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etergents on baclofen (GABAB-R agonist)-stimulated G-protein activity was
measured as a [35S]GTPγS binding assay in the plasma membranes (PM) isolated from the brain tissue. The
effect was clearly biphasic — a decrease in the activity was followed by an activation maximum and finally, at
high concentrations, drastic inhibition of the G-protein activity was noticed. Contrarily, specific radioligand
binding to GABAB-receptor was inhibited in the whole range of detergent concentrations step by step, i.e. it
was strictly monophasic. The magnitude of both detergent effects was decreased in the same order of
potency: Brij58NTriton X-100NDigitonin. The identical order was found when comparing detergents ability
to alter fluorescence anisotropy of the membrane probe 1,6-diphenyl-1,3,5-hexatriene (r DPH) incorporated
into the hydrophobic PM interior. Decrease of r DPH, in the order of Brij58NTriton X-100NDigitonin, was
reflected as decrease of the S-order parameter and rotation correlation time ϕ paralleled by an increase of
diffusion wobbling constant Dw (analysis by time-resolved fluorescence according to “wobble-in-cone”
model). The influence of the detergents on the membrane organization at the polar headgroup region was
characterized by Laurdan generalized polarization (GP). As before, the effect of detergents on GP parameters
proceeded in the order: Brij58NTriton X-100NDigitonin.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Participation of the hydrophobic membrane interior and the
influence of temperature and membrane phase transitions on the
ligand binding to G-protein coupled receptors (GPCR) have been
studied since the early days of G-protein oriented research. Coupling
of receptors to guanine-nucleotide binding regulatory proteins was
shown to induce a considerable increase of the affinity of the receptors
for the agonists [1]. Analysis of the temperature dependence of the
agonist binding to the two affinity states of A1 adenosine and α2-
adrenergic receptors indicated marked thermodynamic differences
between these two affinity states [2,3]. Agonist binding to the low-
affinity state was enthalpy driven in a manner similar to that of
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eterotrimeric guanine nucleo-
ating adenylyl cyclase activity;
y in pertussis-toxin sensitive
plipase C in pertussis-toxin
5S] triphosphate; PBS, phos-
nylmethylsulfonyl fluoride; PT,
ght
420 28658 2677.

l rights reserved.

e effect of detergents on trim
d Laurdan fluorescence, Bioc
antagonist binding whereas agonist binding to the high affinity state
was entropy driven and thus clearly different from the former one.
Measurements of the fluorescence of 1-anilin-8-naphtalenesulpho-
nate (ANS) showed thermotropic phase transitions of platelet
membranes at 17 °C [3]. The addition of 10 mM octanoic acid shifted
the transition temperature by 12 °C; and additionally also shifted the
break — points of van't Hoff plot of the antagonist and low affinity
agonist binding. A high affinity agonist binding, however, remained
unchanged.

The participation of the hydrophobic membrane interior in the
GPCR-mediated signaling has been also reported for β-adrenergic
receptors (β-AR). Beta-adrenergic blocking agents/partial agonists
such as propranol and alprenolol were shown to decrease myocardial
conduction velocity, to inhibit synaptosomal noradrenaline uptake,
platelet aggregation and to exert the local anesthetic action. All these
physiologically significant phenomena were found to be directly
proportional to the hydrophobicity of a given β-adrenergic receptor
ligand expressed as an n-octanol/water partition coefficient [4–7].
Partitioning of the hydrophobic β-adrenergic antagonist propanolol
was shown to inhibit the fluoride-stimulated adenylyl cyclase activity
in brain microsomes [8].

More recently, hydrophobic membrane constituents such as
cholesterol were found to affect the ligand binding to GPCR and to
eric G-protein activity in isolated plasma membranes from rat brain
him. Biophys. Acta (2008), doi:10.1016/j.bbamem.2008.11.008

mailto:martin.hof@jh-inst.cas.cz
http://dx.doi.org/10.1016/j.bbamem.2008.11.008
http://www.sciencedirect.com/science/journal/00052736
http://dx.doi.org/10.1016/j.bbamem.2008.11.008


2 J. Sýkora et al. / Biochimica et Biophysica Acta xxx (2008) xxx–xxx

ARTICLE IN PRESS
modulate the functional couplingbetweenGPCRandGprotein(s) [9–14].
It has alsobeen shown that thehydrohobicityof residue351ofG-protein
Gi1α determines the extent of the activation byα2A-adrenoceptor [15].
The same result was noticed for the functional coupling between the δ-
opioid receptor (DOR) and Gi1α [16]. Direct correlation between the
ligand-receptor binding and the organization of the plasma membrane
(PM) has been observed on the oxytocin receptor and cholecystokinin
receptor [17,18]. A significant decrease of the steady state anisotropy
provokedby the cholesterol depletionwas accompanied by thedecrease
in the ligand binding. While the cholecystokinin receptor showed
monotonousdeclineof the ligandbindingwith the cholesteroldepletion,
the oxytocin receptor showed a sigmoidal dependence with a sharp
decline at the critical cholesterol content. This finding indicates non-
trivial and highly specific effects of the membrane organization on the
GPCR activity.

