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Summary 

Interaural time differences (ITDs), the differences of arrival time of the 

sound at the two ears, provide a major cue for low-frequency sound 

localization in the horizontal plane. The first nucleus involved in the 

computation of ITDs is the medial superior olive (MSO). We model the 

neural circuit of the MSO using a stochastic description of spike timing. 

The inputs to the circuit are stochastic spike trains with a spike timing 

distribution described by a given probability density function (beta 

density). The outputs of the circuit reproduce the empirical firing rates 

found in experiment in response to the varying ITD. The outputs of the 

computational model are calculated numerically and these numerical 

simulations are also supported by analytical calculations. We formulate a 

simple hypothesis concerning how sound localization works in mammals. 

According to this hypothesis, there is no array of delay lines as in the 

Jeffress’ model, but instead the inhibitory input is shifted in time as a 

whole. This is consistent with experimental observations in mammals. 

1 Introduction 

The auditory system of humans and many other animals is able to localize sound sources 

with amazing precision. This ability is partially possible with only one ear (monoaural 

hearing), yet for localization in the horizontal plane two ears are necessary (binaural 

hearing). Sound source localization can be enhanced when the source and the receiver 

move relative to each other (Phillips and Brugge 1985). In this paper, however, we limit 

the task of sound localization to static sources using binaural cues at low frequencies. 

Binaural cues determine the azimuth defined as follows. The vector from a listener to a 

sound source is projected perpendicularly onto the horizontal plane. The angle between 

the projected vector and a reference vector, forming the intersection of the horizontal 

plane with the plane of head symmetry, oriented to the front, is called the azimuth. One of 

the parameters influencing binaural sound source localization is the fundamental sound 



3 

frequency. In mammals, for low fundamental frequencies (below 1,500 Hz) or for 

broadband sounds, the interaural time difference (ITD) is the dominant sound localization 

cue. For high fundamental frequencies, the interaural intensity difference (IID) is used. 

While this paper deals with lower frequency bands, it is possible that higher frequencies 

are processed with the use of similar neuronal algorithms, as we proposed in earlier 

studies by Marsalek and Kofranek (2004 and 2005). 

This paper presents a theory of how binaural sound localization for low frequencies 

might be realized in mammals and particularly in humans. The theory of Jeffress (1948) is 

one of the first well-known attempts to explain how neuronal circuitry achieves this. His 

prescient work is still frequently cited (Joris et al. 1998). Jeffress’ visionary hypothesis 

asserted that the ITD is converted to a binary signal in a higher order neuron through an 

array of delay lines of fibers in lower order neurons from both sides. Pioneering 

experiments by Carr and Konishi (1988) showed that Jeffress was correct in case of birds. 

As far as we know, the existence of an analogous delay line in mammals remains an open 

question (Grothe 2003, Joris and Yin 2007, McAlpine and Grothe 2003). What other 

neural circuit mechanism might be responsible for calculating the azimuth from the ITD? 

In this paper we propose an alternative to the delay line array model based on recent 

physiological evidence. This alternative is a stochastic delay of a very small number of 

broadly tuned channels (McAlpine and Grothe 2003). 

The amazing time precision (Joris et al. 1998) in the range of tens of microsecond 

points towards another statement of Jeffress that the neurons of the circuit should be 

located among the lower order neurons of the auditory pathway. The lowest order suitable 

neuron is the first binaural neuron. 

The information about the sound source location contained in the ITD is implicitly 

encoded by spike trains of lower order neurons. The first binaural neurons function as 

encoders of the ITD. The circuit has to make the information accessible, in other words 

make it explicit within another spike train in higher level neurons of the auditory pathway. 

The function of the circuit is to convert the information implicit in the ITD into the 

explicit neural code for the ITD. The definition of implicit and explicit neural coding can 
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be found in Koch (2004). The binaural neurons of the circuit can function either as a 

delay line (Jeffress 1948), or as broadly tuned channels (McAlpine and Grothe 2003). 

