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Abstract

This paper deals with integral equations in a Banach space X of the form

x(t) = x̃ +
∫ t

a
d[A] x + f(t)− f(a), t∈ [a, b ],

where −∞<a < b<∞, x̃∈X, f : [a, b ]→X is regulated on [a, b ], and A(t) is for
each t∈ [a, b ] a linear bounded operator on X, while the mapping A: [a, b ]→L(X)
has a bounded variation on [a, b ]. Such equations are called generalized linear
differential equations. Our aim is to present new results on the continuous depen-
dence of solutions of such equations on a parameter. Furthermore, an application
of these results to dynamic equations on time scales is given.
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1 Introduction

The theory of generalized differential equations enables the investigation of contin-
uous and discrete systems, including the equations on time scales, from the common
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standpoint. This fact can be observed in several papers related to special kinds of equa-
tions, such as e.g. those by Imaz and Vorel [13], Oliva and Vorel [24], Federson and
Schwabik [7], Schwabik [26] or Slav́ık [32]. This paper is devoted to generalized linear
differential equations of the form

x(t) = x̃ +

∫ t

a

d[A] x + f(t)− f(a), t∈ [a, b ], (1.1)

in a Banach space X. A complete theory for the case when X =Rm can be found, for
instance, in the monographs by Schwabik [26] or Schwabik, Tvrdý and Vejvoda [31].
See also the pioneering paper by Hildebrandt [11]. Concerning integral equations in
a general Banach space, it is worth to highlight the monograph by Hönig [12] having
as a background the interior (Dushnik) integral. On the other hand, dealing with the
Kurzweil-Stieltjes integral, the contributions by Schwabik in [28] and [29] are essential
for this paper.

In the case X =Rm (i.e. for ordinary differential equations), fundamental results on
the continuous dependence of solutions on a parameter based on the averaging prin-
ciple have been delivered by Krasnoselskii and Krejn [15], Kurzweil and Vorel [17],
Kurzweil [18], Opial [25] and Kiguradze [14]. In particular, the problem of continuous
dependence gave an inspiration to Kurzweil to introduce the notion of generalized dif-
ferential equation in the papers [18] and [19]. For linear ordinary differential equations,
the most general result seems to be that given by Opial. An interesting observation is
contained in the fundamental paper by Artstein [2]. A different approach can be found
in the papers [20]–[22] by Meng Gang and Zhang Meirong dealing also with measure
differential analogues of Sturm-Liouville equations and, in particular, describing the
weak and weak*continuous dependence of related Dirichlet or Neumann eigenvalues on
a potential.

After Kurzweil, the problem of continuous dependence on a parameter for general-
ized differential equations has been treated by several authors, see e.g. Schwabik [26],
Ashordia [3], Fraňková [8], Tvrdý [34], [35], Halas [9], Halas and Tvrdý [10]. Up to
now, to our knowledge, only Federson and Schwabik [7] (cf. also Appendix to ABFS)
dealt with the case of a general Banach space X. Our aim is to prove new results valid
also for infinite dimensional spaces. In particular, in Sections 3 and 4 we give suffi-
cient conditions ensuring that the sequence {xn} of solutions of the generalized linear
differential equations

xn(t) = x̃n +

∫ t

a

d[An] xn + fn(t)− fn(a), t∈ [a, b ], n∈N,

tends to the solution x of (1.1). The crucial assumptions of Section 3 are the uniform
boundedness of the variations varb

a An of An and uniform convergence of An to A.
In Section 4, we present the extension of the classical result by Opial to the case
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X 6=Rm, where we do not require the uniform boundedness of varb
a An and the uniform

convergence is replaced by a properly stronger concept. Finally in Section 5, we apply
the obtained results to dynamic equations on time scales.

2 Preliminaries

Throughout these notes X is a Banach space and L(X) is the Banach space of bounded
linear operators on X. By ‖ · ‖X we denote the norm in X. Similarly, ‖ · ‖L(X) denotes
the usual operator norm in L(X).

Assume that −∞<a <b <∞ and [a, b ] denotes the corresponding closed interval.
A set D = {α0, α1, . . . , αν(D)} ⊂ [a, b ] with ν(D)∈N is said to be a division of [a, b ] if
a = α0 <α1 < . . . < αν(D) = b . The set of all divisions of [a, b ] is denoted by D[a, b ].

A function f : [a, b ]→X is called a finite step function on [a, b ] if there exists
a division D = {α0, α1, . . . , αν(D)} of [a, b ] such that f is constant on every open interval
(αj−1, αj), j = 1, 2, . . . , ν(D).

For an arbitrary function f : [a, b ]→X we set ‖f‖∞ = supt∈ [a,b ] ‖f(t)‖X and

varb
a f = supD∈D[a,b ]

∑ν(D)
j=1 ‖f(αj)−f(αj−1)‖X

is the variation of f over [a, b ]. If varb
a f <∞ we say that f is a function of bounded

variation on [a, b ]. BV ([a, b ], X) denotes the set of functions f : [a, b ]→X of bounded
variation on [a, b ]. equipped with the norm ‖f‖BV = ‖f(a)‖X + varb

a f.

Given f : [a, b ] → X, the function f is called regulated on [a, b ] if, for each t∈ [a, b)
there is f(t+) ∈ X such that lims→t+ ‖f(s)− f(t+)‖X = 0 and for each t∈ (a, b ] there is
f(t−)∈X such that lims→t− ‖f(s)− f(t−)‖X = 0 . By G([a, b ], X) we denote the set of
all regulated functions f : [a, b ]→X. For t∈ [a, b), s∈ (a, b ] we put ∆+f(t)=f(t+)−f(t)
and ∆−f(s)=f(s)−f(s−). Recall that BV ([a, b ], X)⊂G([a, b ], X) cf. e.g. [28, 1.5].
Moreover, it is known that regulated function are uniform limits of finite step functions
(see [12, Theorem I.3.1 ]) and that they can have at most a countable number of points
of discontinuity (see [12, Corollary 3.2.b]).

