. Furthermore,
in virtue of 1.16 the Jacobi matrix U(t, ) = (dn/dc)(¢; ¢) and its partial derivatives
oU(t, ¢)/oc; (j = 1,2,...,n) with respect to the components ¢; of ¢ exist and are
continuous on €. Since by 1.15 U~!(z, ¢) exists on Q and for any j=1,2,...,n
and (t,c)eQ

0- ai(u(t, QU-(t,0)) = <ai Ui, c)) U-1(t, ) + U(t, (ai U c)),

Cj cj cj

U~ (1, ¢) possesses on € all the partial derivatives

a%. U l(t,q)= —U"'(t,¢) (;— (e, c)) U'le (j=12...n).

¢
It is easy to see now that the right-hand side
(3.9 h(t,b, &) = e U™ (s, b) g(t, n(t; b), ¢)

of (3,8) possesses the Jacobi matrix (6h/db)(t, b, €) on some open subset G of R, .,
such that @ x [0,%] = € and if we put x(t, u) = (0h/0b) (t, b, €) for u = (b, ) and
(t, u) e G, then y e Car (). By 1.14 (cf. also 1.17) this implies that for any (c,¢)e R,
x [0,5] sufficiently close to (¢o,0) the equation (3,8) possesses a unique solution
b(t) = B(t; c, &) on [0,1] such that b(0) = ¢. Moreover, since for ¢ = 0, b(f) = ¢,
is a solution to (3,8) on [0, 1], there exist g, > 0 and %, > 0 such that (t; c,¢)
is defined and possesses the required properties on B = [0,1] x B(cy, 2o; R,)
x [0,%,] and in addition |B(t, ¢, )| < & for any (t, c,¢)e B.
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(b) Let (c, &) € B(co, 00; R,) x [0, x]. By the first part of the proof (3,7) is defined
on [0, 1] and according to the definitions of n(t, ¢) and B(t; ¢, ¢)

0 0 0
X() = 516 Bl €.2) + 2 (5 865 €.0) 2 (5 .0)

= f(t, n(z; B(t; c,€)) + eg(t; B(t; c, ¢)), &) forae. te[0,1],

while  x(0) = 7(0; B(0; ¢, ¢)) = 7(0; ¢) = c. Since (3,1) possesses obviously the
property (%), it means that

x(t) = n(t; B(t; ¢, 8)) = &5 €,¢)  on [0,1].

3.9. Notation. .4/~ denotes the naturally ordered set {1,2,...,n}. If # is a naturally
ordered subset of A", then A\ # denotes the naturally ordered complement of .#
with respect to 4. The number of elements of a set # < /" is denoted by v(.#).
Let C=(cij)ij=1.2...€L(R,) and let J = {i\,ip,....i,} and ¢ = {jy, jo s j,}
be naturally ordered subsets of 4, then C, , denotes the p x g-matrix
(dei)e=1.2,...p1=1,2,... Where dy; =c¢; ; for k=1,2,..,p and [=1,2,...,9. In
particular, if be R, (b = (b;, b, ..., b,)*), then by denotes the p-vector (dy, d,, ..., d, ),
where d; = b;_for k = 1,2,..., p. (Analogously for matrix or vector valued functions
and operators.)

3.10. Remark. Let x(t) = (t; ¢,) be a solution to the limit problem (IT,) and let
the corresponding variational BVP (#5(x,)) possess exactly k linearly independent
solutions on [0,1] (dim N(Z'(x,)) = k). This means that rank (4(c,)) = n — k,
where

Aleo) =[S 50 (- <o)

denotes the n x n-matrix formed by the columns [ S'(xo)] u; (uj(t) = (0n/oc;)(t; <o)

on [0,1]; j=1,2,...,n). Hence there exist naturally ordered subsets .#, # of
A ={1,2,...,n} with k elements such that

det (A(Co))m\y,m\y *+0.

