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1. INTRODUCTION

The stability of the trivial solution x = O of the system (1,1) of differential equa-
tions described below will be investigated in this paper in some critical cases.

We shall consider the system of differential equations
(1,1) x = Ax + X(x)

with the following properties (P):

a) A is a n x n-matrix whose elements a;; (i,j = 1,2,...,n) are complex
constants.

b) x is a column n-vector whose components x; (j = 1,2, ..., n) are complex-
valued functions of a real variable ¢.

¢) X is a column n-vector whose components X; (j = 1, 2, ..., n) are complex-
valued functions of n complex variables x,, x,, ..., x, holomorphic for |x;| < H;
j=12..,n (H>0) and such that their developments into power series in
X1, X3, ..., X, begin with terms of the second or higher order.

We shall follow the papers of O. VEsvopa ([1]) and O. G671z ([2]), who are to my
knowledge the only ones who have so far dealt with the problem in question. The
former treated two critical cases, particularly that of one zero root and that of one
purely imaginary root of the characteristic equation of the matrix A. The latter
investigated the case of the n-tuple zero root of the characteristic equation of the
matrix A. In this paper the critical case of an I-tuple (I < n) zero root and the case
of several purely imaginary roots (under some additional assumptions) are dealt
with.

The proper stability investigations are preceded by the treatment of the normal
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form of the system (1,1). A general theorem (Theorem 3,4) supplementing the well-
known results of H. PoiNcare ([3]), H. Durac ([4]), K. L. Siecee ([8], [9]) A. D.
Bryuno ([5]—[7]) and E. PescHL and L. Reicu ([15]—[17]) is proved using the
method of majorant series*).

I should like to express my gratitude to Prof. OTT0 VEIVODA whose advices con-
tributed considerably to the improvement of this paper.

2. PRELIMINARIES

2,1. Assumptions and notations. The following assumptions, notations and conven-
tions will be kept throughout the paper.

A complex number z being given, Re z, Im z, Z and |z| have their usual meaning.
The space of all complex numbers (with the usual norm ][) will be denoted by K.
The space of all column n-vectors x whose components are elements of K will be
denoted by K,. The components of given vector x € K, will be denoted by x,, x,, ...

.. X, Given x € K,,, || || denotes the norm of x (in K,,) defined by || x| = ( Zn: [x;1%)"72.
i=1

Speaking about the system (1,1) we shall always suppose that this system fulfils the
conditions (P). Let H be the positive constant from the conditions (P). Then the set of
all x € K, such that ||x| < H will be denoted by 2. (Hence 2 = E[x €K, : |x| <
< H].) If some complex-valued n-vector function Z(z) of n complex variables
Zy, Z3, ..., Z, satisfies condition ¢) in (P) we shall write Z(z) = [z], and we shall
say that Z(z) is of the type [z],. The matrix A in (1,1) will be called the matrix of the
linear terms of the system (1,1).

Given n x n-matrix A, the elements of A will be denoted by a; ; (i,j =1,2,..., n).
The unit n x n-matrix will be denoted by I. A being the matrix of the linear terms of
the system (1,1), the characteristic equation of the matrix A:

@2.1) det (41 — A) = 0

will be also called the characteristic equation of the system (1,1). In this paper each
root of the characteristic equation (2,1) of the system (1,1) will be counted so many
times as corresponds to its algebraical multiplicity. These roots will usually be denoted
by 44, 45, ..., 4,, the enumeration of them being performed by the following rule:
Let pty, fy, ..., i, (r < n) be all mutually distinct roots of (2,1) (arbitrarily enumerat-
ed) with algebraic multiplicity ny, n,, ..., n,, respectively. Then T
=pu;(k=1,2,...,n)) holds for each j = 1,2,...,r (n, = 0).

For any nonnegative integer k the space of all (row) n-vectors p whose components

During this article was printed I got acquinted also with hitherto unpublished papers ({18],
[19]) of E. Peschl and L. Reich.
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D1> P2s - --» Dn are nonnegative integers such that p; + p, + ... + p, = k holds will
be denoted by (M, =.#). Given p, q € M, the expressions p + q or p — q have
the obvious sense. Given x € K, and p € 4, x? will be written briefly instead of
x§'x8* ... xB". Given A, p € K,,, (4, p) will be written briefly instead of A;uy + Az, +
+ ... + A,u,. Given a natural number k less than n + 1 and 4 € K,,, the space of all
(row) n-vectors p € . for which (4, p) = 4 holds will be denoted by A"(4). Given
natural number k less than n + 1, the element q of .# with g, = 1 and g; = 0 for
jFk j=12,...,nwil be denoted by e,.

Finally, G being a subset of K,, G denotes the closure of G in the topology given
by the norm |...|| defined above.

2,2. Some remarks concerning the system (1,1). Let us remember some properties
of the system (1,1) (which satisfies conditions (P)).

a) x = O is the solution of the system (1,1) on the interval (—co, ).

b) x(r) being the solution of the system (1,1) on the interval (a, b) and ¢, being an
arbitrary real number, x(t + t,) is a solution of the system (1,1) on the interval
(a — 1o, b — o). ,

¢) By a standard theorem to any & € £ there exists on <0, o0) the maximal interval
I. = {0, Tg) (T¢ > 0) on which the solution x(z, &) with x(0, &) = & exists, x(t, &)
belonging to €2 for every t e I.

d) We shall say (in accordance with the terminology of O. Gétz in [2]) that the
given system (1,1) has a domain of boundedness for 1 > 0if there is a domain B < K,
with the following properties:

(i) OeB < Q.

(ii) The solution x(t, &) (with x(0, &) = &) is defined on the whole interval <0, o)
for any € € B.

(iif) There is a compact set C such that B = C < £ holds, x(, £) belonging to C
for every £ € B and for every t > 0.

(Such domain B will be called the domain of boundedness of the system (1,1) for
t=0).

e) Let Ay, 45, ..., 4, be the roots of the characteristic equation of the system (1,1)
ordered according to the rule mentioned in sec. 2,1. It is well known that there always

exists such a regular n X n-matrix § of complex constants that the substitution
x = Sy transforms the system (1,1) into the system

(2.2) y = By +Y(y),

which satisfies again the conditions (P) and whose matrix B of the linear terms has
moreover the following properties:
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(i) B=S"'AS B = (bi,j)i,f=l,2 ..... n*

(i) b =0ifj>iori>j+ Lb; =4 (i=1,2,...,n).

(iii) Each b;;_, (j = 2,3,...,n) either equals 0 or 1, the fact whether for
a certain j = 2,3, ..., n there holds b; ;_; = O or b; ;_; = 1 being uniquely deter-
mined by the matrix A (or more precisely by the multiplicity of the elementary divisors
of the matrix (4; — A)). We shall use the notation b; ;_, =¢; (j = 2,3,...,n) and
we shall call the (n — 1)-vector & = (&,, 3, ..., ¢,) the first subdiagonal of the
matrix B. The n-vector (by y, by ,, ..., b,,) = (A4, 25 ..., 4,) = A is called the
diagonal of the mairix B and the matrix B is called the Jordan canonical form of the
matrix A.

In the sequel we shall use the following convention: The roots of the characteristic
equation of the system (1,1) having been enumerated in some manner (which is not in
a contradiction with the rule from sec. 2,1, of course), the diagonal of the Jordan
canonical form B of the matrix A is assumed to be ordered so that b; ; = 4, (j =
=1,2,...,n). Let ¢ = (&3, &3, ..., &) be an arbitrary n-vector from K,_; such
that for any j = 2, 3,..., n ¢ equals 0 if and only if &; equals 0. Then there exists
aregular n x n-matrix R of complex numbers such that for the matrix C = R™'AR =
= (ci)ij=1,2,..mthereholds: ¢; ; = 4;(j = 1,2,...,n),¢; ;- =€;(j=2,3,...,n)
and ¢; ; = Oif and only if b; ; = 0. The matrix C is then called the Jordan canonical
form of the matrix A with the first subdiagonal ¢'.

Let A be an arbitrary root of the characteristic equation of the system (1,1). Let
H1s Has - -, K, be all mutually distinct roots of the characteristic equation of the system
(1,1) with the algebraical multiplicity n,, n,, ..., n,, respectively. Lete = (g, €3, ..., &,)
be the first subdiagonal of some arbitrary Jordan canonical form of the matrix A.
Then the root 4 is said to be diagonable (see [2]) if, being 4 = u; forsomej = 1,2, ...
..., 7, there holds &, 4,4 ... 4n,_,+x = Oforallk =1,2,..., n; (It also means that the
root A of the characteristic equation of the system (1,1) is diagonable if and only if
the matrix (Al — A) has only simple elementary divisors.)

2,3. Basic definitions and theorems. Let Z(t, x) be an arbitrary complex-valued
n-vector function of n complex variables x, x,, ..., x, and one real variable t defined
for every t = 0 and for every x belonging to some open neighbourhood £, of the
origin O in K, and such that there holds Z(t, O) = O foreach t = 0. Then the stability
of the trivial solution x = O of the system

(23) % = Z(1, x)
will be defined in the usual Ljapunov way. (Clearly our system (1,1) is a special case

of the system (2,3).)

Definition 2,3. a) If for any ¢ > 0 there exists > 0 such that every solution x(t)
of the system (2,3) with | x(0)| < & is defined on <0, ) and satisfies for every t = 0
the inequality | x(t)|| < e, then the trivial solution of the system (2,3) is called stable.
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b) If the trivial solution of the system (2,3) is stable and if there exists 6, > 0
such that for any solution x(t) of the system (2,3) with ”x(O)” < 8, there holds
lim ”x(l)” = 0, then the trivial solution of the system (2,3) is called asymptotically
t—= o0
stable.

