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Summary. Boundary value problems for generalized linear differential equations and the 
corresponding controllability problems are dealt with. The adjoint problems are introduced in 
such a way that the usual duality theorems are valid. As a special case the interface boundary 
value problems are included. In contrast to the earlier papers by the author the right-hand side 
of the generalized differential equation as well as the solutions of this equation can be in general 
regulated functions (not necessarily of bounded variation). Similar problems in the space of 
regulated functions were treated e.g. by Ch. S. Honig, L. Fichmann and L. Barbanti, who made 
use of the interior (Dushnik) integral. In this paper the integral is the Perron-Stieltjes (Kurzweil) 
integral. 

Keywords: regulated function, generalized differential equation, boundary value problem, 
controllability, adjoint problem, interface problem, Perron-Stieltjes integral, Kurzweil integral. 
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The paper is devoted to linear value problems for generalized linear differential 
equations 

(0.1). x(t) - x(0) - J< [dA(s)] x(s) = /(*) - /(0) , te [0, 1] , 

(0.2) M x(0) + Jo K(s) [dx(s)] = r (e Rm) 

and the corresponding controllability problems. In particular, we obtain the adjoints 
to these problems in such a way that the usual duality theory can be extended to 
them. In contrast to the papers [Tl], [T2], [ST] (cf. also [STV]) the right-hand 
side of the equation (0.1) can be in general a regulated function (not necessarily of 
bonded variation). Similar problems in the space of regulated functions were 
treated e.g. by Ch. S. Honig [Hoi], L. Fichmann [Fi] and L. Barbanti [Ba], where 
the interior (Dushnik) integral was used. In this paper the integral is the Perron-
Stieljes integral and, in particular, we work with the equivalent Kurzweil definition 
(cf. e.g. [Kul], [Ku2], [Schl] and [STV]). Let us notice that by [Ka] and by the 
relationship between the interior and the Perron-Stieljes integrals (cf. [H62] and 
[Sch2]), the left-hand side of the additional condition (0.2) represents a general 
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form of a linear bounded mapping of the space of functions regulated on the closed 
interval [0,1] and left-continuous on its interior (0,1), equipped with the supremal 
norm, into Rn. For the direct proof of this assertion by means of the Kurzweil integral, 
see [T3], Theorem 3.8. 

1. PRELIMINARIES 

1.1. Notation. Throughout the paper Rn denotes the space of real column n-vectors, 
Rl = R. Given a p x q-matrix M, its elements are denoted by mifj, i.e. 

M = (mij)t=i,...qj=u...,P > 

M* stands for its transposition (M* = (wy,i)y=i,...,<~,.-=i,...,p), 

q 

\M\ = max X \mij\ 
i = l , . . . , P J = l 

is its norm, det (M) is its determinant and rank (M) denotes its rank. (In particular, 
y* = (yl9 y29..., y„) for y e Rn.) The symbols I and O stand respectively for the 
identity and the zero matrix of the proper type. 

I f — o o < a < b < o o , then [a, b] and (a, b) denote the corresponding closed and 
open intervals, respectively. Furthermore, [a, b) and (a, b] are the corresponding 
half-open intervals. Any function/: [a, b] -+ Rn which possesses finite limits 

/ ( t + ) = l im/ ( r ) , / ( s - ) = l im/(r) 
X-+t+ T - + S -

for all t e [a, b) and s e (a, b] is said to be regulated on [a, b]. An n-vector valued 
function x: [a, b] -> Rn is said to be regulated on [a, b] if all its components Xj 
(j = 1, 2 , . . . , n) are regulated on [a, b]. The linear space of n-vector valued functions 
regulated on [a, b] is denoted by Gn(a, b). GL(a, b) stands for the space of all functions 
from Gn(a, b) which are left-continuous on (a, b). For x e Gn(a, b) we put ||x|| = 
= supfeL0>1] \x(t)\. It is well known that both Gn(a, b) and Gn

L(a, b) are Banach 
spaces with respect to this norm (cf. [Hoi] , Theorem 3.6). Given f eGn(a,b), 
te[a,b) and se(a,b], we put A+/(t) = f(t + ) - f(t), A~f(s) = f(s) - f(s-). 
Moreover, we define f(b + ) = / ( b ) , / ( a - ) = / ( « ) and Af(a) = A/(b) = 0. Given 
M c= Rn

9 %M denotes its characteristic function. BVn(a, b) denotes the Banach space 
of column n-vector valued functions of bounded variation on [a, b] (equipped with 
the norm 

/ e e V w ( a , b ) » | | / | | = | / ( a ) | + v a r J / , 

where v a r j / stands for the variation of /on [a, b]). If, moreover, — o o < c < d < c o 
and a matrix valued function U is defined on [a, b] x [c,d\, then vCa5]x[c>d](U) 
denotes its two-dimensional Vitali variation on [a, b] x [c, d\. (For the definition 
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and basic properties, see [Hi], Sec. III.4.) Furthermore, for given t e [a, b] and 
s G [c, d], the symbols U(f, •) and U(-, s) denote the functions 

U(t, •): T e [c, d] -> U(r, T) 

and 

U(-,s):Te[a, b] -» U(r, s) , 

respectively. In the case [a, fe] = [0, 1] we write simply Gn, Gn
L and BV" instead of 

G"(0,1), 6^(0,1) and BVn(0,1), respectively. Analogously, v [o,1]x [o,n(^) = v(U). 
(For more details concerning regulated functions or functions of bounded variation 
see [Au], [Hoi, [Fra] or [Hi], respectively.) 