Let us denote (co)g = 7o and (co)s- g = do- Since for any ce R, sufficiently close
to ¢, the value of the Jacobi matrix of the function de R, — S(y(.; d))eR, is
given by [S'(n(.; c))] (on/oc) (. ; c), the Implicit Function Theorem yields that there
exist ¢ >0 and a function po: B(ye,0; R) = I' > R,_, such that po(y,) = o,
(9po/dy) (v) exists and is continuous on I (po € C'(I')) and if the function qo: I' >R,
is defined by (qo(y))g = ¥ and (qo(y))u-s = Po(?), then

Svsn(.;qo(y) =0  forany yerl.
If also S4(n(-; qo(y)) = 0 for any ye T, then x(t) = n(t; qo(y)) is a solution to (I1,)
for any yerl.
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3.11. Theorem. Let the assumptions 3.1 and 3.7 hold. In addition, let us assume

(i) there exist an integer k, 0 < k < n, a naturally ordered subset ¢ of A" with k
elements (v(,#) = k), an open set I = R, and a function po: I' - R,_, such
that (0po/0y)(y) exists and is continuous on I' and if qo: I - R, is defined by

(90())g = v and (qo(y))ag = Po(y), then the function t e [0, 1] — n(t; qo(y)) € R,
is a solution to BVP (Il,) for any yeT;

(i) rank ([S'(n(-; qo(v))] (On/0€) (.; qo(y)) = n — k for any yeT.

Let # be a naturally ordered subset of A with k elements such that

(.10 rank (S )] 5 (-5 Qolhors.s = = k
and let ©: T - L(R,_,, R,) be a matrix valued function such that
on
a (EsC5 a2 o))
_ ol - o
= o) (Str-s o) 2 (- aie))
forany yel.
Then the mapping
on
(312) To:yel =R, <[5'('I(-  qolr))] 5 (-5 9ol)) & + RO(-; qo(v)) 0)),
- 0t (IS0 2t I 0 &, + R ). 0)) e

where
t a" -1
0= [ | 2 au) | ot aoih 0)r on [0.1]
possesses the Jacobi matrix (0T,[dy) (y) on I'.

If, moreover, the equation
(3,13) To(y) =0

possesses a solution yo e I" such that
oT,
(3,14) det (a—y" (yo)) *0,

then there exists for any & > 0 sufficiently small a unique solution x(t) = &(t; (), ¢)
of BVP (II,) which is continuous in ¢ and tends to n(t; Go(yo)) uniformly on [0, 1]
as e - 0+.
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Proof. (a) Let us put
, On
Aoy) = [S-; 9] 52 (s qoly)  for yer.
We shall show that
(3.15) det ((4o(¥)a\s,49) £0  forany yerl.

In fact, if there were det(4o(y1))s\s,4ns = O, then he.# and peR,_,_, should
exist such that

(3,16) (Ao hwrg = B (Ao, 45

where # = (#\F)\{h}. On the other hand, according to our assumptions and
the definition of n(t, )

(3,17) S(n(-;qo(y)) =0  forany yer.
Differentiating the identity (3,17) with respect to y, we obtain

44) 22 ) = e 22 6) + (Aol .9 =0

for any yeI'. By (3,16)

(Ao(yl))h.’ = _(40(71))1;,.»’\1 06_:0 (r1)

Opo

= —p¥do(r1)e. s s oy (1) = #*(dor1))e.s

(A o(Vl)h,m = I‘*(Ao()’x))x’.m

and rank (4o(y;))s\g.» < n — k — 1. This being a contradiction to (3,10), (3,15)
has to hold. .

(b) Since (3,10) is assumed, for any ye I there exist a k x (n — k)-matrix O(y)
such that (3,11) holds on T} i.e.

(Ao)ss = O0) (Ao(¥)4s,.4r on T.

(Aos,.a s = OO) (Aow 5,45

In particular,

and

(3.18) 6() = (4o(¥)ls. 4 s 4oW)i\s.4s  0n T.

It is easy to verify that under our assumptions all the partial derivatives (6A0/6V,~) (v)
(/= 1,2,...,k) exist and are continuous on I'. Clearly, for any j=1,2,...,n

2 (4 = ~(ole)* (- () ) on T

i 0;
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and in virtue of (3,18) also the k x (n — k)-matrix function @(y) possesses all the
partial derivatives (0@/dy;)(y) (j = 1,2,...,n) on I' and they are continuous on I'.
This implies that the function Ty: I' = R, — R, defined by (3,12) possesses the
Jacobi matrix (0T,/dy)(y) on I' and it is continuous on I

(c) According to the definition of &(z, c, &) an n-vector valued function x(r) is
a solution to BVP (I1,) if and only if x(t) = &(t; ¢,€) on [0,1] and c€ R, fulfils the
equation
(3,19) W(c,e) = S(&(.; c.¢) + eR(&(.; ¢, 8).6) = 0.

The mappings W: R, x [0,%] - R, and dW/dc: R, x [0,x] — L(R,) are clearly
continuous.