¢) If the trivial solution of the system (2,3) is not stable, it is called unstable.

The following theorem is well known (see [1]).

Theorem 2,3A. Let the right-hand side of the system (2,3) satisfy the following
conditions (P'):

Z(1, x) = Ax + X(t, x) where A is a constant n x n-matrix of complex numbers
and X(t, x) is a complex-valued n-vector function defined and continuous on 0, c0) x
x €2, such that

lim XI(” x) _
lxll=0xet ]|

uniformly with respect to t = 0.

Then there holds:

a) If all roots of the characteristic equation of the system (2,3) have negative
real parts, then the trivial solution of the system (2,3) is asymptotically stable.

b) If at least one root of the characteristic equation of the system (2,3) has a posi-
tive real part, then the trivial solution of the system (2,3) is unstable.

The case that the system (2,3) fulfils conditions (P’) and that at least one root of
the characteristic equation of the system (2,3) has a zero real part, the others having
negative real parts, is called the critical case. We shall deal with some critical cases of
the system (1,1) (with the properties (P)). The list of theorems which are necessary for
our investigation will be given below.

All these theorems are due to O. Gotz. (See [2].)

Theorem 2,3B. The trivial solution of the system (1,1) is stable if and only if there
exists a Jomain of boundedness of the system (1,1) for t > 0.

Theorem 2,3C. A necessary condition for the trivial solution of the system (1,1)
to be stable is that all roots of the characteristic equation of the system (1,1) have
nonpositive real parts while those having zero real parts are diagonable.

Theorem 2,3D. The trivial solution of the system (1,1) is asymptotically stable if
and only if all roots of the characteristic equation of the system (1,1) have negative
real parts.

Theorem 2,3E. If the characteristic equation of the system (1,1) has an n-tuple
zero root, then the trivial solution of the system (1,1) is stable if and only if there
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holds: A is the zero matrix (i.e. a; ; = 0 for every i,j = 1,2, ..., n) and X(x) =
on ,.

Besides the results of O. Vejvoda, who treated some critical cases of the system (1,1)
as we remarked above, some results of I. G. MALKIN (see [ 11]) concerning the critical
cases of real systems can be also used for the investigation of some critical cases of
complex systems. This concerns particularly the case of two couples: 4, 4, and 4, 1,
of purely imaginary roots of the characteristic equation such that 4,15 ! is an irrational
number. This critical case is evidenily equivalent to the critical case of the complex
system (1,1) with two purely imaginary roots 4, 1, of the characteristic equation (the
other roots having negative real parts), 1;4; ! being an irrational number.

3. PSEUDONORMAL FORM OF THE SYSTEM OF DIFFERENTIAL EQUATIONS

3,1. Some remarks concerning formal power series. Expressions of the type
h(z) = Y {h}, 2"
pest

where {h}, (p € M) are some complex constants and where an arbitrary n-vector
from K, can be substituted for z are called formal power series (of n complex variables
z4, 23, ..., Z,). Their convergence for some z & O is not generally supposed.

Notation 3,1. Let h be an arbitrary formal power series of n complex variables
(z4» 22, .- -» 2,). Throughout the paper we shall make use of the following notation:

a) Given p € , the coefficient of z” in the series h will be denoted by {h},,.

b) The formal power series (of the variables z,, z,, ..., z,,) derived from the series h
by omitting the terms of the first order will be denoted by h*.

¢) The formal power series (of the variables zy, z,, ..., z,) derived from the series h
by replacing every coefficient by its absolute value will be denoted by Ihl, i.e.

he) = T 5 10(E) = (22 () = X [0 2

d) Given a natural number k less than n + 1, the formal power series g (of the
variables z,, z,, ..., z,) with {g}, = (py + 1) {h},+, for each p e . will be denoted
by 0h|0z, (and called the formal partial derivative of & with respect to z,). It is obvious
that if h is absolutely convergent on some (open) neighbourhood U of the origin O
in K, (i.e. h is a function holomorphic on U), then for any k = 1, 2, ..., n the series
0h[dz, is absolutely convergent on U and for every y € U the value of the partial
derivative of h with respect to z, in y equals the sum of the series 0h/0z (y).

e) The formal power series u(1 + v + v* + . ) of the variables u and v will be
denoted by u . (1 — v)™".
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f) Let f be a formal power series of m complex variables y;, Y2, ---» Vm and let
J1»92s -+ Gm be formal power series of n complex variables z;, Z5, .-+, Z,- Let us
denote by F the formal power series of n complex variables z, z,, ..., Z, derived from
the series f by the substitution y; = g; (2, 23, ..+, 2,) (j = 1, 2, ..., m). Then given
p M, the coefficient of z” in the series F(z) will be denoted also by {f(9)},-

g) If the right-hand side of the system (1,1) is a formal power series (of n complex
variables Xy, X, ..., X,) which is not generally absolutely convergent on any neigh-
bourhood of the origin O in K,, we shall call the system (1,1) a formal system of
differential equations.

h) We shall say that the formal power series f and g (of n complex variables) are
equal to each other if there holds {f}, = {g}, for any p e .. Let us define in the
usual way (see [ 14], pp. 3—9) the addition and multiplication on the set of all formal
power series. The sum and the product of formal power series f and g will be denoted
f + g, fg, respectively.

Given a complex number «, an integer k and a formal power series f, we define in
the obvious manner the «-multiple of the series f (of) and the k' power of the series

I

Definition 3,1A. We say that the formal power series g (of n complex variables)
is majorant to the formal power seriesf(ofn complex variables) if, given an arbi-
trary n-tuple p € M, there holds |{f},| < {g},- (ThlS will be denoted by h < g or
h(z) < 9(z).)

Let us give (without proofs) two trivial assertions justifying some operations with
formal power series utilized in the proof of the main theorem (Theorem 3,4) of
this chapter.

Lemma 3,1A. Let f, g, h be formal power series of n complex variables (zy, z,, ...
e z,,), the series h having all nonnegative coefficients and f being majorant to
g (9 < f). Then there holds:

a) g+h<f+h
b) g.h Xf.h

Lemma 3,1B. a) Let g and h be formal power series of n complex variables
Zis 225 -er 2, and let fi, fs, ..., f, be formal power series of k complex variables
X1, Xa, +.., X With zero absolute terms and with all nonnegative coefficients. Let us
denote by G, H the formal power series of the variables x,X,,...,x; obtained by the
substitution z; = f{(x1, X3, ..., %) (j = 1,2,..., n) into the series g(z) and h(z),
respectively. Let g(z) < h(z), then there holds also G(x) < H(x).

b) Let f be a formal power series of n complex variables z,, z,, ..., z, with all
nonnegative coefficients. Let g, hj (j = 1,2,...,n) be formal power series of k
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complex variables x,, x,, ..., x, with zero absolute terms. Let g; < h; (j = 1,2, ...
..., n). Let us denote by F,, F, the formal power series of the variables x;, X5, ..., x;
obtained by inserting z; = gj(xl, Xy eues xk) orz;= hj(xl, Xgy enes xk) (j =12,...,
..., n) into f(z), respectively. Then there holds Fy(x) < F(x).

Remark 3,1. Let us give several consequences of Lemma 3,1B.

a) Given formal power series gy, g, hy, h, of n complex variables zy, z,, ..., z,
not including ithe absolute term and such that g, < h,, g, < h, hold, there holds
G(z) = g4(z) . (1 — 92(2)) "' < hy(2) . (1 — hy(z))™" = H(z). (G and H are formal
power series of the variables z,, z,, ..., z,.)

b) It is evident that if the power series g of the variables z4, z,, ..., z, is absolutely
convergent for |z;| < ¢; (¢; > 0, j = 1,2,..., n) and majorant to the formal power
series h (of the variables z,, z,, ..., z,), then also the series h is absolutely convergent
for |z;] < ¢; (j =1,2,...,n).

c) It is well known that to any function g of n complex variables z,, z,, ..., z,
holomorphic on some open neighbourhood of the origin O in K, there exist such
positive numbers ¢, ¢, that, considering g(z) as a power series of the variables
Z15 2, - -+, Z, there holds

9(z) < = : (See [13]))
SR
C2 C2 C2
Thus (by Lemma 3,1B)
9(z) < = -,
l_z,+22—f-...—|—z,l
C2

the right-hand side series being absolutely convergent for ]z1 +z;4+ ...+ z,,l < ¢,.

d) It is obvious that for arbitrary formal power series f, g, h of n complex variables

(21> 225 -2 s Z0)s

h(z) 2 = h@) +f(z) . (1 — g(2))
1—g(2) 1) 1-yg(2)

holds.
3,2. The pseudonormal form of the system of differential equations.

Definition 3,2A. The mapping f from K, into K, which fulfils the following
conditions: .

(i) f is a complex-valued n-vector function of n complex variables each component
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f; (j =1,2,...,n) of which is holomorphic on some open neighbourhood of the
origin O in K, (i.e. f is a holomorphic in O mapping),

(ii) f(0) = O,

(iii) The Jacobian F; of the mapping f does not vanish at O,
will be called the regular mapping.

Remark 3,2A. Let f be an arbitrary regular mapping (from K, into K,). It is well
known that then there are such open neighbourhoods ¥V, V' of the origin O in K,
that f is a one-to-one mapping of ¥ onto ¥’ and that the mapping g inverse to f is
a one-to-one regular mapping of ¥’ onto V. It is possible to write

(3.1) y

and

(3.1 x

Il

f(x) = Fx + f*(x) (for xe V)

I

g(y) = Gy + g*(y) (for ye V)

where Fand G are constant regular n x n-matrices of complex numbers and where f*
and g* are complex-valued n-vector functions any component of which is of the type
[x].. [y]., respectively. (See [13].)

