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(BOUNDARY VALUE PROBLEMS AND CONTROLLABILITY)
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Dedicated to Professor Ivo Vrkoé& on the occasion of his sixtieth birthday
(Received March 8, 1989)

Summary. Boundary value problems for generalized linear differential equations and the
corresponding controllability problems are dealt with. The adjoint problems are introduced in
such a way that the usual duality theorems are valid. As a special case the interface boundary
value problems are included. In contrast to the earlier papers by the author the right-hand side
of the generalized differential equation as well as the solutions of this equation can be in general
regulated functions (not necessarily of bounded variation). Similar problems in the space of
regulated functions were treated e.g. by Ch. S. Honig, L. Fichmann and L. Barbanti, who made
use of the interior (Dushnik) integral. In this paper the integral is the Perron-Stieltjes (Kurzweil)
integral.

Keywords: regulated function, generalized differential equation, boundary value problem,
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The paper is devoted to linear value problems for generalized linear differential
equations

(0.1) x(t) — x(0) — fo [dA(s)] x(s) = f(t) — f(0), te[0,1],
(0.2) M x(0) + fo K(s) [dx(s)] = r (e R™)

and the corresponding controllability problems. In particular, we obtain the adjoints
to these problems in such a way that the usual duality theory can be extended to
them. In contrast to the papers [T1], [T2], [ST] (cf. also [STV]) the right-hand
side of the equation (0.1) can be in general a regulated function (not necessarily of
bonded variation). Similar problems in the space of regulated functions were
treated e.g. by Ch. S. Hénig [H61], L. Fichmann [Fi] and L. Barbanti [Ba], where
the interior (Dushnik) integral was used. In this paper the integral is the Perron-
Stieljes integral and, in particular, we work with the equivalent Kurzweil definition
(cf. e.g. [Kul], [Ku2], [Schl] and [STV]). Let us notice that by [Ka] and by the
relationship between the interior and the Perron-Stieljes integrals (cf. [H62] and
[Sch2]), the left-hand side of the additional condition (0.2) represents a general
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form of a linear bounded mapping of the space of functions regulated on the closed
interval [0,1] and left-continuous on its interior (0,1), equipped with the supremal
norm, into R". For the direct proof of this assertion by means of the Kurzweil integral,
see [T3], Theorem 3.8.

1. PRELIMINARIES

1 1. Notation. Throughout the papcr R" denotes the space of real column n-vectors,
= R. Given a p x g-matrix M, its elements are denoted by m; , i.e.

M = (mi,j)i=l,...q,j=1,...,p ’
M* stands for its transposition (M* = (m; )=y, 4i=1,...0)s

i,js

|M|== max ZIm

l_ll
i=1,..,p j=1

is its norm, det (M) is its determinant and rank (M) denotes its rank. (In particular,
y* = (¥1, Y2, ..., V) for y e R") The symbols I and O stand respectively for the
identity and the zero matrix of the proper type.

If —o0 < a < b < o, then [a, b] and (a, b) denote the corresponding closed and
open intervals, respectively. Furthermore, [a, b) and (a, b] are the corresponding
hal{-open intervals. Any function f: [a, b] - R” which possesses finite limits

fe+) = limf(2). f(s=) = lim /(2

for all t € [a, b) and s € (a, b] is said to be regulated on [a, b]. An n-vector valued
function x: [a, b] —» R" is said to be regulated on [a, b] if all its components x;
(j =1,2,..., n)are regulated on [a, b]. The linear space of n-vector valued functions
regulated on [a, b] is denoted by G"(a, b). Gj(a, b) stands for the space of all functions
from G"(a, b) which are leit-continucus on (a, b). For x € G"(a, b) we put [x| =
= SUPye0,17 |X(¢)]. It is well known that both G"(a, b) and Gj(a, b) are Banach
spaces with respect to this norm (ci. [H61], Theorem 3.6). Given fe G"(a,b),
tela, b) and se(a, b], we put A*f(t) = f(t+) — f(t), A f(s) = f(s) = f(s—).
Moreover, we define f(b+) = f(b), f(a—) = f(a) and Af(a) = Af(b) = 0. Given
M < R", x5 denotes its characteristic function. BV"(a, b) denotes the Banach space
of column n-vector valued functicns of bounded varlatlon on [a, b] (equipped with
the norm

feBV™(a,b)~ ||f| = |f(a)| + varbf,

where var} f stands for the variation of f on [a, b]). I, moreover, —0 < ¢ < d < ®©
and a matrix valued function U is defined on [a, b] x [¢, d], then Vi, 41x(e.af(U)
denotes its two-dimensional Vitali variation on [a, b] x [c, d]. (For the definition
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and basic properties, see [Hi], Sec. II1.4.) Furthermore, for given € [a, b] and
s € [¢c, d], the symbols U(t, +) and U(+, s) denote the functions

U(t, *): te[e,d] = U(t, 1)

and
U(+,s): te[a, b] > U(z,s),

respectively. In the case [a, b] = [0, 1] we write simply G", G} and BV" instead of
G"(0, 1), G7(0, 1) and BV"(0, 1), respectively. Analogously, Vo, 130,13 (U) = v(U).
(For more details concerning regulated functions or functions of bounded variation
see [Au], [H61, [Fra] or [Hi], respectively.)