In what follows, by an integral we mean the Kurzweil-Stieltjes integral. Let us
recall its definition. As usual, a partition of [a, b ] is a tagged system, i.e., a couple
P = (D, ξ) where D = {α0, α1, . . . , αν(D)}∈D[a, b ], ξ = (ξ1, . . . , ξν(D))∈ [a, b ]m and
αj−1≤ ξj ≤αj for j = 1, 2, . . . , ν(D) . The set of all partitions of [a, b ] is denoted by
P [a, b ]. Furthermore, any function δ : [a, b ]→(0,∞) is called a gauge on [a, b ]. Given
a gauge δ, the partition P is called δ-fine if [αj−1, αj]⊂ (ξj − δ(ξj), ξj + δ(ξj)) holds for
all j = 1, 2, . . . , ν(D). We remark that for an arbitrary gauge δ on [a, b ] there always
exists a δ-fine partition of [a, b ]. It is stated by the Cousin lemma (see e.g. [26, Lemma
1.4]).

For given functions F : [a, b ] → L(X) and g : [a, b ] → X and a partition P = (D, ξ)
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of [a, b ], where D = {α0, α1, . . . , αν(D)}, ξ = (ξ1, . . . , ξν(D)), we define

S(dF, g, P ) =

ν(D)∑
j=1

[F (αj)− F (αj−1)] g(ξj) .

We say that I ∈X is the Kurzweil-Stieltjes integral (or shortly KS-integral) of g with

respect to F on [a, b ] and denote I =

∫ b

a

d[F ] g if for every ε> 0 there exists a gauge

δ on [a, b ] such that
∥∥∥S(dF, g, P )− I

∥∥∥
X

< ε for all δ − fine partitions P of [a, b ] .

Analogously, we define the integral

∫ b

a

F d[g] using sums of the form

S(F, dg, P ) =

ν(D)∑
j=1

F (ξj) [g(αj)− g(αj−1)] .

For the reader’s convenience some of the further properties of the KS-integral needed
later are summarized in the following proposition.

2.1 . Proposition. Let F : [a, b ] → L(X) and g : [a, b ] → X.

(i) If F ∈BV ([a, b ], L(X)) and g ∈G([a, b ], X), then
∫ b

a
d[F ] g exists and

∥∥∥
∫ b

a

d[F ] g
∥∥∥

X
≤

∫ b

a

d[vart
a F ] ‖g‖X ≤ (varb

a F ) ‖g‖∞ . (2.1)

(ii) If F ∈G([a, b ], L(X)) and g ∈BV ([a, b ], X), then
∫ b

a
d[F ] g exists and

∥∥∥
∫ b

a

d[F ] g
∥∥∥

X
≤ 2 ‖F‖∞ ‖g‖BV .

(iii) If F ∈BV ([a, b ], L(X)) and g ∈G([a, b ], X) then both the integrals
∫ b

a
F d[g]

and
∫ b

a
d[F ] g exist, the sum

∑
a≤τ<b ∆+F (τ) ∆+g(τ)−∑

a<τ≤b ∆−F (τ) ∆−g(τ)
converges in X and

∫ b

a

F d[g] +

∫ b

a

d[F ] g

= F (b) g(b)−F (a) g(a)−
∑

a≤t<b

∆+F (t) ∆+g(t)+
∑

a<t≤b

∆−F (t) ∆−g(t) .
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(iv) If F ∈BV ([a, b ], L(X)) and g is bounded on [a, b ] are such that the integral∫ b

a

d[F ] g exists, then both the integrals

∫ b

a

H(t) dt

[ ∫ t

a

d[F ] g
]

and

∫ b

a

H d[F ] g

exist and the equality

∫ b

a

H(t) dt

[ ∫ t

a

d[F ] g
]

=

∫ b

a

H d[F ] g

Proof. Let F ∈BV ([a, b ], L(X)) and g ∈G([a, b ], X). Then the integral
∫ b
a d[F ] g exists

by e.g. [27, Proposition 15]. The estimate (2.1) follows directly from the definition of the
KS-integral, as

‖S(dF, g, P )‖X ≤
ν(D)∑

j=1

(
varαj

αj−1 F
) ‖g(ξj)‖X ≤

(
varb

a F
) ‖g‖∞

for all P =(D, ξ)∈P[a, b ], D = {α0, α1, . . . , αν(D)}, ξ = (ξ1, ξ2, . . . , ξν(D)). This proves the
assertion (i). The assertion (ii) holds by [23, Lemma 2.2], (iii) follows from [23, Corollary
3.6] and (iv) from [23, Theorem 3.8]. ¤

In addition, we need the following convergence result.

2.2. Theorem. Let g, gn ∈G([a, b ], X), F, Fn ∈BV ([a, b ], L(X)) for n∈N. Assume that

lim
n→∞ ‖gn − g‖∞ = 0, lim

n→∞ ‖Fn − F‖∞ = 0 and ϕ∗ := sup
n∈N

varb
a Fn < ∞.

Then

lim
n→∞

(
sup

t∈ [a,b ]

∥∥∥
∫ t

a
d[Fn] gn−

∫ t

a
d[F ] g

∥∥∥
X

)
= 0 . (2.2)

Proof. Let ε> 0 be given. By [12, Theorem I.3.1 ], we can choose a finite step function
g̃ : [a, b ] → X such that ‖g− g̃‖∞ < ε. Furthermore, let n0 ∈N be such that

‖gn − g‖∞ < ε and ‖Fn − F‖∞ < ε for n ≥ n0.

For a fixed t∈ [a, b ], by Proposition 2.1 (i) and (ii), we obtain for n ≥ n0

∥∥∥
∫ t

a
d[Fn] gn−

∫ t

a
d[F ] g

∥∥∥
X

≤
∥∥∥

∫ t

a
d[Fn]

(
gn− g̃

)∥∥∥
X

+
∥∥∥

∫ t

a
d[Fn−F ] g̃

∥∥∥
X

+
∥∥∥

∫ t

a
d[F ]

(
g̃− g

)∥∥∥
X

≤ (
2ϕ∗+2 ‖g̃‖BV +varb

a F
)
ε=K ε,

where K =
(
2ϕ∗ + 2 ‖g̃‖BV + varb

a F
)∈ (0,∞) does not depend on n. This proves (2.2). ¤

2.3.Remark. In the case that X is a Hilbert space, Theorem 2.2 has been already given by
Krejč́ı and Laurençot [16, Proposition 3.1] or Brokate and Krejč́ı [6, Proposition 1.10].
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3 Continuous dependence on a parameter in the

case of uniformly bounded variations

Given A∈BV ([a, b ], L(X)), f ∈G([a, b ], X) and x̃∈X, consider the integral equation

x(t) = x̃ +
∫ t

a
d[A]x + f(t)− f(a) , t ∈ [a, b ] . (3.1)

A function x : [a, b ]→X is called a solution of (3.1) on [a, b ] if the integral
∫ b
a d[A]x exists

and x satisfies the equality (3.1) for each t∈ [a, b ].
For our purposes the following property is crucial

[
I −∆−A(t)

]−1 ∈ L(X) for all t ∈ (a, b ] . (3.2)

In particular, taking into account the closing remark in [28] we can see that the following
result is a particular case of [28, Proposition 2.10].