Given x € V, there holds

x = g(f(x)) = GFx + G f*(x) + g*(Fx + f*(x)) = GFx + h*(x)

where h*(x) is some complex-valued n-vector function of the variables x;, X,, ..., X,
any component of which is a function of the type [ x],. Thus clearly

(3,2) GF=1 and h*(x)=O on V.

Let us substitute (3,1) into (1,1). Then we obtain a new system of differential equa-
tions for y

(3.3) y = By + Y(y)

where (according to (3,1') and (3,2)) B = G~ 'AG = FAF™! and any component
Y(y)(j = 1,2, ..., n) of Y(y) is of the type [y],.

Hence the mapping f generates the transformation of the given system of differential
equations onto some other system. The following lemma can be easily proved.

Lemma 3,2A. The transformation of the system (1,1) generated (in the above
mentioned manner) by a regular mapping transforms the system (1,1) onto a system
which also fulfils conditions (P) and whose trivial solution is stable or unstable or
asymptotically stable if and only if the trivial solution of (1,1) is stable, unstable
or asymptotically stable, respectively. (The transformation of the system (1,1)
generated by a regular mapping will be called the regular transformation.)
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Thus, without any loss of generality we can investigate an arbitrary system trans-
formable by a regular transformation onto the system (1,1) instead of (1,1). Let us
try to find the regular transformation which transforms the system (1,1) onto another
system as simple as possible.

First of all (see the remark f) in sec. 2,2) we may assume the system (1,1) to be of
the form

(3.4 % = X + axmy + Xilxp, x50 x,) (K=1,2,...,n)
where A, A,, ..., 4, are the roots of the characteristic equation of the system (1,1),
e = 0and & = (&;, &3, ..., &,) is the first subdiagonal of some Jordan canonical

form A of the matrix A (thus the matrix of the linear terms of the system (3,4) equals
A) and, finally, X,(x) = [x], (k =1,2,...,n). Let us substitute (3,1') (where
G =) and (3,3) (where B = Aand Y, (k = 1,2, ..., n) will be determined later, of
course) into (3,4). Then we get a system of partial differential equations for ar
and Y, (k = 1,2,...,n) '

& g
(3.5 > a——(/lj)’j +eyi-1 + Yy + Y=

j=1 0y;

=gg; 1 + Wgr + Xk(gbgza e g,,) (k =12,.., n).

Definition 3,2B. a) The formal power series Y, g (k=1,2,..., n) will be said to
solve formally the system (3,5) if after substituting these series into (3,5) there holds:

Given k = 1,2,...,n and p e M, the coefficient of y* in the right-hand side of
(3,5) formal power series (of the variables yy, Y2, ..., ¥s) equals to that in the left-
hand side of (3,5) formal power series.

b) Let Y, (k = 1,2,...,n) be some given formal power series (of the varibles
Vis V2 - V). Then, if the formal power series Y, gi (k= 1,2, ....,n) solve
formally the system (3,5), we shall say that the mapping (3,1') generates the formal
transformation of the system (1,1) onto the formal system (3,4).

Let us now look for the formal solution gy, Y, (k = 1, 2, ..., n) of the system (3,5)
such that the series Y, (k = 1,2,..., n) are as simple as possible. The procedure of
seeking such formal power series will be described only in such details as it is necessary
for our purposes. (Since it does not differ from that given by A. D. Brjuno in [5].)

Let m be an arbitrary nonnegative integer less than n + 1. Let us suppose hence-
forth gF (j = m + 1, m + 2,..., n) to be arbitrary but fixed holomorphic on some
open neighbourhood of the origin O in K, functions of the variables y{, y5, ..., ¥p.
From the system (3,5) the following system of algebraical equations for the coefficients
{9}y (k=1,2,...,m; pey), {Y}, (k=1,2,....,n; peM,) of the series g,
(k=1,2,...,m)and Y, (k = 1,2,..., n) can be easily derived:
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(3.6) {9 [(p, 4) — A + (Y, = adGi-1)p + {Xk(g)}p -
S0+ Deladan -3, 5 (@ D {odao e (6= 12005 pentt)

j=lotp=p
o, pefl2

where p(j) =p —e;_, + e, and ®(j) = @ + e({gi}3; =0 for p;_; =0, of
course).
Let us order the set E[{g,}, :k = 1,2,...,n and p € #,] by the followmg rule:

{9:}w < {9}, if and only if the first nonzero number in the set: {Z,uk Zwk,
K1

Py — Oy, fl — @y, ..y Uy~ j — i} Is positive. Let us further order the set E[{ Yi}pik =
=1,2,...,n and pe #,] in the same way. It is easy to prove that then there holds:

Givenany k = 1,2,..., nand any p € . ,, the right-hand side of the corresponding
equation in (3,6) includes only coefficients {g},. { Y;}, which precede (in the ordering
given above) {g,}, or {Y,},, respectively. Therefore it is possible to determine all
coefficients of the series g, (k = 1,2,..., m) and Y, (k = 1, 2, ..., n) successively in
the following way:

For 1 = k < m and p ¢ A7(2) (ie. (p, 4) + 4) {9.}, can be computed from the
corresponding equation in (3,6) (putting {Y,}, = 0). For 1 < k < m and p € #,(4)
we choose {g,}, arbitrarily and then we compute {Y,}, from the corresponding equa-
tion in (3,6). For any k =m + 1, m + 2, ..., n and p € 4, the value of {g:}, is
supposed to be known and thus we can again compute {Yk}p from the corresponding
equation in (3,6). In this manner the proof of the following assertion has been just
completed.

Lemma 3,2B. Let 1y, A,, ..., A, be the roots of the characteristic equation of the
system (1,1). Let m be an arbitrary nonnegative integer less than n + 1, let B be an
arbitrary Jordan canonical form of the matrix A of the linear terms of the system
(1,1) and let &€ = (e, &5, ..., &,) be the first subdiagonal of the matrix B. Then
there always exists a formal transformation which transforms the system (1,1)
onto generally formal system

(7)) = Fayior + N Ve y) (=0 k=1.2,...n)

where
(3.7) V) = Y (Ny (k=127
peFr(d)
(Lu4) = & A) fork =1,2,...,mand L, (A) = M, fork =m+1,m +2,...,n)
are generally formal power series of the variables Y1, Y25 -+ Yn-

Remark 3,2B. a) The coefficients {Y;}, (k = 1,2,..., n; p € L(4)) in (3,7') are
complex constants depending on the choice of the coefficients {g,}, of the series g
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(k=1,2,...,n) for peZ,(4) and further on the choice of the Jordan canonical
form B of the matrix A and also on the choice of the number m.

b) For m = n, the assertion of Lemma 3,2B is identical with that of A. D. Brjuno

in [5].

Definition 3,2C. Every system of the type (3,7) obtained from the given system (1,1)
in the way described in the proof of Lemma 3,2B will be called a pseudonormal
Sform of the system (1,1) of the type (m; B) (or (m, ¢)).

For m = n we shall call such a system a normal form of the system (1,1) (of the
type B or g).

Remark 3,2C. As a result of the variety of the choice of the coefficients {g,},
with p € Z,(4), every system of the type (1,1) has infinite number of pseudonormal
forms of the type (m; B). Those differentiate themselves in the values of the coeffi-
cients {Y;}, (p € £4(4)). Hence it is useful to complete Definition 3,2C:

The pseudonormal form of the system (1,1) which arises so that {g,}, is chosen
equal to 0 for p e L(A) will be called a fundamental pseudonormal form of the
system (1,1) of the type (m; B) (or a fundamental normal form of the system (1,1)
of the type B — if m = n).

Remark 3,2D. Let us notice one interesting fact more: On the right-hand side of
the pseudonormal form (3,7) of the system (1,1) of the type (m; B) (0 < m < n) let
us introduce the notation Y,(y) = y, m(y) (k = 1,2, ..., m). Thus

m(y) = Y {ndpy® (k=12...m)
PePr(4)
where for an arbitrary k = 1, 2, ..., m #,(4) is the set of all n-vectors p = (py, p,, ...
..., D) of integers such that there holds: p, = —1, p; 2 O forj =+ k, p; + p, + ...
ceo+ D=1 and piAy + pydy + ..oy Dot = 0. Let us denote further () =
=E[peP(d):p = 0] (k=1,2..m) and #(2) = E[pe ¥ (A): p. = 1]
(k =1,2,...,m). Then there holds

B.0) = Ho) = ... = Bol1) = F(2)

or: given an arbitrary k = 1, 2, ..., m, the n-vector p from #, belongs to ./V'k(}.) if
and only if for any j = 1, 2, ..., m the n-vector p + e; — e, belongs to ./17,-(1.).

3,3. Several lemmas. The following lemmas will be useful in the proof of the main
theorem (Theorem 3,4) of this chapter.

Lemma 3,3A. Let the n-tuple A = (/11, Azs eeny /1,,) of nonzero complex numbers
fulfil the following condition:
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(Qo) There exists such a constant § > O that, given an arbitrary k = L,2,...n
and an arbitrary p € M with (p, A) % 4, there holds

(3.8) |(P.4) — 4| =26 >0.

