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0. INTRODUCTION

In [17] we studied the boundary value problem

(0,1) % = A(f) x + K(t) (M, x(a) + N, x(b)) + G(t) .r[dH(S)] x(s) + f(1),
0,2) M x(a) + N x(b) + f b[dLl(s)] x(s) =1,
©3) [JEZOECES

where A4 is an n x n-matrix function L-integrable on the compact interval [a, b], fis
a regular n-vector function of bounded variation on [a, b]; K,G,H,L, and L, are
regular matrix functions of bounded variation on [a, b]; M,N and M, N, are
constant matrices of the type m x n and (2n — m) X n, respectively, such that

(04) det (M’ N > +0;

c
l; and I, are constant vectors.

The equation (0,1) was considered as a generalized integrodifferential equation,
i.e., an n-vector function x is its solution iff for any t € [a, b]

x(t) = x(a) + j “A(s) x(5) ds + (K(t) — K(a)) (M. x(a) + N, x(b)) +
wm—wﬂkmm@umﬁw-

*) The last paragraph (§ 5) was added.
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We derived the adjoint problem and Green’s function for the problem (0,1), (0,2),
(0,3) and, moreover, we established a relation between the number of linearly in-
dependent, solutions to the given and the adjoint homogeneous problems. All these
results could be easily transferred to the case that absolutely continuous solutions to
the equation (0,1) are looked for.

In this paper we continue the investigation of such boundary value problems. The
assumption (0,4) is omitted and the kernel of the integral operator in (0,1) is now
general, not necessarily degenerate. Solutions are sought as functions absolutely
continuous on [a, b].

Paragraphs 1 and 2 have a preparatory character. In § 3 we treat the boundary
value problem

(0,5) % = A(t)x + Jb[d,G(t, s)] x(s) + f(¥),
©06) [[Tazn o -1,

where A4 and f are L-integrable on [a, b], L is of bounded variation on [a, b], I is
a constant vector, G is defined and measurable on [a, b] x [a, b] and such that
var, G(t, *) < oo for any t € [a, b] and ||G(t, a)|| + var} G(t, -) is square integrable
on [a, b] (i.e. Ge L*[#¥], see §2). To this problem an adjoint (“in the sense of
differential equations™) is derived (Definition 3,1) in such a way that the usual
Fredholm alternative holds. Furthermore a relation between the number of linearly
independent solutions to the given and the adjoint homogeneous problems is estab-
lished. Applying the general method of D. WEXLER [20] we show in the last paragraph
(§ 5) that the adjoint boundary value problem derived in § 3 is equivalent to the true
adjoint problem (“in the sense of functional analysis”).

In §4 we give some existence results for the weakly nonlinear boundary value
problem

©,7) %= A(h)x + J' "[4.6(t, 9)] x(5) + £ O() () (1),
©0.9) | j AL %) + & AE) (x) = 0,

where € = 0 is a small parameter, ®(¢) and A(g) for ¢ fixed are mappings of the
space /¥ of n-vector functions absolutely continuous on [a, b] into itself and of #¥
into the n-dimensional Euclidean space &, respectively, subjected to some smoothness
conditions. Similar boundary value problems were investigated by M. URABE [14],
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[15], [16] and M. Kwapisz [11]. The essential difference between their problems and
ours is in the presence of the integral operator

r[d,c(t, 9] x(s).

Moreover, in [14] and [15] only the less general multipoint boundary value problem
was treated while, on the other hand, [11] and [16] deal only with the more simple
noncritical case.

For other references to boundary value problems related to (0,5), (0,6) or (0,7),
(0,8) see for instance [3], [9], [17] or [11], [18], respectively.

1. PRELIMINARIES

Let —o0 < a < b < o0. The closed interval @ < t < b is denoted by J = [a, b]
and the open interval a < t < b is denoted by (a, b). All quantities are considered
as real.

Given an arbitrary p x g-matrix M =(M;;) (i=1,2,...,p; j =1,2,...,9),
rank (M) denotes its rank, M" its transpose and

q
M| = max 3 [M,].
i=1,2,..,pj=1
Considering p-vectors as p x 1-matrices, it is for an arbitrary p-vector x =
= (xl, X2s eony xp)‘

P
Ix] = max |x|, [x'] =X |x]| = plx]-
i=1,2,..,p Jj=1

The space of all p-vectors equipped with this norm is denoted by #,. The space of
all row p-vectors (i.e. of 1 x p-matrices) is denoted by %5. Whenever a product of
matrices occurs their types are assumed such that the multiplication is feasible.
(This concerns such “products” as F dG, F[dG] H, too.) I, denotes the identity
p X p-matrix and O, , the zero p x g-matrix. (Usually we write briefly I and 0.)