For given linear spaces X and <&r, the symbol S£(X, 9) denotes the linear space of 
all linear mappings of X into 9. If si e $£(X, 9), then 9t(si\ Jf(si) and si* denote 
its range, null space and adjoint operator, respectively. For P cz <& and si e &(X, 9), 
the symbol si-i(P) denotes the set of all x e X for which six e P. If X is a Banach 
space and M c f , then cl(M) stands for the closure of M in X. 

1.2. Integrals. The integrals which occur in this paper are the Perron- Stieljes ones. 
For the original definition, see [Wa] or [Sa]. We use the equivalent summation 
definition due to J. Kurzweil (cf. [Kul] , [Ku2], [STV]). The basic properties of 
the Perron-Stieljes integral with respect to scalar regulated functions were described 
in [T3]. 

Given a p x ^-matrix valued function F and a q x n-matrix valued function G 
defined on [a, b] and such that all integrals 

J2/u(0 [dg*i01 (*' = 1̂ 2, ..., p; k = 1, 2, ..., q; j = 1, 2, ..., n) 

exist (i.e. they have finite values), the symbol 

$bF(t)[dG(tj] (or simply tfEdG) 

stands for the p x rc-matrix M with the entries 

mt.j = i ?afiM9k,i\ (i = 1,2, ...,/>; j = l , 2 , . . . , n ) . 

The integrals 

tf[dF]G and jSF[dG] H 

for matrix valued functions F, G, H of proper types are defined analogously. The 
extension of the results obtained in [T3] for scalar functions to vector valued or 
matrix valued functions is obvious and hence for the basic facts concerning integrals 
with respect to regulated functions we will refer to the corresponding assertions 
from [T3]. 
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1.3. Lemma. Let W(t9 s) be an n x n-matrix valued function defined on [0, 1] x 
x [0,1] and such that 

(1.1) \(W) + var* *V(0, •) < oo . 

Then for any g e Gn, the function 

(1.2) w(0 = Jo
t[d^(t)s)]fl(S) 

is defined and has bounded variation on [0, 1], 

(1.3) Mt+) = iXo[*MW(t + s)]g(3) for re [0,1), 

*(*-) = SI [*sW(t-,s)]g(s) for r e (0 ,1 ] . 

Proof. Let g e Gtt be given. Since (1.1) implies varj W(t, •) < oo for any t e [0, 1] 
(cf. e.g. [STV], Lemma 1.6.6), the function (1.2) is defined for any t e [0,1]. Further­
more, let an arbitrary subdivision {0 = t0 < tt < ... < tk = 1} of [0, 1] be given. 
Then by Lemmas 1.4.16 and 1.6.13 of [STV] we have 

I K</) - 4 0 . 0 1 S I var0 (W(tj9 •) - W(tj-19 •)) Ml ^ v(W) ||g|| 
7=1 7=1 

and consequetly 

var0 w ^ u(FF) ||^|| < oo . 

In particular, w e G". Furthermore, the functions W(t + , •), r e [0,1) and W(t—, •), 
t e(0,1] are of bounded variation on [0, 1] (cf. [STV], Lemma 1.6.14). Thus the 
integrals on the right-hand sides of (1.3) are defined. As g is on [0, l] a uniform 
limit of a sequence of finite step functions and any finite step function on [0,1] is 
a linear combination of simple jump functions on [0, 1] 

I1-4) X[o.a]>Xi>,i]5 ere [0,1] , 

it is sufficient to verify the relations (1.3) for the case that g is a simple jump function 
of the type (1.4). Let g = x[0><T], where o e [0,1]. Then for any t e [0, 1] we have 

KO = fo [AaW(t9 s)] + (W(t9 o+) - W(t, o)) = W(t, o + ) - W(t, 0) . 

Consequently, 

w(t+)=W(t + 9<r + )-W(t + 90) for t e [0, 1) 

and 
w(t-)=W(t-,o + )-W(t-90) for re (0,1]. 

On the other hand, we have 

JS [dsW(t + ,s)] g(s) = W(t + , o+) - W(t + ,0) for t e [0,1) 
and 

fo \d.W(*-> s)l d(s) =W(t-9o+)-W(t-9 0) for t e (0,1] 
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This means that the function g = Xio,^ satisfies the relations (1.2) for any a e [0, 1). 
Similarly we could verify that the function g = X{a,n satisfies (1.2) for any a e [0 ,1] , 
and this completes the proof. 

2. BOUNDARY VALUE PROBLEM 

We will consider the boundary value probbm of determining a function x: [0. 1] -*• 
-> Rn fulfilling the generalized differential equation (0.1) and the additional condition 
(0.2). 

Throughout the paper we assume 

2.1. Assumptions. A(t) is an n x n - matrix valued function of bounded variation 
on [0, 1] left-continuous on (0, 1], right-continuous at 0, and such that 

det [/ + A+A(t)] + 0 on [0, l ] , 

(A(l+) = A(l), cf Notation 1.1) ; 

/ : [0, 1] -> Rn is regulated on [0, 1] and left-continuous on [0,1); M is a constant 
m x n - matrix; K(t) is an m x n - matrix valued function of bounded variation 
on [0, 1] and r e Rn. 