For given linear spaces £ and %, the symbol .?(.S‘l' , %) denotes the linear space of
all linear mappings of & into ¥. If o € L(&, ¥), then #(), /() and o* denote
its range, null space and adjoint operator, respectively. For P « % and o € #(%, %),
the symbol &/ _,(P) denotes the set of all x € Z for which &/x € P. If & is a Banach
space and M < &, then cl(M) stands for the closure of M in Z.

1.2. Integrals. The integrals which occur in this paper are the Perron- Stieljes ones.
For the original definition, see [Wa] or [Sa]. We use the equivalent summation
definition due to J. Kurzweil (cf. [Kul], [Ku2], [STV]). The basic properties of
the Perron-Stieljes integral with respect to scalar regulated functions were described
in [T3].

Given a p x g-matrix valued function F and a g x n-matrix valued function G
defined on [a, b] and such that all integrals

fid)[dg (0] =12,...p; k=1,2,...,q;j =1,2,..., n)

exist (i.c. they have finite values), the symbol
{2 F(t) [dG(tj] (or simply [, F dG)

stands for the p x n-matrix M with the entries

q
j =k2_;152fi’k[dgk’j] (i = 1, 2, caey p; j = 1,2, ey n) .
The integrals
[[dF]G and [%F[dG]H
for matrix valued functions F, G, H of proper types are defined analogously. The
extension of the results obtained in [T3] for scalar functions to vector valued or
matrix valued functions is obvious and hence for the basic facts concerning integrals

with respect to regulated functions we will refer to the correspondmg assertions
from [T3].
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1.3. Lemma. Let W(t, s) be an n x n-matrix valued function defined on [0, 1] x
x [0, 1] and such that

(1.1) V(W) + varg W(0, *) < 0.
Then for any g € G", the function
1) W) = 5[4 9] 66)
is defined and has bounded variation on [0, 1],
(1.3) w(t+) = fo [d,W(t + 5)] g(s) for te[0,1),
w(t=) = [3 [d,W(t—,s)] g(s) for 1e(0,1].

Proof. Let g € G" be given. Since (1.1) implies var§ W(t, -) < oo for any ¢ € [0, 1]

(cf.e.g. [STV], Lemma 1.6.6), the function (1.2) is defined for any ¢ € [0, 1]. Further-

more, let an arbitrary subdivision {0 = 1, < t; < ... < t; = 1} of [0, 1] be given.
Then by Lemmas 1.4.16 and 1.6.13 of [STV] we have

B vl6) = wlt-| £ 5 vard (906 ) = Wit ) ol 5909 L]
and consequetly
vargw < o(W) g]) < 0.

In particular, w € G". Furthermore, the functions W(t+, *), t€ [0, 1) and W(t—, ),
te(0, 1] are of bounded variation on [0, 1] (cf. [STV], Lemma 1.6.14). Thus the
integrals on the right-hand sides of (1.3) are defined. As g is on [0, 1] a uniform
limit of a sequence of finite step functions and any finite step function on [0, 1] is
a linear combination of simple jump functions on [0, 1]

(1.4) 0,01 X011 0€[0,1],

it is sufficient to verify the relations (1.3) for the case that g is a simple jump function
of the type (1.4). Let g = x;o,,;, where o € [0, 1]. Then for any ¢ € [0, 1] we have

w(t) = [5 [d, (1, 5)] + (W(t,0+) — W(t,0)) = W(t,0+) — W(1,0).
Consequently,
w(t+) = W(t+,0+) — W(t+,0) for te[0,1)
and
w(t—)=W(it—,0+) — W(t—,0) for te(0,1].
On the other hand, we have
(S [ W(t+,9)] g(s) = W(t+,0+) — W(t+,0) for te[0,1)
and
Jo [dsW(t—,5)] g(s) = W(t—,0+) — W(t—,0) for te(0,1]
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This means that the function g = g ,,; satisfies the relations (1.2) for any o € [0, 1).
Similarly we could verify that the function g = X(s,1; satisfies (1.2) for any o € [0, 1],
and this completes the proof.

2. BOUNDARY VALUE PROBLEM

We will consider the boundary value problsm of determining a functionx: [0, 1] -
— R" fulfilling the generalized differential equation (0.1) and the additional condition
(0.2).