3.1 . Proposition. Let A∈BV ([a, b ], L(X)) satisfy (3.2) Then, for every x̃∈X and every
f ∈G([a, b ], X), the equation (3.1) possesses a unique solution x on [a, b ] and x∈G([a, b ], X).

Moreover, if A and f are left-continuous on (a, b ], then x is also left-continuous on (a, b ].

In addition, the following two important auxiliary assertions are true:

3.2. Lemma. Let A∈BV ([a, b ], L(X)) satisfy (3.2), f ∈G([a, b ], X) and x̃∈X and let x be
the corresponding solution of (3.1) on [a, b ]. Then

varb
a (x− f) ≤ (varb

a A) ‖x‖∞ < ∞ , (3.3)

cA:= sup
t∈ (a,b ]

∥∥[I −∆−A(t)]−1
∥∥

L(X)
∈ (0,∞) (3.4)

and
‖x(t)‖X ≤ cA (‖x̃‖X + ‖f(a)‖X + ‖f‖∞) exp (cA vart

a A) for t∈ [a, b ] . (3.5)

Proof. i) Let D = {α0, α1, . . . , αν(D)} be a division of [a, b ]. Then

ν(D)∑

j=1

∥∥∥x(αj)− f(αj)−x(αj−1)+ f(αj−1)
∥∥∥

X

=
ν(D)∑

j=1

∥∥∥
∫ αj

αj−1

d[A] x
∥∥∥

X
≤

ν(D)∑

j=1

[
(varαj

αj−1A) ‖x‖∞
]

= (varb
aA) ‖x‖∞ < ∞,

i.e. (3.3) is true.
ii) For t ∈ (a, b ] such that ‖∆−A(t)‖L(X) < 1

2 we have

∥∥[I −∆−A(t)]−1
∥∥

L(X)
≤ 1

1− ‖∆−A(t)‖L(X)
< 2
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(cf. e.g. [33, Lemma 4.1-C]). Therefore, 0 ≤ cA < ∞ due to the fact that the set

{t∈ [a, b ]; ‖∆−A(t)‖L(X)≥ 1
2}

has at most finitely many elements. As cA = 0 is impossible, this proves (3.4).

iii) Now, let x be a solution of (3.1). Put B(a)= A(a) and B(t)= A(t−) for t∈ (a, b ]. Then, by
[28, Corollary 2.6] and [28, Proposition 2.7], we get A−B ∈BV ([a, b ], L(X)), varb

aB≤ varb
aA,

A(t)−B(t)= ∆−A(t), and
∫ t
a d[A−B] x=∆−A(t) x(t) for t∈ (a, b ]. Consequently

[I −∆−A(t)]x(t) = x̃ +
∫ t

a
d[B] x + f(t)− f(a) for t∈ (a, b ]

and (cf. Proposition 2.1 (i))

‖x(t)‖X ≤K1 +K2

∫ t

a
d[h] ‖x‖X for t∈ [a, b ],

where
K1 = cA (‖x̃‖X + ‖f(a)‖X + ‖f‖∞) , K2 = cA and h(t) = vart

a B.

The function h is nondecreasing and, since B is left-continuous on (a, b ], h is also left-
continuous on (a, b ]. Therefore we can use the generalized Gronwall inequality (see e.g. [31,
Lemma I.4.30] or [26, Corollary 1.43]) to get the estimate (3.5). ¤

3.3. Lemma. Let A, An ∈ BV ([a, b ], L(X)), n∈N, be such that (3.2) and

lim
n→∞ ‖An −A‖∞ = 0 (3.6)

are satisfied. Then [
I −∆−An(t)

]−1 ∈L(X) (3.7)

for all t∈ (a, b ] and all n∈N sufficiently large. Moreover, there is µ∗ ∈ (0,∞) such that

cAn := sup
t∈ (a,b ]

∥∥[I −∆−An(t)]−1
∥∥

L(X)
≤µ∗ (3.8)

for all n∈N sufficiently large.

Proof. Notice that, since A∈BV ([a, b ], L(X)), the set D :={t∈ (a, b ]; ‖∆−A(t)‖L(X)≥ 1
4}

has at most a finite number of elements. Let cA be defined as in (3.4). Then, as by (3.6)
lim

n→∞ ‖∆
−An−∆−A‖∞=0, there is n0 ∈N such that

‖∆−An(t)−∆−A(t)‖L(X) < 1
4 min{1, 1

cA
} for t∈ [a, b ] and n≥n0. (3.9)

Thus, ‖∆−An(t)‖L(X)≤‖∆−A(t)‖L(X)+‖∆−An(t)−∆−A(t)‖L(X)<
1
2 for t∈ [a, b ]\D and n≥n0 .

By [33, Lemma 4.1-C], this implies that

[I −∆−An(t)] is invertible and ‖[I −∆−An(t)]−1‖L(X) < 2 for t∈ [a, b ] \D and n≥n0.
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Furthermore, due to (3.2), the relation

I−∆−An(t) = [I−∆−A(t)]
[
I−[I−∆−A(t)]−1 (∆−An(t)−∆−A(t))

]
(3.10)

holds for all t∈ [a, b ] and n∈N. Denote Tn(t) := [I−∆−A(t)]−1 (∆−An(t)−∆−A(t)) for n∈N
and t∈ [a, b ]. Then (3.10) means that, I−∆−An(t) is invertible if and only if I−Tn(t) is
invertible.

Now, let t∈D and n≥n0 be given. Then, due to (3.4) and (3.9), we have ‖Tn(t)‖L(X) < 1
4 .

Consequently, by [33, Lemma 4.1-C], I−Tn(t) and therefore also [I−∆−An(t)] are invertible.
Moreover, taking into account (3.4) and (3.10), we can see that ‖[I −∆−An(t)]−1‖L(X) < 2 cA .