Given an arbitrary matrix function F defined on J and an arbitrary subdivision
oc={a=1t <t <..<t,=>b} of the interval J, let us denote

o(F;0) = Y |F(t;) — F(t;-,)| and var}F = sup, o(F; o).
. j=1
A matrix function F is said to be of bounded variation on J if var} F < oo. The space
of all p x g-matrix functions of bounded variation on J is denoted by #¥7,,, or
briefly 27", if no misunderstanding can arise. Any #7°, ,is a Banach space (B-space)

with the norm ||F| gy = |F(a)| + var} F.
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A€ denotes the B-space of all column n-vector functions absolutely continuous
on J equipped with the norm

MW=W%w%MW+mU=MM+rWMmf

Symbols [? F(r)dt and [} F(f) dG(f) stand for the Lebesgue and the o-Young
integral, respectively. For the definition of the o-Young integral and its basic proper-
ties (relation to the Riemann-Stieltjes integral, substitution theorem, integration by
parts formula, indefinite integrals etc.) see T. H. HILDEBRANDT [7] II 19,3. (The list
of properties of the 6-Young integral is given in [17] as well.) Let us recall here only
Dirichlet’s formula in a special form.

Lemma 1,1. Let F, G, X, Ye #Y", G being continuous on [a, b]. Then

J‘:[dF(t)] (X(t) J:Y(s) dG(s)) - f b ( J :[dF(t)] X@)) Y(s) d6i(s)

Given an arbitrary matrix function G(t, s) defined on J x J and an arbitrary net
subdivision o’ x 6" ={a =ty <t; <... <t =b,a=35, <58 <...< S, = b}
of the interval J x J, let us put

w(G; o’ x ¢") = ‘21 kZIIIG(tp 5¢) = G(t;-1 8¢ = G(tj, S-1) + G(tj- 1> Se-1)|
-

and Var,,; G = sup, xo w(G; 6’ x ¢”) (the least upper bound is taken over all
possible net subdivisions ¢’ x ¢” of J x J). A matrix function G(t, 5) is said to be
of strongly bounded variation on J x J if

Varyy; G + var® G(a, ) + vary G(+, a) < .

The space of all n x n-matrix functions of strongly bounded variation on J x J
is denoted by ¥#¥". If Ge ¥BY" then var, G(t, .) + vars G(+,5) £ M < oo for
any t, s€ J and G is bounded on J x J.(See [7] 111 4,8.)

Given a natural number k, the space of all p x g-matrix functions F defined on J
and such that

(1o o <

is denoted by £}, (or briefly £*). Any £%  is a B-space with the norm |F|, =

= (Ja |[F@)* ar)*™ -
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The space of all n x n-matrix functions K(t, s) defined and measurable on J x J
and such that

HJ””K(T’ o) drdo < 0, J:||K(t’ o)|*do < 0, j:”K(T, 5)|? dt < oo

forany t,seJ

is denoted by #,. For K € &, we denote |||K]||| = (ffsxs |K(%, 0)| dv do)'/2.

In the following, besides some well-known theorems as those of Fubini, Lebesgue
etc., we make also use of the Tonelli-Hobson theorem.

Lemma 1,2. (Tonelli-Hobson). If K(t, 5) is defined and measurable on J x J and
if any one of the three integrals

([ meopacss. [*([ixeoraas, [ ([ i ape)a

exists, then the integrals

[l xeoss. [([reau)s. [([xes)s

all exist and are equal to one another.

(For the proof see [1], pp. 63—64.)

2. SPACE #2[2¥]

The space L*[#Y"] is formed by all n x n-matrix functions G(t, s) defined and
measurable on J x J and such that

vars G(t, ) < o0 forany telJ
and

16t av = ([6(t, a)]| + vara G(z, ) e £2.

The properties of functions from #?[#¥"] which are needed in the sequel are
stated in the following lemmas. (The assertion of the first one — Lemma 2,1 — is
evident.)