Throughout the paper we assume

2.1. Assumptions. A(t) is an n x n - matrix valued function of bounded variation
on [0, 1] left-continuous on (0, 1], right-continuous at 0, and such that

det[I + A*A(t)] 0 on [0,1],
(A4(1+) = A(1), ¢f. Notation 1.1) ;

f:10,1] - R" is regulated on [0, 1] and left-continuous on [0, 1); M is a constant
m X n-matrix; K(t) is an m x n- matrix valued function of bounded variation
on [0, 1] and re R".

2.2. Remark. Assumptions 2.1 ensure that

(2.1) ZL: xe Gy, - x(t) — x(0) — fo [dA(s)] x(s)

defines a linear bounded operator on G, (cf. [T3], Proposition 2.16) and

(22 H:xeGp —~ Mx(0) + [gK(s) [dx(s)]

defines a linear bounded mapping of Gy, into R™ (cf. [T3], Theorem 2.8). Hence, by
(23) o xeG,’i—»(ji)eG{ x R™

we define a linear bounded mapping of G} into G} x R™.

2.3. Remark. It is well-known (cf. [STV], Theorem III.2.10) that under our
assumptions there exists a unique n X n - matrix valued function U(t, s) such that
(2.4) U(t,s) =1 + [: [dA(t)] U(x,s) for t,se[0,1].

It is called the fundamental matrix solution of the homogeneous equation
(2.5) x(t) = x(0) — 5 [dA(s)] x(s) =0 on [0,1]
and possesses the following properties

(2.6) |U(t, s)| + varg U(t, *) + vary U(+,s) + V(U) S M <
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for t,s€[0,1],

27 U(t, 1) U(t,s) = U(t,s) for t,s,7€[0,1],

(2.8) det U(t,s) + 0 for t,s€[0,1],

(2.9) U(t+,s) = [1 + AT A(1)] U(1, 5) for te[0,1), se[0,1],
U(t—,s) = U(t, s) for te(0,1], se[0,1],
U(t,s+) = U(t, s)[I + A*A()]™* for te[0,1], se[0,1),
U(t,s—) = U(t,s) for t1e[0,1], se(0,1].

For a given c e R", the equation (2.5) possesses a unique solution x:[0,1] - R"
on [0, 1] such that x(0) = ¢ and this solution is given by

(210)  x(¢) = U(t,0)¢c, te[0,1].

(cf. [STV], Theorem III.2.4). It is well-known (cf. [STV], Theorem III.2.13) that
for any f: [0, 1] - R" of bounded variation on [0, 1] (f€ BV") and any ce R"
there existga unique solution x of (0.1) on [0, 1] such that x(0) = c. This solution
has a bonded variation on [0, 1] and is given on [0, 1] by

(2.11) x(t) = U(1,0) ¢ + f(t) — £(0) + fo [d.U(1, s)] (f(s) — £(0)).

To extend this assertion also to equations (0.1) with right-hand sides f € G}, the
following lemma will be helpful.

2.4. Lemma. For a given f € G}, the function
(2.12) (1) = 1(1) — £(0) — fo [dU(t, 9)] (f(s) — £(0))
is defined and regulated on [0, 1] and left-contindous on (0, 1). The operator
(2.13) ¥:feGl > yeG]

is linear and bounded.

Proof. The function ¥ is obviously deﬁned on [0, 1]. Let us put
(2.14) W(t,s) = U(t,s) for tZs,
W(t,s) =U(t,t) for t<s.
Then
@15) LAV 9] UG) = 1) = J5 W 9] U65) - S0)
holds for any t € [0, 1] and f € Gj. Since obviously (2.4) implies that
(2.16) o(W) + varg W(0, *) < o,
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we may use Lemma 1.3 to show that y € G} for any f € G]. The boundedness of the
operator ¥ iollows from the inequality

[W(0)] = 2varo W(t, +)) |/]] = 20«(W) + varo W(0, -)) |/]
(cf. [STV], Lemma 1.6.6).

2.5. Proposition. For any fe€ G} and any c € R” the equation (0.1) possesses on
[0, 1] a unique solution x € G}, such that x(0) = c. This solution belongs to GJ
and is given by

(2.17) x = &c + ¥f,

where ¥ is the linear bounded operator on Gj, given by (2.12) and (2.13) and @
is the linear bounded mapping of R" into G} given by

(2.18) ®:ceR" > U(1,0)c.

Prooi. Let f€ G} and c € R" be given. Then by Lemma 2.4 the function x given
by (2.17) is defined on [0, 1] and belongs to G7. Hence the integral

Jo [dA(s)] x(s)
is defined for any ¢ € [0, 1]. Inserting (2.17) into this integral and taking into account
(2.1) and (2.14)—(2.16) we obtain by Theorems 2.19 (substitution) and 2.20 (change
of the integration order) of [T3]

fo [d4(s)] x(s) = [U(x,0) — I] ¢ + [o [d4(s)] (s(s) — £(0)) —

— Jo [d Jo [d4()] W(z, 5)] (f(s) - £(0)) =

= [U(+,0) = I] ¢ — Jo [dU(t, 5)] (f(s) — £(0)) =

= x(1) — x(0) - f(x) + f(0)
for any t€[0,1]. Hencc x is a solution of (0.1) on [0, 1]. Obviously, x(0) = c.