As the examples above illustrate, there is a general awareness of
the connection between the activity of G-proteins and the physical
state of the membrane. To throw light upon the potential relationship
of the membrane structure and the GPCR activity we decided to alter
the state of the natural membranes such as brain cortex plasma
membranes via detergent addition and follow the activation of the G-
proteins by GABAB-receptor agonist baclofen. At the identical
detergent concentrations, the steady-state and time-resolved aniso-
tropy of rod-like DPH fluorophore embedded in the plasmamembrane
was measured conveying the information on the organization of the
hydrophobic membrane interior. In addition, the changes of the
organization in the head-group region of the membrane were
monitored by means of Laurdan generalized polarization.

2. Materials and methods

2.1. Isolation of plasma membrane fraction

Tissue pieces of rat brain cortex were minced with razor blade on
pre-cooled plate, diluted in 250 mM sucrose, 20 mM Tris–HCl, 3 mM
MgCl2, 1 mM EDTA, pH 7.6, fresh 1 mM PMSF plus complete protease
inhibitors cocktail (STE medium), homogenized mildly in loosely-
fitting, teflon-glass homogeniser for 5 min (1 g w. w. per 10 ml) and
centrifuged for 5min at 1500 rpm. Resulting post-nuclear supernatant
(PNS) was filtered through a Nylon nets of decreasing size (330, 110
and 75 mesh, Nitex) and applied on top of 30% (v/v) PercollR in
Beckman Ti60 tubes (3 ml of PNS plus 30 ml of PercollR in STE
medium). Centrifugation for 30 min at 30,000 rpm (65,000 ×g)
resulted in separation of the two clearly visible layers. The upper layer
represented plasma membrane fraction; the lower layer contained
mitochondria. The upper layer was removed, diluted 1:4 in distilled
water and centrifuged in Beckman Ti60 rotor at 50,000 rpm
(170,000 ×g) for 2 h. The membrane sediment was removed from
the compact, gel-like sediment of Percoll®, re-homogenized by hand
in small volume of STE medium, snap frozen in liquid nitrogen and
stored at −80 °C at 10–15 mg/ml.

2.2. Steady-state DPH anisotropy measurements

Brain cortex membranes were diluted to 0.4 mg/ml and mixed
at 0–4 °C with increasing concentrations of Triton X-100 or Brij58.
The final concentration of detergents in detergent/membrane mix
was 0.0005, 0.001, 0.002, 0.0039, 0.0078, 0.0156, 0.0313, 0.0625,
0.125, 0.25, 0.5 and 1%. Digitonin (12%) dissolved in DMSO was
added to the same final concentrations. DPH incorporation was
performed by the fast addition of 1 mM DPH in freshly distilled
acetone to 1 μM final concentration (under mixing). After 30 min
at 25 °C, which were allowed to ensure the optimum incorporation
of the probe into the membrane interior, the anisotropy of DPH
fluorescence was measured at Ex 365 nm/Em 425 nm wavelengths.
Under these conditions, the fluorescence intensity of the mem-
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
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brane-bound DPH was ≈1000× higher than that of the free probe
in aqueous medium alone; light scattering problems could be
omitted. Steady-state fluorescence anisotropy r DPH was calculated
as described before by Shinitzky and Barenholz [19] and Svobodova
and Svoboda [20].

2.3. Time-resolved fluorescence measurements

Fluorescence lifetime and polarization experiments were per-
formed with a time correlated single photon counting (TCSPC) IBH
5000 U instrument equipped with a cooled Hamamatsu R3809U-50
microchannel plate photomultiplier detector. The sample was excited
at 373 nmwith a diode laser (IBH NanoLED-375 L, FWHM80 ps,1MHz
repetition rate). The emission monochromator was set to 450 nm. The
anisotropy free decay I(t) was obtained as follows:

I tð Þ = Ivv tð Þ + 2GIvh tð Þ ð1Þ
where Ivv is the fluorescence decaymeasured with both excitation and
emission polarized vertically, and Ivh with the vertically polarized
excitation and horizontally polarized emission. The G-factor (G) was
determined bymeasuring a standard solution of POPOP and calculated
as:

G =
hIhv tð Þit
hIhh tð Þit

ð2Þ

where Ihv corresponds to the signal measured with the horizontally
polarized excitation and vertically polarized emission, and Ihh to
excitation and emission both polarized horizontally. In order to obtain
fluorescence lifetimes, the I(t) was fitted with two-exponential decay:

I tð Þ = B1 exp −t=τ1ð Þ + B2 exp −t=τ2ð Þ; ð3Þ
yielding lifetimes, τ1 and τ2, and corresponding amplitudes B1 and B2.