Lemma 2,1. a) If Ge L*[#Y"], then G(,s)e £* for any seJ. b) SBYV <
c LBV

Lemma 2,2. If He % ,, then

G(t, s) = J 'H(t, o) do e 22[@7].

a
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Proof. For an arbitrary subdivision 6 = {a = s, < 5; < ... <5, = b} of the

interval J and for any te J,

-(&mwx@ré(ij”umnwdﬁl(fwmnmmfé

= -1

< (b - a) jbIIH(t, 7))*dr < 0.
Hence for any te J ’
1666 M = (a6 ) 5 0 = @) [ e 9 dee 2t
a
wherefrom the assertion of the lemma immediately follows.
Lemma 2,3, Let X € @Y and let G e L[ BV]. Then
F(t) = J [4.6(t, 9)] X(s) € 2.
Proof follows readily from the estimate

FOI < (swp |X@? Gart 66 ) on .

Lemma 2,4. Let X, Ye BY and let G L*[#7]. Then
b
H(t, ) = f [,6(t, 0)] X(0) ¥(s) € 2, .
_ Proof. Since for any t,se J
[HC. 9)] = (sup [X()])* (sup [YE)])* (vara 6(- -))* »

the right-hand side being L-integrable on J,

J"'( I:"H(t, 9| ds) dt < oo.

Hence our assertion follows by the Tonelli-Hobson theorem (Lemma 1,2).
Lemma 2,5. Let X € #Y",Ye £* and G e L*[#Y]. Then
F(i) = I ¥(s) ( J "[4,6(s, o] x(c)> ds
is bounded on J. ’ ‘
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Proof. By Lemma 2,4 F(t) is defined for all t € J. Moreover for any te J

1#@1 s ([ o as) ([ a)" s

<(| e )" up X6 ([ a6 ds)”’< .

j "[4.6(s, 9)] X(0)

Lemma 2,6. Let Ye £ and G € £*[#Y"]. Then
b
F(i) = I Y(s) G(s, f) ds e B
Proof. For any subdivision ¢ = {a = t, < t; < ... <'t, = b} of the interval J,

o) = [ Tl (5166 0) = 666l ) s s

s ([iree as) " ([t oo 2 as) " < o.

Lemma 2,7. Let X be absolutely continuous on J, let Ye £* and G e L*[8¥7].

Then
J b [d, f :Y(s) G(s, ) ds] X() = f :Y(t) ( f :[dsG(t, 9] X(S)) i

Proof. Both the integrals exist by lemmas 2,3 and 2,6. By double use of integration
by parts and of Fubini’s theorem we obtain succesively

[* [d, _[ "Y(5) 6(s, 1 ds] X(0) =

_ :':Y(s) G(s, b) X(b) ds — J :Y(s) G(s, a) X(a) ds — J' "( J :Y(s) G(s, 1) ds) () dt =
_ ::Y(s) G(s, b) X(5) ds — f :Y(s) G(s, @) X(a) ds — j :Y(t) ( f :G(t, 9 X(s) ds) dt =

- ”:Y(t) ( f :[dsG(t, 9] X(s)) ar.

(This is a special case of the unsymmetric Fubini theorem due to R. H. CAMERON
and W. T. MARTIN [2].)
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3. LINEAR BOUNDARY VALUE PROBLEM — CLASSICAL APPROACH

In this paragraph we investigate the existence of a solution to the boundary value
problem (#) given by

(3.1) % = A(t) x + C(t) x(a) + D() x(b) + Jb[dsG(t, s)] x(s) + f(v),

(3.2) Mx(a) + N x(b) + f [ALE)] x(65) = 1,

where Ae &) . fe ' = ¥4, ,,Cand De &}, Ge L*[BYV], Le BV ,,,, Mand N
are constant m X n-matrices and ! € #,,, L and G(t, -) are for any ¢ € J continuous
at a from the right and at b from the left.

Hereafter we write £ instead of %} ;.