The uniqueness of this solution follows from the uniqueness of the zero solution
to the equation

u(t) = Jo [dA(s)] u(s)
on [0, 1] (cf. [STV], Theorem III.1.4). The boundedness of the operator @ is evident
and the boundedness of ¥ has been proved in Lemma 2.4.
Now, by a standard technique due to D. Wexler (cf. [We]) we may prove the
normal solvability of the operator &/ given by (2.3).

2.6. Proposition. The operator s/ has a closed range in G x R™.

Proof. By (2.17) a couple (f,r) e GJ x R™ belongs to the range () of the
operator & if and only if there exists a ¢ € R" such that

231



(0)c = r - (X¥)],
i.e. R(A) = O_,(R(AH D)), where
O:(f,r)eGL x R" > r — (XY¥)feR"

is obviously a continuous operator. #( ®) being finite dimensional, it is closed and
consequently #(s#) is closed as well.

2.7. The adjoint operator to /. It is known (cf. [T3], Theorem 3.8) that the dual
space to G" may be represented by the space BV" x R", while for ( y,0)eBV" x R"
the corresponding linear bounded functional on Gj is given by

(2.19) x € G} = {x,(y, 8)) := 6* x(0) + [5 y*(s) [dx(s)] e R .
The adjoint operator &/* to & may be thﬁs represented by the operator
¥ BV" x R" x R™ - BV" x R™
defined by the 1elation '
(2.20) (x,(y,7,0)) := {&Lx, (y,7)) + §(Hx) = {x, #*(p, 7, 6))
forany xeGi,yeBV", yeR" and deR".

The operator &/*: BV" x R" x R™ — BV" x R™ fulfilling (2.20) will be called
the adjoint operator to .

Let xe Gy, ye BV", ye R" and 6 € R™ be given. Inserting (2.1) and (2.2) into
(2.20) we obtain

(2.21) (tx, (y,7,0)> =
= o y*(s) [d(x(1) — fo [d4(s)] x(s))] + 8*(M x(0) + fo K(r) [dx(1)])=
= fo (y*(t) + &* K(1)) [dx(1)] + 6*M x(0) + fo y*(t) [d [ [dA(s)] x(s)] -
Furthermore, by the Substitution Theorem (cf. [T3], Theorem 2.19)
fo y*(1) [(fo [d4()] x(s))] = fo y*(1) [d4()] x(1) =
— = AT 5 (s) [4AT] X0
which by integration-by-parts (cf. [T3], Theorem 2.15) implies:the following relation
(222)  Joy*(t)[d o [d4(s)] x(s)] = (fo y*(s) [dA(s)]) x(0) +
+ Jo (i y*(s) [dA(s)]) [dx(s)] +
+os§1 AT w*(1) A*x(1) —0<Z‘:SIA'W*(I) A™x(t),
where ) _
w*(t) = i y*(s) [dA(s)] for te[0,1].
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As
A*w¥(0) = —y*(0) A* 4(0) = 0,
A*w*(t) = —y*(t) ATA(t) for 1€(0,1)
and
A~ w*(t) = —y*(1) A" A(t) =0 for te(0,1],
the relation (2.22) reduces to
fo y*(t) [d [ [dA()] x(s)] = (fo y*(s) [dA(s)]) x(0) +
b I 00 O [(0] ~ 3, y*() A" A0) A" x().
Let us put z*(f) = y*(t) A*A(t) for 1€ [0,1) and z*(1) = 0. Then z*(t+) =

= z*(t—) = 0 for 1€(0,1), z%(0) = z*(0+) = z¥(1—) = z*(1) = 0 and z*(t) = 0
if and only if A*A(f) = 0. Hence by [T2], Proposition 2.12 we have

§6 z*(t) [dx(¢)] = 0; z*(t) Ax(1) =0<“é 1 y¥(1) At A(r) At x(1)

and

fo y*(1) [d fo [dA(s)] x(s)] = (fo y*(s) [dA4(s)]) x(0) +

+ fo (Je y*(s) [d4(9)]) [dx(9)] — fo z*(x) [dx()] - ‘
If we define B(r) = A*A(t) on [0, 1] (i.e. B(1) = 0), then B(r) = 0 if and only if
A*A(t) = 0 and, moreover, B(0) = B(0+) = B(t—) = B(t+) = B(1—) = B(1) for
any t € (0, 1). Consequently, we have

I 3#(6) [4B(s)] = ¥*() AB() = —y*() A*A() = —2%() on [0,1)
(cf. [STV], Lemma 1.4.23 or [T3], Corollary 2.14). Hence

(223)  Joy*(®)[d o [dA(9)] x(s)] = (Jo y*(s) [dA(s)]) x(0) +
+ Jo(f2 y*(s) [d4(s)]) [dx(9)] + fo(: y*(s) [dB(s)]) [dx()] =
= (fo y*(1) [d4()]) x(0) + fo([: y*(s) [dA(s+)]) [dx(9)] ,

where the convention A(1+) = A(1) is used. Finally, inserting (2.23) into (2.21)
we obtain

(otx, (3,7, 0)> = [o (y*(1) + &* K(1) — [i y*(s) [dA(s+)]) [dx()] +
+ (3*M — fo y*(s) [dA(s)]) x(0) .