The decay of the anisotropy r(t) was determined as follows:

r tð Þ = Ivv tð Þ−GIvh tð Þ
Ivv tð Þ + 2GIvh tð Þ ð4Þ

and fitted with the formula:

r tð Þ = r 0ð Þ−r ∞ð Þð Þ: exp −t=ϕð Þ + r ∞ð Þ; ð5Þ
where r(0), and r(∞) stands for the limiting and residual anisotropy,
respectively. ϕ is the rotational correlation time. The anisotropy
decays were fitted by the non-linear least squares method including
the impulse reconvolution with the instrumental response function
(fwhm ∼100 ps). χ2 generated by the IBH software package served as
goodness of fit criterion. The anisotropy data were then treated
according to the “wobble in cone” model introduced by Kawato et al.
[42]. The analysis is based on the interpretation of two parameters.
Firstly, the S-order parameter S is defined as:

S =
r ∞ð Þ
r 0ð Þ

� �1=2

; ð6Þ

and secondly, the wobbling diffusion constant Dw was calculated as:

Dw =
σ s

/
; ð7Þ

where ϕ is the rotational correlation time and σs is the relaxation time
which is a function of the S-order parameter and has been determined
according to Kinosita, et al. [21].

2.4. Agonist-stimulated [35S]GTPγS binding

Baclofen, an agonist of GABAB-receptors (GABAB-R), was used for
determination of the agonist-stimulated [35S]GTPγS binding in the
eric G-protein activity in isolated plasma membranes from rat brain
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Fig. 1. The effect of Brij58 (upper left panel), Triton X-100 (upper right panel), Digitonin (bottom left panel), and temperature (bottom right panel) on the steady-state
anisotropy of diphenylhexatriene (DPH). PM fraction was mixed 1:1 with the increasing concentrations of detergents at 0–4 °C; after 60 min on ice, 1 mM DPH in acetone
(1 μM final concentration) was added quickly under stirring and incubated for 30 min at laboratory temperature, 25 °C. In the upper right panel, open symbols (○)
correspond to Brij58 alone. The temperature dependence of DPH fluorescence was determined in the control, detergent-untreated membrane. The data represent the average
of three experiments.
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plasma membrane fraction isolated from the rat brain cortex. The
binding assay was performed as previously described by Fong and
Milligan [22,23]. Constant volume aliquots (20 μl) of control
(detergent-untreated) or detergent-treated PM were incubated with
(total) or without (basal) 100 μM baclofen in final volume of 100 μl of
reaction mix containing 20 mM HEPES, pH 7.4, 3 mM MgCl2, 100 mM
NaCl, 2 μM GDP, 0.2 mM ascorbate and [35S]GTPγS (about
100,000 dpm per assay) for 30 min at 30 °C. The binding reaction
was discontinued by dilution with 3 ml of ice-cold 20 mM HEPES, pH
7.4, 3 mM MgCl2 and immediate filtration through Whatman GF/C
filters on Brandel cell harvestor. Radioactivity remaining on the filters
was determined by liquid scintillation using Rotiszint EcoPlus cocktail.
Non-specific [35S]GTPγS binding was determined by parallel assays
containing 10 μM GTPγS.

2.5. GABAB receptor content

GABAB-receptor content in PM isolated from the brain tissue was
measured by binding of specific antagonist [3H]CGP54626 as
described before by Hejnova et al. [24]. Membranes (50 μg protein)
were incubated with 2.5 nM [3H]CGP54626 (total concentration) in
0.5 ml of 75 mM Tris–HCl, pH 7.4, 12.5 mM MgCl2, 1 mM EDTA for
60 min at 25 °C. The bound and free radioactive antagonists were
separated by rapid filtration through Whatman GF/B filters in Brandel
cell harvestor. Filters were washed 3× with 3 ml of ice-cold incubation
buffer and placed in 4 ml of scintillation cocktail (CytoScint, ICN).
Radioactivity remaining on filters was determined after 16 h at
laboratory temperature by liquid scintillation. The non-specific
binding was defined as that remaining in the presence of 1 mM
non-radioactive GABA.
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
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2.6. Laurdan generalized polarization

The incorporation of the Laurdan to plasma membranes was
performed in the following way: a small portion of Laurdan
(Invitrogen, USA) dissolved in methanol was added to the plasma
membrane solution (0.4 mM) to reach the 10 μM concentration. The
sample was heated at 50 °C for 30 min to enable the proper
incorporation of the probe. The detergent treatment was then
performed at the identical conditions and temperature as described
in Section 2.2. The emission and excitation spectra were recorded on
Fluorolog 3 instrument (Horiba, Jobin-Yvon, USA). The emission
scans were performed with the excitation wavelengths set to
340 nm and 410 nm, the excitation spectra were carried out at
the emission wavelengths set to 440 nm and 490 nm. The
generalized polarization (GP) spectra were calculated from the
fluorescence intensities of Laurdan embedded in the membrane
according to Parasassi et al. [25]. In the case of excitation GP the
following equation was used:

GPλ
exc =

I440−I490
I440 + I490

ð8Þ

where I490 and I440 stands for the emission intensity detected at
490 nm and 440 nm, respectively, excited by the excitation
wavelength λ. Similarly, the emission GP spectra were calculated via:

GPλ
em =

I410−I340
I410 + I340

ð9Þ

where I410 and I340 stand for the Laurdan excitation intensity at the
wavelengths 410 nm and 340 nm, respectively, detected at the
eric G-protein activity in isolated plasma membranes from rat brain
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Table 1
The parameters obtained by the fitting and further analysis of the time resolved
anisotropy decays

r0 r∞ ϕ (ns) S Dw (ns−1)