2.2. Remark. Assumptions 2.1 ensure that 

(2.1) <£: x e Gn
L-+ x(t) - x(0) - J0 [dA(sJ] x(s) 

defines a linear bounded operator on GL (cf. [T3], Proposition 2.16) and 

(2.2) X : x e Gn
L -> M x(0) + J0 K(s) [dx(s)] 

defines a linear bounded mapping of GL into /7?m (cf. [T3], Theorem 2.8). Hence, by 

(2.3) st: x e Gn
L -+ l^X\ eGn

Lx Rm 

we define a linear bounded mapping of GL into GL x Rm. 

2.3. Remark. It is well-known (cf. [STV], Theorem HI.2.10) that under our 
assumptions there exists a unique n x n - matrix valued function U(t, s) such that 

(2.4) U(t, s) = / + Ĵ  [<U(T)] 17(T, S) for t, s e [0,1] . 

It is called the fundamental matrix solution of the homogeneous equation 

(2.5) x(t) - x(0) - Jo [dA(s)] x(s) = 0 on [0,1] 

and possesses the following properties 

(2.6) \U(t, s)\ + varj U(t, •) + varj U(-, s) + \(U) ^ M < oo 
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for t,se [0,1] , 

(2.7) U(t, T) U(T, s) = U(t, s) for f, s, T e [0,1] , 

(2.8) det U(t, s) 4= 0 for t, s e [0, 1] , 

(2.9) U(t+, s) = [/ + A+A(t)] U(t, s) for t e [0, 1), s e [0, 1] , 

U(t-, s) = U(t, s) for t e (0, 1], s e [0, 1] , 

U(t, s+) = U(t, s) [J + A+A(t)]~J for t e [0, 1], s e [0, 1) , 

U(t, s-) = U(i, s) for I e [0, 1], s e (0,1] . 

For a given c e R", the equation (2.5) possesses a unique solution x: [0, 1] -> W" 
on [0,1] such that x(0) = c and this solution is given by 

(2.10) x(t) = U(t, 0) c , . e [ 0 , 1 ] . 

(cf. [STV], Theorem III.2.4). It is well-known (cf. [STV], Theorem III.2.13) that 
for any / : [0,1] -> «" of bounded variation on [0,1] (fe BV) and any c e ff" 
there exist%a unique solution x of (0.1) on [0, 1] such that x(0) = c. This solution 
has a bonded variation on [0,1] and is given on [0, 1] by 

(2.11) x(t) = U(t, 0) c + /(.) - /(0) + JS [d5U(t, s)] (/(s) - /(0)). 

To extend this assertion also to equations (0.1) with right-hand sides feGL, the 
following lemma will be helpful. 

2.4. Lemma. For a given fe G£, the function 

(2.12) ^(t) = f(t) - f(0) - J0 [dsU(f, s)] (/(s) - /(0)) 

is defined and regulated on [0,1] and left-continuous on (0,1). The operator 

(2.13) !P:/6 6 i - > ^ e G 2 

is linear and bounded. 

Proof. The function ij/ is obviously defined on [0,1]. Let us put 

(2.14) W(t, s) = U(t, s) for t = s , 

W(f, s) = U(f, i) for i < s . 

Then 

(2.15) J0 [d,U(., s)] (/(s) - /(0)) = ft [d,W(t, s)] (A-) " /(0)) 

holds for any i 6 [0,1] and / e G£. Since obviously (2.4) implies that 

(2.16) v(W) + var£ W(0, •) < * , 
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we may use Lemma 1.3 to show that ifr e Gn
L for any fe Gn

L. The boundedness of the 
operator W follows from the inequality 

|i>(0| ^ 2(var0 W(t, •)) ||/|| ^ 2(v(W) + varj W(0, •)) ||/|| 

(cf. [STV], Lemma 1.6.6). 

2.5. Proposition. For any feGL and any ceRn the equation (OA) possesses on 
[0,1] a unique solution xeGL such that x(0) = c. This solution belongs to GL 

and is given by 

(2.17) x = 0c + <Pf, 

where W is the linear bounded operator on GL given by (2.12) and (2.13) and <P 
is the linear bounded mapping of Rn into GL given by 

(2.18) 0:ceRn -> U(t,0)c. 

Proof. Let fe GL and c e Rn be given. Then by Lemma 2.4 the function x given 
by (2A7) is defined on [0, 1] and belongs to GL. Hence the integral 

JS [dA(s)] x(s) 

is defined for any t e [0, 1]. Inserting (2.17) into this integral and taking into account 
(2A) and (2.14)-(2A6) we obtain by Theorems 2A9 (substitution) and 2.20 (change 
of the integration order) of [T3] 

JS [dA(s)] x(s) = [U(t, 0) - /] c + JS [dA(s)] (f(s) - j(0)) -

- JS [d JS [dA(t)] W(r, s)] (j(s) - j(0)) = 

= [U(t, 0) - / ] c - JS [dsU(t, s)] (f(s) - j(0)) = 

= x ( f ) - x ( 0 ) - j ( 0 + j ( 0 ) 

for any t e [0, 1]. Hence x is a solution of (0A) on [0,1]. Obviously, x(0) = c. 
The uniqueness of this solution follows from the uniqueness of the zero solution 
to the equation 

«(0 = JS[dA(s)]u(s) 

on [0, 1] (cf. [STV], Theorem III.L4). The boundedness of the operator <P is evident 
and the boundedness of W has been proved in Lemma 2.4. 