Let yoe I be such that Ty(yo) = 0. Then W(qo(yo), 0) = 0. Furthermore, since

oW

E(‘Jo()’), 0) =4y onT,

(3,15) means
ow
det (w (qo(y)s 0)) +0 onT.
dc N\E, N\F

It follows that there are ¢; > 0 and x», > 0 such that

ow

det (— (c a))

oc N\I N\F
for all (c,¢)eB; = B(cop, 015 R,) x [0,%,]. By the Implicit Function Theorem
there exist ¢, > 0, %, > 0, %, < %,, and a unique function p: B, = B(yy, 02; Ry)
x [0,%,] - R,—4 peC"°B,) such that if (q(y, &)}y = y and (q(y, &))s-s = p(», €),
then q(y,¢)e B(cp, ¢, R,) and

(3,20) W, +(q(y.€),e) =0  forany (y,¢)eB,

£0

and q(y,0) = qo(y) on B(yo, 025 Ry).

(d) By 3.8 for any te[0,1] and (c,¢) sufficiently close to (co,0) the function
&(t; e, €) = n(t; B(t; ¢, ), where b(t) = B(t; c, €), is the solution of (3,8) on [0, 1]
such that b(0) = c. We may assume that this is true for (c,¢)eB,. Let us nut

(e = ||| 206 ] ot tes s o)

0
for (t; ¢,€)e[0,1] x B,. Then

B(t; c,e) = c +el(t;c,e)  on [0,1] x B,.
and (cf. (3,12)

E{)n)rC(t; q(v.¢).€) = {(t; 9o(¥),0) = ¢ (1)  forany te[0,1] and yerl.
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By (3,17) and 1.7.4 we have for any (y,6)eB,, ¢ >0,

(3,21) 1 (q(». ). ¢)
—[5( q(r. &) + €0)) — S(u(-; q(», ¢)))]
+ - [5( (-3 q(v¢)) — St(- 5 qo)] + R(u(.; q(r, &) + €0, ¢)

= [Tt a0+ 00 2 ) + ) e

(] TS 05 0o + ofatr ) — autN 2 -5 ) + ) — anl) )

2 &) — qo(y)

——+ R(n(-; q(y, ¢) + €0), ¢)

=[S0 v )] 52 (-3 alr.9)E + R gy, o)
# (] {rsts do+ 90125 a9+ o)
IS0 0 ) 0 o) 08¢ + (dr oy 2L P00

. + R(n(.; q(r.¢) + €€, ¢) — R(u(-; q(y, ¢)). €),

Ay, ¢) = Ll[s’(rl('; q0(?) + 9[q(r.¢) — 90(v)])] g% (5 qo(y) + 9[q(r, &) — qolv)]) 49
Since for any y € B(yo, 02; Ry)

hm Aly,e) = [S(n(-5 qoly )))]Z—Z(, q0(7)) = 4o(y)
(3,10) implies that also

(3.22) det (42, &)lurg.49 + O

for all ¢ > 0 sufficiently small. Without any loss of generality we may assume that
(3,22) holds for all (y, &) € B,.

By (3,20)—(3,22) we have for any y € B(yo, 025 Ry)

P()’E) Poly)

—~0+

= (o0 wg[(ol)is, va + Ryl q0(2)), 0)] -

(3,23)
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Differentiating (3,21) with respect to y and making use of (3,22) we may analogously
prove that also

0 0
(3.29) lim =~ Y
g0+ t4
exists.
According to (3,20) for & > 0 the equation (3,19) is near ¢ = qo(¥,) €quivalent to
1
(3.25) T(y, ¢) = [ Ws(q(r. ¢). &) — O) Wis(q(r. €).¢)] = 0.

Moreover, if for any & > 0 sufficiently small y, eI is the solution to (3,25) which
tend to y, as ¢ —» 0+, then

xe(t) = g(t; Q(')’a 8): 8)
are solutions of BVP (I1,) such that
SE{& “Xz - 'l(-; 10(70))"0 =0.

Let r(y, ¢) denote the n-vector

r0.6) = (4l .y P02

In virtue of (3,11) and (3,23) for any y € B(yo, 22; Ry)
i )~ 96 s ] =0.