Control, detergent-
untreated PM

0.289±
0.018

0.165±
0.022

6.1±
0.7

0.68±
0.05

0.019±
0.001

PM+Digitonin 0.282±
0.021

0.111±
0.006

3.9±
0.4

0.56±
0.04

0.044±
0.008

PM+Triton X-100 0.286±
0.019

0.026±
0.003

3.2±
0.2

0.27±
0.02

0.072±
0.002

PM+Brij58 0.276±
0.020

0.074±
0.008

2.5±
0.1

0.46±
0.05

0.078±
0.006

SUVs 0.271±
0.018

0.115±
0.007

2.8±
0.2

0.65±
0.09

0.031±
0.006

SUVs+Digitonin (0.5% w/v) 0.140±
0.023

0.032±
0.006

11.3±
0.9

0.46±
0.07

0.017±
0.007

SUVs+Triton X-100 (1% w/v) 0.223±
0.018

0.002±
0.004

1.5±
0.2

0.10±
0.06

0.171±
0.030

SUVs+Brij58 (1% w/v) 0.201±
0.019

0.001±
0.007

1.4±
0.2

0.07±
0.06

0.173±
0.027

r0 stands for the limiting anisotropy, r∞ for the residual anisotropy, ϕ for the rotational
correlation time, S for the S-order parameter, and Dw for the wobbling diffusion
constant. In order to roughly mimic the composition of PM, the composition of small
unilamellar vesicles (SUVs) was as follows: 50% of egg phosphatidyl-choline, 20% egg
phosphatidyl ethanolamine, and 30% of cholesterol. The detergents were added in the
ratio of 1 lipid molecule to 4 detergent molecules to make the micellization process as
probable as possible.

Fig. 2. The effect of detergents on the diffusion wobbling constant Dw (grey bars) and
S-order parameter (hatched bars). Diffusion wobbling constant Dw and S-order
parameter S were calculated from the time-resolved anisotropy decays of DPH
fluorescence in the control, detergent-untreated PM (control) and PM exposed to
0.031% Digitonin, 0.05% Triton X-100 or 0.1% Brij58, respectively.
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emission wavelength λ. Additionally, the excitation and emission GP
spectrum slopes [26] were calculated by means of the equations:

GPexcS =
GP410

exc −GP340
exc

410−340
0 ð10Þ

GPemS =
GP490

em −GP440
em

490−440
ð11Þ

where the GPexc
410 and GPexc

340 corresponds to the excitation GP values
when exciting at 410 nm and 340 nm, respectively. GPem490 and GPem

440

stand for the emission GP values determined for the emission
wavelength of 490 nm and 440 nm, respectively.

3. Results and discussion

3.1. The effect of detergents on hydrophobic plasma membrane interior
as revealed by steady-state fluorescence anisotropy of
diphenylhexatriene (DPH)

Brij58 exhibited a strong “fluidization” effect of the hydrophobic
membrane interior in the plasma membrane (PM) fraction isolated
from the brain cortex. This is demonstrated in the left upper panel of
Fig. 1 by a measurement of steady-state anisotropy of the
hydrophobic membrane probe diphenylhexatriene (DPH). When
increasing Brij58 above crit ical micelle concentration
(CMC=0.0086% w/v), the highly polarized signal of DPH in the intact,
detergent-untreated PM (r DPH=0.245) was gradually decreased to
highly depolarized signal (rDPH=0.092), i.e. close to the anisotropy of
Brij58 alone in aqueous medium measured at 25 °C (rDPH=0.072). A
magnitude of this effect was relatively large, (Δ rDPH=0.153); when
compared to the temperature-induced shift. Specifically, heating up
the sample from 15 °C to 55 °C lead to the change in the anisotropy
Δ rDPH=0.100 (right bottom panel of Fig. 1D). Similar data as in the
case of Brij58 were obtained when analyzing Triton X-100 (right
upper panel of Fig. 1). The maximum change of DPH anisotropy
caused by Triton X-100 (Δ rDPH=0.116) was, however, less significant
than in the case of Brij58 (ΔrDPH=0.153). The difference of CMC
values between Brij58 (0.0086% w/v) and Triton X-100 (0.0155% w/v)
might explain a higher penetration ability of Brij58 into the PM [27].

Digitonin was unable to induce a dramatic decrease of r DPH as the
former two water soluble detergents (left bottom panel of Fig. 1).
Membranes exposed to the high concentrations of this detergent (0.1–
0.5% w/v) exhibited the same r DPH as the control, detergent-untreated
membranes. A drastic decrease of r DPH to values close to highly
depolarized fluorescence signal (i.e. less than 0.01) was not observed.
The magnitude of Digitonin effect was small and restricted to the
“transient range” of concentrations between 0.005% and 0.1%; this
transient rangewas characterized by the small decrease of r DPH values
followed by the increase back to the control values. Thus, r DPH=0.230
measured at 0.5% Digitoninwas close to the steady-state anisotropy of
DPH fluorescence measured in detergent-untreated PM (r DPH=0.245).