Now, by a standard technique due to D. Wexler (cf. [We]) we may prove the 
normal solvability of the operator s/ given by (2.3). 

2.6. Proposition. The operator sd has a closed range in Gn
L x Rm. 

Proof. By (2A7) a couple (f, r) e Gn
L x Rm belongs to the range 0t(s4) of the 

operator stf if and only if there exists a c e Rn such that 
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( J f 0 ) c - - = r - ( j f ^ ) f , 

i.e. 9l(s4) = <9_-(;#(.#*#)), where 

0: (f, r)eGn
L x Rm - r - (jfW)feRm 

is obviously a continuous operator. 0t(X$) being finite dimensional, it is closed and 
consequently 0l(s4) is closed as well. 

2.7. The adjoint operator to $4. It is known (cf. [T3], Theorem 3.8) that the dual 
space to Gn may be represented by the space BVn x Rn, while for (y, 8) e BVn x Rn 

the corresponding linear bounded functional on G£ is given by 

(2.19) x e Gn
L -> <x, (y, 5)> : = 8* x(0) + JJ y*(s) [dx(s)] e R . 

The adjoint operator srf* to .s/ may be thus represented by the operator 

stf*BVn x Rn x Rm -» BVn x Rm 

defined by the relation 

(2.20) <s4x, (y, y, 8)} : = < <2>x, {y, y)> + 8(Jfx) = <x, stf*(y, y, 8)} 

for any xeGn
L,yeBVn, y e Rn and <5 e Rn. 

The operator s4*\ BVn x Rn x Rm -> BVn x Rm fulfilling (2.20) will be called 
the adjoint operator to s4. 

Let xeGn
L, yeBV", yeRn and 8 e Rm be given. Inserting (2A) and (2.2) into 

(2.20) we obtain 

(2.21) <sfx,(y,y,8)> = 

= Jo y*(s) [d(x(t) - Jo [dA(s)] x(s))] + 8*(M x(0) + JJ K(r) [dx(r)]) = 

= ft (y*(0 + <** K(t)) [dx(t)] + 8*M x(0) + Jo y*(0 [d Jo [dA(s)] x(s)] . 

Furthermore, by the Substitution Theorem (cf. [T3], Theorem 2.19) 

ft y*(t) [d(lo M s ) ] *(-))] = JS y*(0 M O ! *(') = 

= " Jo [d J? *•(-) M s ) ] ] *(t) 

which by integration-by-parts (cf. [T3], Theorem 2.15) implies[the following relation 

(2.22) ft y*(t) [d J0 [dA(s)] x(s)] = (JS >>*(s) [d^(s)]) x(0) + 

+ Jo (J? A') M s ) ] ) [dx(s)] + 

where 
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O S K l 0 < f £ l 

w*(í) = J,1 y*(s) [dA(s)] foг r є [0,1] 



As 

A+w*(0) = -y*(0)A+A(0) = 0, 

A+w*(t) = -y*(t) A+A(t) for t e (0,1) 

and 

A"w*(r) = -y*(t) A~A(t) =0 for t e (0,1] , 

the relation (2.22) reduces to 

JS A t ) [d Jo [dA(s)1 x(s)] = (JJ y*(s) [dA(s)]) x(0) + 

+ Jo (J? y*(*) [dA(s)]) [dx(t)] - I y*(t) A+A(r) A+x(0 . 
0 < f < l 

Let us put z*(t) = y*(t)A+A(t) for t e [0, 1) and z*(l) = 0. Then z*(t+) = 
= z*(t-) = 0 for t e(0, 1), z*(0) = z*(0 + ) = z*(l-) = z*(l) = 0 and z*(t) = 0 
if and only if A+A(t) = 0. Hence by [T2], Proposition 2.12 we have 

JJz*0)[dx(0]= I z*(r)Ax(r) = I y*(.)A+4.)A+x(f) 
0 < t < l 0 < ( < 1 

and 

Jo A O [d Jo [dA(s)] x(s)] = (JJ y*(s) [dA(s)]) x(0) + 

+ JJ (J,1 y*(s) [dA(s)]) [dx(r)] - JJ z*(t) [dx(r)] . 

If we define B(t) = A+A(t) on [0, 1] (i.e. B(l) = 0), then B(t) = 0 if and only if 
A+A(t) = 0 and, moreover, B(0) = B(0+) = B(t-) = B(r+) = B ( l - ) = B(l) for 
any ? e (0,1). Consequently, we have 

Jt
x y*(s) [dB(s)~] = y*(t) A+B(t) = -y*(t) A+A(t) = -z*(t) on [0, 1) 

(cf. [STV], Lemma 1.4.23 or [T3], Corollary 2.14). Hence 

(2.23) JJ y*(t) [d J0 [dA(s)] x(s)] = (JJ y*(s) [dA(s)]) x(0) + 

+ JJ(J(
] y*(s) [dA(s)J) [dx(t)] + JJ(J? y*(s) [dB(s)J) [dx(t)] -

= (JJ y*(0 [dA(t)]) x(0) + JJ(JJ y*(s) [dA(s+)]) [dx(t)] , 

where the convention -4(1+) = AL(l) is used. Finally, inserting (2.23) into (2.21) 
we obtain 

<rfx, (y, y, 5)> = JJ (y*(t) + S* K(t) - J,1 y*(s) [dA(s+)]) [dx(t)] + 

+ (d*M - JJ y*(s) [dA(s)]) x(0) . 