Our model is based on one time delay in the neuronal circuit. The access to a 

continuum of responses to various azimuth locations is accomplished through stochastic 

variations of action potential times as processed by the model circuit. Our novel finding 

demonstrates that stochastic spike timing can be used by neurons as an instrument for 

computing the sound azimuth. Model circuit connections and properties after 

mathematical simplification of their connectivity are still consistent with the 

neuro-anatomical description of the wiring of the medial superior olive (MSO) circuit in 

mammals (Beckius et al. 1999, Young 1998, McAlpine et al. 2001). 

We have designed and improved a model description of how the neural circuit in the 

auditory brain stem calculates the direction of incoming sound. This model is an 

alternative to the classical theory of delay lines. We present a stochastic description of the 

output spike train and spike timing within the model. Both the analytical calculations and 

numerical simulations give qualitatively similar results to those of experimental 

recordings from the rodent auditory brain stem. Our results are also comparable with 

recordings from brainstems in gerbils by Brand et al. (2002). Other authors (McAlpine et 

al. 2001) have found similar tuning curves in response to the changing ITD in different 

(higher) neurons of the auditory pathway (colliculus inferior) of another animal (guinea 

pig). We find the results to be robust with respect to variations of the time window size 

and spike timing jitter. 

2 Model 

2.1 Anatomical connections and their simplification 

The notation of the mathematical formulation of the model follows conventions used 

in Marsalek and Lansky (2005) and Marsalek and Drapal (2008), where the 

excitatory-excitatory (EE) interaction is called excitatory coincidence detection (ECD) 

and the excitatory-inhibitory (EI) interaction is called inhibitory coincidence detection 
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(ICD). The medial superior olive (MSO) works mostly with low frequencies and the 

lateral superior olive (LSO) deals mostly with high frequencies. 

Our model assumes different connections to the MSO neurons than those assumed in 

the Jeffress model. The division of neuronal fibers based on their excitatory and 

inhibitory effect is important. We show in the Results section that inhibitory fibers phase 

shift the tuning curve of ITD, as compared to that obtained without inhibition. The 

inhibitory connection to the MSO results from the inversion of synaptic polarity in the 

medial nucleus of the trapezoid body. The MNTB receives excitatory inputs from the 

contra-lateral cochlear nuclei and sends inhibitory inputs to the ipsi-lateral MSO. The 

same MSO also receives an inhibitory connection from the ipsi-lateral side. This 

inhibitory activity originates from the lateral nucleus of trapezoid body (LNTB), which 

receives its excitation from the ipsi-lateral cochlear nucleus. To complete the picture, the 

MNTB sends further inhibitory connections to the LSO. This intricate anatomy is nicely 

summarized by Young (1998). 

Though the design of our model is based on knowledge of these anatomical 

connections, we have to simplify the model wiring to extract the functional core of the 

neural circuit. The delays in the real system are present in both ipsi- and contra-lateral 

pathways (Joris 1996, Beckius et al. 1999). For the purpose of simplification, however, 

relative delay on one side suffices. This relative delay represents the net delay difference. 

Furthermore, one inhibitory branch from one side is enough to model the net inhibition 

from both sides. This leads us to the schematics shown in Figure 1. 

Note for editor: Insert Figure 1 around here. 

2.2 Operating conditions and constraints 

Before proceeding with a formal description of the variables in the model, we should 

briefly mention the coincidence detector (CD). Without detection of the leading edges of 

incoming post-synaptic potentials, extraction of a signal from delays in the microsecond 

range would not be possible. Regardless of which of the two theories we propose, they all 

must use this microsecond precision. The element detecting the leading edge is called the 

coincidence detector. The anatomical substrate of the CD is believed to be within the 
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MSO neurons. The location of right and left CDs in our model circuit in Figure 1 does not 

reflect all the detailed connections found in anatomy, however. The algorithm realized by 

a single delay in the model circuit is computationally equivalent to the original circuit, 

regardless of the actual succession of coincidence detectors, delays and the polarity 

change from excitatory to inhibitory signals. For details see the Discussion section. 

