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1 . Introduction
Throughout the paper N stands for the set of positive integers. Furthermore, R™*™

denotes the space of real n x m-matrices, R = R™!, R' = R.. For a given n x m-
matrix A € R"™, by |A| we denote its norm,

m
Al = iffllaxnz |ai ),
S e

and det A is its determinant. The symbols I and 0 stand respectively for the identity
and the zero matrix of the proper type.
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As usual, by [0,1] and (0,1) we denote the corresponding closed and open in-
tervals, respectively. Furthermore, [0,1) and (0, 1] are the corresponding half-open
intervals.

The space of all functions F' : [0,1] — R™™ of bounded variation on [0, 1] is
denoted by BV™ ™ It is well known that BV™*™ equipped with the norm

F e BVY"™ - ||[Fllgy = |F(0)| + var o F
is a Banach space. For a given F' € BV we denote
F(t—) = lim F(r)and ATF(t) = F(t)— F(t—) for t € (0,1],
F(t+) = lim F(7) and ATF(t) = F(t+) — F(t) for t €[0,1),

T+

F(0-) = F(0), A"F(0) =0, F(1+) = F(1), ATF(1) = 0.

As usual, the space of n x m-matrix valued functions continuous on [0,1] is
denoted by C™*™ and the space of n x m-matrix valued functions Lebesgue integrable
on [0,1] is denoted by L7*™. Instead of BV™*! or C™*! or L' we write BV" or
C" or L7, respectively. For given F' € L7*™ and G € C™*™, we denote

1
£, :/0 [F(t)|dt and |[G]| = sup |G(Z)].

te(0,1]

The integrals are considered in the Perron-Stieltjes sense. We work with the
equivalent summation definition due to J. Kurzweil (cf. [5]) which is now usually
called the Kurzweil - Henstock integral or the gauge integral.

Let P, € L7™" for k € N U {0} and let X;, € AC"™" be the corresponding
fundamental matrices, i.e.

Xk (t) :I—l—/t Pr(s)Xk(s)ds on [0,1] for ke NU{0}.

The following two assertions are relatively representative examples of theorems
on the continuous dependence of solutions of ordinary differential equations on a
parameter.

Theorem 1.1. If

1
mn/|a@yf%@wm:a
0

k—o0

then
lim X (t) = Xo(t) wuniformly on [0, 1].

k—oo
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Theorem 1.2. (Kurzweil & Vorel, [6]) Let there exist m € Ly such that

|P.(t)] <m(t) a.e on [0,1] forall ke N (1.1)
and let
t t
klim Pk(s)ds:/ Py(s)ds wuniformly on [0,1]. (1.2)
—eJo 0
Then

lim Xx(t) = Xo(t) wuniformly on [0, 1].

k—o0
Remark 1.3. For t € [0,1] and &k € N U {0} denote

Au(t) = /0 " Pu(s)ds.

Then the assumptions of Theorem [1.2/ may be reformulated for A, as follows:

A, e AC™" for all ke NU{0}, (1.3)
sup 4L I, < oo, (1.4
keN

klim Ai(t) = Ao(t) uniformly on [0, 1]. (1.5)

Besides, the assumption (1.1) means that there exists a nondecreasing function

ho € AC such that
‘Ak<t2) — Ak(tl)‘ § ’ho(tg) — ho(t1)| fOI' all tl,tg € [O, 1]

In fact, we may put

ho(t):/o m(s)ds on [0,1].

2 . Linear GDE’s - a survey of known results

The following basic existence result for linear generalized differential equations of
the form

z(t) = §+/0 d[A(s)]z(s), te€]0,1]

may be found e.g. in [J] (cf. Theorem I11.1.4) or in [8] (c¢f. Theorem 6.13).
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Theorem 2.1. Let A € BV™" be such that
det [I—ATA(t)] #0  for all t € (0,1]. (2.1)

Then there exists a unique X € BV™" such that

X(t):I+/O d[A(s)] X (s) on [0,1]. (2.2)

Definition 2.2. For a given A € BV™*", the n X n-matrix valued function X €
BV™" such that (2.2)) holds is called the fundamental matriz corresponding to A.