To summarize, there exists n0 ∈N such that

[I−∆−An(t)] is invertible and ‖[I−∆−An(t)]−1‖L(X)≤µ∗=2 max{1, cA}
for all t∈ (a, b ] and n≥n0. This completes the proof. ¤

The main result of this section is the following Theorem, which generalizes in a linear case
the recent results by Federson and Schwabik [7]) and covers the results known for generalized
linear differential equations in the case X =Rm. Unlike [3], to prove it we do not utilize
the variation-of-constants formula. Therefore it is not necessary to assume the additional
condition [I −∆+A(t)]−1 ∈L(X) for t∈ [a, b ].

3.4. Theorem. Let A, An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X), x̃, x̃n ∈X for n∈N. Fur-
thermore, let A satisfy (3.2), (3.6),

α∗ := sup
n∈N

(
varb

a An

)
<∞ , (3.11)

lim
n→∞ ‖fn− f‖∞ = 0 , (3.12)

lim
n→∞ ‖x̃n− x̃‖X =0 . (3.13)

Then equation (3.1) has a unique solution x on [a, b ]. Furthermore, for each n ∈ N large
enough there is a unique solution xn on [a, b ] to the equation

xn(t) = x̃n +
∫ t

a
d[An]xn + fn(t)− fn(a) , t ∈ [a, b ] (3.14)

and
lim

k→∞
‖xn−x‖∞ = 0 . (3.15)

Proof. Due to (3.2) equation (3.1) has a unique solution x on [a, b ]. Furthermore, by
Lemma 3.2, there is n0 ∈N such that (3.7) is true for n≥n0. Hence, for each n≥n0, equation
(3.14) possesses a unique solution xn on [a, b ]. Set

wn = (xn − fn)− (x− f) (3.16)

Then

wn(t) = w̃n +
∫ t

a
d[An] wn + hn(t)− hn(a) for n∈N and t∈ [a, b ],
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where w̃n = (x̃n− fn(a))− (x̃− f(a)) and

hn(t) =
∫ t

a
d[An−A] (x− f) +

(∫ t

a
d[An] fn −

∫ t

a
d[A] f

)
.

First, notice that according to (3.12) we have

lim
n→∞ ‖w̃n‖X = 0. (3.17)

Furthermore, in view of Theorem 2.2, we have

lim
n→∞

∥∥∥
∫ t

a
d[An] fn −

∫ t

a
d[A] f

∥∥∥
X

= 0.

Moreover, since (x− f)∈BV ([a, b ], X) by (3.3), we get by Proposition 2.1 (ii)
∥∥∥

∫ t

a
d[An−A] (x− f)

∥∥∥
X
≤ 2 ‖An−A‖∞ ‖x− f‖BV for all t∈ [a, b ].

Having in mind (3.6), we can see that the relation

lim
n→∞

∥∥∥
∫ t

a
d[An−A] (x− f)

∥∥∥
X

= 0

holds. To summarize,
lim

n→∞ ‖hn‖∞ = 0. (3.18)

By (3.11) and by Lemmas 3.2 and 3.3 we have

‖wn(t)‖X ≤ µ∗ (‖w̃n‖X + ‖hn‖∞) exp (µ∗ varb
a An) for t∈ [a, b ].

Consequently, using (3.17) and (3.18) we deduce that limn→∞ ‖wn‖X =0. Finally, by (3.12)
and (3.16), we conclude that (3.15) is true. ¤

We will close this section by a comparison of Theorem 3.4 with two similar results pre-
sented for dimX <∞ by Schwabik in [26]. First, when restricted to the linear homogeneous
case, Theorem 8.2 from [26] (see also [1, proposition A.3] with a general Banach space X)
modifies to

3.5. Theorem. Let A,An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X), fn(t)−fn(a)=f(t)−f(a)=0
and x̃n=x̃∈X for n∈N and t∈ [a, b ]. Further, let a nondecreasing function h : [a, b ]→R be
given such that

lim
n→∞An(t) = A(t) on [a, b ], (3.19)

{ ‖An(t2)−An(t1)‖L(X)≤ |h(t2)−h(t1)|, ‖A(t2)−A(t1)‖L(X)≤ |h(t2)−h(t1)|
for t1, t2 ∈ [a, b ] and n∈N.

(3.20)

Let xn, n∈N, be solutions of (3.14) and let

lim
n→∞ ‖xn(t)− x(t)‖X for t∈ [a, b ].

Then x∈BV ([a, b ], X) is a solution of (3.1) on [a, b ].
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3.6. Proposition. Under the assumptions of Theorem 3.5 the relations (3.6) and (3.11) are
satisfied.

Proof. i) The relation (3.11) follows immediately from (3.20).
ii) Notice that (3.19) and (3.20) imply that

{ ‖An(t−)−An(s)‖L(X)≤ |h(t−)−h(s)|, ‖A(t−)−A(s)‖L(X)≤ |h(t−)−h(s)|
for t∈ (a, b ], s∈ [a, b ], n∈N,

(3.21)

and { ‖An(t+)−An(s)‖L(X) ≤ |h(t+)−h(s)|, ‖A(t+)−A(s)‖L(X) ≤ |h(t+)−h(s)|
for t∈ [a, b), s∈ [a, b ], n∈N.

(3.22)

iii) Let ε> 0 and t∈ (a, b ] be given and let us choose s0 ∈ (a, t) and n0 ∈N so that

|h(t−)−h(s0)|< ε

3
and ‖An(s0)−A(s0)‖L(X) <

ε

3
for n≥n0. (3.23)

Then, by (3.21) and (3.23),

‖An(t−)−A(t−)‖L(X)

≤‖An(t−)−An(s0)‖L(X) + ‖An(s0)−A(s0)‖L(X) + ‖A(s0)−A(t−)‖L(X)

< |h(t−)−h(s0)|+ ε

3
+ |h(t−)−h(s0)|<ε.

This means that
lim

n→∞An(t−) = A(t−) holds for t ∈ (a, b ]. (3.24)

Similarly, using (3.22) we get

lim
n→∞An(t+) = A(t+) holds for t ∈ [a, b). (3.25)

iv) Now, suppose that (3.6) is not valid. Then there is ε̃ > 0 such that for any `∈N there
exist m`≥ ` and t` ∈ [a, b ] such that

‖Am`
(t`)−A(t`)‖L(X) ≥ ε̃. (3.26)

We may assume that m`+1 > m` for any ` ∈ N and

lim
`→∞

t` = t0 ∈ [a, b ]. (3.27)

Let t0 ∈ (a, b ] and assume that the set of those ` ∈ N for which t` ∈ (a, t0) has infinitely
many elements, i.e. there is a sequence {`k} ⊂ N such that t`k

∈ (a, t0) for all k∈N and
limk→∞ t`k

= t0. Denote sk = t`k
and Bk = Am`k

for k∈N. Then, in view of (3.26), we have

sk ∈ (a, t0) for k∈N, lim
k→∞

sk = t0 (3.28)

and



3. Case of a uniformly bounded variation 11

‖Bk(sk)−A(sk)‖L(X) ≥ ε̃ for k∈N. (3.29)

By (3.21), we have

‖A(t0−)−A(sk)‖L(X)≤h(t0−)−h(kn), ‖Bk(t0−)−Bk(sk)‖L(X)≤h(t0−)−h(kn) for k∈N.