Then there exists such a constant K; < oo that, given an arbitraryk = 1,2,
and an arbitrary p € M with (p, A) + A, there holds:

(3.9)

_._(P’—l) SK1<(X).
(P’)')_;[k -

Proof. Let k be an arbitrary natural number less than n + 1. Then:
a) Given p € A with |(p, 4)| Z 2|4/, there holds

.2 |
(P 4) — Af
b) Given p € 4 with (p, 4) + 4, and |(p, 4)| < 2|4, there holds (owing to (Q0))

<‘|—]‘—Qk+n<°°-

é

=0 < 0.

x22\k] X — |/l,(|

(wn—a

Hence K; = max ¢, < oo is the required constant.
k=1,2,..,2n

Lemma 3,3B. Let the n-tuple A = (14, A,, ..., A,) of nonzero complex numbers
fulfil the following condition:

(Q,) If we regard 2y, 2, ..., 2, as points of the complex plane K, then there exists
in the complex plane K such a straight line L passing through the origin 0 in K
that all the points A, A,, ..., A, belong to the same closed half-plane bounded in K
by L. Let 1 (0 < I < n) points from the set {Ay, A, ..., 4,} belong to the straight
line L, the other belonging to the same open half-plane bounded in K by L. Let us
suppose the numbers 4y, A, ..., A, to be enumerated so that A;e L forj = 1,2,..., L

Then there exists such a constant K, < oo that given arbitrary k = 1,2,...,1
andj =1+ 1,1+ 2,...,n and an arbitrary p € M with (p, ) + A there holds

(3,10) <K, < .

YEr

Proof. It can be proved easily that the condition (Ql)v is equivalent to the following
condition:

(g1) There exists such a real number 9 that for the numbers:

(3.11) e =€e%% (k=1,2,..n)
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there holds:

(3.12) Rep =0 for k=1,2,..,1; Repy, <0 for k =1+ 1,142 .. n.

As a simple consequence of the assumption (Q,) (or (¢,)) we get for any k =
=1,2,..,Lj=1+11+4+2,..nand pe.# with (p,4) + 7,

P; p; T

|(p. l)l— 2 = (P, Re i) — Re ;] B (P, Ren) ~ Rep,

(where Re p = (Re g, Re piy, ..., Re p,)). Therefore

1
K, = max ——
1+1zjsn Re y;

is the required constant.

Lemma 3,3C. Let the n-tuple A = (Ay, A5, ..., 4,) of nonzero complex numbers
fulfil the condition (Q,) from Lemma 3,3B and, moreover, the following condition:
(Q,) There exists such a constant 5 > 0 that, given an arbitrary k =1,2,...,1
and an arbitrary l-tuple (py, p,, ..., p;) of nonnegative integers with p;A, +
+ Pady + oo+ pihi ¥ A there holds |pidy + pydy + ..o + pdy— A 2 6> 0.

Then there exists such a constant K; < oo that, given an arbitrary k = 1,2, ..., 1
and an arbitrary p € M with (p, A) % A, there holds

(.13) [Pt + Pady + oo + Py
(P 2) =

SK;< .

Proof. For an arbitrary k = 1,2,..., 1 there follows from (Q,),(Q,), Lemma
3,3A and Lemma 3,3B:

Pihy + Pody + oo+ Pk (p. 4)
(P 2) — & P 2) - 4
n p. . n
+ Al ——— <K +K ) = K. < ‘
j=t+11 i (B 2) — 2] ~ 1 2(j=;+11 i) 3 < ©

3,4. Regular transformations of the system of differential equations to its pseudo-
normal form. Sufficient conditions for the regularity of a transformation of the sys-

tem(1,1) to its normal form were given firstly by H. POINCARE (see [11] or [12],
pp. 131-137).

Let the matrix A of linear terms of the system (1,1) and the roots Ay, A,, ..., 4, of
the characteristic equation of this system satisfy the following conditions:
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(i) Jordan canonical form of the matrix A is a diagonal matrix.
(ii) Given an arbitrary qe M, and an arbitrary j = 1,2, ..., n, there always
holds (q, ) + ;.
(iii) If we regard Ay, A, ..., A, as points of the complex plane K, then there exists
in this plane such a straight line L passing through the origin 0 in K that all points
Aty Aay ooy A, belong to the same open half-plane bounded in K by L.

Then there exists a regular transformation of the system (1,1) to its normal form
Vo= (k=1,2..n).

The Poincaré conditions were generalized by H. Dulac (see [4]) who did not sup-
pose (i) and (ii), K. L. Siegel (see [8], [9]) whose conditions are of somewhat different
type (see Remark 3,4F) and above all by A. D. Brjuno (see [6], [7]) whose results
include all formerly known results. He requires that the coefficients on the right-hand
side of the pseudonormal form of the system (1,1) fulfil some relations. For example,
in the case that for the roots 1, 4,, ..., 4, of the characteristic equation of the system
(1,1) there holds Re1; =0 (j=1,2,...,1), Red; <0 (j=1+1,1+2,...,n)
(2 £ 1 £ n), for at least one couple 4;, 4, (1 < j, k < I) being sign Im A; = sign Im 1,
some requirements on the coefficients on the right-hand sides of the equations of the
pseudonormal form of the system (1,1) corresponding to 4; with Re 4; < 0 are made,
too. This is disadvantageous for the study of the stability of the trivial solution of the
system (1,1). It is namely possible to expect that such coefficients will have no influence
on the stability of the trivial solution of the system (1,1). Moreover, A. D. Brjuno
gave his assertions without proofs. Theorem 3,4 given below is an analogy of the
theorem of A. D. Brjuno from [7], but it is neither equivalent to this theorem, nor
a consequence of it.

Theorem 3,4. Let the matrix A of the linear terms of the system (1,1) be regular.
Let the roots Ay, 2, ..., A, (ordered by the rule from sec. 2,1) of the characteristic
equation of the system (1,1) fulfil the conditions (Q,) (see Lemma 3,3B) and (Q,)
(see Lemma 3,3C). Let B be an arbitrary Jordan canonical form of the matrix A
and let : = (e, ¢, ..., &,) be the first subdiagonal of the matrix B. Let

(G14) v =Ay + a1+ Y v en ) (61 =0; k=1,2,...,n)

be the fundamental pseudonormal form of the system (1,1) of the type (I;B)
(generally formal) where

(3’15) Y;((Y) = yk z {'Ik}p yP = yk '7k(y) (k = 1’ 2’ ey l)
pePi(2) :

(for the definition of 2,(4), see in Remark 3,2D)

and

(3.15) Y(y)=Y (Y}, v° (k=1+11+2..,n).

pefl;
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Let the following two conditions be satisfied, moreover:
(Qs) g, =¢63=...=¢=>0

and

(Q4) There exists such a finite real number v that, given an arbitrary peP(A) =
1

= U Py(A) with p, + p, + ... + p, 2 v, there exists such a complex number =,
k=1

that

(3.16) M = 0 (k=1,2,..., 1)

holds.

Then the transformation of the system (1,1) to this fundamental pseudonormal
form of the type (I; €) is regular.

Notation 3,4. a) Given an arbitrary natural number v and an arbitrary k = 1,2, ...
..., I, the set of all n-tuples p € 2(4) with p; + p, + ... + p, = v will be denoted
by 2, .(4). The sets 2,(4)\ 2, () and E[p € 2, (4) : p, = 0] will be then denoted
by 2, ,(4) and &, ,(4), respectively. Owing to Remark 32D &, (i) = &, (4) = ...
o= &1 (4) = P ,(4). Let us denote L(4) = P(4)\ &,(4), moreover.

b) Given an arbitrary natural number v and an arbitrary k = 1, 2, ..., [, the set

of all n-tuples p = (py, P, ..., p,) of integers such that there holds p; = 0 for j * k,
= —land 1 < p, + p, + ... + p, < v will be denoted by ., ,. Let us denote
1

the set U #; , by ,, finally.
k=1

Remark 3.4A. a) It can be easily proved that if the condition (Q,) is satisfied,
the n-tuple p from . belongs for some k = 1,2, ..., to 2,(4) if and only if there
holds: p; = Oforj # k, p; =0forjz1l+1,p, = -1, py + p» + ..., p, = 1 and
(p, 4) = 0. The right-hand sides of the first I equations of the system (3,15) are
hence independent on yyyq, Visas --os Yoo (B(Vis Yao oo V) = Yilys, oo ooy y0) =
=y Yoo oo y), k=1,2,..,1). .

b) If the system (3,15) fulfils the condition (Q,), then

(3.17) (n)y =0 for pe2, (MNFH) (k=121

holds (Since [2,,(A)\ Fi\(A)] N 2, ,(4) =0 for every j =1,2,...,] such that
j =+ k).

Remark 3,4B. In the proof of Theorem 3,4 the rules for the operations on formal
power series given in sec. 3,1 are utilized, no reference to them being made.

Proof (of Theorem 3,4). Let the assumptions of the theorem be fulfilled.
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Given an arbitrary k = 1,2, ..., I and an arbitrary p € 2 ,(4), let o, be such
a complex number that {;1,(}’ = o, 4 holds. Given an arbitrary k = 1, 2, ..., and
an arbitrary p € M, \ 2; (4), let o, . be equal to 0. Let us denote then

(3.18) C= max |t ] -
k=1,2,...,l;pedl’,
(Evidently C < .)