We can shuffle the order of delays among selected points in our model without 

loss of generality. This is based on observation that selected neural operations are 

commutative. An example of commutative additions of delays is shown in Equation (1) 

below. The first processing elements of our model are random delays, which have a 

specific probability density function (PDF) of synaptic input to neuron in time. Since 

there is chain of delays in both synaptic chains from the left and from the right ear, we 

can suppose that we have n ipsilateral delays in the ipsilateral (A) branch of the pathway 

1 2, ,...,A A AnΔ Δ Δ  and m contralateral delays in the contralateral (B) branch of the pathway 

1 2, ,...,B B BmΔ Δ Δ . For the EE interaction m = 3 and n = 3, for the EI interaction of the 

MNTB m = 4 and n = 3 and for the EI interaction of the LNTB m = 3 and n = 4. Numbers 

m and n include the first synapses (ribbon synapses from hair cells). The total delay 

difference between branches (A) and (B), denoted JA JBΔ −Δ  is given by: 

 
1 1

.
n m

JA JB Ai Bj
i j= =

Δ −Δ = Δ − Δ∑ ∑  (1) 

We assume that all these random delays with (timing) jitter (subscript J) on sides A and B 

(left and right) are mutually independent and identically distributed non-negative random 

variables. JAΔ  and JBΔ  have a maximum of maxΔ . The constraints imposed on them 

are given in Equation (2). The coincidence detection (time) window ΔW must be shorter 

than or equal to the maximum delay and the sound period, T, must be greater than or 

equal to the maximum delay: 
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0 ,

.

JA max

JB max

W max

max T

≤ Δ ≤ Δ
≤ Δ ≤ Δ
≤ Δ ≤ Δ

Δ ≤

 (2) 

In excitatory coincidence detection, the spike is generated only when the two spikes from 

sides (A) and (B) meet in a time interval shorter than WΔ . In other words, the two spike 

delays JAΔ  and JBΔ  must satisfy: 

 | | .JA JB WΔ −Δ ≤ Δ  (3) 

To model inhibitory coincidence detection, a modification of the condition expressed 

above in Equation (3) is used. Spikes must arrive in proper succession. The excitation 

from side A must come after the inhibition from side B. This is formulated as: 

 0 .JA JB W≤ Δ −Δ ≤ Δ  (4) 

Using the model with one delay, one obtains the continuum of detected ITDs through 

stochastic variation of the random interaural time delay JA JBΔ −Δ . The output, the spike 

rate, clearly depends on the choice of input PDF of the synaptic delays. After 

summarizing the properties of the model, connections between neurons, and constraints 

imposed on the parameters and random variables, we can turn to the outputs of the model 

in the following two subsections. 

2.3 Input distribution of the coincidence detector 

The output of the model is dependent on the proper choice of a PDF of random variables. 

Firstly, the range of the PDF is defined such that its support is over one sound 

period. This is on the time interval [0, T], which we normalize to the interval [0, 1]. 

Therefore probability densities spanning one or both tails from minus infinity to plus 

infinity, such as gamma density, where its support is on [0, ∞ ), or normal density, where 

its support is on (-∞  ,∞ ), are not particularly useful. This justifies the choice of beta 

density, which is nonzero only within the range [0, 1] and is close to gamma density in 

this range as well. This circumvents the need to normalize the corresponding cumulative 

distribution function to unity and makes the calculation more transparent without loss of 
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generality. Another useful property of beta density is its simple polynomial definition. 

The formula for beta density appears in the Abbreviations and symbols section at the end 

of this paper. We used beta density for the description of spike timing distribution also in 

(Marsalek et al. 1997). 

Secondly, the PDF shape, specifically the skewness and the kurtosis, influences 

the shape of the output tuning curve. We have experimented with both uniform and 

triangular densities, (Marsalek and Lansky 2005), which are special trivial cases of the 

beta density with parameters a = 1, b = 1, and a = 1, b = 2, respectively, and make 

calculation simpler. However, the corresponding output functions analogous to 

Equation (7) are not as satisfactory as the output resulting from a non-trivial beta density. 

These output functions are not shown here and the resulting function itself is discussed in 

detail at the beginning of the Results section. 

Thirdly, the mean (output) activity of the model obtained with inhibition must not 

drop below the zero line. This is corrected by adding half the height of the span of the 

output range to the function. This way all output values are positive. They correspond to 

the neural spike rates which cannot be negative. After eventual normalization, so that the 

density integral over the whole function range equals unity, the output spike rates express 

output probability. 

Note for editor: Insert Figure 2 around here. 

Finally, the input beta density has parameters a = 2 and b = 4 and we denote it B24. 

