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ON LINEAR PROBLEMS IN THE SPACE BV 

S.Schwabik, M.Tvrdtf, Praha 

BV denotes the Banach space of column n-vector valued functions 

x : [0,l]—*R
n
 endowed with the norm xEBV—•||x||

BV
 = | x(0)| + varj x. 

A great variety of linear equations in BV is connected with linear 

operators of the form 

(D : xЄBV—• Kx = \ d
s
[к(t,s)]x(s) 

where K : J = [0,l] * [0,l]—*
L
(

R

n
) *3 a n

 n*n-matrix valued func­

tion defined on the square J and the integral is taken in the 

Perron-Stieltjes sense. The main assumption is 

(2) Vj(K) + var* K(0,.) < 00 

with Vj(K) the twodimensional Vitali variation of K on J and 

var~ K(0,.) the usual variation with respect to the second variable 

of K : J—
> I j

(?
n
)
 o n

 [P»-Q • Without any loss of generality we may 

assume in addition to (2) 

(3) K(t,l) = 0, K(t,s+) = K(t,s) for any tG[0,l] , sG [0,1) 

because any kernel satisfying (2) can be replaced by a new one which 

satisfies also (3) and for which the operator (1) remains unchanged. 

Set 

NBV = {y : [o,l] — R
n
; yEBV, y(s+) = y(s) for sG(0,l), y(l) = 0} 

(R is the space of row n-vectors, the star indicates the transpo­

sition of a matrix) and let 

(4) K* : yENBV—A d [y*(t)] K(t,s) . 

The following facts are known (see |_2J ): If (2) holds then the li­

near operator K : BV—*BV given by (1) is compact. If (2), (3) are 

satisfied then K : NBV—*»NBV given by (4) is also compact. The spa­

ces BV and NBV form a dual pair with respect to the bilinear form 
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(x,y*)EBV*NBV —* <x,y*> = I d[y*(t)]x(t) 

and we have 

(5) <Kx,y*> = <x,K*y*> for a l l xEBV, y E NBV • 

For the l inear equation 

(6) x - Kx = f, fEBV 

the Predholm theory works in our case provided the operator K* is 

used instead of the usual adjoint to K (see [lj)« In this situation 

this is useful because neither the analytic description of the ele­

ments of the dual space to BV nor the analytic form of the adjoint 

operator to K are available. Here we are interested in the resol­

vent formula for the equation (6). 

Assume in addition to (2) that we have N(I-K) = {o} for the 

kernel of the operator I-K, i.e. for its range we have R(I-K) = BV 

( I is the identity operator on BV). Then we obtain easily that 

^ <-
8
[R(t,з)J (7) x(t) = f(t) + \ d

8
[R(t,s)Jf(s) 

(or shortly x = f + Rf) i s for any fEBV a solution to (6) i f and 

only i f x = x - Kx + R(x - Kx) for every xEBV, i . e . 

\ d 3 [R(t,s) - K(t,s) - \ d r [R(t,r)]K(r,s)]x(s) 

for all xEBV, t E [b,l] . Hence we get 

Proposition 1. Let K : J —L(R
n
) fulfil (2) and let N(I-K) = {o} . 

Then (7) yields a solution to (6) for any f EBV if and only if 

R<t,s) - K(t,s) - \ d
г
[R(t,г)]к(г,s)ЄS 

for all tG[o,l] where S is the linear space of n*n-matrix va­

lued functions A : [p,l|—*L(
R

n
) such that AEBV, A(0) = A(0+) = 

= A(t-) = A(t+) = A(l-) = A(l) for all tE(0,l). 

Theorem 1. If K : J—L(R
n
) satisfies (2), (3) and N(I-K) = (o) , 

then there exists a uniquely determined n*n-matrix valued function 
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R : J—*L(.R.) such that 

(8) 

(9) 

R(t ,s ) = K(t ,s) + \ d r [K(t ,r ) ]R(r , s ) , t , s G [ o , l ] 

R(t ,s ) = K(t ,s) + \ d r [R(t ,r ) ]K(r , s ) , t , s G [ 0 , l ] 

and varQ R ( . , s ) < o o for each s G [ 0 , l ] • Furthermore v,(R) + 

+ varj R(0, . ) < +oo, R( t , l ) = 0 for a l l t e [ 0 , l ] and, given fGBV, 

(7) gives the unique solution to x - Ky = f in BV. 