When restricted to the linear case, Theorem 8.8 from [8] modifies to

Theorem 2.3. Let Ay € BV™™" satisfy (2.1) and let X be the corresponding fun-
damental matriz. Let Ay, € BV™" k € N, and scalar nondecreasing and left-
continuous on (0,1] functions hy, k € N U {0}, be given such that hgy is continuous
on [0,1] and

khj]glo Ai(t) = Ao(t) on [0,1], (2.3)
|A(t2) — Ai(t1)| < |hi(t2) — ha(ta)] (24)
for all t1,t3 €[0,1] and k € N U{0},

whenever 0 <t <ty <1.

Then for any k € N sufficiently large there exists a fundamental matriz Xy
corresponding to Ay and

lim X (t) = Xo(t) wuniformly on [0,1].

k—o00

Lemma 2.4. Under the assumptions of Theorem 2.3 we have

sup var jA; < oo (2.6)
keN

and
lim [Ag(t) — Ak(0)] = Ao(t) — Ao(0) uniformly on [0,1]. (2.7)

k—o0
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Proof. 1) By (2.5) there is kg € N such that
hk(l) - hk(O) S ho(l) - ho(O) -+ 1 for all k& Z ko.

Hence for any k£ € N we have
1 _ 1 .
var j Ay < ap = max ({VarOAk7 k< kg} U {ho(l) — ho(0) + 1}) < 0.

Thus we conclude that (2.0)) is true.
ii) Suppose that

lim Ag(t) = Ap(t) uniformly on 0, 1] (2.8)

k—oo

is not valid. Then there is € > 0 such that for any ¢ € N there exist m, > ¢ and
te € [0, 1] such that
A () — Ag(ts)] > & (2.9)

We may assume that my.; > my for any £ € N and

lim ¢, = to € [0,1]. (2.10)

{—00

Let to € (0,1) and let an arbitrary € > 0 be given. Since hq is continuous, we
may choose n > 0 in such a way that to —n,to +n € [0,1] and

ho(to +mn) — ho(to —n) < e. (2.11)
Furthermore, by (2.3) there is ¢; € N such that
| A, (to) — Ao(to)| < e forall £>1 (2.12)
and by (2.4), (2.5) and (2.11) there is ¢5 € N, ¢5 > {1, such that

’Ame(Tg) — Am[<7'1)’ < ho(to + 77) — hg(to — 77) +e < 2¢ (213)
whenever 7,71 € (tg —1,to +n) and £ > (5.

The relations (2.3) and (2.13) imply immediately that

|Ao(72) — Ao(T1)] = }i_{go | A, (T2) — Ay (11)] < 26 (2.14)

whenever 71,7 € (to —n,to +1).

!The author is indebted to Ivo Vrkoé for his suggestions which led to a considerable simplification
of this proof.
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Finally, let /35 € N be such that /3 > /5 and
|t —to| <n forall £> /5, (2.15)
then in virtue of the relations (2.10)—(2.15) we have

| A, (te) — Ao(te)]
< (A, (te) = Am, (to)| + [Am, (to) — Ao(to)| + [Ao(to) — Ao(te)]
< Be.

Hence, choosing e < £&, we obtain by (2.9) that
£> [Ap,(te) = Ao(te)] = &

This being impossible, the relation (2.8) has to be true. The modification of the
proof in the cases to = 0 or t; = 1 and the extension of (2.8)) to (2.7) is obvious. [

Thus, Theorem 2.3 is a special case of the following result due to M. Ashordia

(ct.[1]).