Therefore, by (3.24) and since lim
k→∞

(h(t0−)− h(sk)) = 0 due to (3.28), we can choose k0 ∈ N
so that

‖Bk0(t0−)−A(t0−)‖L(X) < eε
3 , ‖A(t0−)−A(sk0)‖L(X) ≤ h(t0−)− h(sk0) < eε

3

and
‖Bk0(t0−)−Bk0(sk0)‖L(X) < eε

3 .

As a consequence, we get finally by (3.29)

ε̃≤‖Bk0(sk0)−A(sk0)‖L(X)

≤‖Bk0(sk0)−Bk0(t0−)‖L(X) + ‖Bk0(t0−)−A(t0−)‖L(X) + ‖A(t0−)−A(sk0)‖L(X) < ε̃,

a contradiction.
If t0 ∈ [a, b) and the set of those ` ∈ N for which t` ∈ (a, t0) has only finitely many

elements, then there is a sequence {`k} ⊂ N such that t`k
∈ (t0, b) for all k∈N and

limk→∞ t`k
= t0. As before, let sk = t`k

and Bk = Am`k
for k∈N and notice that sk ∈ (t0, b)

for k∈N, lim
k→∞

sk = t0 and (3.29) are true. Arguing similarly as before we get that there is

k0 ∈N such that

ε̃≤‖Bk0(sk0)−A(sk0)‖L(X)

≤‖Bk0(sk0)−Bk0(t0+)‖L(X) + ‖Bk0(t0+)−A(t0+)‖L(X) + ‖A(t0+)−A(sk0)‖L(X) < ε̃,

a contradiction. Thus, (3.6) is satisfied. ¤
Similarly, when restricted to the linear case, Theorem 8.8 from [26] modifies to

3.7. Theorem. Let A,An ∈BV ([a, b ], L(X)), f, fn ∈G([a, b ], X), fn(t)−fn(a)=f(t)−f(a)=0
and x̃n=x̃∈X for n∈N and t∈ [a, b ]. Furthermore, let (3.2) hold and let x be the correspond-
ing solution of (3.1). Finally, let scalar nondecreasing and left-continuous on (a, b ] functions
hn, n∈N, and h be given such that h is continuous on [a, b ] and

lim
n→∞An(t) = A(t) on [a, b ], (3.30)

{ ‖An(t2)−An(t1)‖L(X)≤ |hn(t2)−hn(t1)|, ‖A(t2)−A(t1)‖L(X)≤ |h(t2)−h(t1)|
for all t1, t2 ∈ [a, b ] and n∈N,

(3.31)

{
lim sup

n→∞

[
hn(t2)− hn(t1)

] ≤ h(t2)− h(t1)

whenever a ≤ t1 ≤ t2 ≤ b.
(3.32)

Then, for any n∈N sufficiently large, equation (3.14) has a unique solution xn on [a, b ] and
(3.15) holds.
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3.8. Proposition. Under the assumptions of Theorem 3.7 the relations (3.6) and (3.11) are
satisfied.

Proof (taken from [34]). i) By (3.32) there is n0 ∈N such that hn(b)−hn(a)≤h(b)−h(a)+ 1
for all n≥n0. Hence for any n∈N we have

varAn≤α0 = max
({

varAn ;n≤n0

} ∪ {
h(b)−h(a)+ 1

})
<∞.

This proves (3.11).
ii) Suppose that (3.6) does not hold. Then there is ε̃ > 0 such that for any `∈N there

exist m`≥ ` and t` ∈ [a, b ] such that

‖Am`
(t`)−A(t`)‖L(X)≥ ε̃. (3.33)

We may assume that m`+1 >m` for any `∈N and

lim
`→∞

t` = t0 ∈ [a, b ]. (3.34)

Let t0 ∈ (a, b) and let an arbitrary ε> 0 be given. Since h is continuous, we may choose η > 0
in such a way that t0− η, t0 + η ∈ [a, b ] and

h(t0+η)−h(t0−η) <ε. (3.35)

Furthermore, by (3.30) there is `1 ∈N such that

‖Am`
(t0)−A(t0)‖L(X) <ε for all `≥ `1 (3.36)

and by (3.31), (3.32) and (3.35) there is `2 ∈N, `2≥ `1, such that

‖Am`
(τ2)−Am`

(τ1)‖L(X)≤h(t0+η)−h(t0−η)+ ε<2 ε

whenever τ1, τ2 ∈ (t0−η, t0+η) and `≥ `2 .

}
(3.37)

The relations (3.30) and (3.37) imply immediately that

‖A(τ2)−A(τ1)‖L(X) = lim`→∞ ‖Am`
(τ2)−Am`

(τ1)‖L(X)≤ 2 ε

whenever τ1, τ2 ∈ (t0−η, t0+η) .

}
(3.38)

Finally, let `3 ∈ N be such that `3≥ `2 and

|t` − t0| < η for all ` ≥ `3, (3.39)

then in virtue of the relations (3.34)–(3.39) we have

‖Am`
(t`)−A(t`)‖L(X)

≤‖Am`
(t`)−Am`

(t0)‖L(X) + ‖Am`
(t0)−A(t0)‖L(X) + ‖A(t0)−A(t`)‖L(X)≤ 5 ε.

Hence, choosing ε < 1
5 ε̃, we obtain by (3.33) ε̃ > ‖Am`

(t`)−A(t`)‖L(X)≥ ε̃, a contradiction.
This proves that (3.6) is satisfied.

The modification of the proof in the cases t0 = a or t0 = b is obvious. ¤
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4 Continuous dependence on a parameter in the

case of variations bounded with a weight

The main result of this section deals with the homogeneous generalized linear differential
equation

x(t) = x̃ +
∫ t

a
d[A] x, t∈ [a, b ], (4.1)

where, as before, A∈BV ([a, b ], L(X)) and x̃∈X. As in the previous section we will assume
that the fundamental existence assumption (3.2) is satisfied.