The assumption of the continuity of G(t, ) and L at a and at b does not mean any

loss of generality. In fact, let us suppose Ge £*[#7"]. Then G(t,a + 1) e £,

for any 1€ (0, b — a). Since ||G(t, a + 1)|? < || G(t, )5y € L2, for any te J, we
have by Lebesgue’s theorem Co(f) = C(t) + G(t, a+) — G(t, a) € £2 . Analogously
Dy(t) = D(t) + G(t, b) — G(t, b—) € £%,. Defining Go(t, s) = G(t, s) for te J and
a <s<b, Gyt a) = G(t,a+) and Gy(t, b) = G(t, b—) for t e J, we get

C(t) x(a) + D(t) x(b) + Jb[dsG(t, s)] x(s) =

= Cot) x(a) + Do(1) x(b) + f [dGolt, 5)] x(5)

with Gy € £*[#¥] and G,(t, -) continuous at a and at b. On the other hand, it is
clear that our problem (£) can be always written as

%= A()x + Jb[dsGl(t, )] x(s)+ f(¥), jb[dLl(s)] x(s)=1,

with some L; € 8, , and G, € £*[#7"], not necessarily continuous at a and at b.

The homogeneous boundary value problem corresponding to (2) (i.e. the problem
(#) with f = 0 a.e. on J and I = 0) is denoted by (%,).

By a fundamental theorem there exists an n x n-matrix function X absolutely
continuous on J and such that for any t,se J

X(1) = X(s) + I A() X()dr, X(a)=I and detX(t)+0.



Further
X-1(t) = X(s) — j X~(x) A(s) de

and hence

(33) X()X'(s) = I + X( J X~1(x) A(x) dv = I + ( f A(%) X(3) dr)X‘l(s)
for t,seJ.

Given an arbitrary c € £, and g € £, there exists a unique solution x to the equation
% = A(f) x + g(t) on J such that x(a) = c. This solution is given by

x(i) = X(1) ¢ + X(i) J X1(s) g(s) ds .

Therefore x is a solution to (2) iff

6o )= X0+ X0 [ XU M) ds + X(0) j ESCIOTE
where ¢ € R, and h € &2 satisfy the linear system of “integro-algebraic” equations
(35) 10 + {0 + b X0 + | L) x(@e +
+ {00 x0) + [ 10,66 N X0} X710 1 s -
-~ o0 ) + | 4,606 A X} X6 8,
{M + N X(b) + j :[dL(s)] X(s)} ¢+
+ j b{N X(b) + f :[dL(c)] X(O')} X~4(s) h(s) ds =
—1- J b{N X(5) + J :[dL(c)] X(c)} X~1(5) f(s) ds
The system (3,5) is obtained by inserting (3,4) into (3,2) and into the condition
h(t) = C(t) x(a) + D(t) x(b) + J :[d,G(t, 9] %(6) .

407



(By Lemmas 1,1, 2,3 and 2,4

69 . w0 = [1a691x6) ([* @10 do) -

- "( f 4,6t )] X(o)) X~4(s) f(s) ds € 22,

3

o = [T x6) ([ x10)(e) 0 -

rb
a

([terenx@) @ aea,

o

()= € + DO X0) + [ 460t 91X e 2,
() = {vx) + [T X x 9 e 22,
(e = {00 x() + | 4,600 X@}x Qe 2.,
c= {M +NX() + j :[dL(s)] X(s)} is an m x n-matrix.)

Let us note that if x € /%, then by Lemma 2,3 h e #? and conversely if he 2,
c € &, and x is given by (3,4), then x € #%.

Lemma 3,1. Let C be a constant p x g-matrix, letue >, H, e 2, H,e %2,
Ke %, and ve R, Then the system

(37) —h(s) + Hy(t) e + f 'Kt 5) h(s) ds = u(s),

a

Ce + fsz(s) H(s) ds = o

for a couple (h, c) e £* x R, has a solutian iff

be‘(s) u(s)ds +y'v =0
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holds for any couple (X, Y) € £* x R, satisfying the system

(3:8) —x'(t) + v'HL(1) + J bx‘(s) K(s,#)ds = 0,

a

r'c+ f "2 (6) Hy(s) ds = 0.

a

Proof. Necessity. Let (h, c) be a solution of (3,7) and let (% Y) be a solution of
(3,8). Then

f bx‘(S) u(s)ds + v'v = f:[—x‘(t) + 7'Hy(f) + rx‘(s) K(s, 1) ds] h(t) dt +

+ [v‘c + fx‘(s) Hy(s) ds] c=0.

Sufficiency will be proved similarly as the analogous theorem for Fredholm integral
equations. (See e.g. [12], pp. 41 —44 or [6] in a similar situation.)