3.2. The time-resolved measurements of DPH fluorescence

The results of the time-resolved DPH fluorescence analysis by the
wobble in cone model copies the trends already observed for the
steady-state anisotropy measurements, i.e. the presence of deter-
gents leads to the higher depolarization of the excitation light, in
fact to a higher motional freedom of the dye. Nevertheless, the time
resolved data provided more detailed insight into the organization
of the membrane interior. Herein applied “wobble in cone” model
retrieved the information on the membrane dynamics (the rate of
dye rotational motion), which is characterized by the wobbling
diffusion constant (Dw). In addition, this model enabled us to gain
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
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the static information about the degree of the orientational
constrains due to the interaction of the dye with the aliphatic
chains of fatty acids, which is characterized by the S-order
parameter (S).

As shown in Table 1 and Fig. 2, both of these parameters were
changed by treatment of PM with detergents. In general, the S-order
parameter was decreased upon the addition of the detergents while
the wobbling diffusion constant Dw was raised significantly. It means
that the disorganized, i.e. more chaotically organized aliphatic chains
of fatty acids, provided more space for the movement of the DPH dye
and simultaneously, the rate of the rotation of the DPH was increased
by the presence of the detergents. The smallest effect was observed
after Digitonin addition, yet, a significant drop of the S-order
parameter and a noticeable decrease in the wobbling diffusion
constant was observed. The water soluble detergents, Triton X-100
and Brij58, showed a stronger impact on the membrane organization
— the wobbling diffusion coefficients were increased three times
when compared with the native (detergent-untreated) membranes.
eric G-protein activity in isolated plasma membranes from rat brain
him. Biophys. Acta (2008), doi:10.1016/j.bbamem.2008.11.008
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Fig. 3. The effect of detergents on the excitation generalized polarization GPexc of
Laurdan embedded in PM. Dependence of GPexc of Laurdan on the concentration of
Brij58 (●), Triton X-100 (Δ), and Digitonin (♦) was measured at the excitation
wavelength of 370 nm in PM and GPexc values were calculated as described in Materials
and methods.

Fig. 4. The effect of detergents on the slope of the emission (GPemS) and excitation
(GPexcS) generalized polarization of Laurdan embedded in PM. Dependence of GPemS
(■) and GPexcS (○) on the detergent concentration was determined for the Brij 58
(upper panel), Triton X-100 (middle panel), and Digitonin (bottom panel). The values of
GPemS and GPexcS were calculated as described in Materials and methods.

5J. Sýkora et al. / Biochimica et Biophysica Acta xxx (2008) xxx–xxx

ARTICLE IN PRESS
The effect of Brij58 on S-order parameter was stronger implying lower
constrainsof themotionof theDPHrodwhencompared toTritonX-100.

Table 1 also contains results for the small unilamellar vesicles
(SUVs) composed of 50% of phosphatidyl-choline, 20% of phosphati-
dyl-ethanolamine and 30% of cholesterol. Such lipid composition
might mimic the composition of lipids present in the PM to some
extent. Obviously, the values of the S-order parameter (S≅0.7) lies in
the same range. The wobbling constant, on the other hand, is
significantly lower in the case of PM, indicating a lower motional
freedom of the PM interior. The formation of micelles caused by the
addition of high content of Brij58 and Triton X-100 to SUVs is
accompanied by a significant change in all the parameters, i.e. faster
rotational correlation time, a lower order parameter and a higher
wobbling diffusion constant are observed (Table 1). This fact indicates
that formation of micelles does not dominate even at the high
concentrations of Brij58 (0.1%) and Triton X-100 (0.05%) when added
to PM. Digitonin has a different effect on the model SUVs system and
the formation of the slowly rotating aggregates is detected.

3.3. Laurdan generalized polarization measurements

Generalized polarization monitored by a fluorescent probe
Laurdan is a tool for the investigation of lateral lipid organization in
the headgroup region of phospholipid bilayers [25,28]. Specifically, we
have shown that Laurdan is able to report on the hydration and
mobility changes at the level of the sn-1 carbonyl group in phospolipid
model membranes [34]. The solvatochromic properties of this dye
lead to the significant red-shift of its emission spectra in the hydrated
liquid-crystalline phase compared to the rigid gel phase. The value of
the generalized polarization (GP) calculated from the fluorescence
intensities at either the excitation or the emission wavelengths
[25,28], yields the information on the phase state of the lipid micro-
environment of Laurdan. Typically, GP reaches the values of
approximately 0.6 and −0.2 in the gel and liquid crystalline phase,
respectively. Nevertheless, the natural membrane contains noticeable
amount of sphingolipids, whose content can reach up to 20% in
the isolated cortex membranes [29,30]. It was demonstrated that
the presence of the sphingolipids leads to the phase coexistence in
the model membranes, which naturally makes the interpretation of
the bulk GP experiment rather complex [31,32]. Moreover, the
chemical structure of the sphingolipids is highly diverse and the
effect on the lateral packing and water content in the membrane is
strongly dependent on the type of sphingolipid [33]. For instance,
model bilayers containing cholesterol and sphingomyelin coexist in
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
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the liquid ordered and liquid disordered phase, while model
membranes containing ceramide and cholesterol show only gel–
liquid crystalline phase coexistence [32]. Even though we believe
that Laurdan GP can still provide us with the qualitative information
on the average change in the hydration and/or mobility for complex
membranes provoked by the detergents.