Owing to Lemma 3,3B and Lemma 3,3C there exists such a finite positive
number K that, given an arbitrary k = 1, 2, ..., l,anarbitraryj = I + 1,1 + 2,...,n
and arbitrary p € # with (p, 4) + A, there holds:

(319) D1ty + Doty + ... + DA <K <o
(P. 1) — 7 -

and

(3,19 {—”f— <K<w.
(P7l) - Ak

The system (1,1) can again be written in the form
(34 X = Ax + gXeey + Kilxp, Xas e x,) (5 =0k =1,2,..,n)

where ¢, = ¢35 = ... = ¢ = 0 owing to the assumption (Q,). By the substitution of
(3.14) and (3,1') (where g = O forj = I + 1,1 + 2, ..., n, of course) into (3,4) we
obtain the system (3,6) of the equations for the coefficients of the series gy, Y, (k =
=1,2,...,n). (See the proof of Lemma 3,2B.) Owing to the assumptions (Q3)
and (Q,) and owing to Remark 3,4 A this system has in our case the following form:

(3.20)  {gJp [(P. 2) = 4] + (¥}, = {Z:(8)}s - > e+ D iadsy —

=1+2

- I i) e E (5 o+ D2)nlade -

@to=p ote=
o, ac 'y ol 0L (A)

- +Z p( Zl:ﬂ(wj + 1) {gi}s (Yi}e) for pelr; k=121
ote=p j=
o,0cM2

{Yk}p={ik(g)}p for pedly,; k=1+1,1+2,...n

where P(j) =p —e,_; + e, a(j)=o +e€; (j=12,...n); {Y}, =0 for p€
€N N (B) (Y}, = {M}p-a, for p € Au(2) and {gi}5;) = 0if p;—, = O, finally.
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Given an arbitrary k = 1,2, ..., I and an arbitrary p € 4, \ Ai(4), there holds
(owing to (3,18), (3,19), (3,19) and (3,20))

(3.21) [{g:do] < K'[[{Xule)}s] + IE | Haisenl +

j= 2

+ Z C!{gk}wl + Z lfxal ,{gk}wl + Z Z ’{ JJGI I{gk}w(l)”

ote=p ota=
wchlr,0e M’ we.ltz,asy’v(l) ”’ "E'”Z

where K’ is some positive constant.
Given an arbitrary k = 1,2, ..., I and an arbitrary p e A",(4), there holds (owing

to (3,20))

(322) [Vl = I{Xk(g)}p|+ Z Py I{Y} | Hoidaw! -

w as.ﬂz
(Indeed, p belongs to A7 (4) only if p,yy = pjyr = ... = p, = 0 and therefore the
second expression on the right-hand side of the corresponding equation of (3,20)
vanishes. Moreover, if @ + ¢ = p, 6 € Py(4) and p € A",(4), then @ € A"(4) and
{9i}w = 0. Therefore the third and fourth expressions on the right- hand side of the
corresponding equation of (3,20) vanish, too.)

There follows from (3,21) and (3;22)
1 1
(3.23) G+ Y Ivl< K[ X|X8)] + BG + aG +
k=1 k=1
1 n 1 n
+3 3 el + X 3 bl el
k=1 j=1+1 k=1 j=1+2

where the symbols G, o, G, ;s di; (k=1,2,....05 j=1+ 1,14 2,...,n) denote
the formal power series of the variables )1, Y2, ---, ¥, 8iven by the following prescrip-

tions:

1
(3,24) G=Yl]. o= Iapl)"’
ji=1

Fu(

g y) = > ’{gk}su) Y, gk,i(y) =3 {gk}a(,-) y?
petl 2 pefly

pPy-1>0
and f is the polynomial of the variables Y1, Y2, -.-, Yy

’ = P .
(320) o) =, 3% O

(Clearly B(y) = Z y;* B(y) where every polynomial BAy) is of the type [vis ya, -2
. yl]z )
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Owing to (3,15), (3,16) and (3,24)

1
>l
k=1

where ¥ is a (finite) polynomial of the variables yy. V2, - -, ¥, With all nonnegative
coefficients. Then evidently

(3.25) (ki,vklflkl) o «kixly"l -

The functions X, (k = 1,2, ..., n) are holomorphic functions of the variables
X1, X3, + .., X, on some (open) neighbourhood of the origin O in K, and X,(x) = [x],
(k = 1,2,..., n), moreover. Thus there exist positive constants c,, ¢, such that

(3’26) 'Xk(g)' = IXk(g1g29 e G Vit Vig2s -oes y")l <

cillga] + lga + - g + yies F via + o+ )
1 - Cz([gxl + lgzl + ..ot lgz‘ + Vitr F Vs + o0+ J'n)

(See Remark 3,1.)

All coefficients in (3,23) are nonnegative. Hence if we restrict ourselves to y, =
=y, =... =Y, = u, we cannot cause any loss of generality of our investigation.
Then by (3 25) and (3,26) the relation (3,23) may be written as

(nu + G)?

3,27 G+ cua<ce,| —mm——
(3.27) ? ¢ [1 — ¢y(nu + G)

2
+aG+ﬂG+u"GM +¢sG
1 — ¢y(nu + G)

where ¢, = Z |4] > 0, ¢, = K'(nc; + 1) >0 and c¢5 = K’ Z |e;] = 0. (Since
j=1+2

for any k = 1, 2,...,landj = 1,2, ..., n the relations
IgAk,j(u)l = Igjk,j(u, u,... u)|<< u'}lgf(u)l = u"lg,’f(u, u, ... u)l

and |3, ;(u)] = lgs. /(. u. ... w < Jgi @) = |oi(u. u, ..., w)] hold.)

Let ¢,, 0, ... 0, be now positive numbers such that the evidently regular linear
transformation
(3.28) x=o0& (k=12..n)

transforms the system (3,4) to the system
(3,4/) ék = A& + w1 + Xk(fl, (ST f,,) (k =12.., ")
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where  X,(¢, &5, ..., &) = (1) Xi(e1é1s 02620 o 048) (kK =1,2,..,n) and
Hys B, ..., f1, are some complex numbers with the following properties:

@) uy = 0.

B) Given an arbitrary j = 2, 3,...,n, u; = 0 if and only if ¢; = 0. (Hence uy =
Sl == g = O~)

1-K Y p4>0
j=1+2
Let

(3’15”) e = Ae + Wlle—1 + Yk('h, Moy ooy 'In) (k =12.., ")

be the fundamental pseudonormal form of the system (3,4') of the type (I; g). This
formal system obviously fulfils the conditions (Qs) and (Q4)- Tt is easy to prove that
inserting

(3,28) =0 'y (k=12..n)

into (3,15”) we get just the fundamental pseudonormal form (3,15) of the system
(3,4) of the type (I; &). The transformation given by (3,28') is evidently regular. Hence
if we suppose

(3,29) 0<1—%=1—K IM
we cannot cause any loss of generality.
According to (3,24’) there exists such a positive constant c, that the estimate

6l
3,30 U)K —— P
( ) 'B() 1—cz(nu+G)
holds.

By (3,28) and (3,30) the relation (3,27) may be replaced by an equivalent relation

(nu + G +aG + u'G + (nu + G)* ]

G+ cqua < cg | ————— —_—
! sl:l — ¢y(nu + G) 1 — ¢,(nu + G)

where ¢, and cg are some positive constants.

Whence the following estimates for the formal power series ¥V = Gu™! + ¢, and
W = u + V + uV can be successively obtained:

3
V<<09[ u(l + V) +V2]

1 - clou(1 + V)
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and
u+ w4+ wl

3.31) W< c
( ) " 1 —cy W

where cq, ¢, and ¢,y are some positive constants.
Let us investigate the formal equation

(3’32) P =cy

Owing to sec. 3,1 the equation (3,32) can be replaced by the equivalent equation
¢4 PP + 2 ;PP =P +cu=0.

There is obviously just one formal power series P of the variable u which satisfies
this equation (formally). By Implicit Function Theorem (see [14], p. 39)
P absolutely converges on some open neighbourhood of the origin 0 in K. Since
obviously gi(u, u, ..., u) < G(u) < W(u) < P(u), all the series gy(u, u, ..., u) (k =
=1,2,..., l) absolutely converge on the same neighbourhood of the origin in K, too.
Whence the absolute convergence of the series gg(Vy, Y2, .., ¥n) (k = 1,2,...,n) on
some open neighbourhood of the origin O in K, follows and this completes the proof
of Theorem 3,4.

Corollary. Let the matrix A of the linear terms of the system (1,1) be regular and

let the roots Ay, Ay, ..., A, of the characteristic equation of the system (1,1) satisfy
the following condition.
(Q}) There exists in the complex plane K a straight line L passing through the
origin 0 in K such that all the points A, A,, ..., A, belong to the same open half-plane
bounded in K by L. Let the enumeration of these points be performed such that for
anyj =1,2,...,n— 1 the distance of the point A;, from the straight line Lis not
less than the distance of the point A; from the straight line L.

Let m be an arbitrary nonnegative integer less than n + 1 and let B be an
arbitrary Jordan canonical form of the matrix A with the first subdiagonal e.

Then the transformation of the system (1,1) to its fundamental pseudonormal
form of the type (m; B)

(334) yi= A+ Vi1 + By e een ) (6, =0 k=1,2,...,n)

is regular. Moreover there holds in (3,34):

(3.34) Y, =0, Z(y)= Y {%l,y" (k=23 ..,m)
peNi(2)
Yi(y) = [yl (k=m+1,m+2,..n)

where A(4) (k = 2, 3, ..., m) are altogether finite sets.
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Proof. Under given assumptions the numbers 4, 4,, ..., 4, surely satisfy the con-
ditions (Q,) and (Q,). Further it is clear that for any k = 1, 2, ..., m the set A (4)
is finite and hence the assumption (Q,) is also fulfilled. Finally, under given assump-
tions the assertion of Lemma 3,3C can be easily extended to j = 1, 2, ..., I as well.
In accordance to the proof of Theorem 3,4 we can hence leave out the assumption
(Q5). Whence our assertion immediately follows.