There exist (cf. Remark 3,1) a natural number n’, Ko € &,, K, € .‘?,f,,,, and K, €
€ %7, such that

(39) K(t,s) = Ko(t, s) + K4({) Ky(s) on J x J, |||K||| < 1.

(Hence 1 is not an eigenvalue of K,.) Consequently, the equation (3,7), is equivalent to
b b
h(t) — f Ko(t,s) h(s)ds = —u(f) + Hy(f)c + K l(t)f K,(s) h(s) ds .

Accordingly

h(t) = [—u(t) + Hy(t)c + K,'(t) f:Kz(s) h(s) ds] +

N J'br(t, N [—u(s) + Hy(s) ¢ + Ko(5) f :Kz(c) h(o) do-:l ds,

a

where I is the resolvent kernel of K,. Denoting for t € J

(3,10)  H,(1) = Hy() + j T, ) Hy)ds,  Ru(t) = Kut) + f "I(t, 5) Ko(s) ds,

i#(t) = u(t) + fbr(t, s) u(s) ds,



we obtain that (3,7) is equivalent to

G111 —h(t) + H,(t) c + K\(1) er(s) h(s) ds = ii(t),

Cc + Jsz(s) h(s)ds = v.

Let us denote

rb b
(.12) By, = | K(s) Hy(s) ds, B, , = j Ka(s) Ru(s) ds — 1,

Ja

rb b
By, = | B B(s)ds + C, By, = j Hy(s) Ro(s) ds ,

Ja a

rb
wy = | Ky(s)i(s) ds, w,

Ja

v+ j "Hy(s) i(5) ds
,, a
d= j K(s) h(s) ds . ]
The equation (3,11), now becomes
(3,13) h(t) = —da(t) + H,(t)c + Ky(t) d.
Multiplying (3,13) by K, from the left and integrating over J, we get
By ¢+ By d = w; .
Further we have by (3,11), and (3,13)
B, c + By ,d =w,.
Therefore (3,7) is equivalent to

(3,14) Bb=w,

where
B= (Bl'l’ Bu) , b= (C) and w = (w1> .
\ B,,1, By, d Wy
(If b = (", @")" is a solution to (3,14), #, H, and K, are given by (3,10) and h is

given by (3,13), then (h, c) is a solution to (3,7). If (h, c) is a solution to (3,7) and d is
given by (3,12), then b = (c', d")" is a solution to (3,14).)

Analogously, (3,8) is equivalent to
(3,15) B'B =0
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(IfB* = (v",8") is a solution to (3,15) and y is given by

AUEED I:Hz(t) + f sz(s) I'(s, ?) ds] + & [Kz(t) + f sz(s) I(s, 1) ds],

a a

then (X, 7) is a solution to (3,8). If (¥, ¥) is a solution to (3,8) and
)
&' = J‘ x'(s) Ky(s) ds,

then B* = (y', 8") is a solution to (3,15).)
Let B* = (7', 8') be an arbitrary solution of (3,15) and let (¥, y) be the correspon-
ding solution of (3,8). Then by (3,10) and (3,12)

b
8wy + YWy = 0 + f [y Ha(s) + 8'Ko(s)] a(5) ds =

a

— o+ jb{y [HZ(s) + f "H(0) T(, 9) do]+

a

s [Kz(s) + f "K(0) I(5, 5) dc]} u(s)ds = 10 + f 0 (5) u(s) ds

a

= v+ [ + K01 [u) + [T 0) o) do] s =

a

From this and from the relation between the systems (3,7) and (3,14) the assertion
of the lemma immediately follows.

Remark 3,1. The decomposition of a square integrable or continuous kernel into
small and degenerate parts is well known for scalar kernels. Here we show that
the matrix decomposition (3,9) is true. For the sake of brevity let us suppose n = 2.
The extension to the general case is trivial. Let

K(19) = P.5) + (69, 0(09) = (3 Ausal) Busalismra

Let us denote n' = my y + my, + m,,, + my,. Let K,(f) be the 2 x n’-matrix
function with the rows
(A1,11(0s o Ay g om(0), Ag21(0), ooy Aggmy 1 (0), 0,...,0)
e

m2,1+m2,2

and
(0,50, Az 1,4(0): - Az 1wy o(1): A2,2,4(0)s s A2, 2,m, (1)) -
[

my,gtmy,2
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Let K(s) be the n’ x 2-matrix function with the columns

(Bl_l'l(s), cesy Bl.l.,,,“(s), 0, cooy O, Bz'l,l(s), ceoy Bzil,mz.‘(s), O, . 0)‘
. —— ——
my,2 m2,2
and

(09 seey 05 Bl,2,l(s)1 seey Bl,Z,mllz(s), 07 (K] 05 B2,2,1(s)’ AR B2,2,mz'zs))‘ .

my 1 m2,1

It is easy to verify that K,(¢) K,(s) = Q(t, s).

