\mathcal{PT} -symmetry vs. pseudo-Hermiticity

Petr Siegl

Nuclear Physics Institute, Rez Faculty of Nuclear Sciences and Physical Engineering, Prague

Petr Siegl *PT*-symmetry vs. pseudo-Hermiticity

4 A I

Outline

1 Basic definitions and properties

- Antilinear symmetry
- Pseudo-Hermiticity
- J-self adjoint operators
- Finite dimension

2 Counterexamples

- Antilinear symmetry without pseudo-Hermiticity
- Pseudo-Hermiticity without antilinear symmetry

3 Conclusions and applications

э

Antilinear symmetry Pseudo-Hermiticity J-self adjoint operators Finite dimension

Antilinear symmetry

Definition

Let $A \in \mathscr{L}(\mathcal{H})$. We say that A possesses an antilinear symmetry if there exists an antilinear bijective operator C and the relation

$$AC\psi = CA\psi$$

holds for all $\psi \in \text{Dom}(A)$.

Proposition

Let $A \in \mathscr{L}(\mathcal{H})$ be a closed operator having an antilinear symmetry C. Then $\lambda \in \mathbb{C}$ is in the spectrum of A if and only if $\overline{\lambda}$ is in the spectrum of A. Moreover, this equivalence is valid also for the disjoint parts of spectrum, i.e. $\lambda \in \sigma_{p,c,r}(A) \iff \overline{\lambda} \in \sigma_{p,c,r}(A)$.

イベト イラト イラト

Antilinear symmetry **Pseudo-Hermiticity** *J*-self adjoint operators Finite dimension

Pseudo-Hermiticity

Definition

Let $A \in \mathscr{L}(\mathcal{H})$ be densely defined. A is called weakly pseudo-Hermitian, if there exists an operator η with properties

(i) η, η⁻¹ ∈ ℬ(ℋ),
(ii) A = η⁻¹A*η.
If η is self-adjoint then A is called pseudo-Hermitian.

Proposition

Let $A \in \mathscr{L}(\mathcal{H})$ be a weakly pseudo-Hermitian operator. Then A is closed.

・ 「 ト ・ ヨ ト ・ ヨ ト

Antilinear symmetry Pseudo-Hermiticity J-self adjoint operators Finite dimension

Pseudo-Hermiticity

Proposition

Let $A \in \mathscr{L}(\mathcal{H})$ be a weakly-pseudo-Hermitian operator. Then point, continuous and residual spectrum $\sigma_{p,c,r}(A)$ of A and $\sigma_{p,c,r}(A^*)$ of A^* are equal.

Remark

Operators with antilinear symmetry are not closed in general, thus a trivial example of operator with antilinear symmetry without pseudo-Hermiticity is non-closed or even non-closable operator with antilinear symmetry.

Antilinear symmetry Pseudo-Hermiticity J-self adjoint operators Finite dimension

J-self adjoint operators

Definition

Let $A \in \mathscr{L}(\mathcal{H})$ be densely defined. Let J be an antilinear isometric involution, i.e. $J^2 = I$ and $\langle Jx, Jy \rangle = \langle y, x \rangle$ for all $x, y \in \mathcal{H}$. A is called J-symmetric if $A \subset JA^*J$. A is called J-self-adjoint if $A = JA^*J$.

Lemma

Let A be a J-self-adjoint operator. Then (i) dim(Ker(A - λ)) = dim(Ker(A^{*} - $\overline{\lambda}$)), (ii) $\sigma_r(A) = \emptyset$.

Antilinear symmetry Pseudo-Hermiticity J-self adjoint operators Finite dimension

Finite dimension

Lemma

Every $A \in \mathscr{L}(V_n)$ is similar to the *J*-self-adjoint operator, i.e. there exists invertible $X \in \mathscr{L}(V_n)$ such that XAX^{-1} is *J*-self-adjoint.

Proposition

Let $A \in \mathscr{L}(V_n)$. Then A is pseudo-Hermitian if and only if it possesses an antilinear symmetry.

Outline	Antilinear symmetry
Basic definitions and properties	
Counterexamples	J-self adjoint operators
Conclusions and applications	Finite dimension

Proof.

- Let A be pseudo-Hermitian, $A = \eta^{-1} A^* \eta$
 - $XAX^{-1} = A_J = JA_J^*J = J(X^{-1})^*A^*X^*J = J(X^{-1})^*\eta A\eta^{-1}X^*J$
 - $CA = AC, C := \eta^{-1}X^*JX$ antilinear symmetry

∃ 𝒴𝔄

Outline	Antilinear symmetry
Basic definitions and properties	
Counterexamples	J-self adjoint operators
Conclusions and applications	Finite dimension

Proof.