This proves the following theorem. 

2.8. Theorem. The operator 

(2.24) J / * : (y*, y*, 8*) e BV x «" x Rm -* (y*(t) + d* K(t) -
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- JJ y*(t) [dA(s+)] , S*M - ft y*(s) [dA(s)]) e BV x R" 

(where -4(1+) = 4̂(1)) is adjoint to s4. 

2.9. Corollary. Let y e BV, y e R" and 5e Rm. Then (y, y, 8) e Jf(s4*) if and 
only if 

(2.25) y*(t) = y*(l) + JJ, y*(s) [dA(s)] - 5*(K(t) - K(l)) for t e [0, 1] , 

(2.26) y*(0) + d*(K(0) - M) = 0 , y*(l) + 5* K(l) = 0 . 

Proof. By (2.24) (y, y, 5) belongs to jV(st) if and only if 

(2.27) y*(t) = \x, y*(s)[dA(s+)] - 5*K(t) on [0,1] 

and 

(2.28) • 8*M = fj y*(s) [dA(s)] . 

For t = 1 the relation (2.27) yields j*(l) - 5* K(\) = 0. Thus, (2.27) may be 
rewritten as (2.25). Furthermore, for t = 0 we get from (2.27) 

(2.29) y*(0) = J1 y*(s) [dA(s+)] - 8* K(0). 

Since 
Jo y*00 [d(-4(5 + ) - -4(s))] = 0 for any y e BVn, 

the relation (2.29) reduces by (2.28) to y*(0) = 5*(M - K(0)). This completes the 
proof. 

2.10. Definition. The problem of determining a function}!: [0, 1] -> Rn of bounded 
variation on [0, 1] and S e Rm such that (2.25) and (2.26) hold is called the adjoint 
problem to the problem (0.1), (0.2). 

By (2.19), Proposition 2.6 and Theorem 2.8 the linear operator equation 

sѓx 0 
where h e Gn

L is given by h(t) = f(t) — f(0) on [0, 1], fulfils the assumptions of the 
fundamental theorem on the Fredholm alternative for linear operator equations 
(cf. e. g. [Rud], Theorem 4.12). Hence we have 

2.11. Corollary. The problem (0.1), (0.2) possesses a solution if and only if 

(2.30) ft y*(t) [df(t)] +S*r = 0 

holds for any solution (y, 5) of the adjoint problem (2.25), (2.26). 

2.12. The adjoint problem. For any Se Rm fixed, the quation (2.25) is a generalized 
linear differential equation which was treated in detail in [STV], Sec. IIf.4. Let us 
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recall here some basic facts. For given S e Rm and r\ e Rn, the equation (2.25) possesses 
a unique solution y on [0, 1] such that y(l) = rj. This solution is given on [0,1] by 

(2.31) y*(t) = n*V(U) - 8*(K(t) - K(l)) - 5* JJ (K(s) - K(l)) [dsV(s, 0 ] , 

where Vis an n x n - matrix valued function uniquely determined on [0, 1] x [0, 1] 
by the relation 

V(t, 5) = I + JJ V(t, T) [dA(T+)] , t, s e [0,1] . 

The relationship of the matrix valued functions U and Vis given by Theorem III.4.1 
of [STV]. Under our Assumptions 2.1 we have according to this theorem 

(2.32) U(t, s) = V(t, s) + V(t, s) A+A(s) + A+A(t) U(t, s) for t, s e [0, 1] . 

It is easy to verify that a couple (y, 8) e BVn x Rm is a solution to the adjoint problem 
(2.25), (2.26) if and only if y is given by (2.31), where rj* = -<5* K(l) and d satisfies 
the algebraic equation 

(2.33) 5*(M + j0 K(s) [dsV(s, 0)]) = 0 . 

Let us put W(t) = V(t, 0) - U(t, 0). Then by (2.32) W(t) = A+A(t) U(t, 0) and 
consequently 

\y(0) = W(0+) = W(t+) = W(t-) = W(l-) = W(l) = 0 

holds for any t e (0, 1). This implies that 

SoK(s)[dsV(s,0)] = !0K(s)[dsU(s,0)] 

holds, i.e. the equation (2.33) may be rewritten as 

(2.34) d*(M + j 0 K(s) [dsU(s, 0)]) = 0 . 

Inserting rj* = —3*K(l) and 

$}K(l)[dsV(s,t)]=K(l)(V(l,t)-I) 

into (2.31) we may now easily complete the proof of the folowing characterization 
of the adjoint problem to (0.1), (0.2). 