Definition 3,1. The problem (2*) to find an n-vector function y of bounded varia-
tion on J and an m-vector y such that for any te J

(3,16)
0 =r@- | 1(5) A(5) ds — 1(Ll1) — La)) — f "Y6) (66, 1) — (s, @) ds

and

(3.17) y(a) + 7'M + be‘(s) C(s)ds =0, y'(b)—vy'N— ‘ry‘(s) D(s)ds =0,

is called the boundary value problem adjoint to (2).

Remark 3,2. The equation (3,16) is a generalized differential equation in the sense
of J. KurzweiL [10]. A boundary value problem of the type (#) for such equations
is treated in [13].

Remark 3,3. It is easy to see that any function y e 2 fulfilling (3,16) on J has
a bounded variation on J and is continuous at a from the right and at b from the left.

The following theorem shows that Definition 3,1 is reasonable

Theorem 3,1. The boundary value problem (%) has a solution if and only if
b
(3,18) j (5) £(5) ds = 7'l

for any solution (y, Y) of the adjoint boundary value problem (#*).

Proof. It suffices to show that (3,5) has a solution iff (3,18) holds. By lemmas 2,3,
2,4 and 3,1, (3,5) has a solution iff

(3.19) f b{v‘N X+ v 4L x(9) +

; j ':x\(s) <D(s) X(b) + f :’[d,c;(s, o) X(c)) ds}X"‘(t)f(t) dt = 'l
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for any solution (y, y) of

(320) —00 + 1 v x@) + [ e a0 }x 1) +
+ [0 o x0) + [ T ) x@) X~ s - 0.
7 s x| 4269 X +
+ [00 e + 20 x0) + [ Te66 o) 2@} a5 = 0.

According to (3,20),, (3,19) means
b
(3:19) j x\(0) f(t)dt = y'1.

By Lemma 2,5 the function

| ) (] 4,665, )] X(e)) ¢

is bounded on J for any x € #2. Hence

(3,21) x'() = y'NX(®) X (1) + v Jb[dL(s)] X(s) X~ '(r) +

v :x‘(S) {porxe + 4,665, )] x(@)} x5

is bounded on J as well. Let us insert this expression for %' into

j :’x‘(s) A(9) ds.

Then Lemma 1,1 and Fubin?’s theorem imply
[0 404 = v xe) [x6 aas +
e [ o1 xe ([0 Ayao) +
+ [ 2600 x0)([ x70) a0y a0) s +
+ [0 [[( [0 01 x0) xe) o) ac) .
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Taking into account (3,3) and the relation
[ {l 16666 0] X)) X o) A(c) do - [ Ten6(6 1 x(0) [x0) (o) o)

which follows from Lemma 1,1,

f bx‘(s) A(s)ds =y'NX(b) X Y(t) — y'N + v J f{dL(s)] X(s) X~Y(r) -
— 7' (L(b) — L(1)) + rx‘(s) D(s) X(b) X ~*(r) ds — fbx‘(s) D(s)ds +

a

+ j :x‘(S) ([ :[d.,c@, X () o5~ :x‘(S) ( [ "'[d,,e(s, o) ds =
= 2'(1) = %'(0) = ¥'(L(b) — L(1)) — f:x‘(S) (G(s. b) — G(s, 1) ds -

This implies that if (X, v) is a solution to (3,20), then (X, 7) is a solution to (3,16) as
well. Moreover

x(@) = — vM - j 0O s, 1) =1N + j 26 D(s) .

a

Therefore the couple (X, v) satisfies (3,17). The sufficiency of the condition (3,18) for
the existence of a solution to (%) immediately follows.