Theorem 2.5. Let Ay € BV™" satisfy (2.1), let X be the corresponding funda-
mental matriz and let {Ax}s2, € BV™" be such that (2.6) and (2.7) hold. Then
for any k € N sufficiently large there exists a fundamental matrix Xy corresponding
to Ay, and

lim X% (t) = Xo(t) wuniformly on [0, 1].

k—o00
Remark 2.6. Under the assumptions of Theorem [2.5 we obviously have

lim Ag(t—) = Ao(t—) and Jim Ap(s+) = Ao(s+)

k—o0

for all ¢ € (0,1] and all s € [0, 1), respectively. Thus Theorem 2.5 cannot cover the
case that there is a ¢y € (0,1] such that

Ak<t0—) = Ak(to) for all k € N, while Ao(to—) §£ Ao(t0>

In particular, Theorem 2.5 does not apply to the following simple example.

Example 2.7. Consider the sequence of initial value problems

xp = ap(t)xy on [-1,1], =z(-1)=7,

where
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0 if t S g,
ar(t) = g ift e (o Br),
1 if t > B;

{ar}?2, is an arbitrary increasing sequence in [—1,0) such that

lim oy = 0;
k—o0

{Br}32, is an arbitrary decreasing sequence in (0, 1] such that
li =0
dmn s
and
T 877
im
k—oo (U — Bk

=xel0,1).

For the corresponding solutions we have

x if t<ay,
w(t) =< eFerd  if te (ak, Br),
T if t<0,
zo(t) = lm xp(t) = e*z  if t=0,

k—o00 ~

er if t>0,

while the unique solution z(t) of the ”limit” equation

x(t) = 55+/ dla(s)]x(s), te[-1,1],

-1

where
0 if t<0,
a(t) = klim ag(t) =< » if t=0,
o 1 if t>0,
is given by
x it ¢t <0
w(t) =4 =T if t=0 3 #xt).
=r i >0

On the other hand, zq is a solution to

a:o(t):f+/ dlao(t)]xo(s) on [—1,1],

-1
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where

0 if ¢t<0,
ap(t) = l1—e” if t=0,
(e—1)e > if t>0

and a; tends to ag in the following sense:
(a) given arbitrary o € (—1,0) and 5 € (0,1), limy_. ax(t) = ao(t) uniformly on
(—1,) and limy_ofan(t) — ax(8)] = ao(t) — ao(8) uniformly on [3,1);
(b) limy oo ag(t) = ao(t) + ao(t), where

0 if t<0,
ap(t) = w4e ¥ -1 if t=0,
1—el™+e > if t>0;

(c) for any z € R and € > 0, there is § > 0 such that for any &' € (0,9) there is

ko € N such that for any k > ko we have oy, > —0', B, < &' and the relations

A~ap(0)z

Ye(0) — ye(=0") — T— A ao(0) <e

and
|26(0") — 2£(0) — AT ag(0)z] < e
are satisfied for any solution y, on [—¢',0] of

v, = a(t)yyr  with yp(=0") € (2 — 6,2 +0)

In fact, for given z € R, ' > 0 and k € N such that oy, > —0" we have

t—ap

yr(t) = efe—ek yp(—d") on [ag, 0]

and thus

A~ap(0)z ’
1-— A_CL()(O)

= |5 — )yu(=8) — (¢ — 1)

56(0) = ()

Cap
efr—ok — e”’ |z +

<

N 1“z—yk(—(5’)‘,
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where

klim eﬁ;f% —e”‘ =0, ’eﬁk ok 1‘ <2
and

}z — yk(—é’)| < 4.

Analogously, if k& € N is such that 5, < ¢, we have

5
2(t) = eFar 2,(0) on [0,0]
and thus
26(0") — 21,(0) — At ag(0)2
‘ (P er — 1)z (&) — (eH—l)z}

< ‘eﬂk el ”‘|z| + ‘ef’k o 1‘|Z—zk(0)

where
_ Br Bk
klim efr-ar — el™ ”’ =0, ‘ef’k*ak -1/ <2

and

|z — 2(0)| < 6.
Notice that if
xo(t) =7 + /_1 dlao(t)]xo(s) on [—1,1],

then
1 Aiao(O)

A72o(0) = <1 — A=a(0) 1>x0(0—) T 1- A—aO(O)xo(O_)'

The convergence described in Example 2.7 is closely related to the notion of the
emphatic convergence introduced by J. Kurzweil (cf. [3]).