P r o o f . According to the Bounded Inverse Theorem there i s a 

unique R : J—*L(Rn) f u l f i l l i n g (8) and such that R(.,s)GBV for 

a l l s E [ o , l ] • Moreover, 

|| .RC *»s )|IBV < o|| KC •, s )|| B V< m < oo (c <co) 

for a l l s E [ 0 , l | and i t may be shown that Vj(R) <oo . Let us put 

^ rR(t,s) if s = o or i , te[o,i] 
R(t,s) = 

LR(t,s+) i f 8 6 ( 0 , 1 ) , t e [ o , i ] 

and R(t ,s ) = R(t ,s ) - R(t ,s ) on J. Then 

S ( t , s ) - [ d r [K( t , r ) ]6 (r , s ) = 0 

for a l l t , s G [ 0 , l | and thus R(t , s ) = 0 on J. This means that the 

rows of R ( t , . ) belong for every t G [0,l] to the class NBV. More­

over, i t i s easy to verify that x = f + Rf i s for any fGBV a so­

lut ion to (6 ) . According to Proposition 1 we have Q ( t , . ) G S for a l l 

t € [0,1] , where 

Q(t ,s) = R(t , s ) - K(t ,s ) - \ dp [R(t ,r)]K(r,s) on J . 

Since R(t,.)ENBV and K(t,.)GNBV for all t G [0,l] , Q(t,. )GNBV 

for all tG[0,l] , i.e. Q(t,s) = 0 on J. This yields (9). 

Remark. If K : J—*L(Rn) satisfies (2), (3) but dim N(I-K) = k>0, 

then a "pseudoresolvent technique" can be used for showing that there 

exists R : J—•L(Rn) with Vj(R) <oo, var* R(0,.)<oo, R(t,.)GNBV 

for all tG[0,l] such that if for a given fGBV the equation (6) 

possesses a solution, then x = f + Rf is also its solution. All 
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the solutions to (6) may be then written in the form x(t) = x(t) + 
k 

+ .^_ d ^ U ) , where x1,x2,...,xk is a basis in N(I-K) and d± , 

i=l,...,k are real numbers. 

Let an nxn-matrix valued function A : [o,l]—>L(R ) be of boun­

ded variation on [0,l] and fGBV. We consider the integral equation 

ft 
(10) x(t) - x(0) - \ d[A(s)]x(s) = f(t) - f(0), tG[0,l] 

called the generalized linear ordinary differential equation. It i s 

known (see [3]) that i f x : [0,l]—»Rn sa t i s f i e s (10) then xGBV. 

.Furthermore i f 

(11) det[ l - A"A(t)] * 0 on (0 , l ] 

(I6L(Rn) is the identity matrix, A~A(t) = A(t) - A(t-)) then for 

any fEBV and c ^ R
n the equation (10) possesses a unique solution 

x(t) on [Ofl] such that x(0) = c. If we assume, in addition, 

(12) det [i + A+A(t)] ̂ 0 on [o,l] ( A+A(t) = A(t+) - A(t)) 

then there exists an n*n-regular matrix valued function X : [o,l]—+ 

—*L(R ) of bounded variation on [0,l] such that for any t,se[o,l] 

(13) X(t) = X(s) + \ d[A(r)]x(r) . 

X-1(t) : [0,1]—*L(R ) is also of bounded variation and satisfies 

(14) X ^ U ) = X" 1^) - X-1(t)A(t) + X"1(s)A(s) + ( d ^ t r ^ A f r ) 

for all tfse[0fl]. For given fEBV and cER n the corresponding 

solution x(t) of (10) with x(0) = c is given by the variation -

-of-constants formula 

(15) x(t) = X(t)X"1(0)c+f(t)-f(0)-X(t) \d[x-1(s)](f(s)-f(0)) . 

Let us consider the boundary value problem (P) of determining 

a solution x : [pfll —*R n of (10) which fulfils the side condition 
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(16) Mx(O) + Nx(l) = r 

where M.N are mxn-matrices and r£R • Inserting the variation-
m 

-of-constants formula (15) into (16) we get that our problem (P) is 

solvable if and only if 

d*Nf(l) - d*NX(l)X~1(0)f(0) - d*NX(l) \ dfr"1 (s)] f (s) = d*r 

0J 

for any d€-*L such that 

(17) d*[MX(0) + NX(1)] = 0 . 

It follows from the properties of the matrix function X~ (a) (see 

(14)) that, given dGR m fulfilling (17), the couple 

(y*(s),d*),y*(s) = d*NX(l)X~1(s), satisfies the system 

fl 
(18) y*(s) - y*(l) * \ d[y*(t)]A(t) - y*(l)A(l) + y*(s)A(s) = 0, 

y*(0) + d*M = 0, y*(l) - d*N = 0 . 