On the other hand, x and (y, v) being solutions to (2) and (2*), respectively,

[ :y‘(S)f(S) s :y‘(s) f56) 4690 - €60 x0) - 200 -
- [Tt onxofo s [Tl « [r@aopso s vae +

a a a

" f ")(0) G(o: ) do}] x(s) = (y‘(b) - f V() D) ds) x(b)

a a

- (v@ + [0 00 ) st + 7 T 56 =
_y {M *(a) + N x(b) + f :[dL(s)] x(s)} — vy,

by the substitution theorem, the integratiofx by parts formula and Lemma 2,7. This

completes the proof.
The following two assertions follow readily from the proofs of Lemma 3,1 and of

Theorem 3,1.
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Corollary 1. The homogeneous boundary value problem (2,) has only the trivial
solution iff rank (B) = n + n’ for the matrix B defined by (3,6), (3.9), (3,10) and
(3,12).

Corollary 2. A couple (y, v) is a solution to (2*) iff it is a solution to (3,20).

Remark 3,4. By Lemmas 2,1 and 2,2 the assumptions of this paragraph on G are
fulfilled e.g. if Ge S#7", G(t, -) being for any t € J continuous at a and at b, or if

G(t,s) = jsH(t, c)do,

a

where H € &,. If the latter is the case and if Lis absolutely continuous on J, then the
adjoint equation to (3,1) is an ordinary integrodifferential equation

y' = —y A(t) — v  L(t) — J‘by‘(s) H(s, t), ds,

a

Il

A

y =0,

Remark 3,5. The additional condition (3,2) can be written in the form
b b
M x(a) + N x(8) + f [dLy(5)] x(5) = 1 f [dLo(5)] x(5) = I .

where M, N are m; x n-matrices, L;(t) are m; x n-matrices, l;is an m-vector (j = 1,2),
while m; + m, = n,0 < m; < 2n, rank (M, N) = m,, L, and L, are functions of
bounded variation on J and continuous at a and at b. Furthermore, let us suppose

C(1) x(a) + D(t) x(b) = K(t) (M, x(a) + N, x(b)),
where K € #7,,_,, and M,, N, are constant (2n — m,) x n-matrices such that
rank(M’N)=2n.
(The case of K € .?,f,,, and M, N_ being constant p x n-matrices such that
rank(M’N)= mi+p, 0m +p=<2n
e Ne

is only seemingly more general, cf. [17] Remark 6,2a.)
Analogously as in the proof of Theorem 3,1 the problem (£) has a solution iff

b
f () f(s) ds = vily + 13l

a



for any solution (% Y15 72) to the system
(3,22)
-2 + 1w X0 + [ L1} + 0 { [Torep x)x +

+ j :x‘(S) {K(s) N.X(b) + J tb[d,G(s, o)] X(cr)} X '()ds=0,

7 o+ v xe) + [Tz X} + 9 [ 1L x6) +
« OO 01, + N xE) + [ [ 0 x(@)} as = 0.

Let P, Q and P,, Q. be respectively adjoint and complementary adjoint matrices
to (M,N, M_,N,), i.e. P, Q are n x (2n — m,) — matrices and P, Q are n x m;-
matrices such that

-M,N\/P, P\ _
(3’23) (—Mc’ Nc) (Qc’ Q> "

It follows from (3,22) that
x'(t) = x'(a) - th‘(S) A(s) ds — vi(Ly(t) — Ly(a)) =7 (Ly(8) — Ly(a)) —

— J bx‘(s) (G(s, t) — G(s, @)) ds,

x'(a) = —1iM — ( j:x‘(é) K(s) ds) M., x(b) =N + ( j:x‘@ K(s) ds) N,
or by (3,23)
2'@P +x'(b)Q =vi(—MP +NQ) + J:x‘(s)K(s) ds(-M.P +N.Q) =
- [xox0 e,
X'(@) P. + x'(b) @, = 1i(~MP. + NQ.) + fx‘(s) K(s) ds(~M.P, + N.Q) = 1.

416




Similarly as in the proof of Theorem 3,1 we can complete the proof of the following
assertion.

Under the assumptions of this remark the boundary value problem (%) has a solu-
tion if and only if

[rosa-p@r+ye oo
for any solution (y, 8) of the adjoint boundary value problem
P = 2@ = [ (0 460 & - 0°(0) P + y'(8) 0 (L) ~ L) -
- 8(L() ~ £:(0) - [ Y (6069 - (s, ) s,

Y(@P +y()0 - f ") K(s) ds = 0.