Definition 2.8. A sequence {A;}32, € BV™" converges emphatically to Ay €
BV™" on [0, 1] if

(i) there exist nondecreasing functions hy : [0,1] — R, k € N U {0}, which are
left-continuous on (0, 1] and such that

| Ak(t2) — Ar(t)] < |he(t2) — he(ta)]
for all k € NU{0} and t1,t5 € [0,1];
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(ii) limsup,_, [hk(tg) — hk(tl)] < [ho(tQ) — ho(tl)} whenever 0 < ¢; <ty <1 and
ho is continuous at t; and t»;

(iii) thereis Ay € BV™" such that limy,_.o Ax(t) = Ao(t)+go(t) whenever ho(t) =
ho(t+) and |A0(t2) — Ao(t1)| S |h0(t2) — ho(t1)| for all tl,tg c [O, 1], where ho
stands for the break part of hg;

(iv) if ho(to+) > ho(to), then for any z € R" and any € > 0 there exists ¢ > 0 such
that for any ¢’ € (0,9) there is ko € N such that

lyi(to +0") — yr(to — 0') — AT Ag(to)z] < €

holds for any k > kg, any 3, € R" such that |z — yx| < § and any solution y
of the equation

t

yr(t) = g + / d[Ar(s)|yr(s) on [t — & to+ 0.

to—0’

The following assertion is a restriction of Theorem 4.1 from [5] to the linear case.

Theorem 2.9. Let Ay, converge emphatically on [0,1] to Ag. Let the sequence { Xy}, C
BV™" of the fundamental matrices corresponding respectively to A, k € N, be uni-
formly bounded on [0,1] and such that

lim X (t) = Zo(t) on [0,1] whenever ho(t+) = ho(t).

k—o00

Then Zy € BV™" and the function Xo defined by

Zo(t) if  ho(t+) = ho(t),
Xolt) = { Zo(t—) otherwise

is the fundamental matrix corresponding to Ag.

Remark 2.10. Let us notice that necessary and sufficient conditions assuring the
uniform convergence of fundamental matrices X, corresponding to A, k € N, to
the fundamental matrix X, corresponding to Ay may be found in the paper [2] by
M. Ashordia.

Results related to Theorem 2.9/ obtained by the method of ” prolongation” of
functions of bounded variation to continuous functions along monotone functions
and using the concept of convergence under substitution instead of the emphatic
convergence were obtained by D. Fraikova in [3] (cf. also [4]), as well.
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3 . Linear GDE’s - new results

Notation 3.1. For a given function FF € BV™" | the symbol S(F) stands for the
set of the points of discontinuity of F' in [0, 1], while

SHF)={te€0,1);ATF(t) #0} and S™(F)={t€[0,1); A" F(t) # 0}.

If F' is such that S(F") possesses at most a finite number of points, then for an
arbitrary compact set M such that
m

M = |Jloy, 5] € 0.1\ S(F)

Jj=1

with [a;, 8] N [ag, Bk] = 0 for j # k, we define
FY(t) = F(t) - Fay) i t€ay,5].

Provided the set S(Ap) contains at most a finite number of elements, we can
extend Theorem 2.9 to the case that the functions Ay, k¥ € N U {0}, need not be
left-continuous on (0, 1] in the following way.

Theorem 3.2. Let Ay € BV™" S(A4y) = {7},
det [I— A™A(t)] #0 on [0,1]

and let Xy be the fundamental matriz solution corresponding to Ag. Let the sequence
{Ar}2, € BV™™ be such that

(i) supyvarjAy < oo and det [[— A~Ag(t)] #0 on (0,1] for all k € N;

(ii) limg oo AM(s) = AN (s) uniformly on M for any M C [0,1]\ S(Ao) such that
M =i [y, B;], where [a, B;] O o, B] = O for j # k;

(iii) if 7 € S(Ao) then for any z € R" and any € > 0 there exists § > 0 such that
for any 0" € (0,0) there is ko € N such that the relations

lyk(T) — gi(T — 0') — A" Ag(T) [I = A~ Ag(7)] 2| < e
and

|2k(T + 0') — 21(7) — AT Ag(7)z| < €
are satisfied for any k > ko and y and z, such that



Milan Tvrdy: On the Continuous Dependence 12

y(t) = yp(r —0") —|—f e S)ye(s) on [T—=40,7],
z(t) = Zk(T) + fT d Ak (s) ]zk(s) on [1,7+ ]
and

|z —yp(t =0 <0 and |z — z.(7)] <.