The effect of the detergents on the excitation GP is illustrated in Fig.
3. Obviously, the dependencies of the GP on the amount of Brij 58 and
Triton X-100 follow a similar pattern. The GP decreases sigmoidally
with increasing detergent concentration. It is reasonable to assume
that this result indicates the increase in the hydration and mobility of
the Laurdan microenvironment. Unlike the former two water soluble
detergents, Digitonin takes a completely different action. After the
initial decrease, the GP starts to rise when the 0.05% detergent
concentration is reached. After that GP reaches even higher values in
comparison to the initial non-treated plasma membranes.

To gain more detailed understanding of the detergent interaction
with brain PM, the slope of the GP spectra (GPS) has been analyzed
(Fig. 4). As demonstrated before [26,35], a thermotropic profile of the
GPS has the potential to reveal the physical state of themembrane. For
instance, it allows the detection of the main phase transition and
serves as a good tool for the determination of the phase coexistence.
eric G-protein activity in isolated plasma membranes from rat brain
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Fig. 5. The evolution of the steady state emission spectra of Laurdan embedded in PM
upon the addition of Brij 58 (upper panel), Triton X-100 (middle panel) and Digitonin
(bottom panel). In the upper and middle panel, the arrows indicate the change in the
emission intensity caused by various concentration of Brij58 and Triton X-100. The
emission spectra were recorded for the following Brij58 and Triton X-100 contents:
0.001, 0.002, 0.004, 0.0078, 0.0156, 0.0315, 0.063, 0.125, 0.25, 0.5 and 1.0%. With the
increasing concentration of both Brij58 and Triton X-100 the intensity at the emission
wavelength 435 nm was decreasing continuously. The opposite trend was detected for
the emission intensity at 485 nm. In bottom panel, not all spectra recorded for Digitonin
are shown for the purpose of the higher clarity. Numbers 1, 2, 3, 4, and 5 correspond to
the emission spectra recorded at the following Digitonin concentrations: 0.001, 0.0078,
0.0315, 0.125, and 0.5%, respectively. Obviously, there is a blue shift of the spectra
observed for the high Digitonin concentrations.
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We decided to adopt this approach and followed the GPS evolution
upon the addition of the detergents (Fig. 4).

At low detergent concentrations, the excitation and emission GP
slopes run parallel and close to each other indicating phase
coexistence. Some nanoscale domains are likely to be present as the
composition of brain plasmamembranes is largely heterogeneous and
the lateral organization of such membrane has to be rather complex.
For this reason, the interpretation of the GP slopes evolution is not as
straightforward as for the pure model lipid bilayers and we were
unable to bring more unambiguous description of the overall brain
membrane phase. Nevertheless, since the GP values at low detergent
concentrations are relatively low, the rigid gel-like phase may
dominate. After the 0.01–0.05% detergent concentration is reached,
the excitation and emission GPS traces diverge in a sigmoidal manner
reflecting a significant change in the bilayer organization (Fig. 4).
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
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When inspecting the evolution of the steady state spectra upon
addition of Brij 58 and Triton X-100 (upper andmiddle panel of Fig. 5),
the brain plasma membrane undergoes transition from the rigid-
like membrane to the state similar to liquid crystalline phase since
the isobestic point is detected and the “red edge” maximum of the
emission spectra is steadily located at the wavelength of 485 nm
corresponding to the liquid crystalline phase [36]. Marked micelli-
sation of the membrane is unlikely for it is accompanied by an
additional red-shift of the Laurdan emission spectrum up to 500 nm
as soon as the first micelles are formed [36]. The formation of the
hexagonal phase neither appears probable for the emission
intensity would have to drop markedly just below the bilayer/
hexagonal phase transition [37] and we have not observed this type
of change.

In the case of Digitonin (Fig. 5, bottom panel), the evolution of the
steady state spectra looks differently. Only the slight increase on the
red edge of the spectra is observed at the low detergent concentra-
tions. After the content of Digitonin reaches 0.01%, the increase of the
intensity on the red side of the spectra decreases and the overall blue
shift is observed. As already indicated by the DPH measurements
Digitonin is fluidizing the membrane in a qualitatively similar manner
as Brij 58 and Triton X-100 until its content reaches 0.01%. Apparently
up to that concentration individual Digitonin molecules are incorpor-
ating into the membrane and by that –as the other investigated
detergents– fluidizing the membranes. However, at higher Digitonin
concentration the DPH anisotropy is again increasing and the Laurdan
fluorescence gets again blue-shifted. Both experimental results
indicate that the used dyes are probing a more rigid and/or less
polar environment at higher Digitonin concentrations. We speculate
that in that concentration range Digitonin is no more incorporating
randomly into the membrane, but tightly packed aggregates or rigid
domains with high Digitonin concentrations are formed. In this
context it might be interesting to note, that similar blue-shifted
spectra were observed when Laurdan was mixed with the Digitonin
above the CMC.