To obtain a smooth function on the interval (0, 1) we must have a > 1 and b > 1, and to 

obtain nonzero skewness we must have a ≠  b. The whole numbers a = 2 and b = 4 are the 

second smallest non-trivial values of parameters (after a = 2 and b = 3). Figure 2 shows 

the result of the analytical calculation of the output, which is the function denoted q24. 

2.4 Output distribution from the coincidence detector 

The output function q24 is obtained as follows. Let us denote the difference of the two 

delays in Equation (1) as: 
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 .JA JBZ = Δ −Δ  (5) 

The probability density function of this new, compound random variable Z is obtained 

with a convolution integral formula for the difference of the two random variables. The 

PDFs of the JAΔ  and the JBΔ  are denoted f(x) and g(y), respectively, and the output 

PDF of the variable Z is denoted q(z). We substitute 24f B= and 42g B=  into the 

convolution formula ( ) ( ) ( )q z f x g x z dx
∞

−∞

= −∫ . Now, since B24(x)  and 42 ( )B y  are 

nonzero only for x between 0 and 1, we must evaluate the integral piecewise within the 

respective ranges, such that q(z) becomes: 

min( ,1)
max( 1,0) [ 1,0] [0,1]( ) ( ) ( ) ( ) ( ) ( ) ( ).z

z z zq z f x g z x dx f x g z x f x g z x− ∈ − ∈= − = − + −∫ ∫ ∫     (6) 

Obviously, q(z) is an even function, satisfying q(z) = q(−z). Therefore, we can change the 

sign of the argument z−x without loss of validity. We substitute the polynomial densities 

24 ( )B x  and 42 ( )B y  into the integrals. For two 4th degree polynomials, B24 and 42B , 

we obtain the sum of two 9th degree polynomials in two variables x and z. We use the 

Symbolic Math Toolbox in the Matlab software to avoid tedious manual computation. 

The source code for the symbolic calculation in the Matlab script language is available 

upon request. 

In summary, using Equation (3) and assuming that JAΔ  and JBΔ  are distributed with 

beta densities 24 ( )B x  and 42 ( )B y  we find that JA JBZ = Δ −Δ  has density: 
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24
0

( ) ,i
i i

i

i
q z s c z

=

=

=∑  (7) 

where 5 6 70 1 82 3 4 9[ ; ; ; ; ; ; ; ; ; ] takes the following values:S s s s s s s s s s s=  

 
[1; 0; 1; 1; 1; 0; 0; 1; 0; 1] for [ 1;0],
[1; 0; 1; 1; 1; 0; 0; 1; 0; 1] for [0;1],  and
[0; 0; 0; 0; 0; 0; 0; 0; 0; 0] otherwise.

S x
S x
S

= − − − − ∈ −
= − − − ∈
=

 (8) 
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By this prescription, q24(z) is a smooth, piecewise polynomial function. It has four parts 

defined consecutively on intervals (−∞, -1], [-1, 0], [0, 1] and [1, ∞). In defining the 

coefficients i is c  of these four parts, we use signum function S valued -1, 0 and 1 listed 

above in Equation (8). The numerical absolute values of the polynomial coefficients are 

0 1.5873,c =  2 17.1429,c =  3 33.33,c =  4 20,c =  7 2.8571,c =  9 0.6349c =  and 

1 5 6 8 0c c c c= = = = . Signs of the coefficients confirm that this piecewise polynomial 

function is an even function q(z) = q(−z). We also recently found an alternative way to 

obtain the analytical results. A more straightforward way to calculate the indefinite 

integral q(z) makes use of the Laplace transform. In using the transform, we obtain the 

convolution by using the inverse transform of the product of the two function images 

(Drapal and Marsalek 2010). We prefer to show here our original piecewise evaluation, 

because this integral evaluation method gives more insight into how the output density 

behaves and how it is obtained. The output function is similar to the normal density, 

although close inspection reveals subtle differences. Comparison of the output and normal 

probability density functions is shown in Figure 2. Note the difference between the two 

tails. 

Note for editor: Insert Figure 3 around here. 