The main result of this section extends that obtained by Z. Opial for the case X =Rm,
m∈N and A∈AC([a, b ],Rm) in [25]. To this aim, we need the following estimate well known
in the case dim X <∞ .

4.1. Lemma. If g ∈BV ([a, b], X), then
∑

t∈[a,b)

‖∆+g(t)‖X +
∑

t∈(a,b]

‖∆−g(t)‖X ≤ varb
a g .

Proof. Let {sk ∈X; k∈N } be the set of points of discontinuity of g in (a, b), so we can
write ∑

t∈[a,b)

‖∆+g(t)‖X +
∑

t∈(a,b]

‖∆−g(t)‖X = lim
n→∞ Sn ,

where

Sn = ‖∆+g(a)‖X + ‖∆−g(b)‖X +
n∑

k=1

[‖∆−g(sk)‖X + ‖∆+g(sk)‖X

]
for n∈N .

Let ε > 0 and n∈N be given and let {t1, t2, . . . , tn} ⊂ (a, b) be such that

{t1, t2, . . . , tn} = {s1, s2, . . . , sn} and a < t1 < t2 < · · · < tn < b .

Then Sn = ‖∆+g(a)‖X + ‖∆−g(b)‖X +
n∑

k=1

[‖∆−g(tk)‖X + ‖∆+g(tk)‖X

]
. Furthermore, for

each k = 1, 2, . . . , n, choose δk > 0 in such a way that

‖g(tk + δk)− g(tk+)‖X <
ε

4 (n+1)
, ‖g(tk− δk)− g(tk−)‖X <

ε

4 (n+1)

and [tk − δk, tk + δk] ∩ {t1, t2, . . . , tn} = {tk} . Analogously, let δ0 > 0 be such that

‖g(a + δ0)− g(a+)‖X<
ε

4
, ‖g(b−)− g(b− δ0)‖X<

ε

4
.

and a+δ0 <t1 and b−δ0 >tn . It follows that

Sn ≤
(
‖g(a+)− g(a + δ0)‖X + ‖g(a+ δ0)− g(a)‖X

)

+
n∑

k=1

‖g(tk+)− g(tk + δk)‖X +
n∑

k=1

‖g(tk + δk)− g(tk)‖X

+
n∑

k=1

‖g(tk−)− g(tk− δk)‖X +
n∑

k=1

‖g(tk− δk)− g(tk)‖X
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+
(
‖g(b)− g(b− δ0)‖X + ‖g(b− δ0)− g(b−)‖X

)

<
ε

4
+ ‖g(a+δ0)− g(a)‖X +

n ε

4 (n+1)
+

n∑

k=1

‖g(tk+δk)− g(tk)‖X

+
n ε

4 (n+1)
+

n∑

k=1

‖g(tk)− g(tk−δk)‖X +‖g(b)− g(b−δ0)‖X +
ε

4

holds for any n∈N. To summarize, for any n∈N we have

Sn < ε +
(
‖g(a+ δ0)− g(a)‖X +

n∑

k=1

‖g(tk + δk)− g(tk)‖X

)

+
( n∑

k=1

‖g(tk)− g(tk− δk)‖X + ‖g(b)− g(b− δ0)‖X

)
.

Therefore Sn≤ ε+ (varb
a g) for each n∈N and ε> 0. Thus, Sn≤ varb

ag for all n ∈ N , wherefrom
the desired estimate immediately follows. ¤

4.2. Theorem. Let A, An ∈ BV ([a, b ], L(X)) and x̃, x̃n ∈X for n∈N. Assume (3.2), (3.13)
and

lim
n→∞ ‖An−A‖∞

(
1+ varb

a An

)
= 0 , (4.2)

Then (4.1) has a unique solution x on [a, b ]. Moreover, for each n∈N sufficiently large, the
equation

xn(t) = x̃n +
∫ t

a
d[An] xn , t ∈ [a, b ] (4.3)

has a unique solution xn on [a, b ] and (3.15) holds.

Proof. First, notice that, since

‖An−A‖∞≤‖An−A‖∞
(
1+ varb

a An

)
for all n∈N,

(4.2) implies (3.6). Therefore, by Lemma 3.3, there is n0 ∈N such that (3.7) holds for each
t∈ (a, b ] and each n≥n0.

Assume n≥n0. Let x and xn be the solutions on [a, b ] of (4.1) and (4.3), respectively.
Then

xn(t)−x(t) = x̃n − x̃+
∫ t

a
d[A] (xn−x) + hn(t)−hn(a) for t∈ [a, b ] , (4.4)

where

hn(t) =
∫ t

a
d[An−A] xn for t∈ [a, b ] . (4.5)

By Lemma 3.2 we have

‖xn − x‖∞ ≤ cA (‖x̃n−x̃‖X + ‖hn‖∞) exp (cA varb
a A). (4.6)
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Thus, in view of the assumption (3.13), to prove the assertion of the theorem, we have to
show that limn→∞ ‖hn‖∞ = 0.

To this aim, we integrate by parts (cf. Proposition 2.1 (iii)) in the right-hand side of (4.5)
and use Substitution Formula (cf. Proposition 2.1 (iv)). Then we get

hn(t) = [An(t)−A(t)]xn(t)− [An(a)−A(a)] x̃n−
∫ t

a
(An−A) d[An] xn−∆t

a(An−A, xn) (4.7)

for t∈ [a, b ], where

∆t
a(An−A, xn)=

∑

a≤s<t

[∆+(An(s)−A(s))∆+xn(s)]−
∑

a<s≤t

[∆−(An(s)−A(s))∆−xn(s)] . (4.8)

Inserting the relations (cf. [28, Proposition 2.3])

∆+xn(t) = ∆+An(t) xn(t) for t∈ [a, b) and ∆−xn(t) = ∆−An(t) xn(t) for t∈ (a, b ]

into the right-hand side of (4.8) and using Lemma 4.1, we obtain the estimates

‖∆t
a(An−A, xn)‖X ≤ 2 ‖An−A‖∞ (vart

a An) ‖xn‖∞ for t∈ [a, b ] .