Let us complete Theorem 3,1 by deriving the relation between the number of
linearly independent solutions to (£,) and to (2*).

The couples (y;, v;) € £* x R, (j = 1,2, ..., ) are said to be linearly dependent
on J if there exists a nonzero r-vector (hy, Ay, ..., A,) such that Ay y;(f) + Ay,(t) + ...
o + A (f) =0 a.e. on J and Ayyy + AyY2 + ... + Ay, = 0. They are linearly
independet on J if they are not linearly dependent on J.

Lemma 3,2. Let C, H,(t), H,(t) and K(t, 5) fulfil the assumptions of Lemma 3,1
and let u(tf) = 0 a.e. on J and v = 0. Let the system (3,7) which is now homogeneous
have exactly r linearly independent solutions on J, then its adjoint (3,8) has exactly
r* =r + p — q linearly independent solutions on J.

Proof. All symbols used in this proof have the same meaning as in the proof of
Lemma 3,1. The system (3,14) is now homogeneous (w = 0).

Let (h, c) be a solution of (3,7) and let

d= JwKz(s) h(s)ds, b =(c',d")".

Then b is a solution of (3,14). Let us put .
k() = H () c + K,(r)d.
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Then by the above argument (A, c) is a solution of (3,7) and

() = [ () + j (e s)Hx(s)ds]c{ () + j (e, s)&(s)ds] [ "K(6) (o) do =

a

=H,(f) c + K,(1) LKZ(S) n(s) ds +
+ J':r(t, s) [HI(S) ¢+ jiK,(s) K»(c) k(o) dc] ds =
= k() - I:Ko(t, 5) h(s) ds + J' ’

a

(e, s [h(s) - j :Ko(s, o) h(o) dc] ds =
= h(t) - J‘: [Ko(t, s) + I:r(t, 6) Kq(o, s) dc] h(s) ds + ‘[ :r(t, s) h(s) ds = h(?).

Let b = (¢', d")" be a solution of (3,14) and h(t) = H,(t) c + K,(t) d. Then (h, c)
is a solution of (3,7). Let us put

b
d= J. K,(s) h(s) ds .
Then b = (¢, d*)" is a solution of (3,14) and

a- ( J:KZ(S) A,(5) ds) ¢+ ( ﬂ’xz(s) Ri(s) ds) d=Byyc+Byd+d=d.

Thus the system (3,7) has exactly r linearly independent solutions on J iff the system
(3,14) has exactly r linearly independent solutions. It means that the rank of the
(p + n') x (g + n’)-matrix Bequals g + n’ — r. Hence (3,15) has exactly (p + n’) —
—(g+n" —r)=r+ p— q linearly independent solutions. Similarly as for the
systems (3,7) and (3,14) it could be shown that then the system (3,8) has exactly
r* = r 4+ p — q linearly independent solutions on J.

Theorem 3,2. If the homogeneous boundary value problem (.@0) has exactly r
linearly independent solutions on J, then its adjoint (?*) has exactlyr* =r + m —
—n linearly independent solutions on J.

Proof follows readily from the relationship between () and (3,5) and between
(#*) and (3,20) and from Lemma 3,2, where p = m and g = n. (See also Corol-
lary 2 of Theorem 3,1.)
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Remark 3,6. Lemma 3,2 indicates that the nullity of the matrix B defined by (3,6)
(3,9), (3,10) and (3,12) does not depend on the choice of the decomposition (3,9).

Remark 3,7. An astute reader could find the assertion of Theorem 3,2 confusing.
If we added to matrices M, N, Land ! one zero row, we should obtain an equivalent
boundary value problem. Let the corresponding homogeneous boundary value
problem have exactly r linearly independent solutions on J. Then by Theorem 3,2
the adjoint should have both r + m — n and r + m + 1 — n linearly independent
solutions on J. But here we must take into account that while in the former case the
adjoint problem has solutions (y, y), where y is an m-vector, in the latter case the
adjoint problem has solutions (y, 8), where 8 is an (m + 1)-vector, the last component
of & being arbitrary. Nevertheless it can be seen that it is reasonable to remove from

(3,2) all linearly dependent rows.
(to be continued)
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