This proves the following theorem.

2.8. Theorem. The operator

(2.24) SA*:(y*, y*, 6*) e BV" x R" x R™ — (y*(1) + 0* K(t) —
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— (L) [dA(s+)], 6*M — |4 y*(s) [dA(s)]) € BV" x R"
(where A(1+) = A(1)) is adjoint to .

2.9. Corollary. Let ye BV", ye R" and 5 € R™ Then (y,y, ) e ¥ (#*) if and
only if
(2:25) y*(t) = y*(1) + 5 y*(s) [dA(s)] — 6*(K(r) — K(1)) for te[0,1],
(226)  y*(0) + 3*(K(0) — M) =0, y*(1) + 6*K(1) = 0.

Proof. By (2.24) (y, 7, 6) belongs to A(&#) if and only if
(2.27) y*(t) = [} y*(s) [dA(s+)] — *K(r) on [0, 1]
and
(228) - 6*M = [} y*(s) [dA(s)] -
For t = 1 the relation (2.27) yields y*(1) — 6* K(1) = 0. Thus, (2.27) may be
rewritten as (2.25). Furthermore, for t = 0 we gt from (2.27)
(2.29) y*(0) = [ y*(s) [dA(s+)] — 6* K(0).
Since

fo y*(s) [d(A(s+) — A(s))] =0 forany yeBV",

the relation (2.29) reduces by (2.28) to y*(0) = 6%(M — K(0)). This completes the
preof.

2.10. Definition. The problem of determining a function y: [0, 1] — R" of bounded
variation on [0, 1] and 6 € R™ such that (2.25) and (2.26) hold is called the adjoint
problem to the problem (0.1), (0.2).

By (2.19), Proposition 2.6 and Theorem 2.8 the linear operator equation

)

where h € G, is given by h(t) = f(t) — f(0) on [0, 1], fulfils the assumptions of the
fundamental theorem on the Fredholm alternative for linear operator equations
(cf. e. g. [Rud], Theorem 4.12). Hence we have

2.11. Corollary. The problem (0.1), (0.2) possesses a solution if and only if

(230) [0 [W0] + 8 = 0
holds for any solution (y, 8) of the adjoint problem (2.25), (2.26).

2.12. The adjoint problem. For any é € R™ fixed, the quation (2.25) is a generalized
linear differential equation which was treated in detail in [STV], Sec. IIL.4. Let us
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recall here some basic facts. For given d € R™ and n € R", the equation (2.25) possesses
a unique solution y on [0, 1] such that y(1) = 5. This solution is given on [0,1] by

(@31)  yH() = nV(L) - S*(K() - K(1) - 8* ! (K(s) - K(1)) [4,V(s. )]

where Vis an n x n - matrix valued function uniquely determined on [0, 1] x [0, 1]
by the relation

V(t,s) =1+ [;V(t,7) [dA(z +)] , t,se[0,1].

The relationship of the matrix valued functions U and Vis given by Theorem II1.4.1
of [STV]. Under our Assumptions 2.1 we have according to this theorem

(2.32) U(t,s) = V(t,s) + V(t,s) ATA(s) + AT A() U(t,s) for t,se[0,1].

It is easy to verify that a couple (y, ) e BV" x R™is a solution to the adjoint problem
(2.25), (2.26) if and only if y is given by (2.31), where #* = —§&* K(1) and ¢ satisfies
the algebraic equation

(2.33) S*(M + (5 K(s) [d,¥(s,0)]) = 0.

Let us put W(t) = V(t,0) — U(t,0). Then by (2.32) W(t) = A*A(t) U(t,0) and
consequently

W(0) = W(0+) = W(t+) = W(t—) = W(1—) = W(1) = 0
holds for any ¢ € (0, 1). This implies that
fo K(s) [d,¥(s, 0)] = fo K(s) [d:U{s, 0)]
holds, i.e. the equation (2.33) may be rewritten as
(2.34) KM + [§ K(s) [d,U(s,0)]) = 0.
Inscrting n* = —o6* K(1) and
Ji K(1) [dy¥(s, )] = K(1) (V(1, 1) = )
into (2.31) we may now easily complete the proof of the folowing characterization
of the adjoint problem to (0.1), (0.2).
Proposition. A couple (y, 5) € BV" x R™ is a solution to the problem (2.25), (2.26)
(i-e. (v, 8) € A (*)) if and only if
(2.35) y¥(1) = —%(K(t) + [1 K(s) [dyV (s, 1)]) for te[0,1]

and 6 verifies the equation (2.34). Moreover, for the dimension dim A" (*) of the
null space A (£*) of the operator o the relation

(2.36) dim A (%) = m — rank (M + [5 K(s) [d,U(s, 0)])

is true.
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Since, on the other hand, x € Gj is a solution of the homogeneous boundary value
problem (2.5),
M x(0) + Jo K(s) [dx(s)] = 0
(i.e. x e #()) if and only if x(r) = U(¢, 0) c and
(M + {5 K(s) [d,U(s,0)]) c = O,

the following assertion follows immediately from (2.36).