Hence ‖hn(t)‖X ≤‖An−A‖∞
(
2 +3 (vart

a An)
) ‖xn‖∞, that is,

‖hn‖∞ ≤ αn ‖xn‖∞, (4.9)

where αn = ‖An−A‖∞
(
2+3 varb

a An

)
. Note that, due to (4.2), we have

lim
n→∞ αn = 0. (4.10)

We can see that to show that limn→∞ ‖hn‖∞ = 0, it is sufficient to prove that the sequence
{‖xn‖∞} is bounded. By (4.6) and (4.9) we have

‖xn‖∞≤‖xn−x‖∞+ ‖x‖∞≤ cA

(‖x̃n− x̃‖X +αn‖xn‖∞
)

exp (cA varb
a A)+ ‖x‖∞ .

Hence
(
1− cA αn exp (cA varb

a A)
) ‖xn‖∞≤ cA ‖x̃n− x̃‖X exp (cA varb

a A)+ ‖x‖∞ for n≥n0.
By (3.13) and (4.10), there is n1≥n0 such that ‖x̃n− x̃‖X < 1 and cA αn exp (cA varb

a A)< 1
2

for n≥n1. In particular, ‖xn‖∞< 2
(
cA exp (cA varb

a A)+ ‖x‖∞
)

for n≥n1, i.e. the sequence
{‖xn‖∞} is bounded and this completes the proof. ¤

4.3. Remark. In comparison with Theorem 3.4, the uniform boundedness of variation (3.11)
was not needed in Theorem 4.2. On the other hand, if (3.11) is assumed, Theorem 4.2 reduces
to Theorem 3.4.

If X =Rm for some m∈N and f, fn ∈BV ([a, b ],Rm) for n∈N, then Theorem 4.2 can be,
similarly as in the ODE’s case, extended to the nonhomogeneous equations (3.1) and (3.14).
Indeed, let us define the (m+1)× (m+1)−matrix valued function B: [a, b ] → L(Rm+1) by

B(t) =
(

A(t) f(t)
0 0

)
for t∈ [a, b ] and ỹ =

(
x̃
1

)
.
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Similarly, let

Bn(t) =
(

An(t) fn(t)
0 0

)
and ỹn =

(
x̃n

1

)
for t∈ [a, b ] and n∈N .

It is easy to check that equations (3.1) and (3.14) are respectively equivalent to the equations

y(t) = ỹ +
∫ t

a
d[B] y (4.11)

and

yn(t) = ỹn +
∫ t

a
d[Bn] yn, n∈N (4.12)

in the following sense: if x is a solution to (3.1) and y(t) =
(

x(t)
1

)
, then y is a solution to

(4.11). Conversely, if y is a solution to (4.11) and x is formed by its first m-components then
x is a solution to (3.1), where x̃∈Rm is formed by the first m-components of ỹ. An analogous
relationship holds also between equations (3.14) and (4.12), of course. Having this in mind,
we can see that the following assertion is true.

4.4. Corollary. Let m∈N, A, An ∈BV ([a, b ], L(Rm)), f, fn ∈BV ([a, b ],Rm), and x̃, x̃n ∈Rm

for n∈N. Assume (3.2), (4.2), (3.13) and

lim
n→∞

(
‖fn− f‖∞

(
1 +varb

a fn

))
= 0. (4.13)

Then equation (3.1) has a unique solution x on [a, b ] and, for each n∈N large enough there
is a unique solution xn on [a, b ] to the equation (3.14) and (3.15) is true.

5 Application to dynamic equations on time scales

The theory of time scales has recently been focus of attention since it can treat continuous
and discrete problems. In this section we apply the continuous dependence results obtained
in Sections 3 and 4 to dynamic equations on time scale. Let us recall some preliminary
definitions and notations (e.g. [4]).

A time scale T is a nonempty closed subset of R. Given a, b ∈ T, by [a, b]T we denote the
compact interval in T, that is, [a, b]T = [a, b] ∩ T. For each t ∈ T, consider

ρ(t) := sup
s∈T

s < t , σ(t) := inf
s∈T

s > t , and σ̃(t) := inf
s∈T

s ≥ t .

If σ(t) = t we say that t is right-dense, while if ρ(t) = t then t is called left-dense. A function
f : [a, b ]T→Rm is rd-continuous in [a, b ]T if f is continuous at every right-dense point of
[a, b ]T and there exists lims→t− f(s) for every left-dense point t ∈ [a, b ]T.

Consider the linear dynamic equation

y∆(t) = P (t) y(t) + h(t) , y(a) = ỹ , t∈ [a, b]T, (5.1)
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where ỹ ∈ Rm, P : [a, b ]T → L(Rm) and h : [a, b ]T → Rm are rd-continuous in [a, b]T and y∆

stands for the ∆-derivative of y. The initial value problem (5.1) can be rewritten as a time
scale integral equation

y(t) = ỹ +
∫ t

a

[
P (s) y(s) + h(s)

]
∆s , t ∈ [a, b]T ,

where the integral is the Riemann ∆-integral defined e.g. in [5]. Slav́ık proved in [32] that
this ∆-integral corresponds to a special case of the Kurzweil-Stieltjes integral. In addition,
in [32] the relationship between dynamic equations on time scale and generalized differential
equations is described. For the reader’s convenience, we summarize the needed results from
[32] in the following proposition.

5.1. Proposition.

(i) [32, Theorem 5] Let f : [a, b ]T→Rm be a rd-continuous function. Define

F1(t)=
∫ t

a
f(s)∆s for t∈ [a, b ]T and F2(t)=

∫ t

a
f(σ̃(s)) d[σ̃(s)] for t∈ [a, b ] .

Then F2 = F1 ◦ σ̃ on [a, b ].

(ii) [32, Theorem 12] If y : [a, b ]T → Rm is a solution of (5.1) then x = y ◦ σ̃ is a solution
of (3.1), where

A(t) =
∫ t

a
P (σ̃(s)) d[σ̃(s)] and f(t)=

∫ t

a
h(σ̃(s)) d[σ̃(s)] for t∈ [a, b ] . (5.2)

Symmetrically, if x: [a, b ]→Rm is a solution of (3.1), then the function y : [a, b ]T→Rm

defined by y(t)= x(t) for t∈ [a, b ]T is a solution of (5.1).

5.2 . Remark. Note that σ̃ : [a, b ] → [a, b ]T ⊂ [a, b ] is monotone and left continuous on
(a, b ]. In particular, varb

a σ̃≤ b = − a. In view of this, it is easy to check that the functions
A : [a, b ]→L(Rm) and f : [a, b ]→Rm given by (5.2) are well-defined, left-continuous and have
bounded variations on [a, b ].