Furthermore, (3,11) implies

(Bow) -e(%ew), - 50 b =0 on

and hence

lim (%[r,(v, &) — Oy) ra\s(r, )] = lim [(%: (2 8)>,_ g

£~0+ 0+

Gl I L i L

op 0po
— (e ———0)
+ (40 o iy — O) (Al Drrris] T ——0

&

Thus if we put for yeB(yo, 025 R) T 0) = To(y), then T: B, - R, becomes
a continuous operator which possesses the Jacobi matrix (6T/37)(y,¢) for any
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(y, €) € B, while the mapping

oT
(re)eB, ~ &0 e)e L(Ry)
is continuous.
Applying the Implicit Function Theorem to (3,25) we complete the proof of the
theorem.

Now, let yoeI' and let us assume that given ¢ > 0 sufficiently small (e.g.
£€(0,%,]), there exists a solution x(t) = &(t; ¢, &) of BVP (II,) such that x(t)
tends uniformly on [0, 1] to the solution x,(t) = n(t; qo(¥o)) of the limit problem
(IT,) as € > 0+. Then, in particular, ¢, = x,(0) tends to qq(y,) and ¥, = (c.)¢
tends to y, as & — 0+. Hence |y, — yo| < 0, for any & > 0 sufficiently small and
analogously as in the proof of Theorem 3.11 we may show that

lim % [Ws(qly. ) — O(r.) Wars(alre £))] = Tolro) -

&

Since by the assumption W(q(y., ¢)) = 0 for all € (0, %], this completes the proof
of the following theorem.

3.12. Theorem. Let in addition to 3.1 and 3.7 (i) and (ii) from 3.11 hold. Then there
exists &y > 0 such that given £€(0,¢,], BVP (I1,) possesses a solution x(t) tending
uniformly on [0,1] to some solution xo(t) = n(t; qo(y)) of BVP (Il,) as & —» 0+
only if the equation (3,13) has a solution y, eI

The next theorem supplements the theorems 3.11 and 3.12.

3.13. Theorem. Let 3.1 and 3.7 hold and let I' = R, be such an open subset that
x,(t) = n(t; y) is a solution to BVP (I,) for any yeT.

Let yoeTI'. Then a necessary condition for the existence of an ey > 0 such that
for a given £€ (0, &,] there exists a solution x(t) of BVP (I1,) and x(t) tends uniformly
on [0, 1] to x,(t) is that y, is a solution to

on

(329 ) = (S5 9] 50 ()6, =0,

where

&lt) = '[ t [gg (r; Y)J-lg(r, n(c; y),0)dz.

0
If, moreover, det ((0To/0y) (Yo)) * O, then such an e, > O exists.
Proof follows readily by an appropriate modification of the proofs of 3.11 and 3.12.

3.14. Remark. Let us notice that the condition (3,10) of 3.11 holds if and only if
any variational problem (7 on(-; qo())) pPossesses exactly k linearly independent
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solutions (cf. IV.2.7). In the next lemma we shall show that the determining equation
(3,13) may also be expressed by means of the variational problem.

3.15. Lemma. Let in addition to 3.1 and 3.7 (i) and (ii) from 3.11 hold. Given yeT,
To(y) = 0 if and only if the nonhomogeneous variational BVP

62) o | 2L s o) [ = st e a0,

(3.28) [S((-; qo¥))]u = —R((.; qoly)), 0)

possesses a solution.

Proof. Let Z be an n x n-matrix such that for a given re R,

Fy\s
r= .
rs

Then the assumption (3,10) means that there exists a k x (n — k)-matrix valued
function ©(y) defined on I' and such that

I

629 4GSt a5 (ab) =0 forany yel,
where
(3.30) A@) = -[-60). L] Z.

Analogously as in IV.2.2, we may show that to a given yeI" there exists an n x n-
matrix valued function F(t,y) defined on [0,1] x I' and such that

T.6) = 40) (f‘r(r, ) gl ). 0) i + RO au).0))  foramy yer

0

and the couple (8* A(y) F(t,y), 6* A(y)) verifies for any de R, and yeI' the adjoint
BVP to BVP (3,27), (3,28). Obviously rank A(y) = k for any ye[I. Thus, given
yeT, the rows of A(y) F(t,y), A(y) form a basis in the space of all solutions of the
adjoint BVP to BVP (3,27), (3,28) (cf. V.2.9). Hence by V.2.6 and V.2.12 our assertion
follows.

3.16. Remark. Let us assume that BVP (I1,) has the property (7) (translation):
&(t; c, £) being a solution to BVP (I1,), &(t + J; c, €) is also a solution to BVP (I1,)
for any §eR such that &t + &; ¢, €) is defined on [0, 1].