3.4. The effect of detergents on trimeric G-protein activity

The effect of detergents on trimeric G-protein activity in brain
cortex PM was strongly concentration dependent (Fig. 6). At very
low concentrations (b0.003), the basal and baclofen-stimulated [35S]
GTPγS binding was not different from that in detergent-untreated
PM. The increase of baclofen-stimulated binding was noticed at
0.006 and 0.013% Brij58 (Fig. 6, upper left panel) or at 0.013 and
0.025% Triton X-100 (Fig. 6, upper middle panel). At these
concentrations, the net increment of baclofen stimulation, i.e. the
difference between the agonist-stimulated and the basal level of
binding for Brij58 and Triton X-100 was 1.8× and 1.3× higher than in
detergent-untreated PM, respectively. Digitonin effect on G-protein
activity was substantially different from the two former detergents.
First of all, neither the basal nor baclofen-stimulated [35S]GTPγS
binding was significantly increased by this detergent. Secondly, the
net-increment of baclofen-stimulation remained unchanged (Fig. 6,
upper right panel). In order to underline the stimulatory effect of
the detergents there is also depicted the difference between the
baclofen stimulated and basal [35S]GTPγS binding in the bottom
panels of Fig. 6.

High concentrations of all three detergents were inhibitory for the
baclofen-stimulated as well as basal level of [35S]GTPγS binding:
when increasing detergent concentration above “stimulatory range”
of detergent concentrations, baclofen-stimulated as well as basal level
of binding was diminished to zero level. The difference between the
two water-soluble detergents Brij58 and Triton X-100 and Digitonin is
clearly documented in Table 2 by comparison of the concentrations
inducing an increase of the net-increment of baclofen-stimulation and
those inducing the inhibition of [35S]GTPγS binding.
eric G-protein activity in isolated plasma membranes from rat brain
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Fig. 6. Detergent effect on the baclofen-stimulated [35S]GTPγS binding in brain cortex PM. The upper panels depict the activity of the basal (○) and baclofen-stimulated (●) [35S]
GTPγS binding. The bottom panels show the difference between the baclofen-stimulated and basal [35S]GTPγS binding. PM fraction was mixed at 0–4 °C with increasing
concentrations of Brij58 (right panel) or Triton X-100 (middle panel) to achieve the final concentration of 0.0004, 0.0008, 0.0016, 0.0031, 0.0063, 0.0125, 0.025, 0.05, 0.1, 0.2 and 1.0%;
subsequently, an aliquot of membrane-detergent mix was transferred to [35S]GTPγS binding assay medium and incubated at 25 °C for 30 min with [35S]GTPγS as described in
Materials andmethods. Concentrated solution of Digitonin in DMSO (12%) was added to PM to achieve the same final concentration as in the case of the twowater-soluble detergents
(0.0004, 0.0008, 0.0016, 0.0031, 0.0063, 0.0125, 0.025, 0.05, 0.1, 0.2 and 1.0%), aliquots of membrane-detergent mix were transferred to [35S]GTPγS binding assay medium and
incubated at 25 °C for 30 min as in the case of Brij58 and Digitonin. Results represent the average of 3 experiments±SEM.

Table 2
The influence of Brij58, Triton X-100 and Digitonin on the G-protein activity

A
Stimulatory range of detergent concentrations (% w/v)
Brij58 0.006 0.013
Triton X-100 0.013 0.025
Digitonin 0.05 0.1
B
Inhibitory range of detergent concentrations (% w/v)
Brij58 N0.02
Triton X-100 N0.05
Digitonin N0.2

G-protein activity was measured as [35S]GTPγS binding assay performed in the
presence or absence of 1 mM baclofen (GABAB-receptor agonist) as described in
Materials and methods.
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3.5. The effect of detergents on radioligands binding to GABAB-receptors

Detergent-induced changes of G-protein activity were also
compared with detergent effect on specific radioligand binding to
GABAB-receptors measured as an antagonist [3H]CGP54562 binding
assay. Data presented in Fig. 7 indicated clearly the monotonous
decrease of binding as a function of increasing detergent concentra-
tions. From this point of view there was no difference between Brij58,
Triton X-100 and Digitonin. The difference among the three detergents
was manifested when comparing the quantitative parameters of this
inhibition, i.e. concentrations inducing half-maximum decrease of
binding. The potency of these detergents decreased with order of
Brij58NTriton X-100NDigitonin. Thus, as shown previously in studies
of DPH and Laurdan fluorescence and analysis of concentration
dependence of detergent effect on the baclofen-stimulated [35S]GTPγS
binding, the same order of potency was detected.

When comparing the results of receptor binding and [35S]GTPγS
binding assays, a marked difference had to be noticed: inhibition of
receptor binding capacity proceeded as monotonous decrease while
concentration dependence of detergent effect on G-protein activity
was clearly biphasic (decrease followed bymaximumand sudden drop
to very lowor zero level of G-protein activity). This difference indicates
that activation of G-protein activity by Brij58 cannot be explained
simply as an increase in receptor binding capacity. This detergent, in a
relatively narrow range of detergent concentrations and at a specific
detergent/protein ratio is able to increase the intrinsic efficacy of
receptor, i.e. ability of G-protein to respond to the conformational
change induced by activated receptor. The thorough biophysical
characterization of membrane state by fluorescence spectroscopy
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
cortex: Correlation with studies of DPH and Laurdan fluorescence, Bioc
indicating the highest potency of Brij58 to alter structural as well as
dynamic parameters of PM organization supports this view.