- Let A be pseudo-Hermitian, $A = \eta^{-1} A^* \eta$
 - $XAX^{-1} = A_J = JA_J^*J = J(X^{-1})^*A^*X^*J = J(X^{-1})^*\eta A\eta^{-1}X^*J$
 - $CA = AC, C := \eta^{-1}X^*JX$ antilinear symmetry
- Let C be the antilinear symmetry of A
 - $A = C^{-1}X^{-1}J(X^{-1})^*A^*X^*JXC$
 - A is η -weakly-pseudo-Hermitian, $\eta := X^* J X C$
 - weak pseudo-Hermiticity and pseudo-Hermiticity are equivalent properties on V_n

E nar

Antilinear symmetry without pseudo-Hermiticity Pseudo-Hermiticity without antilinear symmetry

Antilinear symmetry without pseudo-Hermiticity

Example

- $\{e_n\}_{n=1}^{\infty}$ standard orthonormal basis of $\mathcal{H} = l_2(\mathbb{N}), e_n(m) = \delta_{mn}$
- $Te_n := e_{n-1}, n \in \mathbb{N}, e_0 := 0$

•
$$T^*e_n := e_{n+1}, n \in \mathbb{N}$$

• $T = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \vdots & & \ddots & \ddots \end{pmatrix}$

< 回 > < 回 > < 回 >

Antilinear symmetry without pseudo-Hermiticity Pseudo-Hermiticity without antilinear symmetry

Antilinear symmetry without pseudo-Hermiticity

Example

- antilinear symmetry \mathcal{T}
- every $|\lambda| < 1$ is in the point spectrum $\sigma_p(T)$, $x_{\lambda} = \sum_{n=1}^{\infty} \lambda^{n-1} e_n$
- $\sigma_p(T^*) = \emptyset$, point spectrum of T^* is empty
- $\{\lambda \in \mathbb{C} | |\lambda| < 1\} \subset \sigma_r(T^*)$, residual spectrum is non-empty
- T is not pseudo-Hermitian, $\sigma_p(T) \neq \sigma_p(T^*)$

< ロ > < 同 > < 回 > < 回 > < 回 > <

E ∕Q Q

Antilinear symmetry without pseudo-Hermiticity Pseudo-Hermiticity without antilinear symmetry

Pseudo-Hermiticity without antilinear symmetry

Example

• $\{e_i\}_{-\infty}^{\infty}$ orthonormal basis of $\mathcal{H} = l^2(\mathbb{Z}), e_n(m) = \delta_{mn}$

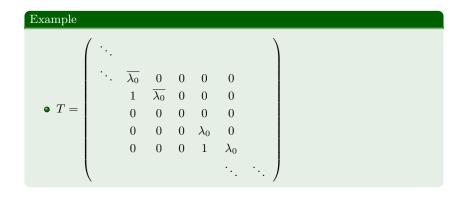
•
$$Te_i := \begin{cases} \lambda_0 e_i + e_{i+1}, & i \ge 1, \\ 0, & i = 0, \\ \overline{\lambda}_0 e_{-1}, & i = -1, \\ \overline{\lambda}_0 e_i + e_{i+1}, & i < -1, \end{cases}$$

• $\lambda_0 \in \mathbb{C}, \text{ Im } \lambda_0 > \frac{1}{2}$

(*) *) *) *)

Antilinear symmetry without pseudo-Hermiticity Pseudo-Hermiticity without antilinear symmetry

Pseudo-Hermiticity without antilinear symmetry



÷.

Antilinear symmetry without pseudo-Hermiticity Pseudo-Hermiticity without antilinear symmetry

Pseudo-Hermiticity without antilinear symmetry

Example

- T is pseudo-Hermitian, $\mathcal{P}e_i := e_{-i}, T = \mathcal{P}T^*\mathcal{P}$
- $\overline{\lambda}_0 \in \sigma_p(T) = \sigma_p(T^*)$
- $\lambda_0 \in \sigma_r(T) = \sigma_r(T^*)$
- T has not any antilinear symmetry, $\lambda \in \sigma_p(T) \Leftrightarrow \overline{\lambda} \in \sigma_p(T^*)$

・ 「 ト ・ ヨ ト ・ ヨ ト

Conclusions and applications

- antilinear symmetry and pseudo-Hermiticity are not equivalent properties even for bounded operators
- the counterexamples are not spectral operators point and residual spectra are not countable
- the equivalence can be shown for spectral operators of scalar type
 - $\bullet\,$ proof based on J-self adjoint operators
 - generalization of previous works 2002 Mostafazadeh JMP 43, 2002 Solombrino quant-ph/0203101,

2002 Solombrino and Scolarici quant-ph/0211161

• problem for general spectral operator is still open

一名 医下口 医下

-

Conclusions and applications

- non-empty residual spectrum!
 - physical meaning of the residual spectrum ?
 - antilinear symmetry together with pseudo-Hermiticity exclude non-empty residual spectrum
 - real numbers cannot be in the residual spectrum
- applications of equivalence
 - problem of boundedness of the inverse of metric Θ
 - quasi-Hermitian operators in Dieudonné's sense Θ^{-1} is not bounded, complex values in the spectrum 1961 Quasi-Hermitian operators, Proceedings Of The International Symposium on Linear Spaces
 - boundedness of Θ^{-1} is guaranteed for pseudo-Hermitian operators with antilinear symmetry, if Θ exists + technical assumptions