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Chapter 1

Introduction

1.1 Motivation

The Ramsey theory starts with a classical result:

Fact 1.1.1. For every partition of pairs of natural numbers into two classes
there is a homogeneous infinite set: a set a ⊂ ω such that all pairs of natural
numbers from a belong to the same class.

It is not difficult to generalize this result for partitions into any finite number
of classes. An attempt to generalize further, for partitions into infinitely many
classes, hits an obvious snag: every pair of natural numbers could fall into its
own class, and then certainly no infinite homogeneous set can exist for such a
partition. Still, there seems to be a certain measure of regularity in partitions
of pairs even into infinitely many classes. This is the beginning of canonical
Ramsey theory.

Fact 1.1.2. For every equivalence relation E on pairs of natural numbers there
is an infinite homogeneous set: a set a ⊂ ω on which one of the following
happens:

1. pEq ↔ p = q for all pairs p, q ∈ [a]2;

2. pEq ↔ min(p) = min(q) for all pairs p, q ∈ [a]2;

3. pEq ↔ max(p) = max(q) for all pairs p, q ∈ [a]2;

4. pEq for all pairs p, q ∈ [a]2.

In other words, there are four equivalence relations on pairs of natural numbers
such that any other equivalence can be canonized : made equal to one of the
four equivalences on the set [a]2, where a ⊂ ω is judiciously chosen infinite set.
It is not difficult to see that the list of the four primal equivalence relations is
irredundant: it cannot be shortened for the purposes of this theorem. It is also

1



2 CHAPTER 1. INTRODUCTION

not difficult to see that the usual Ramsey theorems follow from the canonical
version.

Further generalizations of these results can be sought in several directions.
An exceptionally fruitful direction considers partitions and equivalences of sub-
structures of a given finite or countable structure, such as in [32]. Another
direction seeks to find homogeneous sets of larger cardinalities. In set theory
with the axiom of choice, the search for uncountable homogeneous sets of arbi-
trary partitions leads to large cardinal axioms [20], and this is one of the central
concerns of modern set theory. A different approach will seek homogeneous
sets for partitions that have a certain measure of regularity, typically expressed
in terms of their descriptive set theoretic complexity in the context of Polish
spaces. This is the path this book takes. Consider the following classical result:

Fact 1.1.3 ([39]). For every partition [ω]ℵ0 = B0 ∪ B1 into two Borel pieces,
one of the pieces contains a set of the form [a]ℵ0 , where a ⊂ ω is some infinite
set.

Here, the space [ω]ℵ0 of all infinite subsets of natural numbers is considered
with the usual Polish topology which makes it homeomorphic to the space of
irrational numbers. This is the most influential example of a Ramsey theorem
on a Polish space. It deals with Borel partitions only as the Axiom of Choice can
be easily used to construct a partition with no homogeneous set of the requested
kind.

Are there any canonical Ramsey theorems on Polish spaces concerning sets
on which Borel equivalence relations can be canonized? A classical example of
such a theorem starts with an identification of Borel equivalence relations Eγ

on the space [ω]ℵ0 for every function γ : [ω]<ℵ0 → 2 (the exact statement and
definitions are stated in Section 3.11) and then proves

Fact 1.1.4 ([34, 30]). If f : [ω]ℵ0 → 2ω is a Borel function then there is γ and
an infinite set a ⊂ ω such that for all infinite sets b, c ⊂ a, f(b) = f(c) ↔ bEγc.

Thus, this theorem deals with smooth equivalence relations on the space [ω]ℵ0 ,
i.e. those equivalences E for which there is a Borel function f : [ω]ℵ0 → 2ω such
that b E c ↔ f(b) = f(c), and shows that such equivalence relations can be
canonized to a prescribed form on a Ramsey cube. Other similar results can be
found in the work of Otmar Spinas [45, 44, 28].

The starting point of this book consists of three simple sociological observa-
tions:

1. Among the known canonization theorems on Polish spaces, most deal with
smooth equivalence relations. However, there are many Borel equivalence
relations that are not smooth, and there is also the fast-growing area of
descriptive set theory ordering the Borel equivalence relations according
to their complexity in the sense of Borel reducibility, in which the smooth
ones serve as the simplest case only. Perhaps it is possible to connect the
canonical Ramsey theory with the reducibility complexity of the equiva-
lence relations in question?
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2. The known canonization theorems all seek a homogeneous set which in
retrospect is a Borel set positive with respect to a suitable σ-ideal on the
underlying Polish space. Perhaps there is something to be gained by look-
ing at many different σ-ideals, attempting to prove a suitable canonical
Ramsey theorem for each.

3. For every σ-ideal I on a Polish space X there is the quotient algebra
PI of Borel subsets of X modulo the ideal I, and it can be considered
as a notion of forcing. A quick look shows that every smooth equivalence
relation corresponds to an intermediate forcing extension of the PI -generic
extension. Perhaps it is possible to connect canonization properties of
Borel equivalences with forcing properties of PI?