2.13. Proposition. dim A4(/) — dim A (#*) = n — m.

3. CONTROLLABILITY TYPE PROBLEM

In addition to Assumptions 2.1 let us assume

3.1. Assumption. % is a linear space and # € L(U, G}).

We will consider the problem of determining x € G} and u € % such that
(3.1) x(t) = x(0) — fo [dA(s)] x(s) + (Bu) (1) — (#Bu) (0) = £(1) — (0)
and
(3.2) M x(0) + f5 K(s) [dx(s)] = »
hold.

3.2. Remark. If m = n,

M = (;) , K@) = (?) and r= (j:)

then the condition (3.2) reduces to the couple of conditions

(3.3) x(0) = x°, x(1) = x'.
Furthermore, if % = L} (the space of n-vector valued functions square integrable
on [0, 1]), P and g are Lebesgue integrable on [0, 1], Q is quare integrable on [0, 1],

A = 3P ds, 1) = fiq(9)ds on [0,1]

and

B uel;— [o0s)u(s)ds,
then the equation (3.1) reduces to the ordinary differential equation
(3.4) x' = P{t)x + Q(t)u + q(?)

on [0, 1]. Thus, the given problem (3.1), (3.2) is a generalization of the controllability
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problem for linear ordinary differential equations. The problem (3.1), (3.2) could
be also considered as a (possibly infinite dimensional) perturbation of the boundary
value problem (0.1), (0.2).

To obtain necessary and sufficient conditions for the solvability of the problem
(3.1), (3.2) in the form of the Fredholm alternative the following abstract scheme will
be applied.

3.3. Abstract controllability type problem. Let &, %, #* and % bz linear spaces
and let

he¥, ye¥* - <(h ydgeR
be a bilinear formon % X ¥*. For M « # and N < #*, let us denote
"M ={yed":{m, y)y =0 for all me M}

and
N* ={he¥:<h,y>y =0 forall yeN}.

Let o/ € L(%, %), 2€ £(U,¥) and h € ¥ be given and let us consider the operator
equation for (x,u) e Z x %

(3.5) Ax + u=h.
Let us denote
(3.6) Ny="RA), N3 ="'R9).

(Obviously A" and 5 are linear subspaces of #'*.)
Let us assume that

(3.7) (“R(A))* = R(4) and dim N < o .
In particular, we have (cf. (3.6))
68 A= (I

Furthermore, let k = dim 4"}, and let {y', y?, ..., y*} be a basis of 4%. In virtue
of (3.8), the equation (3.5) possesses a solution in & x % if and only if there exists
a solution u € % to the equation

(3.9 Gu=>b,
where € € #(%, R*) and b € R* are given by
G:uel - ({2u, y'Yg);=1,...4 € R*
and
b = ((h, yj>a)j=1,2,....k €R*.
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Since dim %(%¥) < k < oo, it follows that (*#{%))* = (%) (cf. [Rud]), or, in other
words, the equation (3.9) possesses a solution in % if and only if

(3.10) v*b =0 forall veR* suchthat v*(%u)=0 forall ue.
It is easy to verify that the condition (3.10) is equivalent to the condition
(3.11) (h,y>g =0 forall yeNLnHN;.

This completes the proof of the following proposition.

Proposition. Under the assumption (3.7), the equation (3.5) possesses a solution
in & x % if and only if (3.11) holds.

Let us notice that up to now no assumptions on topologies in &, %, %" and %
and on the boundedness of the operators &/, # have been needed. Of course, the
assumptions of the above proposition are fulfilled if & and % are Banach spaces,
¥* is the dual space of @, ({*,y >g for ye¥* are linear bounded functionals
on %), #(&) s closed in ¥ and the null space 4" (/*) of the adjoint operator &/* to &/
has a finite dimension. (In this case /) = #(*).)

The given problem (3.1), (3.2) reduces to the operator equation (3.5) if we put
=G}, ¥%=G, xR, %" =BV"x R" x R™,

f ) (9,9, 0)>a = 0*r + y* f{0) + (L y*(s) [df(s)]
forfeGl,reR™, ye BV", ye R"and § € R™,

Qued - ((Q“)(’) _0(%“)(0))6 G} x R™,

W) = (f(‘) gf(0)> €G! x R"

and if we make use of (2.3) again. By 2.6 and 2.12 the assumptions of the above
proposition are fulfilled and hence the following assertion is true (cf. Corollary 2.9).