Proposition. A couple (y, 5) e BVn x Rm is a solution to the problem (2.25), (2.26) 
(i.e. (y, d) e ^(stf*)) if and only if 

(2.35) y*(t) = -d*(K(t) + Jl K(s) [dsV(s, t)]) for t e [0, 1] 

and d verifies the equation (2.34). Moreover, for the dimension dim Jr(s/*) of the 
null space Jf(stf*) of the operator sd the relation 

(2.36) dim JT(sJ*) = m- rank (M + j 0 K(s) [dsU(s, 0)]) 

is true. 
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Since, on the other hand, x e GL is a solution of the homogeneous boundary value 
problem (2.5), 

M x(0) + ft K(s) [dx(s)] = 0 

(i.e. x 6 ̂ (s/)) if and only if x(t) = U(t, 0) c and 

(M + JiK(s)[d5U(s,0)])c = 0, 

the following assertion follows immediately from (2.36). 

2.13. Proposition, dim ^¥(sf) — dim Jf(st*) = n — m. 

3. CONTROLLABILITY TYPE PROBLEM 

In addition to Assumptions 2.1 let us assume 

3.1. Assumption. <?U is a linear space and $ e S£(fU, GL). 

We will consider the problem of determining x e GL and u e tyl such that 

(3.1) x(t) - x(0) - Jo [d^(s)] x(s) + (@u) (t) - (<%u) (0) = f(t) - f(0) 

and 

(3.2) M x(0) + Ji K(s) [dx(s)j = r 

hold. 

3.2. Remark. If m = n, 

- tø . -w-O- ' -£ ) • 
then the condition (3.2) reduces to the couple of conditions 

(3.3) x(0) = x° , x(l) = x1 . 

Furthermore, if <% = L2 (the space of n-vector valued functions square integrable 
on [0,1]), P and q are Lebesgue integrable on [0,1], Q is quare integrable on [0, 1], 

A(t) = JS]P(s)ds, f(t) = S0q(s)ds on [0,1] 

and 

0:ueLn
2-+$oQ(s)u(s)ds, 

then the equation (3.1) reduces to the ordinary differential equation 

(3.4) x' = P(/)x + Q(t)u + q(t) 
on [0,1]. Thus, the given problem (3.1), (3.2) is a generalization of the controllability 
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problem for linear ordinary differential equations. The problem (3.1), (3.2) could 
be also considered as a (possibly infinite dimensional) perturbation of the boundary 
value problem (OA), (0.2). 

To obtain necessary and sufficient conditions for the solvability of the problem 
(3.1), (3.2) in the form of the Fredholm alternative the following abstract scheme will 
be applied. 

3.3. Abstract controllability type problem. Let Xi
(W,(W+ and °U be linear spaces 

and let 

be a bilinear form on %f x <& + . For M c <& and N a <&+, let us denote 

LM = {ye<W+: <m, y)9 = 0 for all meM} 

and 

NL = {he^ :<h , j !>^ = 0 for all yeN}. 

Let st e <£{%, ^ ) , J e &{<%, <%) and h e <& be given and let us consider the operator 
equation for (x, u) e X x ^U 

(3.5) stx + Ju = h . 

Let us denote 

(3.6) Jf% = x ^ ) , Jf% = ^(<2) . 

(Obviously ./V^ and ^Vj are linear subspaces of <&+.) 

Let us assume that 

(3.7) {L®{s4))L = 3t(sf) and dim */V£ < oo . 

In particular, we have (cf. (3.6)) 

(3.8) <%{*?) = {jr+)L. 

Furthermore, let k = dim Jr+, and let {yl, y2,..., yk) be a basis of . /r^. In virtue 
of (3.8), the equation (3.5) possesses a solution in X x % if and only if there exists 
a solution u e ^U to the equation 

(3.9) ^ u = b , 

where # e i f (^, fir*) and 6e l? k are given by 

^ : « 6 « ^ «<2U, / > * ) , . 1,2,....* e B* 

and 

* = « * , / > ^ - i . 2 * e t f t -
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Since dim m{$) g k < oo, it follows that {^(V))1 = 0t(V) (cf. [Rud]), or, in other 
words, the equation (3.9) possesses a solution in ^U if and only if 

(3.10) v*b = 0 for all veRk such that v*(<#u) = 0 for all w e * . 

It is easy to verify that the condition (3.10) is equivalent to the condition 

(3.11) <fe,y>^ = 0 for all yeJT^nJ^+. 

This completes the proof of the following proposition. 

Proposition. Under the assumption (3.7), the equation (3.5) possesses a solution 
in X x % if and only if (3.11) holds. 

Let us notice that up to now no assumptions on topologies in X,<&,<W+ and % 
and on the boundedness of the operators s/, $ have been needed. Of course, the 
assumptions of the above proposition are fulfilled if 9E and %f are Banach spaces, 
<&+ is the dual space of <W, « * , y > ^ for ye<&+ are linear bounded functional 
on <&), 0t(s/) is closed in <& and the null space Jr(s/*) of the adjoint operator s/* to s/ 
has a finite dimension. (In this case Jf^ = Jf(s/*).) 

The given problem (3.1), (3.2) reduces to the operator equation (3.5) if we put 
X = GH

L9 <& = G\ x R\ <&+ = BVn x Rn x Rm, 

<(/, r), (y, y, <5)>* = <5*r + y*/(0) + J" y*(s) [d/(s)] 

f o r / e G£, reRm,ye BVn, y e Rn and c5 e /ftm, 

^: M Є ^->(W^- 0 W( 0 ) ) є G 2x^, 

^ 0 = ( / W ~ / ( ° ; ) є G I x / Г 

and if we make use of (2.3) again. By 2.6 and 2A2 the assumptions of the above 
proposition are fulfilled and hence the following assertion is true (cf. Corollary 2.9). 