Remark 3,4C. a) Theorem 3,4 has been proved in the way which was used e.g.
by K. L. Siegel in the book [10]. (See pp. 89—92.)

b) The assertion of Corollary is for m = n identical with that of the well known
theorem, given by H. Dulac in [4].

Remark 3,4D. Let us give an example of the system (1,1) which satisfies the con-
ditions (Q,), (Q,) and (Q,) and does not satisfy the condition (Q}):

Let the matrix A of the linear terms of the system (1,1) be again regular and let the
roots 4y, A,, ..., A, of the characteristic equation of the system (1,1) be such that
Rei, = Red, =0, Red; <0 (j=3,4,...,n) holds, 1,A7"' being a negative
rational number. Let us suppose 1,4; ' = rs™! where r, s are such natural numbers
that the fraction rs~' has its basic form. Let B be an arbitrary Jordan canonical
form of the matrix A and ¢ the first subdiagonal of B. Then the functions Y, (k =
=1,2,...,n) standing on the right-hand side in the fundamental pseudonormal
form of the system (1,1) of the type (2; &) are given by the following expressions:

Yk(Y) = Vi Zl{nk}rj,sj y'fi)’sxj (k =1, 2)
i=
and

Y(y) = X (V¥ (k=3,4,...,n).

pesl>

Then the sufficient condition for the transformation of such a.system to its funda-
mental pseudonormal form of the type (2, ¢) to be regular is that the coefficients
{m}r.si (k = 1,25 j = 1,2,...) fulfil the following relations:

s + 5t =0 (G=vv+1,..)
where v is some natural number. (See Theorem 3,4.)

Remark 3,4E. It is obvious that if the transformation x, = y, + gx(V1, Y20 -+ V)
(k=1,2,...,n)withgf =0fork=m + 1, m + 2,..., nis a regular transforma-
tion of the system (1,1) to its fundamental pseudonormal form of the type (m; ¢),
then every transformation x, = y, + h(¥1, V2o ..o v,) (k = 1,2, ..., n) with {h,}, =
= {gk},, for k =1,2,...,m and p € A, and arbitrary holomorphic on some open
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neighbourhood of the origin O in K, functions on the place of h, (k =m + 1,
m + 2,...,n) is regular, too.

Remark 3,4F. Sufficient conditions for the regularity of the transformation of the
system (1,1) to its normal form were also given by K. L. Siegel in [8]. Let us remember
them:

Let the matrix A of the linear terms of the system (1,1) be regular and let the
following conditions be satisfied:

a) Jordan canonical form of the matrix A is a diagonal matrix.

B) There is such a positive constant & that for any p € 4 there holds

(P, 2) — 2] >2n(Y, p)~* (k=1,2,....n)
j=1

where Ly, A,, ..., A, are the roots of the characteristic equation of the given system
(L,1).

Then the normal form of the given system (1,1) is a linear system
Ve = Ak (k =1,2,..., n)

and the transformation of the system (1,1) to its normal form is regular.

In another paper of K. L. Siegel ([9]) the following important assertion has been
proved:

Let . be the set of all n-tuples p of such integers py, p,...., p, that |p,| +
+ Ip2| + ...+ Ip,,[ > 0 holds. Then, if for the roots Ly, 23, ..., A, of the character-
istic equation of the system (1,1) the expression

lg(|(p. 2)| ™)

PAP) = T+ ool + % 1)

is unbounded on the set M, the system (1,1) does not satisfy the condition B).

Thus every system of the type (1,1) with the roots 4;, 4, ..., 4, of the characteristic
equation such that for some p € . the relation (p, 2) = 0 holds does not satisfy the
conditions of K. L. Siegel. In particular — systems which satisfy the assumptions of
Theorem 3,4 do not satisfy generally these conditions. (In the case n = [ = 2 these
conditions are fulfilled only if the number 4,15 ' is irrational.)

The assertion of K. L. Siegel has been somewhat generalized by A. D. Brjuno
(in [6]). A. D. Brjuno has not given the proof of his theorem, of course.
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4. THE STABILITY OF THE TRIVIAL SOLUTION OF THE SYSTEM (1,1)
IN SOME CRITICAL CASES

4,1. Several lemmas.

Remark 4,1. Let us remember some further properties of the system (1,1):

Given a domain G such that Oe G and G < (Q is the domain on which the
system (1,1) is defined, see sec. 2,1), there is T > 0 with the following property (p) :
: x(t, £) being the solution of the system (1,1) with x(0, &) = &, x(t, &) is defined for
each &€ G on the interval <0, 7) and remains in 2 for all (¢, &) € €0, ) x G. (See
[2].) Let us denote by 7 (G) the set of all 7 € (0, co) with the property (p) and by (G)
the least upper bound of 7(G). (Clearly 0 < 1(G) < 0, 1(G)e J(G).) Then for
eachj = 1,2,..., n and for each ¢ € <0, 7(G)) the j*™ component x (1, &) of x(t, £) is
a holomorphic function of the variables &4, &,, ..., &, on G, i.e.

(4.1) xf(t,&) =Y Do, ()& (j=12,...n £€G, 1e(0,1(G)),
pefly '
the right-hand side series being absolutely convergent for any ¢ € €0, 1(G)) and £ € G.

Lemma 4,1A. Let the trivial solution of the system (1,1) be stable. Then there
exists such a domain B that there holds O € B, B < 2 and 1(B) = oo, every "‘)(pp(t)
(k=1,2,...,n; pe 4, being a bounded function on the interval 0, o).

Proof. The trivial solution of (1,1) being stable, there exists by Theorem 2,3B
a domain B of boundedness of the system (1,1). (Hence O € B, B < .) Clearly
1(B) = o. Let ¢ be now such a positive constant that E[xe K, : [x| < ¢] = B
holds. Then the Cauchy integral formula (see e.g. [13]) implies that for each p € A,
t=>0and k =1, 2, ..., n there holds

op1 tp2t...t+ p"xk(t, 0)

(k) —
) = e o

1 x(1, z)
dz,)...dz,)dz; .
(2ni)nJ’lzll=a<J‘[zz]=a (J.Iznl=e 211”+1222+1 "'Z£"+1 ? '

Whence in virtue of the boundedness of x(f, &) on <0, ) x B our assertion follows.

Lemma 4,1B. Let the system of differential equations
(4.2) %=Xt xp, xg, 000 %) (k=1,2,..,5 1 <1< n)
Xj = a5 1e1Xe1 F GGuaaXiez oo 5%, + X (1 X4 Xo, 000, X,)
(j=1+11+2,..n)

has the following properties:
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(i) a;; (i.j =1+ 1,1+ 2,...,n) are such complex numbers that the roots of
the characteristic equation of the matrix A = (@i;)ij=141,142,...n have altogether
negative real parts.

(i) X{(t,x) (j=1,2,....n) are on & =E[(,x):t120, xekK, ||x” < h]
(h > 0) holomorphic functions of the complex variables x1, X,, ..., X,, of the type
[x]. and bounded continuous functions of the real variable t such that X (t, O) = 0
on <0, 0) (j =1,2,...,n).

Then, if there holds X (t, Xy, X3, ..., x;,0,0,...,0) = 0 for all t 2 0, xe E[x e
ek, |x|| < h]andj=1,2,..., n, the trivial solution of the system (4,2) is stable.

The proof of this assertion for real systems is given in [11] (p. 113). In [1] it is
remarked that the proof for complex systems would be similar to that in [11]. Hence
the proof of Lemma 4,1B is not given in this paper. This concerns Lemma 4,1C,
too.

Definition 4,1. Let the system of differential equations
(4,3) Ze=2Z(t 21, 25,0000 z,) (K=1,2,..,, n)

has the following properties:

Z(t,z) (k=1,2,....,n) are on ® = E[(1,2):1 20, ze K, ”z” < h] (h>0)
holomorphic functions of the complex variables z4, z,, ..., z, of the type [z],, the
coefficients ®L,(1) of their developments into power series of the variables zy, z,, ...

ey Zy

Zftz) =Y W2 (k=1,2,...,n;(t z)e6)

pe il

being bounded and continuous functions of the real variable t on the interval
{0, ).
Given an arbitrary j = 2,3, ..., let us denote
Z9(t, z) = ¥ W)z (k=1,2,...n (1, 2)€6).

pefls
pitp2t..tpa=j

(Thus Zy(t,2) = Y. ZP(t, z) (k = 1,2,...,n; (1, 2) € ©).)
ji=2
Then given a natural number N > 1, the trivial solution of the system (4,3) is
said to be stable independently of the terms of the degree higher than N if, given an

arbitrary ¢ > 0 and an arbitrary K > 0, there is such 6 > 0 (6 = (¢, K)) that for
each solution z(t) of the system

N
(4.3) =220 z) + Yt z) (k=1,2,...n)
i=2
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with |z(0)| < & there holds |z(t)| < ¢ for every t > 0, Ylt,z) (k=1,2,....n)
being arbitrary functions defined on ® such that there holds

[t 2)| < K|z|M*" (k=1,2,....n;(1,2) € 6).

Given a natural number N > 1, the trivial solution of the system (4.3) is said to
be unstable independently of the terms of the degree higher than N, if under the
same assumptions concerning the functions y, there is such ¢ > 0 (¢ = &(K)) that,
given 6 > 0, there exists & € K, such that “é” < & and, (1, ) being the solution of
(4,3') with 2(0, &) = &, there holds ||z(t1, C)H = ¢ for at least one t; = 0.