Then for any k € N sufficiently large the fundamental matriz Xy, corresponding
to Ay is defined on [0,1] and

lim X, (t) = Xo(t) on [0,1].

k—o00

Proof. Let us restrict ourselves to the case that m = 1, i.e. let S(Ag) = {7}, where
€ (0,1).
Let an arbitrary ¥ € R" be given and let z for any k& € N U {0} denote the
solution to the equation

xk(t)zf—i—/o d[Ax(s)]zs(s) on [0,1].

Our assumptions (i) and (ii) by Theorem 2.5 imply that for any « € (0,7) we
have

khjg(} x(t) = zo(t) uniformly on [0, a]. (3.1)
Consequently,
Is:11—>rgo xp(t) = xo(t) for all te0,7). (3.2)
Furthermore, for any ¢’ € (0,7) and k£ € N we have
|o(T) — k(7)) (3.3)

< Jao(r) — o1 — &) = A~ Ag(7) [T = A~ Ag(7)] " wo(7—)|
+ ’A_AO(T) [I - A_AO(T)] _1x0(7'—) - (ZL’k(T) — (T — 5’))‘
+ |zo(T = &) — 2p(T = 0')).

Let an arbitrary € > 0 be given. By the assumption (iii) there exists § € (0, ¢)
such that for all ¢’ € (0,0) there exists k; = k1(6") € N such that for any k > k;
and for any solution y; of the equation

) =u(r=8)+ [ Aol on [=.7
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such that |y, (7 — ¢") — zo(7—)| < § we have
k() = (7 = &) = A7 Ag() [T = A~ Ao()] ao(r—)| < . (3.4)
Let us choose 0" € (0,0) in such a way that
, J
|zo(7—) —z(T = 9| < 2 (3.5)
is true. Furthermore, according to (3.2) there is kg € N such that ko > k; and
! ! 5
|zo(T — &) — zp (7 — )| < 3 for all k& > k. (3.6)
In particular, for k& > kg we have
|zo(T—) — x(7 — )| < 4. (3.7)

Thus, if we put yi(t) = k() on [T — &', 7], then the relation (3.4) will be satisfied
for any k > kg, i.e. we have

1

2 (r) — zi(r — 8) — A= Ag(7) [T = A~ Ag(7)] xO(T—)( <c (3.8)

for all & > ko. Now, inserting (3.6)-(3.8)) into (3.3), we obtain that

)
|2k (1) — z0(7)| < §+§+€ < 2

is satisfied for any k > kg, i.e.

lim 24 (7) = xo(7). (3.9)

k—o00
Further, we will prove that there is > 0 such that

lim x(t) = xo(t)

k—o00

is true on (7,7 + n) as well. To this aim, let € > 0 be given and let 7y € (0,¢) be
such that
|zo(s) — xo(74)| < e forall se€ (1,7 +n). (3.10)

By the assumption (iii) there exists € (0,7) such that for any 7 € (0,n) there is
¢y = {1(n') € N such that for any k& > ¢; and for any solution zj of the equation

2k(t) = 2zx(7) +/ d[Ax(8)]zx(s) on [1,7 + 7]
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such that |zx(7) — zo(7)| < n we have

|ze(T + 1) — (1) — AT Ag(7)0(7)| < €. (3.11)
Let us choose ' € (0,7n) arbitrarily. By (3.10), we have
|zo(T — 1) — 2o(T4)| < €. (3.12)
Furthermore, by (3.9) there is ¢, € N such that ¢, > ¢; and
|2k (7) — zo(7)| < forall k> 4. (3.13)
Thus, by (3.11), for any k > ¢y we have
lze(T 4+ 1) — 2i(7) — AT Ag(7)0(7)| < e. (3.14)