3 Results 

Figure 3 shows the neural response curves of the MSO neuron with varying ITD. The 

curve in Figure 3 with the maximum at ITD = 0 forms the output of the circuit with only 

the excitatory branch plugged in. This corresponds to the output of the MSO in 

experiments, when the inhibitory branch is blocked by the application of strychnine, as in 

Brand et al. (2002). The other curve in Figure 3 with the maximal slope at ITD = 0 shows 

the output of the full model. This corresponds to the normal, control recordings from the 

MSO. Brand et al. (2002) also modeled some properties of the recorded cells using a 

detailed biophysical model with explicit representations of the voltage sensitive ion 

channels of the neuron, obtaining results very similar to those presented here. 
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Figures 3, 4, and 5 show results of numerical simulations of the model, which are in 

agreement with the analytical calculation. Both analytical and numerical computations 

were performed using Matlab software. Sound is represented as discrete samples of pure 

tones digitized using standard sound digitization (44 kHz sampling rate, 128 intensity 

levels). Spikes in response to pure tones were triggered by the leading edges of sound 

waves. In Drapal and Marsalek (2010) we used clicks and complex sounds, such as 

speech, processed by an cochlear implant emulator, with no qualitative difference from 

pure tone stimulus (not shown). Here we use pure tones only. The sound period, T, used 

in the model is that of the fundamental sound frequency. Spike trains were represented as 

trains of unitary events without any details of action potential shape. Synaptic integration 

was implemented with the use of time windows. Spontaneous activity is not a free 

parameter, but is added to the system to obtain positive values of responses. The activity 

in this and subsequent figures is a dimensionless quantity, which can be interpreted as the 

spike rate multiplied by a constant. 

Note for editor: Insert Figure 4 around here. 

The size of the time window ΔW is the key parameter of coincidence detection. 

Figure 4 shows the model output function for ΔW = 200, 80, 50 and 20 μs. In Figure 4 

only the excitatory curves are shown, since the inhibitory curves in the full model are 

analogous to those in Figures 3 and 5. The size of this window in the real neuronal circuit 

is set by the ionic currents giving rise to the generation of postsynaptic potentials 

(Svirskis et al. 2003, Szalisznyo 2006). Oertel et al. (2000) give the upper estimate of the 

window size for neurons in the auditory pathway specialized in coincidence detection. 

They give values in the range lesser than 300-1000 μs, with the smaller values for in vitro 

and larger values for in vivo preparations. 

Note for editor: Insert Figure 5 around here. 

In general, the magnitude of timing jitter (denoted JAΔ  and JBΔ ) in a neuronal 

nucleus is dependent on the degree of neuronal convergence in the previous stages of 
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processing. In spike trains propagating to a higher order nucleus, one of three jitter 

changes may occur: the wave of spikes can sharpen (the jitter decreases), the jitter may 

not change, or the spike volley can become blurred (the jitter increases). All three variants 

can be obtained with the perfect integrator neuronal model in the regime of coincidence 

detection, for different sets of parameters (Reed et al. 2002). All three variants were 

shown to exist in experimental recordings (Gerstner et al. 1996, Joris 1996, Marsalek et 

al. 1996). We do not discuss these differences further here. The output activity shown in 

Figure 5 is dependent on ITD for two different magnitudes of timing jitter. Figure 5 

shows two functions of the full model only (with both excitation and inhibition) for two 

values of timing jitter, 100 μs and 400 μs. Oertel et al. (2000) give jitter values of 200 μs 

for in vivo and values of 20-40 μs for in vitro preparations. 

A related question was raised in review: How many ipsi- and how many contra-lateral 

synaptic connections (and of what proportion of excitatory and inhibitory connections) 

would a real MSO neuron need in order to achieve the accuracy observed physiologically 

in these neurons? Probabilistic spiking transmits information only with a given 

probability (reliability). In a previous investigation we calculated the time to spike 

required by the coincidence detection circuit for two given probabilities of achieving the 

decisive spike (reliabilities), p1 = 50 % and p2 = 95 % (Marsalek and Lansky, 2005). 