Lemma 4,2C. Let the system of differential equations

(42) X=Xt x,x0,..0%,) (k=1,2,.., 11

lIA

n)
Xj = @i 41X ey + QaeaXies oo+ a5x, + X X, X, X,)

G=1+1L1+2..,n)

has the following properties:

(i) a;; (i.j =1+ 1,1 +2,..., n) are complex constants such that all the roots
of the characteristic equation of the matrix A = (@i )i j=1+1,1+2,.. have negative
real parts.

(ii) X(t, x) (k=1,2,....,n) are on & = E[(t,x):t20, xeK, [x| <h]
(h > 0) holomorphic functions of the complex variables x, X, ..., x, of the type
[x]2, the coefficients of their developments into power series of the variables
Xy, X2, ..., X, being bounded continuous functions of the real variable t on the
interval €0, o).

.....

Let us add to the system (4,2) the system
(4,2") %=Xt x4y X3, .0, %, 0,0,...,0) (k=1,2,...,1)

which will be called the shortened system corresponding to the system (4,2).

Then, if the trivial solution of the system (4,2') is stable or unstable independently
of the terms of the degree higher than N and the functions X(t, xy, Xz 00, X, 0,0, ...
.5 0)(j =1+ 1,1+ 2,..., n)arealtogether of the type [ x|y, , the trivial solution
of the system (4,2) is stable or unstable, respectively.

For the proof of the more general assertion for real systems, see in [11] (p. 382).

4,2. The critical case of several purely imaginary roots of the characteristic equation
of the system (1,1).

Throughout the section 4,2 we shall suppose that the matrix A of the linear
terms of the system (1,1) is regular and that the characteristic equation of the system
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(1,1) has I (I is some integer from the interval {1, n)) purely imaginary roots, the others
having negative real parts. Hence we suppose that the following condition (QF) is
fulfilled.

(@%) The roots 4y, 4,, ..., 4, of the characteristic equation of the system (1,1) being
appropriately enumerated in accordance with the rule from sec. 2,1, it holds: Re 4; = 0
(=12..,0)ReZ;<0(j=1+11+2..n).

Notation 4,2. Let m be an arbitrary natural number less than n + 1. Given
a nonnegative integer v, the set of all m-tuples (pl, P2, ---» D) Of such nonnegative
integers that p, + p, + ... + p,, = v will be denoted by .#™ and the set of all
m-tuples (py, ps, ..., P) of such nonnegative integers that 1 < p, + p, + ... + p, <
<vby B (M = M, R = R,). Given a natural number k less than m + 1
and an m-tuple p = (py, i, ..., i) Of complex numbers, the set of all m-tuples
(py> P2s - D) € MG such that pyuy + Papiy + oo + Pt — i = 0 will be de-
noted by A {"(p) (N () = A" (u)). Given a natural number k less than m + 1,
an arbitrary natural number v and an m-tuple g = (uy, p,, ..., 4,,) of complex
numbers, the set (™ (u) N BT will be denoted by N ™(u) (N IWw) = N (1))

Given a nonnegative integer v, the m-tuple (py, p, ..., p,) from 4% will be
henceforth regarded as identical with the n-tuple q from .#, such that q; = p; for
j=12,...mandq;=0forj=m+1,m+2,..,n

Remark 4,2A. Let m be an arbitrary integer from the interval {I, n). Then by
Lemma 3,2B the system (1,1) can be always transformed by the formal transforma-
tion (3,1") to the formal system of the form

(4.4) y = By + Y(y)

where Y,(y) (k = 1,2, ..., n) are formal power series of the variables yy, Vs, ..., Jy
such that for any k = 1,2, ..., m and for any p € 4, \ A" (4) the coefficient of y?
in Yk(y) equals 0 and where B is some Jordan canonical form of the matrix A.
Therefore if & = (e, €3, ..., &,) is the first subdiagonal of the matrix B, the formal
system (4,4) can be written in the following form

(4.4) Vo= F e + Y {(Bl,y? (k=12...n)
peLi(A)
where & = 0 and L, (1) = A7(4) for k = 1,2,...,m and Z,(4) = M, for k =
=m+ 1,m + 2,..., n. Owing to (QF) the n-tuple p € 4, belongs for some k =
=1,2,...,1 to the set A(4) if and only if it is p;4y = Pi4r = ... = p, = 0 and
Piti + Doty + ... + pily = A Hence the right-hand sides of the first [ equations
in (4,4) do not depend on Y4, Vit2s -oes Vae
The convergence of the series (3,1’) has been so far proved only under certain
assumptions (see Chapter 3). However, there follows from the proof of Lemma
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3,2B that, given a natural number v, there exists a transformation of the system (1,1)
generated by the polynomials

(4,5) e =2 {gpy® (k=1.2,...n)

ps.ﬂvk
(where v, (k = 1,2, ..., n) are some suitable natural numbers) to the system
(4,6) y = By + Z(y)

where B is Jordan canonical form of the matrix A {with the first subdiagonal
& = (&5, €3, ..., &,)), and where

Z(y) = Zw{zk}, Y+ Y {Z},y (k=12..m)),
P

peNic,v ez~ R

Z(y) =(y) =[v]- (k=m+1,m+2,..,n).

Such a transformation is surely regular. Making use of Lemma 4,1 A, we can prove
the following important assertion

Theorem 4,2A. Let the matrix A of the linear terms of the system (1,1) be regular.
Let the roots Ay, Ay, ..., A, of the characteristic equation of the system (1,1) fulfil
(0Y). Let for some natural number m from the interval (I, ny and for some Jordan
canonical form B of the matrix A such a pseudonormal form (4,4’) of the system
(1,1) of the type (m; B) exists that, &€ = (g, ¢,, ..., €,) being the first subdiagonal
of the matrix B, there does not hold:

@) &=0 (k=12..0), {%},=0 (k=12 .15 ped).
Then the trivial solution of the system (1,1) is unstable.

Proof. Let m, B be such a natural number from the interval </, n) and a Jordan
canonical form of the matrix A, respectively, that there is a pseudonormal form
(4,4') of the system (1,1) of the type (m, B) which does not fulfil (4,7).

If &; % 0 for some j = 2,3,..., ], then the trivial solution of the system (1,1) is
unstable owing to Theorem 2,3C. Hence we can assume ¢, = ¢3 = ... = &4, =0
henceforth.

Let us order now the set &(4) = E[{Y,},:k =1,2,....I; pe A (4)] by the
prescription: {Y;}, < {Y,}, if and only if the first nonzero number in the set {(p, +
+ Pt +p) = (91 + a2+ oo+ 4n) Py~ 1 P2 = oy Pa— G k — j} i
positive. Let {Y;}, = b be the first nonzero element of the set &(4). Let us modify
then the system (1,1) by a regular transformation to the system

(498) )./'j = j’jyj + byzlygz y‘l“ + Zj(.VD Vaseees yn)
Ve = A+ ei-t + Zlyo Vo - ¥a) (K=1,2m5 k% j)

66



where Z,(y) = [yls:1 (k=1,2,....7 — 1), Z(y) = [y], (k = j,j + 1,...,m) and
Z(y)=[yl.(k=m+1,m+2,...,n)and q, + g, + ... + q, = v (see Remark
4,2 A). In order that the series (4,1) be solution of (4,8) the coefficients B, (t) (k =
=1,2,...,1; pe M) have to fulfil some linear differential equations. In the first
place those of them for which k = 1,2,...,l; pe#and p, + p, + ... + p, =1
has to fulfil the equation ¥¢, = 4. ®o,,.

Thus P, (1) = ®e,(0) ™ for t = 0; k = 1,2,...,I; pe M, and p; + p, + ...
...+ p, =1L

The functions ®¢,(¢) must fulfil the following initial conditions, obviously:

(49) We,(0)=0 for peu#;, and p + e
©py(0) =1 for p=e (k=1,2,...,1).
Thus, it is:
(4,10) @ (1) = " for 120 and p=e¢

We(t)y=0 for 120 and pe#; with p, +p,+...+p, =1
and p+e (k=1,2..1).

Let us order the set of all functions Mo, (1) (k = 1,2,....I; p € #,) from (4,1) in
the same way as the set &(4) has been ordered. For the functions ®¢,(t) such that
B, (1) < Do (1), (4.8) implies the following equation: .

@.11) ®g = ) ®ep, .

The only solutions of (4,11) which fulfil also (4,9) are clearly the trivial solutions
®p,(t) = 0 on <0, ©).
Finally, for Y (1) we get from (4,8)

1
(j)¢q = )_j. (1)(pq + b.zl_ll((l)(/’e.-)qi .
Whence in virtue of g € A7, (4,9) and (4,10) we have
Do (1) = bte** (1 2 0)

which is not a bounded function of t on {0, oo), of course. This and Lemma 4,1 A
complete the proof.

Theorem 4,2B. Let the matrix A of the linear terms of the system (1,1) beregular.
Let the roots Ay, A5, ..., 4, of the characteristic equation of the system (1,1) fulfil the
condition (QY) (i.e. there holds Re 2; =0 (j = 1,2,...,1), Red; <0 (j =1+ 1,
I+2,.., n) where | is some natural number less than n + 1) and the condition
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(Qz) There exists 8 > 0 such that, givenk = 1,2, ..., 1 and an l-tuple (pl, D2y - p;)
of nonnegative integers with piA; + piA, + ... + pidy * A, there holds |pyiy +
+ Pady e+ P — M 28>0,

Then the trivial solution of the system (1,1) is stable if and only if for some
Jordan canonical form B of the matrix A the fundamental pseudonormal form of
the system (1,1) of the type (m; B) fulfils the condition (4,7) from Theorem 4,2A.
Moreover, the trivial solution of the system (1,1) is then never asymptotically stable.