Making use of (3.12)-(3.14) we finally get for any k > kg

|2 (7 + 1) — 2o(T + 1)
< [ar(r +0') = 24(7) — 20(74) + 20 (7))
+ ’JZO(T +1') — xo(7+4) ‘ + {xk — IL‘O(T>‘
= |ap (7 +11') — (1) — AT Ag(7)o(7)]
+ ’mO(T—i—) —zo(T+ 1) ‘ + {xk(T) — :L‘O(T>‘ < 3e,
ie.
lim xp(t) = xo(t) forall ¢t € (7,7 +n).
The proof of the theorem can be completed by making use of Theorem 2.5 and

taking into account that r € R" was chosen arbitrarily. The extension to a general
case m € N is obvious. O

Remark 3.3. Obviously, if we did not restrict ourselves to the case of only a fi-
nite number of discontinuities of Aj, we should replace the assumptions (i)-(ii) in
Theorem 3.2 by assumptions of the form (i)-(ii) from Definition 2.8l

Remark 3.4. The following concept due to M. Pelant (cf. [7]) leads to another
interesting convergence effect which most probably cannot be explained by Theorem
3.2

Let A € BV™" and let the divisions P, = {0 = tf < --- <tf =1}, k€ N, of
[0, 1] be such that

P.DOD, = {te|o,1];t i=0,1,..2"}

2’“7
U{t € (0,117 AW)] 2 1)

Ut € 0.1 AA®)]| > 1.
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For a given k € N, let us put

A(t) if té€ Py,
ky_ A(tk
Aty = Atk + 2 (k)
if te(th  th).

i—17 %

Then we say that the sequence {Ag, Px}52, piecewise linearly approzimates A.
Furthermore, for a given A € BV™*" let us define Ay on [0, 1] by

Ao(t) = Alt) = D A A(s)xpe(t) (3.15)
€S (4)
- Z ATA(s)x(s(t)
seST(4)
30 (1= e (A7AE)] ) ®
SES_(A)
+ Z (exp (AT A(s)) — I> X(s,1] ()
seSt )

Then, obviously
det [[— A"Ap(t)] #0 on [0,1]

holds and the following assertion may be proved (cf. [7]).

Let A € BV™" et Ag be given by (3.15), let {Ay, Pr}2, piecewise linearly
approzimate A and let for a given k € N, X} denote the fundamental matrixz corre-
sponding to Ay. Then

lim X (t) = Xo(t) for all t€0,1].

k—o0
Furthermore, if A € BV™™" is such that the relations

det [[— A"A(t)] #0 and det [[+ATA®%)] #0 on [0,1] (3.16)
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are true, then for ¢ € [0, 1] we can define

Aj() = At) = Y ATA(S) X (#) (3.17)

€S (A)
— Z A+A(S>X(s,l](t)
s€S+(A)
+ Z In [I— A‘A(s)}_1X[s,1] (t)
sesi(A)
£ 3 14+ ATAE)] xen ()
5€S+(A)

and the following assertion is an immediate corollary of the above mentioned result
of M. Pelant.

Theorem 3.5. Let A € BV™™" be such that (3.10) holds and let X be the fundamen-
tal matriz corresponding to A. Let Af be given by (3.17), let {Ag, P}, piecewise
linearly approzimate Aj and let for a given £k € N, X} denote the fundamental
matrix corresponding to Aj. Then

lim X% (t) = X(t) forall t€[0,1].

k—o0

4 . Appendix (2010)

When restricted to the linear case, Theorem 8.2 from [8] modifies to

Theorem 4.1. Let A, € BV™" k€ NU{0}, and a nondecreasing function h:[0,1] - R
be given such that

]}1_%10 Ag(t) = Ao(t) on [0,1], (4.1)
| Ak(t2) — Ax(tr)| < |h(t2) — h(t1)] }
(4.2)
forti,ta €[0,1] and k€ NU{0}.