These probabilities were calculated based on the number, K, of unitary events. The 

calculation procedure, known as a Bernoulli process, is described in the 2005 paper, 

however, the values of K are not tabulated in the paper, since they are only intermediate 

results of the calculation. For the whole range of sound frequencies relevant for the 

human MSO, the number of events, K, attained values from 1 up to 50, higher values for 

higher frequencies. However, this number of unitary events can be achieved either by 

waiting for N sound periods, or by parallel processing by several neurons. In the latter 

case, the MSO nucleus must consist of at least M copies of the circuit, but may even have 

N tonotopic channels, such that MN > K. The numbers K, M, N represent the minimal 

values required for a functioning circuit. Numbers of neurons and connections in the 
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MSO are probably higher, since most nuclei show a redundancy in the number of their 

neurons and connections. 

4 Discussion 

Binaural sound localization is achieved with remarkable precision throughout the animal 

kingdom. The timing precision of individual spikes in most neurons in the auditory 

pathways of various species is lower than animals’ behavioral assessment of the ITD. 

Given that this precision is important for survival and easily demonstrated, the means by 

which it is achieved by the neural circuits forms a fascinating and as yet unresolved 

question. In this paper we have presented a stochastic model employing both excitatory 

and inhibitory synaptic inputs to address this question in the neural circuit of the 

mammalian medial superior olive. 

In recent years it has been demonstrated in experiments on gerbils (Brand et al. 2002) 

and also on other mammals (Grothe 2003) that synaptic inhibition plays a critical role in 

the sound localization circuit. The original theory of delay lines array by Jeffress applies 

in birds (Carr and Konishi 1988). It is not clear whether it also applies in mammals. 

Recordings in cats do not show the same ITD tuning curve slopes as those in rodent 

recordings (Joris and Yin 2007, Yin and Chan 1990). Harper and McAlpine (2004) 

present a theoretical explanation of these differences, including the discussion of human 

data. Psychophysical experiments studying the circuit in humans using subjective 

response might resolve this question in the future. These experiments range from normal 

hearing (Middlebrooks and Green 1991), to electrical hearing sense in cochlear 

implantees (Laback and Majdak 2008). Of course it is possible that the mammalian circuit 

uses some entirely different mechanism to those presented here and in previous 

investigations. 

Another observation in the abovementioned experiments shows that the maximal 

response does not occur at the best ITD, but that the best ITD occurs where the slope of 

the response curve is maximal. As early as the 1970s and 1980s, some authors discussed 

the possibility that the maximal slope of the response of a coincidence detector measuring 
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the ITD between spike trains may relay the information (Goldberg and Brown 1969, 

Phillips and Brugge 1985). The possibilities to test this proposal numerically were limited 

at that time. Here we exploit the advancement of computational tools in a numerical study 

of the problem. 

Most neurons do not achieve high spike timing precision, but in neurons in the 

periphery, the information about timing must be somehow encoded and preserved before 

reaching the first binaural neurons. Such timing precision is enabled by cellular and 

sub-cellular mechanisms and is best studied using deterministic equations, specifically 

differential equations. One can compare the work of Svirskis et al. (2003), which studies 

the state space of the nonlinear dynamics of ion currents in the MSO neurons, with that of 

(Szalisznyo 2006), in which the state space of the nonlinear ion currents in the LSO is 

studied. The authors of these two papers also performed experimental recordings. In both 

the circuits of the MSO and the LSO, the nonlinearities are necessary for the proper 

function of coincidence detectors. Other models (including this work) are based on 

stochastic spiking, or cast the neural circuit in terms of a logical circuit. See for example a 

review of Colburn (1996), or (Marsalek 2000). Experimental investigations can also be 

supported by conceptual models (Brand et al. 2002). It is argued frequently that the ITD 

tuning curve slope offset is due to the optimized wiring of the circuit (Grothe 2003, 

Harper and McAlpine 2004). 

Most theories which include inhibitory mechanisms claim that inhibition is precisely 

timed and brief. The models assume high precision of spike times in all neurons in the 

circuit. Not all spikes are so precise, as is shown in experiments of Batra et al. (1997) and 

Joris (1996). The spatial organization of the neurons themselves is important. 

Agmon-Snir et al. (1998) and Zhou et al. (2005) suggest models based on a spatial 

organization of neurons in the MSO. 