3.4. Theorem. The problem (3.1), (3.2) possesses a solution in G} x % if and
only if

612) B[] + =0
holds for any solution (y, 6) of the system (2.25), (2.26) such that
(3.13) §6 y*(1) [d(Bu) ()] =0 forall ueu.

3.5. Corollary. The problem (3.1), (3.2) possesses a solution in G} x U for any
fe Gy and any r e R™ if and only if the only solution (y, 6) of (2.25), (2.26) which
Sulfils (3.13) is the zero solution (i.e. W(t) = 0 on [0, 1], 5 = 0).
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3.6. Remark. Inaccordance wtih the usual terminology (cf. [Ha], [Ma], [La])
the system (3.1), (3.2) may be called completely controllable (or more precisely
completely (B, M, K)-controllable) if it possesses a solution in G x % for any
f€G} and any r € R™. The problem (2.25), (2.26), (3.13), adjoint to the problem
{3.1), (3.2) in the sense of Theorem 3.4, is a generalization of classical observability
problems for linear ordinary differential equations, and Corollary 3.5 is a generaliza-
tion of the well known theorem (cf. e.g. [Rus], [Rol]) on the duality between
controllability and observability problems for linear ordinary differential equations.
Often, controllability is considered for homogeneous differential equations. In an
analogous situation for the given problem (3.1), (3.2) (i.e. f(¢) = f(0) on [0, 1])
we obtain that the system

(3.14) x(t) — x(0) — |5 [dA(s)] x(s) + (Bu) (1) — (Bu)(0) =0 on [0, 1],

(3.2) possesses a solution in G x % for any r € R™ if and only if the only couple
(y,6) e BV" x R™ fulfilling (2.25), (2.26) and (3.13) is the zero one. In fact, it follows
immediately from (3.12) that (3.14), (3.2) has a solution in G} x % for any r € R™
if and only if § = 0 holds for any couple (y, 8) € BV" x R™ fulfilling (2.25), (2.26)
and (3.13). By 2.12 this implies that y(¢) = 0 on [0, 1] for any such couple, of course.

3.7. Corollary. If % = G" and

B:ueG)— [4[dB(s)]u(s), te[0,1],

where B(s) is an n x h - matrix valued function of bounded variation on [0, 1],
right-continuous at 0 and left-continuous on (0, 1], then the problem (3.1), (3.2).
has a solution if and only if (3.12) holds for any solution (y, 8) of the system (2.25),
(2.26) such that

i y*(s)[dB(s+)] =0 forany te[0,1].
Proof follows from Theorem 3.4 and from the relation
fo y*(t) [d [5 [dBs)] u(s)] =
= (fo y*(r) [dB(1)]) u(0) + fo(f: y*(s) [dB(s+)]) [du(1)]
for all u € G} and y € BV", which can be verified analogously as the corresponding
relation for the n x n - matrix valued function A(r) in the proof of Theorem 2.8.
3.8. Corollary. If % = G! and
#: ueGy — [§ B(s) [du(s)] ,

where B(s) is an n x h - matrix valued function of bounded variation on [0, 1],
then the problem (3.1), (3.2) has a solution if and only if (3.12) holds for any couple
(v, 6) e BV" x R™ fulfilling (2.25), (2.26) and y*(t) B(t) = 0 on [0, 1].
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Proof. Since by the Substitution Theorem (cf. [T3], Theorem 2.19) the relation
fo y*(1) [d(@4) (9] = fo y*(t) [d o B(s) [du(s)] = fo y*(r) B(7) [du(1)]

holds for all y € BV" and u € G}, the proof follows immediately from Theorem 3.4.

3.9. Definition. Let T = {t, t,, ..., t,} be such that
(3.15) 1>t >t,>...>1,>0.

Then by %1 we denote the subset of G} consisting of all functions u € G} which are
constant on each of the intervals

[0, 8], (tss 1], (k1o ], k=1,2,...,v—1.

3.10. Proposition. Let T = {t,, t,, ..., t,} fulfil (3.15) and let % be defined by 3.9.
Then %y is a linear space. Furthermore, if y € BV", then the assertion

(3.16) Jo y*(t) [duw(t)] =0 forany ue;
is true if and only if |
(3.17) y¥t) =0 forany teUr.
Proof. The first part of the proposition is evident. Let us suppose that (3.16)

holds. Then for a given t € T, the function g, ;; belongs to %y and (cf. e.g. [T3],
Proposition 2.3)

Jo y*(t) [dxe,i{t)] = y*(z) = 0.
Analogously, x;;; € %r, while
Jo y*(0) [dxea()] = »*(1) = 0,

i.e. (3.17) is true.
On the other hand, since obviously %; = BV", it follows from [STV], Lemma

1.4.23 that (3.16) holds for any y € BV" satisfying (3.17) and any u € %.
3.11. Corollary. Let T = {t;};~1 be the set of points in (0, 1) such that (3.15)
holds, and let U be defined by 3.9. Let us put
B.ueUr »ueGy.