3.4. Theorem. The problem (3.1), (3.2), possesses a solution in GL x % if and 

only if 

(3.12) Joy*(0[d/(0] + <5*r = O 

holds for any solution (y, 5) of the system (225), (2.26) such that 

(3.13) {J y*(t) [d(^tt) (t)] = 0 for all ueW . 

3.5. Corollary. The problem (3A), (3.2) possesses a solution in GL x % for any 
feGn

L and any r e Rm if and only if the only solution (y, S) of (2.25), (2.26) which 
fulfils (3.13) is the zero solution (i.e. y(t) = 0 on [0, 1], S = 0). 
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3.6. Remark. In accordance wtih the usual terminology (cf. [Ha], [Ma], [La]) 
the system (3A), (3.2) may be called completely controllable (or more precisely 
completely (J^, M, K)-controllable) if it possesses a solution in GL x °U for any 
feGn

L and any reRm. The problem (2.25), (2.26), (3A3), adjoint to the problem 
*(3A), (3.2) in the sense of Theorem 3.4, is a generalization of classical observability^ 
problems for linear ordinary differential equations, and Corollary 3.5 is a generaliza­
tion of the well known theorem (cf. e.g. [Rus], [Rol]) on the duality between 
controllability and observability problems for linear ordinary differential equations. 
Often, controllability is considered for homogeneous differential equations. In an 
analogous situation for the given problem (3A), (3.2) (i.e. f(t) = f(0) on [0, 1]) 
we obtain that the system 

(3.14) x(t) - x(0) - $0 [dA(s)] x(s) + (@u) (t) - (@u) (0) = 0 on [0, 1] , 

(3.2) possesses a solution in GL x °U for any r e Rm if and only if the only couple 
(y, 5) e BVn x Rm fulfilling (2.25), (2.26) and (3.13) is the zero one. In fact, it follows 
immediately from (3.12) that (3.14), (3.2) has a solution in Gn

L
l x % for any reRm 

if and only if 8 = 0 holds for any couple (y, 5) e BVn x Rm fulfilling (2.25), (2.26) 
and (3A3). By 2A2 this implies that y(t) = 0 on [0, l ] for any such couple, of course. 

3.7. Corollary. If W = Gh
L and 

@\ ueGh
L-+ JJ> [dB(s)] u(s), t e [0, 1] , 

where B(s) is an n x h- matrix valued function of bounded variation on [0, 1],. 
right-continuous at 0 and left-continuous on (0, 1], then the problem (3.1), (3.2) 
has a solution if and only if (3.12) holds for any solution (y, d) of the system (2.25), 
(2.26) such that 

JJ y*(s) [dB(s + )] = 0 for any t e [0, 1] . 

Proof follows from Theorem 3.4 and from the relation 

lo y*(t) [d jo [dJM]«(»)] = 

= (io y*(t) [dB(0]) «(o) + M y*(s) [dB( s+)]) [d«(0] 

for all ueGL and y e BVn, which can be verified analogously as the corresponding 
relation for the n x n - matrix valued function A(t) in the proof of Theorem 2.8 

3.8. Corollary. If <% = Gh
L and 

@:ueGh
L-*\0B(s)\Au(s)\y 

where B(s) is an n x h- matrix valued function of bounded variation on [0, l ] , 
then the problem (3A), (3.2) has a solution if and only if (3.12) holds for any couple 
(v, S) e BVn x Rm fulfilling (2.25), (2.26) and y*(t) B(t) = 0 on [0, 1]. 
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Proof. Since by the Substitution Theorem (cf. [T3], Theorem 2.19) the relation 

Ji y*(t) [<!<*.) <»)] = Ji y*(t) [d JS B(s) [d«(S)] - H y*(i) B(r) [d«(r)] 

holds for all y e BVn and u e G£, the proof follows immediately from Theorem 3.4. 

3.9. Definition. Let T = {tu t2,..., fv} be such that 

(3.15) 1 > rx > f2 > ... > tv > 0. 

Then by QlT we denote the subset of GL consisting of all functions ueGL which are 
constant on each of the intervals 

[0,rj ,(r l f 1], (/*+i, *J , fc = l , 2 , . . . , v - 1. 

3.10. Proposition. Lef T = {f1? f2>..., *v} f"(/*' (3.15) and let %T be defined by 3.9. 
Then ^lT is a linear space. Furthermore, if y e BVn, then the assertion 

(3.16) J0 y*(t) [du(t)] = 0 for any ue*UT 

is true if and only if 

(3.11) y*(r) = 0 for any r e f r . 

Proof. The first part of the proposition is evident. Let us suppose that (3A6) 
holds. Then for a given t e T, the function x ( t 4 ] belongs to %T and (cf. e.g. [T3], 
Proposition 2.3) 

JJ.v*(0[d.W0] = ^W = °. 
Analogously, Z[i] e ^r> while 

Jo y*(0 [dzcii(0] = .v*(i) = o , 

i.e. (3.17) is true. 
On the other hand, since obviously °UT c BVn, it follows from [STV], Lemma 

1.4.23 that (3.16) holds for any y e BVn satisfying (3.17) and any u e WT. 