The parameter space of the binaural model is limited at higher frequencies, where 

ambiguities arise due to the relatively short sound wavelength in comparison with the 

ITD. In the mammalian brainstem, the circuit of the MSO processes the low frequencies 

and another twin circuit, the LSO, processes the high frequencies. The two circuits are 
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developed in parallel in human, cat, dog and other experimental species although in some 

mammals only one of them is present (Grothe 2003). The relative importance of the ITD 

and the IID within these respective sound frequency ranges in human was elucidated by 

means of confusing these two cues in psychophysical experiments (Wightman and Kistler 

1992). Breebaart et al. (2001a and 2001b) brought a wider perspective towards the 

possible mechanisms used in binaural processing by using the excitatory-inhibitory 

mechanism where previous models dealt only with the excitatory-excitatory interaction. 

Their model uses the canonical structure of a grid of parallel tonotopic pathways together 

with delay lines and covers both the low frequency (ITD) and high frequency (IID) ranges 

with similar mechanisms. The model of Breebaart et al. (2001) comprises of building 

blocks of the signal processing circuits. Colburn (1996) and his numerous collaborators 

developed a series of binaural circuit models of varying complexity. They stress the 

importance of the coincidence detector within the circuit. Stern and Trahiotis (1996) 

review existing models and their own circuit implementations are close to delay line 

concepts. 

Our model differs from those mentioned above in that it employs randomness in the 

spike arrival time between synapses. Random delay and spike timing jitter might seem 

like an impediment, especially in models with precisely timed inhibition. The statistical 

properties of spike trains average out errors in individual spikes and enable the neural 

computation of azimuth at the same time. 

When two spikes from opposite sides arrive at the first binaural neuron, their 

coincidence must be detected with higher precision. Jeffress (1948) was first to notice this. 

All subsequent sound localization models have to assume that these particular neurons are 

coincidence detectors. Neurons as coincidence detectors have been used frequently in 

sound localization models (Gerstner et al. 1996, Marsalek 2000, Zhou et al. 2005). Let us 

also mention the classical model describing neural coincidence detectors in visual circuits 

in invertebrates, starting with the Reichardt model (Srinivasan and Bernard 1976, Zanker 

et al. 1999). 
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The first binaural neuron must use coincidence detection to extract information from 

interaural sound timing disparity. This neuron must indeed be precise as a coincidence 

detector. Such neuron outputs spike only if left and right inputs coincide within a short 

time window, in the time range of microseconds. In our model, stochastic properties make 

use of timing jitter, which at first glance is merely signal deteriorating noise. 

From the point of view of implementation of the model, it does not matter exactly 

where the net ITD is placed in the two (left and right side) converging branches of the 

neural pathway. If an additional delay is added in both sides, it cancels out. The net delay 

between the two sides only matters when compared with the ITD, as written in 

Equation (1). 

In a follow-up to this paper (Drapal and Marsalek 2010), we show that our numerical 

model can be connected to cochlear implant software emulator to give similar results to 

those observed by psychophysical methods in implanted volunteers (Laback and Majdak, 

2008). As the possibilities to experiment with binaurally implanted and bimodal hearing 

subjects expand, it is possible that some psychophysical experiment will determine, 

whether delay line, stochastic delay, or both mechanisms are used in human hearing, even 

before definitive electrophysiological experiments on mammals are performed (Joris and 

Yin 2007). 

In this paper we present a model for a neural algorithm performed by a circuit in the 

MSO. This is part of a general quest to capture the multitude of neural algorithms serving 

specific purposes. Let us give two closing examples of these algorithms. One is the case 

of spatial maps in the auditory brainstem of birds (Peña 2003). Peña (2003) shows how 

the brainstem circuit implements spike rate multiplication in order to calculate the 

location of a sound source. An analogous case from the 1980s concerns the neocortical 

visual circuit in the higher order visual areas which calculates the location of the illusory 

contour (von der Heydt et al. 1984). These authors demonstrate that a higher neocortical 

visual projection area can respond to a virtual object, an illusory contour, which is a result 

of a neural algorithm, as if it were a real solid object in a visual scene. Both these models 

were first proposed as hypotheses of a specific neural computation. The existence of 
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neural circuits implementing the respective neural computations was subsequently 

confirmed by a targeted experimental recording. 