Then the problem (3.1), (3.2) has a solution if and only if (3.12) holds for any
couple (y, 6) e BV" x R™ fulfilling (2.25), (2.26) and such that y(z) = O for any
teT

Proof follows immediately from Theorem 3.1 and Proposition 3.10.
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3.12. Remark. The case considered in Corollary 3.11 is a generalization of interface
boundary value problems for ordinary differential equations which are usually
defined (cf. e.g. [Br], [Co], [Sch3] or [Ze]) as follows:

Let 1 > t; >1t;>...>1t,>0and let T= {t},-,. Let P(t) and an n-vector
valued function ¢(f) be Lebesgue integrable on [0, 1]. Let an m x n - matrix valued
function K(t) have bounded variation on [0, 1], let M;, N; (i =0,1,...,v) be
m + n - matrices and let r € R™. Then an n-vector valued function x(t) is called
a solution to the interface boundary value problem (3.18), (3.19) if it is regulated
on [0, 1], left-continuous on (0, 1] (i.e. x € G7) and absolutely continuous on every
interval (ty4 1, 4],

(3.18) x'(t) — P(t) x(r) = q(t) ae on [0,1]
and

(319)  Hxi= Mox(0) + Nox(1) + T [Mox(tt) + Nex(te=)] +

+ o Ko(s) [dx(s)] = r.
Indeed, let us put % = %, where %y is defined by 3.9. Furthermore, let us put

(20)  M=Y[M +N]
and

(3.21) K(s) = Ko(s) +i‘;[Mix[o,,d(s) + Nidpo,ea(s)] + No for se[0,1].

Then
Hx = M x(0) + fo K(s) [dx(s)]

holds for any x € G, and x € G} is a solution of the interface boundary value problem
{3.18), (3.19) if and only if there exists u € % such that

(322)  x(t) = x(0) — [o [dA(s)] x(s) — (w(t) — u(0)) = f(z) — f(0) on [0,1]
and
(3.23) M x(0) + [ K(s) [dx(s)] =7,
where
A(s) = [o P\t)dr and f(s) = fo q(r)dz.

The problem (3.22), (3.23) obviously verifies the assumptions of this section. Since
by (3.20) and (3.21) |

K(O) = Ko(o) + M - M, and K(l) = Ko(l) + N,,
the adjoint problem to (3.22), (3.23) is given by the system (2.25),
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(3.24)  y%(0) + 6*(Ko(0) — Mo) = 0, y*(1) + 6%(Ko(1) + No)

and
y¥t)=0 for i=1,2,...,v.

Furthermore,
K() - K(1) = Kot) = Kol1) + X [Mitto.ft) + Nitio.(0)]

forany te[0,1].

Thus, it is easy to see that a couple (y, §)e BV" x R™ is a solution to the system
adjoint to (3.22), (3.23) if and only if y* + 8*K, is absolutely continuous on every
interval [«, B] such that [a, 8] = [0, 1]\T,

—(y* + 0*K,)' (1) + y*P(f) =0 ae.on [0,1],

(y* + 6%Ko) (0) = 6*M,, (y* + 6*K,) (1) = —3*N, ,
A+(y* + 6*K0) (ti) = 6*Mi N A‘(y* + 6*K0) (ti) = 6*Ni
i=1,2..v),

and
ye)=0 (i=12,..v).
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Souhrn

ZOBECNENE DIFERENCIALNI ROVNICE
V PROSTORU REGULOVANYCH FUNKCI
(OKRAJOVE PROBLEMY A REGULOVATELNOST)

MiLAN TVRDY

V praci se vySetfuji okrajové tlohy a Glohy o regulovatelnosti pro zobecn&né linearni diferen-
cialni rovnice. Jsou odvozeny adjungované ulohy a dokazany prislu$né v&ty Fredholmova typu.
DosaZené vysledky se vztahuji m.j. i na okrajové ulohy typu interface pro oby&ejné diferenciélni
rovnice. Na rozdil od dtiv&jSich autorovych praci feSenimi zobecn&nych diferencialnich rovnic
zde vySetfovanych mohou byt regulované funkce (t.j. funkce, které obecn& nemusi mit kone€nou
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variaci). Podobné ulohy v prostorech regulovanych funkci vySetfovali napf. Ch. S. Honig,
L. Fichmann a L. Barbanti, ktefi pouZivali Dushnikuv (vnit¥ni) integral. V této stati se pracuje
s integralem Perron-Stieltjesovym.

Aurhor’s address: Matematlcky Gstav éSAV Zitna 25, 115 67 Praha 1, Czechoslovakia.
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