3.11. Corollary. Let T= {tk}
v
k==i be the set of points in (0, 1) such that (3.15) 

holds, and let °MT be defined by 3.9. Let us put 

@:ue<%T->ueGn
L. 

Then the problem (3.1), (3.2) has a solution if and only if (3.12) holds for any 
couple (y,5)eBVn x Rm fulfilling (2.25), (2.26) and such that y(x) = 0 for any 
xeT. 

Proof follows immediately from Theorem 3.1 and Proposition 3.10. 
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3.12. Remark. The case considered in Corollary 3.11 is a generalization of interface 
boundary value problems for ordinary differential equations which are usually 
defined (cf. e.g. [Br], [Co], [Sch3] or [Ze]) as follows: 

Let 1 > tt > t2 > ... > tv > 0 and let T = {**}£.-.i- Let P(t) and an n-vector 
valued function q(t) be Lebesgue integrable on [0,1]. Let an m x n - matrix valued 
function K(t) have bounded variation on [0, 1], let Mh Nt (i = 0, 1,..., v) be 
m + n - matrices and let r e Rm. Then an n-vector valued function x(t) is called 
a solution to the interface boundary value problem (3.18), (3.19J if it is regulated 
on [0,1], left-continuous on (0,1] (i.e. x e G£) and absolutely continuous on every 
interval (fk+1, f j , 

(3.18) *'(') - P(0 *(') = «(0 ae- on E°» X ] 
and 

V 

(3.19) JTx:=M0 X(0) + N0 x(l) + £ [M£ x(f,+) + Nt x(t,-)] + 
i = l 

+ J0K0(s)[dx(s)] = r . 

Indeed, let us put °U = °UT, where *UT is defined by 3.9. Furthermore, let us put 

(3.20) M = t [ M f + N,] 
»=o 

and 

(3.21) K(s) = K0(s) + tiMtXio,uis) + NiXlo,tlls)]+No for - e [0,1] . 
i = l 

Then 
j f x = M x(0) + JJ K(s) [dx(s)] 

holds for any x e G£, and x e G£ is a solution of the interface boundary value problem 
(3.18), (3.19) if and only if there exists ueWT such that 

(3.22) x(t) - x(0) - Jo [dA(s)] x(s) - (u(t) - ii(0)) = f(t) - f(0) on [0,1] 

and 

(3.23) M x(0) + Ji K(s) [dx(s)] = r , 

where 
^t(s) = J0P(T)dT and /(s) = JUWdT. 

The problem (3.22), (3.23) obviously verifies the assumptions of this section. Since 
by (3.20) and (3.21) 

K(0) = Ko(0) + M - M0 and K(l) = K0(l) + N0 , 

the adjoint problem to (3.22), (3.23) is given by the system (2.25), 
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(3.24) y*(0) + d*(K0(0) - M0) = 0 , y*(l) + S*(K0(l) + N0) 

and 
y*(t() = 0 for i = l ,2 , . . . ,v . 

Furthermore, 

K(t) - K(l) = K0(t) - K0(l) + £ [MiXl0,Jt) + Na^nM 
І = l 

for any t e [0,1] . 

Thus, it is easy to see that a couple (y, S)e BV" x Rm is a solution to the system 
adjoint to (3.22), (3.23) if and only if y* + S*K0 is absolutely continuous on every 
interval [a, /?] such that [a, f[ a [0, 1]\T, 

-(y* + 5*K0)'(t) + y* P(t) = 0 a.e. on [0,1], 

(y* + 5*K0) (0) = 8*M0 , (y* + 5*K0) (1) = -5*N0 , 

A+(y* + d*K0) (tt) = S*M,, A-(y* + d*K0) (tt) = S*Nt 

(i = l,2,...,v), 

and 
y*(tt) = 0 (ŕ = l,2,...,v), 
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Souhrn 

ZOBECNĚNÉ DIFERENCIÁLNÍ ROVNICE 
V PROSTORU REGULOVANÝCH FUNKCÍ 

(OKRAJOVÉ PROBLÉMY A REGULOVATELNOST) 

MlLAN TVRDÝ 

V práci se vyšetřují okrajové úlohy a úlohy o regulovatelnosti pro zobecněné lineární diferen­
ciální rovnice. Jsou odvozeny adjungované úlohy a dokázány příslušné věty Fredholmova typu. 
Dosažené výsledky se vztahují m.j. i na okrajové úlohy typu interface pro obyčejné diferenciální 
rovnice. Na rozdíl od dřívějších autorových prací řešeními zobecněných diferenciálních rovnic 
zde vyšetřovaných mohou být regulované funkce (t.j. funkce, které obecně nemusí mít konečnou 
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variaci). Podobné úlohy v prostorech regulovaných funkcí vyšetřovali např. Ch. S. Hónig, 
L. Fichmann a L. Barbanti, kteří používali Dushnikův (vnitřní) integrál. V této stati se pracuje 
s integrálem Perron-Stieltjesovým. 

Authoťs address: Matematický ústav ČSAV, Žitná 25, 115 67 Praha 1, Czechosiovakia. 
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