Abbreviations and symbols 

CD – coincidence detection, ECD – excitatory coincidence detection, ICD – inhibitory 

coincidence detection, EE – excitatory–excitatory interaction, EI – excitatory–inhibitory 

interaction, IID – interaural intensity difference, IPD – interaural phase difference, 

ISD – interaural spectral difference, ITD – interaural time difference, LSO – lateral 

superior olive, MSO – medial superior olive, PDF – probability density function, 

JΔ – time jitter (delay random variable), WΔ  – coincidence detection window, T – sound 

period and maxΔ  – maximum delay. 

The beta density is a probability density function written in a standard form as: 

Bab(x)  1 1 1(1 ) ( , ) ,  for [0,1]b ax x B a b x− − −= − ∈ , and Bab(x)  = 0 otherwise, where the 

parameters a, b > 0 and B(a,b) is the (Euler) beta function. 
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Figure legends: 

 
Figure 1: Flow chart of the neuronal circuitry. (LPDF) and (RPDF) represent input 

spikes on left and right sides. Left (Right) Probability Density Function in time governs 

spike times in the last monaural neuron. (LCD) and (RCD) are Left and Right 

Coincidence Detectors, realized by the first binaural neurons on the ipsi- and 

contra-lateral sides, respectively. Next is the (DELAY), which is shown here at the 

excitatory branch of the circuit only, because only the relative delay matters. Spontaneous 

spiking acts as an additional (NOISE) source. (ISTN) and (ESTN) represent Inhibitory 

and Excitatory Synaptic Transmissions, respectively. (SUM) adds excitatory inputs, 

inhibitory inputs and noise together. From the point of view of functionality, the exact 

sequence of operations (delay, sign change due to the inhibitory synapse, coincidence 

detection) in the feed forward pathway does not matter. The dashed line box encompasses 

processing, which can be performed in one binaural neuron. Note that individual boxes in 

this chart neither necessarily correspond to individual neurons nor represent the 

description of the mammalian brain stem circuit in the text. 
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    Figure 2: Resulting probability density function q24. We use semi-logarithmic scale in 

the y-axis. On a linear scale (not shown) the resulting function q24 cannot be separated 

from the probability density of the normal distribution 24(0, )N σ , where its standard 

deviation σ24  was chosen to match standard deviation of the function q24 . The 

semi-logarithmic scale used here clearly shows the divergence of the two tails of the 

normal and of the resulting density, when the tail of the normal density 24(0, )N σ , marked 

with squares, is nonzero outside of interval [-1, 1]. The other function q24 possesses two 

discontinuities at points q24(-1) = 0 and q24(1) = 0. On the semi-logarithmic scale in 

y-axis these cannot be shown. At these points, the tails of the q24 function are cut off by 

the impulse (Heaviside) function. Semi-logarithmic plotting on the y-axis of the PDF 

shows normal density as parabolic in these coordinates. 
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Figure 3: Model response to pure tone stimulation. ITD is on the x-axis in microseconds. 

Neuronal output activity is on the y-axis. The solid curve is the output of the full model 

with both excitation and inhibition. The dotted curve is the model without inhibition. Only 

one period of the output is shown here for clarity, but the output is periodic, so the x-axis 

maps to interaural phase difference. The error bars are sample standard deviations obtained 

numerically in simulations. In both curves they are the result of 100 trials. In other words, 

these error bars do not represent the level of the noise in the system. Instead, the noise is 

introduced into the system via the randomness of random variables and the magnitude of 

timing jitter. 
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Figure 4: Effect of the size of the time window. The width of the time windows for CDs 

sets the range of ITDs detectable by the circuit. Four widths are compared here: 

ΔW = 200 μs (--), 80 μs (-), 50 μs (-.) and 20 μs (…). Plotted output activity is dependent 

on ITD, as in Figure 3. Only the excitatory part is active in this plot. From an engineering 

point of view, an optimal curve uses the full dynamic range of available output activities, 

ΔW = 50 μs. 
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Figure 5: Effect of the timing jitter magnitude. Two magnitudes of timing jitter ΔJA and 

ΔJB are shown here, 100 μs as a solid line (-) and 400 μs as a broken line (--). They also 

set the slope of the model output curve and thus the range of ITDs detected. Together 

with the previous Figure 4, this shows the robustness of the model with respect to 

variation of parameters. Figures 4 and 5 illustrate the range of parameter values accessible 

to the model. 

 