The following theorem is the first main result of this section.

5.3 . Theorem. Let m∈N and let P, Pn: [a, b ]T → L(Rm), h, hn: [a, b ]T → Rm for n∈N be
rd-continuous functions in [a, b ]T and let ỹ, ỹn ∈Rm, n∈N, be given. Assume that

lim
n→∞ ‖ỹn− ỹ‖Rm = 0 (5.3)

and that there is M ∈ (0,∞) such that

sup
t∈[a,b ]T

‖Pn(t)‖L(Rm) ≤ M for n∈N, (5.4)

and
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lim
n→∞ sup

t∈[a,b ]T

∥∥∥
∫ t

a
(Pn(s)−P (s))∆s

∥∥∥
L(Rm)

=0 ,

lim
n→∞ sup

t∈[a,b ]T

∥∥∥
∫ t

a
(hn(s)−h(s)) ∆s

∥∥∥
Rm

=0 .





(5.5)

Then initial value problem (5.1) has a solution y, initial value problems

y∆
n (t) = Pn(t) yn(t) + hn(t) , yn(a) = ỹn , t ∈ [a, b ]T (5.6)

have solutions yn for all n∈N, and

lim
n→∞ sup

t∈[a,b ]T

‖yn(t)− y(t)‖Rm = 0 . (5.7)

Proof. Let A∈BV ([a, b ], L(Rm)) and f ∈BV ([a, b ],Rm) be given by (5.2). Furthermore,
define

An(t)=
∫ t

a
Pn(σ̃(s)) d[σ̃(s)] and fn(t)=

∫ t

a
hn(σ̃(s)) d[σ̃(s)] for t∈ [a, b ] and n∈N . (5.8)

Since A and all An, n∈N, are left-continuous, equation (3.1) has a solution x∈BV ([a, b ],Rm)
and equations (3.14) have solutions xn ∈BV ([a, b ],Rm) for each n∈N. Furthermore, by
Proposition 5.1 (i), we have

‖An−A‖∞= sup
t∈[a,b ]

∥∥∥
∫ eσ(t)

a
(Pn(s)−P (s))∆s

∥∥∥
L(Rm)

≤ sup
τ∈[a,b ]T

∥∥∥
∫ τ

a
(Pn(s)−P (s))∆s

∥∥∥
L(Rm)

for each n∈N, that is,

‖An −A‖∞≤ sup
t∈[a,b ]T

∥∥∥
∫ t

a
(Pn(s)−P (s))∆s

∥∥∥
L(Rm)

.

Analogously,

‖fn − f‖∞ ≤ sup
t∈[a,b ]T

∥∥∥
∫ t

a
(hn(s)−h(s))∆s

∥∥∥
Rm

.

This, with respect to (5.5), means that the assumptions (3.12) of Theorem 3.4 are satisfied.
Furthermore, if a≤ c <d≤ b, then

‖An(d)−An(c)‖L(Rm) =
∥∥∥∥
∫ d

c
Pn(σ̃(s)) d[σ̃(s)]

∥∥∥∥
L(Rm)

≤‖Pn ◦ σ̃‖∞
(
vard

c σ̃
)
,

holds for each n∈N, wherefrom, wherefrom, by (5.4) and Remark 5.2, the estimate

varb
a An≤M (b− a) for all n∈N (5.9)

follows. Hence, the assumption (3.11) of Theorem 3.4 is satisfied, as well. Consequently, we
can use Theorem 3.4 to prove that (3.15) holds.

By Proposition 5.1 (ii), the functions y, yn : [a, b ]T→Rm, n∈N, obtained as the restriction
of x and xn to [a, b ]T, respectively, are solutions to (5.1) and (5.6). Therefore, thanks to (3.15),
(5.7) is also true, which completes the proof. ¤
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5.4. Remark. Two results on the continuous dependence of solutions to nonlinear dynamic
equations have been recently delivered by A. Slav́ık, cf. [32, Theorems 14 and 16]. To prove
them, it was sufficient to apply Proposition 5.1 and Theorems 8.2 and 8.7 from [26]. So, with
respect to our Propositions 3.6 and 3.8, we can see that the above Theorem 5.3 provides for
the linear case more general result than both Theorem 14 and Theorem 16 in [32].

Making use of Corollary 4.4 we obtain the following assertion.

5.5 . Theorem. Let m∈N and let P, Pn: [a, b ]T → L(Rm), h, hn: [a, b ]T → Rm for n∈N
be rd-continuous functions in [a, b ]T and let ỹ, ỹn ∈Rm, n∈N, be given. Assume that (5.3)
holds and

lim
n→∞ sup

t∈[a,b ]T

∥∥∥
∫ t

a
(Pn(s)−P (s))∆s

∥∥∥
L(Rm)

[
1+ sup

t∈[a,b ]T

‖Pn(t)‖L(Rm)

]
= 0 ,

lim
n→∞ sup

t∈[a,b ]T

∥∥∥
∫ t

a
(hn(s)−h(s))∆s

∥∥∥
L(Rm)

[
1+ sup

t∈[a,b ]T

‖hn(t)‖L(Rm)

]
= 0 .





(5.10)

Then equation (5.1) has a solution y, equations (5.6) have solutions yn for all n∈N and (5.7)
holds.

Proof. Let An, A, fn, f be defined by (5.2) and (5.8). Recall that as A∈BV ([a, b ], L(Rm)),
An ∈BV ([a, b ], L(Rm)) for n∈N and A,An, n∈N, are left-continuous on (a, b ] (cf. Re-
mark 5.2), equation (3.1) has a solution x∈BV ([a, b ],Rm) and equations (3.14) have solutions
xn ∈BV ([a, b ],Rm) for each n∈N. Similarly as in the proof of Theorem 5.3 we have

‖An −A‖∞≤ sup
t∈[a,b ]T

∥∥∥
∫ t

a
(Pn(s)−P (s))∆s

∥∥∥
L(Rm)

.

In addition, note that varba An≤M (b− a). These estimates, together with (5.10), imply that
lim

n→∞ ‖An−A‖∞ [1+varb
a An] = 0. Similarly we get lim

n→∞ ‖fn− f‖∞ [1+ varb
a fn] = 0 . Apply-

ing Theorem 4.4 we arrive again at (3.15) and thus we may complete the proof of the theorem
using the same argument as in the close of the proof of Theorem 5.3. ¤
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[5] Bohner, M. and Peterson, A.: Advances in Dynamic Equations on Time Scales.
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