3.6. Summary of the DPH anisotropy, Laurdan generalized polarization,
G-protein activity and GABAB-receptor analysis

When summarizing our data, the direct effect of the detergents on
G-protein activity in the isolated brain cortex PM was biphasic: i)
transient range of low detergent concentrations was characterized by
the decrease of baclofen (GABAB-receptor)-stimulated [35S]GTPγS
binding followed by the increase back to the control or even higher
levels of binding. The maximum of baclofen-stimulation observed at
0.006–0.013% Brij58 was 2× higher than in the control detergent/
untreated PM. ii) The further increase of detergent concentrations
eric G-protein activity in isolated plasma membranes from rat brain
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Fig. 7. Detergent-effect on the radioligand binding to GABAB-receptors. Binding of specific antagonist [3H]CGP54626 to GABAB-receptors present in brain cortex PMwas monitored at
different concentrations of Brij58 (left panel), Triton X-100 (middle panel), and Digitonin (right panel) and was measured as described in Materials and methods. Membranes (50 μg
protein) were incubated with 2.5 nM [3H]CGP54626 (total concentration) in 0.5 ml of 75 mM Tris–HCl, pH 7.4, 12.5 mM MgCl2, 1 mM EDTA for 60 min at 25 °C. The bound and free
radioactivity was separated by rapid filtration throughWhatman GF/B filters in the Brandel cell harvestor. Filters werewashed 3×with 3ml of ice-cold incubation buffer and placed in
4 ml of scintillation cocktail (CytoScint, ICN). Radioactivity remaining on filters was determined after 16 h at laboratory temperature by liquid scintillation. The non-specific binding
was defined as that remaining in the presence of 1 mM non-radioactive GABA.
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caused a drastic decrease/diminution of [35S]GTPγS binding to zero
level (Fig. 6). In contrast to theG-proteinactivity, the inhibitoryeffect of
detergents on GABAB-receptor was strictly monophasic, i.e. no
stimulation/increase of specific radioligandsbindingwas found (Fig. 7).

The ability of different detergents to induce the rise of baclofen-
stimulated [35S]GTPγS binding at low concentrations and a drastic
decrease to the zero level at high concentrations grew in the order of
potency Brij58NTriton X-100NDigitonin (Table 2). This order of
potency was identical with the effect of detergents on the organiza-
tion of the hydrophobic membrane interior characterized by the
steady-state fluorescence anisotropy of DPH as well as on the lateral
organization of the polar head-group region monitored by Laurdan
generalized polarization. Additionally, Laurdan GP data indicate that
Brij58 and Triton X-100 interact with the membrane in a completely
different way than Digitonin. This can be explained by the fact that
Triton X-100 and Brij58 preferentially incorporate into the bilayer
present in the fluid, liquid crystalline phase and do not penetrate so
effectively into the membranes possessing the gel or ordered phase
states enriched in cholesterol [38,39]. In contrary, Digitonin is known
to cause the clustering of the membrane cholesterol which results in
the formation of the cholesterol enriched domains within the
membrane [40,41]. Surprisingly, the GPCR activity was found to be
affected to a greater extent by the fluidizing detergents, Triton X-100
and by Brij 58, than by Digitonin.

The time-resolved fluorescence measurements were performed
with the aim to understand the effect of detergents on the
hydrophobic membrane interior more clearly and to distinguish
between the structural (S-order parameter) and dynamic (rotation
correlation time) contributions to an overall steady-state anisotropy of
DPH (r DPH). Data presented in Fig. 2 indicated a dramatic decrease of the
S-order parameter paralleled by an increase in the freedom of motion of
DPH upon the addition of detergents. The analysis according to a model
of restrained motions of Kawato et al. [42] and Kinoshita et al. [21]
indicated a decrease of rotation correlation time accompanied by an
increase of the diffusion wobbling constant Dw. The order of ability of
different detergents to influence the time-resolved anisotropy para-
meters was identical as in the case of steady-state anisotropy and GP
measurements: Brij58NTriton X-100NDigitonin.

In conclusion, the results of all experimental lines followed in this
work (fluorescence, G-protein activity and receptor binding analysis)
indicated the same order of potency of three different non-ionic
detergents when modulating GPCR-G protein interaction or effecting
the organization of the brain plasma membrane.
Please cite this article as: J. Sýkora, et al., The effect of detergents on trim
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4. Conclusion

It is reasonable to assume that a significant increase of the net-
increment of baclofen (GABAB-R) stimulation of G-protein activity
which was observed in the narrow range of low detergent concentra-
tions reflects the specific alternation of plasma membrane structure
while an over-all decrease of both total and basal activity of trimeric G
proteins parallels the total degradation of membrane structure (at
high detergent concentrations). Both these effects proceed in the
order of efficiency: Brij58NTriton X-100NDigitonin.

Our data, thus, indicate that an optimum perturbation of the native
PM structure is advantageous for the functional coupling between the
receptor and its cognate G-protein in the narrow range of low
detergent concentrations. Both hydrophobic membrane phase and the
water-membrane interface participate in this process.
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