Then, if BVP (I1,) has a nonconstant solution &(t; ¢, ¢), it has at least a one-
parametric family of solutions &(t; &(J; c,¢),¢) for all §€R such that |9] is suf-
ficiently small. Consequently, Theorem 3.11 cannot be used for proving the existence
of a solution x,(t) of BVP (IT) which tends to some solution x,(t) of the shortened
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BVP (I1,) as ¢ - 0+. This is clear from the fact that this theorem ensures the
existence of an isolated solution. In some cases one component of the initial vector
¢ = c(¢) of the sought solution &(t; ¢, &) may be chosen arbitrary (in a certain range)
and another parameter has to be taken as a new unknown instead. Theorems on
the existence of solutions to such problems can be then formulated and proved
analogously as Theorem 3.11 (cf. Vejvoda [2]—[4]).

The most important problems with the property (7) are those of determining
a periodic solution to the autonomous differential equation x' = f(x) + & g(x, €).
Solving such problems, the period T = T(g) of the sought solution is usually
chosen as a new unknown. In general, two principal cases have to be distinguished.
Either the limit BVP (IT,) associated to the given BVP (I1,) has a k-parametric
family of T-periodic solutions #(t; ¢(y)), yeI', with T independent of y or their
periods depend on y. The former case occurs e.g. if the equation x' = f(x) may
be rewritten as the equation z' = iz + z? for a complex valued function z. (All
the solutions of this equation with the initial value sufficiently close to the origin
are 2n-periodic, cf. Vejvoda [1], Lemma 5.1.) An example of the latter case is treated
in the following section.

4. Froud-Zukovskij pendulum

Let us consider the second order autonomous differential equation of the Froud-
Zukovskij pendulum

(@) X' 4 sinx = eglx %),

where g is a sufficiently smooth scalar function and ¢ > 0 is a small parameter.
Given ¢ > 0, we are looking for a real number T > 0 and for a solution x(t) to (4,1)
on R such that

(42) x(T) = x(0) and x/(T) = x(0).
The limit equation (for ¢ = 0)
(43) y' +siny=0

is known as being equation of the mathematical pendulum. All the solutions y(t)
to (4.3) with sufficiently small initial values y(0), y'(0) are defined on the whole
real axis R and may be expressed in the form

Ne) = n(t + h; k),
where

(4.4) n(t; k) = 2arcsin (ksn(¢; k)), heR and ke(0,1).
(cf. Kamke [1], 6.17). Moreover, for any heR and ke(0,1) the function y(t)
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= n(t + h; k) fulfils the periodic boundary conditions (4,2) with T = 4 K(k), where
#/2 d9
K(k) = T e
() L 1 — k*sin? 9
In (4,4) sn(t; k) denotes the value of the Jacobi elliptic sine function with the
modulus k at the point ¢. For the definition and basic properties of the Jacobi elliptic
functions sn, cn, dn and of the elliptic integrals K(k), E(k) see e.g. Whittaker-Watson

[1], Chapter 22. If no misunderstanding may arise, we write sn, cn, dn instead of
sn(t; k), cn(t; k) and dn (¢; k), respectively.

Solutions of the perturbed equation (4,1) will be sought in the forin
(4,5) x(t) = &(t; bk, €) = n(t + s B),
where o = oft) = oft; h,k,€) and B = B(t) = B(t; h, k, &) are properly chosen scalar

functions such that «(0) = h and p(0) = k (cf. 3.8). Differentiating (4,5) with respect
to t, we obtain

()= e+ s A (1 +(0) + o e+ o AO) BO)-

Hence, if
(49 2+ o) B #0) + 1 + o) B0) BT) = O,
P+ al)s DO () + o e+ ) BO) () = slole + o) D)
then
X0 = 51 + o) B0)
and
y x"(t) — sin (x(t)) = e gln(t + oft); B(2)).
0sn 5 5
a—k= —k*.cn.dn.J and —— =k*.sn.dn.J,
where
* sn¥(z; k)
J=J(t k) = L an’(c: 1) dr,
we have
H(t,k)=( 2k.cn, Za;—2k2.cn..l

—2k.cn.dn, 2cn + 2k*.sn.dn.J
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on

for [ ar,
ok (

= (k)

6217 62}1 :
2 6K, 5= (k)

t; k)
H(t, k) =

Consequently .
det H(t + oft); B(t) = 4B(1).