Let Xy, be the fundamental matriz solutions corresponding to Ay for k € N and let

lim X (t) = Xo(t) fort e [0,1].

k—oo

Then Xo€ BV™" and Xy is the fundamental matriz solution corresponding to Ag.
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Proposition 4.2. Under the assumptions of Theorem 4.1] we have

sup vary A, < oo (4.3)
keN

and
klim Ax(t) = Ap(t) uniformly on [0, 1]. (4.4)

Proof. 1) The relation (4.3) follows immediately from (4.2).
ii) Notice that (4.1) and (4.2) imply that

|Ak(t—) — Ak(s)| < |h(t—) — h(s)| for t € (0,1],s €[0,1],k e NU{0}  (4.5)
and
| A (t+) — Ag(s)| < |h(t+) —h(s)| for t€0,1),s€[0,1],k € NU{0}. (4.6)

iii) Let ¢ > 0 and ¢ € (0, 1] be given and let us choose sy € (0,t) and kg € N so that
h(t—) — h(so)| < % and  [Ax(s0) — Ao(s0)| < % for k > ko (4.7)
Then, by (4.5) and (4.7),
[Ar(t=) = Ao(t=)] < |Ak(t=) — Ar(s0)| + [Ax(s0) — Ao(s0)| + |Ao(s0) — Ak(—)|
< |h(t=) = h(so)| + % + [h(t=) = hso)| < <.
This means that

lim Ag(t—) = Ao(t—) holds for ¢ € (0,1]. (4.8)

k—o00
Similarly, using (4.6) and (4.7), we get

lim Ai(t+) = Ao(t+) holds for t €0, 1). (4.9)

k—o00

iii) Now, suppose that (4.4) is not valid. Then there is € > 0 such that for any £ € N
there exist m, > ¢ and ¢, € [0, 1] such that

| A, (te) — Ao(te)| > €. (4.10)
We may assume that my.; > m, for any £ € N and

lim tg = to S [O, 1] (411)

l—00
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Let to € (0,1] and assume that the set of those ¢ € N for which ¢, € (0,%) has
infinitely many elements, i.e. there is a sequence {{;}, .y C N such that ¢, € (0,o)
for all £ € N and limy_.o ty, = to. Denote s = t,, and By, = Amzk for k € N. Then,
in view of (4.10) we have

sk € (0,t9) for k € N, klim sk = to (4.12)
and
|Bk<8k) — A0(8k>’ >¢ for ke N. (413)

By (4.5), we have
[ Ao(to—) — Ao(sk)| < h(to—) — h(sk)
and
| Bi(to—) — Ao(sk)| < h(to—) — h(sk)-
Therefore, by (4.8) and since ’}L%o(h(tg—) — h(sg)) = 0 due to (4.12)), we can choose
ko € N so that

[Auto—) = Aolto—)] < 5

[Ao(to—) — Ao(sk)| < hlto—) — h(sg,) <

Wl my

and

5
Bolto—) — Aol < -
As a consequence, we get finally by (4.13))

gg |Bk0(5ko) - A0(3k0)|
< | By (8k) — Ar(to—)| + |Ax(to—) — Ao(to—)| + [Ao(to—) — Ao(sk,)| <&,

a contradiction.

If ty € [0,1) and the set of those £ € N for which ¢, € (0,ty) has only finitely
many elements, then there is a sequence {{;}, N C N such that t;, € (o, 1] for all
k € N and limy_. ty, = to. As before, let s, = t,, and By, = Amzk for £k € N and
notice that

sk € (to,1) for k € N, kh_}lrgo sk = to

and (4.13)) are true. Arguing similarly as before we get that there is kg € N such
that

£ ’Bko(sko) _A0<Sko>|
| By

o (k) — Ak(tot)] + [Ax(to+) — Ao(tot)] + [Ao(tot) — Ao(sk)| <,

IA A

a contradiction. O
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