M. Amouch, Departement de Mathematiques, Faculte des Sciences Semlalia, B. P: 2390 Marrakech, Morocco, e-mail: m.amouch@ucam.ac.ma; H. Zguitti, Departement de Mathematiques et Informatique, Faculte Pluridisciplinaire de Nador, B. P: 300 Selouane, 62700 Nador, Morocco, e-mail: zguitti@hotmail.com
Abstract: Let $X$ be a Banach space and $T$ be a bounded linear operator on $X$. We denote by $S(T)$ the set of all complex $\lambda\in\mathbb C$ such that $T$ does not have the single-valued extension property at $\lambda$. In this note we prove equality up to $S(T)$ between the left Drazin spectrum, the upper semi-B-Fredholm spectrum and the semi-essential approximate point spectrum. As applications, we investigate generalized Weyl's theorem for operator matrices and multiplier operators.
Keywords: B-Fredholm operator, Drazin invertible operator, single-valued extension property
Classification (MSC 2000): 47A53, 47A55, 47A10, 47A11
Full text available as PDF.
Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.