Hence if 

(19) y*(l)f(l) -y*(0)f(0) - \ d|/^(t)Jf(t) = d"r - £ đГ7»(t)]: 

for any solution (y (s) ,d) EBV*R
m
 of (18), then our problem (P) has 

a solution. On the other hand, if (P) has a solution x , then 

y*(l)f(l) - y*(0)f(0) - \ d[y*(t)]f(t) = 

0
J J 

= (y*(l) - d*N)x(l) - (y*(0) + d*M)x(0) + 

+ \ d[y*(s) - ^ d[y*(t)]A(t) + y*(s)A(s)]x(s) = 0 . 

Theorem 2. Under our assumptions the problem (P) has a solution if 

and only if (19) holds for every couple (y (s) ,d) EBV.*Rm satisfy­

ing (18). 

The system (18) is called
 M
the conjugate problem to (P)

M
. 

Remarks. 1. If A(t-) = A(t) on (0,l] , A(0+) = A(0) and B(0) = 

= A(0), B(t) = A(t+) on (0,1), B(l-) = A(l), then the first equa­

tion from (18) reduces to 
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'(1) - Í y*(s) = y*(l) - \ y*(t)dB(t) . 

2. Under our assumptions, given dER f the function y*(s) = 

= d*NX(l)X (s) is a unique solution of the first equation from (18) 

on [0,l] such that y*(l) = d* . 

3» It may be shown that if the homogeneous problem corresponding 

to (P)(f(t) = 0, r = 0) has exactly k linearly independent solu­

tions in BV, then its conjugate problem possesses exactly k*= k+m-n 

linearly independent solutions in BV*R , i.e. the index of the 

problem is n - m . 

4. The homogeneous problem corresponding to (P) possesses only 

the trivial solution if and only if 

rank [MX(0) + NX(1)] = n . 

Similarly as in the classical case we may show 

Theorem 3* Let in addition m=n and det D = det [MX(0) + NXd)]^ 0. 

Let us put 

-lwv^xv-l(a) f o r 3 < t 9 

G(t,s) = 
Ҷs) for s > t 

C -X(t)D"-LMX(0)X~J-( 

L XttjD^NXdJX^f 

(G(0 f0) = X(0)D"1NX(1)X-1(0), 0(1,1) = -XdJD^MXCOjX^d), the va­

lues G( t , t ) , t 6 (0 ,1 ) need not be defined at this moment), 

H(t) = XUJD"1 on [0,l] . 

Then for any fGBV and r^^m the function 

x( t ) = H(t)r + G( t , l ) f ( l ) - G(t,0)f(0) - ^ d f l[G(t,s)] f (s) 
0> 8 

is a unique solution of the problem (P). 

In virtue of the properties of X" we have 

Theorem A. Let P(t,s) = G(t,s) if t,sG[o,l], t?-3, P(l,l) = 

= G(lfl), P(t,t) = X(t)D"
1NX(l)X""1(t) if 0<t<l . Then under the 

assumptions of Theorem 3 the functions H(t), P(t,s) are such that 

Vj(P) + var^ P(0,.) + varQ P(.,0)<oo, var^ H <oo and moreover 

P(t,s) - P(t,l) + ̂  dr[P(t,r)]A(r) + P(t,s)A(s) - P(t,l)A(l) = 



372 

= A(t,s) for tG(0,l), 3E[0,l] , P(t,0) = -H(t)M, P(t,l) = H(t)N 

for t6(0,l) where A(t,s) = 0 if t<s and A(t,s) = -I if 

t>s . 

(P(t,.), H(t) is for any tG[o,l] a solution of the conjuga­

te problem with A(t,s) on the right hand side.) 

Remark. Theorem 4 describes the behaviour of the functions occuring 

in the solution formula for the problem (P) given in Theorem 3» The 

connection of the matrix G(t,s) with the original problem (P) in­

volves the first variable t • The proofs of these relations are 

straightforward but tedious, they will be given in a separate paper 

of the authors. 

Boundary value problems of the form (P) are of interest since 

by generalized linear differential equations (10) some special in­

terface problems may be described. 

The more general boundary value problem with the side condition 

Mx(0) «• Nx(l) + \ d[K(s)]x(s) = r ^ đ[к(s)]: 

can be also handled in the same manner or it can be transferred to 

a boundary value problem with a side condition of the type (16) 

using the Jones transform for the boundary value problem similarly 

as was done in the paper [4J • 
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