Proof. The last assertion follows immediately from Theorem 2,3D. The necessity
of the condition (4,7) for the stability of the trivial solution of the system (1,1) follows
immediately from Theorem 4,2A.

Let B be now the Jordan canonical form of the matrix A (with the first sub-
diagonal & = (&, €3, ..., &,)) such that the fundamental pseudonormal form of the
system (1,1) of the type (m; B) fulfils (4,7). By Theorem 3,4 there is a regular trans-
formation of the system (1,1) to the system :

(412) 3
-).;J = j'lyl + 8ij—1 + }’j(yl’ Vaseees yn) (€l+1 = 0; j = l + 1,l+ 2,..., n)

dve (k=1,2,....1)

where Yjy) (j =1+ 1,1+ 2,...,n) are holomorphic on some open neighbour-
hood 2* of the origin O in K,. '

Making use of the method from the proof of Theorem 3,4, it is easy to prove that
the system of partial differential equations

L v,
20 = Ay e+ T e i S8
= k

(=1+L1+2..n)

has a solution ¥(y;, ¥y «.us ¥1)) = (01s1(Vis V2o oo V1)r Ore2(Vis V2o ooes V1)s oo
oo (¥4, Y25 ..., ¥1)) whose components are holomorphic on some open neigh-
bourhood U* of the origin in K, functions of the variables yi, ¥, .-+, Vi

Inserting

vi=m+ 00 Ve y) (G=1+1L1+2...n)
Vi = e (k=1,2,..,1)

in the system (4,12) we get the system for n, (k = 1,2, ..., 1)

412) #=0 (k=1,2,..,1)
;= Ami + emi—1 + Z{t, Ny oma) (=17 LI+2,...1)
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where

Zj(t’ '7) = Yj(’hema e, et Mt F Viets Miga + Opggs ooy + 0,) —
= Y€ me™ et vy v a0 (=14 L2, 0)

are surely for some h > 0 on the set E[(t,#): ¢ 2 0, ye K,, |n| < h] holomorphic
functions of the complex variables 7y, 5, ..., n, of the type [5], and continuous and
bounded functions of the real variable t.

Clearly for every j = I + 1,1 + 2, ..., n there holds

Z{t 03N, 0,0,..,0) =0 for t>0 and |p|<h (k=12..1).

Whence by Lemma 4,1B the stability of the trivial solution of the system (1,1)
readily follows and this completes the proof of Theorem 4,2B.

Corollary. Let the matrix Aof the linear terms of the system (1,1) fulfil the assump-
tions of Theorem 4,2B. Let B be an arbitrary Jordan canonical form of the matrix
A such that the fundamental pseudonormal form of the system (1,1) of the type (I;
B) fulfils the condition (4,7) from Theorem 4,2A.

Let B’ be an arbitrary Jordan canonical form of the matrix A and let m be an
arbitrary natural number from the interval {I, ny. Then any pseudonormal form
of the system (1,1) of the type (m; B') fulfils these conditions, too.

Remark 4,2B. Theorem 4,2B makes it possible to solve completely the problem
of the stability of the trivial solution of such system (1,1) that its characteristic equa-
tion has two purely imaginary roots 1,, A, with rational quotient 4,4, !, the other
roots of this equation having negative real parts (see Remark 3,4D). If 4,45 ! is an
irrational number it is possible to use two ways for solving the problem in question:

a) If the conditions of K. L. Siegel (see Remark 3,4F) are fulfilled, the trivial
solution of the system (1,1) is surely stable.

B) We can divide the equations (1,1) into their real and imaginary parts. Then we
obtain a real system of 2n differential equations whose characteristic equation has two
pairs of purely imaginary roots, the other roots of this equation having negative real
parts. For solving problem of the stability of the trivial solution of this system we can
then utilize the method given by I. G. Malkin in [11] (p. 422).

4,3. The critical case of several zero roots of the characteristic equation of the
system (1,1).

Let us deal with the critical case that the characteristic equation of the system (1,1)
has several (I; 1 < I < n) zero roots, the other roots having negative real parts. So,
we shall suppose in this section that the roots 4y, 4,, ..., 4, of the characteristic equa-
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tion of the system (1,1) being suitably enumerated in accordance with the rule given
in sec. 2,1, there holds

@) 24=0(=1,2..,1), Redj<0(j=1I1+11+2..n).

The given system (1,1) can be then modified by a suitable regular linear transforma-
tion to the following form:

(4313) )}k = Ekyk—l + Yvk(yl’ Va5 o0 yn) (k = 17 27 [T} l’ & = 0)
Vi=Ay;+ &y + Y Ve euyn) (G=1+1L1+2,..n 6. =0)

Il

where & = (g, €3, ..., &,) is the first subdiagonal of some Jordan canonical form B
of the matrix A of the linear terms of the system (1,1) and where Y,(y) = [y], (k =
=1,2,..,n).

If it does not hold that &, = &3 = ... = ¢, = 0, then the trivial solution of (1,1) is
unstable by Theorem 2,3C. Thus we shall suppose henceforth ¢; = 0 G=12..
... I+ 1) in (4,13).

Let the (n — I)-vector complex-valued function u of I complex variables yy, y,, ...
..., ¥; be the solution of the system

(4,14) leuj + EipUj—y + },j+l(y1; Vasees JpUyg, Upy onoy un—l) =0
(j=12..,n-1,
the components u; (j = 1,2, ...,n — I) of which are holomorphic on some open

neighbourhood of the origin O in K functions of the variables yi, ¥z, .- V- (See
Implicit Function Theorem in [14], p. 39.)

Let us substitute y; = z; + u;_(y1, Voo y)) (j =1+ 1,1 +2,...,n) into
(4,13). Then we obtain the system
(4,15) Vi = Yk(ylr Yar oo Vi Zit 15 21425 o005 zn) (k =1L12.., l)
Zj = Ajz; + g2j-1 + Y’j(yl’ Y2s oo Yo 21t 1> Zig2s oo Zn)
(j=l+1L1+2..n)

where

Yk(yl’ Vs wees Vis 2110 Zl2s oor Zn) = Y;(J’n Var oo Vi Zigg T U Zp2 F
+Uy ezt ) (k=1,2,...1)
and
Y’j()’p Vareoos Vi 2141 21425 o0 Zn) =

= Yj()’x, Vs eoes Yis Zywq + Ugy Zygg + Uy ooy Zy + u,.—z) -
- Yj(yh Vaseeos Vi Uy, Uy oy un—l) -

L ou;
- Z — ),i(yl! Yasees Vi Z141 + Uy Z142 + Uy eeny Zn + u""")

i=1 0y;
(j=l+ 1,l+2,...,n).
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The right-hand sides of (4,15) have evidently the following properties:

o) The functions ¥; (j = 1,2, ..., n) are holomorphic on some open neighbour-
hood 2, of the origin O in K, functions of their variables yy, V2, -« Y1 Zi41> Z1425 ---
., z, which altogether belong to the class [y, V2, ..o, V1o Zi+15 Zi425 <+ o Zn)2-

B) If there holds

ﬁ(yla Vas oo ybOyO"--aO) = [yl, Y25 eees yl]vk (k = 1’ 2"'-’ l)

where v, (k = 1, 2, ..., I) are some natural numbers greater than 1, then there holds:

Yy o 960,0,..,0) = [y ysneuw]y (=1+1L1+2,..,n)

where v = min v,.
15ksn

¥) The trivial solution of the shortened system

Ve =Y vy 0,0,..,0) (k=1,2,...1)

is stable if and only if there holds:

500 v o ¥) = LW v 0 ¥0,0,..,0)=0 on 2, (k=1,2,..1])
where 2, = E[(yy, 2o cos ) €Ki (915 20 s ¥1, 0,0, ..., 0) € 2,] (see Theorem
2,3E).

Now we are able to prove the following

Theorem 4,3. Let the roots 14, A,, ..., A, of the characteristic equation of the system
(1,1) be such that

(01") 4 =0(0=1,2,..,1), Red;<0(j=1l+1L1+2..,n) (L<IZn).
Then the trivial solution of the system (1,1) is stable if and only if both the fol-

lowing conditions are satisfied:

(i) All the zero roots A; (j = 1,2,...,1) of the characteristic equation of the
system (1,1) are diagonable (i.e. if the matrix B is an arbitrary Jordan canonical
form of the matrix A of the linear terms of the system (1,1) and if ¢ = (g, €3, - .., &,)
is the first subdiagonal of the matrixB, thene; = 0 for anyj = 2,3,...,1 + 1).

(ii) For the functions ¥, arisen from the functions X, in the above given way
there holds:

?k(YI,yZv ceey YI)(EYk(}’x, Y2 - Y1, 0,0, -'-,0)) =0 on !}1 (k =1,2,...,1)

where 2, is some open neighbourhood of the origin O in K,.
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Moreover, the trivial solution of the system (1,1) is then never asymptotically
stable.

Proof. The last assertion of Theorem 4,3 follows immediately from Theorem
2,3D.

Making use of the foregoing, we can complete the proof of Theorem 4,3 in the
same way as O. Vejvoda used in the proof of his assertion concerning the critical
case of one zero root of the characteristic equation of the system (1,1) (see [1]):
Instead of the system (1,1) we can investigate the system (4,15) (see above) which, as
we remarked above, fulfils all assumptions of Lemma 4,1B and Lemma 4,1C. If
the conditions (i) and (ii) are satisfied, then it follows immediately from Lemma 4,1B
that the trivial solution of the given system is stable. The necessity of the conditions
(i) and (ii) for the stability of the trivial solution of the system (1,1) follows easily
from Lemma 4,1C and Theorem 2,3C.
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