Provided f(t) + 0, the system (4,6) may be written as follows
1 ;
(4,7) o = £.5 [:nn—g—j—_—z—g —cn(t+ o ﬂ)] g(n(t + o; B)),
B =e.gen(t+ o B)gln(t + o B).

Since for & = 0 the couple («(t), B(t)) = (h, k) is the unique solution of the system
(4,7) on R such that o0) = h, B(0) = k, Lemma 1.18 implies that for any T > 0
there exists & > 0 such that for any ¢€(0,&7) and heR, ke (0, 1) the system (4,7)
possesses a unique solution («(z), () = (at; h, k, &), B(t; b k,€)) on [0, T], con-
tinuous on [0, T] x R x (0,1) x (0,¢;) and such that o(0) = h, B(0) = k, while
B(t)e(0,1) for any t€[0, T]. Let us put oft; h,k,0) = h and B(t; h, k,0) = k.
Given a solution x(t) to BVP (4,1), (4,2) and heR, the function z(t) = x(t + h)
is also a solution to this problem. Hence without any loss of generality we may put

(4.8) h=0.

Let T> 0 and ke(0, 1) be for a while fixed. Let oft) = oft; 0, k, &), B(t) = (t; 0, k, )
be the corresponding solution of (4,7) on [0, T] (¢€(0,&r)). Then (4,5) becomes

(49) x(t) = 2arcsin (B(t) sn (¢ + o(t); B(z))) for te[0,T] and &€ (0,¢;)
and x(T)=x(0) if and only if B(T)sn (T + o(T); B(T))=0 or equivalently (B(T)+ 0)
(4,10) T+ ofT; 0,k &) — 4K(B(T; 0,k, ) = 0. .
According to (4,6) and (4,9)
X(8) = 2 fle)en (& + ot); A()
and x'(T) = x'(0) if and only if
B(T)en (T + oT); B(T)) = ken (0; k) = k
or in virtue of (4,10)
(4.11) B(T) = B(T) cn (4K(B(T)); B(T)) = k.
By (49)
Bt) = k + &.3xt,k,e) for te[0,T] and ee(0,¢,),

237



V14

where t
k) = [[on(e-+ oo B9 e + o BN .
o
This together with (4,11) implies that x'(T) = x'(0) if and only if
(4,12) *Tk,e)=0.

If ¢ > 0+, then the equation (4,10) becomes T — 4 K(k) =0 and the system
(4,10), (4,12) reduces to the equation

(4,13) B(k) =0,

where
B(k) = f:x(k)cn (¢5 k) gln(e; k) dt .

This means that a necessary condition for the existence of a solution to the given
BVP (4,1), (4,2) for any &> 0 sufficiently small is the existence of a solution ke(0,1)
of the equation (4,13).
Taking into account the properties of the Jacobi elliptic functions it can be shown
that if e.g.
g(x, x') = x' = 3(x)?,

then the equation (4,13) possesses a solution k, € (0, 1) such that (0B[ok) (ko) =+ O.
By the Implicit Function Theorem there exists &, > 0 such that for any &€ (0, &]
the system (4,10), (4,12) possesses a unique solution T= T, > 0 and k = k,€(0, 1)
such that T, —» 4 K(ko) and k, — ko as ¢ > 0+. Given e€ [0, &), oft) = oft; 0, k,, ¢)
and B(t) = B(t; O, k,, &) verify the system (4,7) on [0, T,] and hence x,(t)
= n(t + oft); B(t)) is a unique T;-periodic solution of the equation

x" + sinx = gx' — 3(x)%)
such that
x{t) = xolt) = n(t; ko) as e—>0+.

Notes

Chapter VI is a generalization of the work by Vejvoda ([4]). The main tools are the Implicit Function
Theorem (Newton’s method) and the nonlinear variation of constants formula V1.3.8 due to Vejvoda ([4]).
Theorems VI.2.3, VI.2.7 and V1.2.9 are contained also in Urabe [2], [3].

The method of a small parameter (perturbation theory) originated from the celestial mechanics
(Poincaré [1]). Periodic solutions of nonlinear differential equations were dealt with e.g. by Malkin
([11, [2]), Coddington, Levinson ([1]), Hale [1], Loud ([1], [2]) and others. Further related references
concerning the application of the Newton method to perturbed nonlinear BVP are e.g. Antosiewicz
[1], [2], Bernfeld, Lakshmikantham [1], Candless [1], Locker [1], Kwapisz [1], Tvrdy, Vejvoda [1],
Vejvoda [2], [3] and Urabe [1].
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