The conjunction of these three points opens a whole fascinating new landscape,
to which this book can only be a short introduction. It turns out that there
is a whole array of canonization results depending on the Borel reducibility
properties of E and forcing properties of the quotient poset PI , for a Borel
equivalence E and a σ-ideal I on a Polish space X. The techniques range from
the Borel reducibility theory [8, 22], Shelah’s theory of proper forcing [37, 2] and
the theory of definable forcing [49] to such concepts as concentration of measure
[33].

The basic setup for a problem addressed by this book can then be described
as follows. Let I be a σ-ideal on a Polish space X and E a Borel equivalence
relation on X. Is there a Borel I-positive set B ⊂ X on which the equivalence
relation E is significantly simpler than on the whole space? In a fairly small
but significant number of cases, we show that great simplification is possible–we
find a finite or countable collection of Borel equivalences such that the Borel set
B can be found so that E � B is equal to one of the equivalences on this short
list. In particularly advantageous circumstances, we even prove a strong Silver
type dichotomy: either the whole space breaks into a countable collection of
equivalence classes and an I-small set, or there is a Borel I-positive set consisting
of pairwise inequivalent elements. In a typical case though, one cannot hope
to prove anything so informative, so we will at least attempt to find a Borel
I-positive set B ⊂ X such that the restricted equivalence relation E � B is in
the Borel reducibility sense strictly less complex than E itself. A negative result
will say that an equivalence relation F is in the spectrum of the ideal I: there
is an equivalence relation E on a Borel I-positive subset B ⊂ X bireducible
with F such that for every smaller Borel I-positive set C ⊂ B, E � C is still
bireducible with F . Both positive and negative canonization results have their
worth and their applications. Several sample theorems are in order:

Theorem 1.1.5. For every equivalence relation E classifiable by countable
structures on the Hilbert cube, there are perfect sets {Pn : n ∈ ω} of reals
such that E � ΠnPn is smooth.

This follows from the analysis of the spectrum of the countable support of Sacks
forcing in Theorem 3.8.7.
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Theorem 1.1.6. Let E be a Borel equivalence relation on the unit circle X.
Either X decomposes into countably many equivalence classes and a set of
multiplicity, or there is a compact set of uniqueness consisting of pairwise E-
inequivalent points.

This is a consequence of the general Theorem 3.2.3. The preexisting knowledge
on the σ-ideal of sets of multiplicity shows that this theorem is indeed applicable
to that ideal.

Theorem 1.1.7. Let E be a Borel equivalence relation on 2ω. There is a
compact set C ⊂ 2ω such that E0 � C is not smooth, and E � C is equal either
to the identity, or to E0, or to [C]2.

This striking canonization feature of the equivalence E0 is proved in Theo-
rem 3.4.9.

1.2 Navigation

Chapter 2 introduces basic techniques and concepts useful for the canonization
results in Polish spaces in general. It starts with the Trichotomy Theorem 2.1.3,
showing that every Borel equivalence relation E on a Polish space X defines in
a rather mysterious way an intermediate forcing extension of the PI -extension,
where I is a σ-ideal on the space X. In all cases that we have been able to
compute explicitly, this extension comes from the σ-algebra PE

I of Borel E-
invariant sets modulo the ideal I or its close relatives; in all these cases PE

I

happens to be a regular subalgebra of PI . The most pressing open issue in this
book is to find natural examples in which this regularity fails badly.

Chapter 2 then introduces an array of possible weakenings and strengthen-
ings of canonization on Polish spaces that can serve to attack the canonization
problems more efficiently and to formulate the strongest possible results. The
most curious of them are the generalizations of the classical Silver dichotomy
[40]. It turns out that in many cases, a canonization result for a Borel equiva-
lence relation E and a σ-ideal I on a Polish space X can be abstractly converted
into the strongest possible form: the space X breaks down into countably many
pieces, on each of which the equivalence relation E is very simple, and a remain-
der which is small in the sense of the ideal I.

The whole landscape is indexed by two variables, E and I, and in order
to exhibit its main features efficiently, one needs to fix one of these variables
and look at the resulting cross-section. The various sections of Chapter 3 fix
a σ-ideal I–typically, PI is equivalent to a classical notion of forcing such as
Sacks or Laver forcing–and attempts to prove canonization theorems for various
classes of equivalence relations and I. In the case that such canonization results
are not forthcoming, we attempt to evaluate the spectrum of the σ-ideal–the
set of those Borel equivalence relations that cannot be simplified in a Borel
reducibility sense by passing to a Borel I-positive set. Surprisingly, even the
most thoroughly exploited notions of forcing all of a sudden spring back to life
with new unexpected features and open problems.
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Chapter 4 proceeds in the perpendicular direction. In its various sections, we
fix a Borel equivalence relation and study the consequences of possible canon-
ization features connected to it, mainly for the forcing properties of the quotient
posets. Thus smooth equivalence relations correspond to intermediate forcing
extensions given by a single real, Borel equivalence relations with countable
classes correspond to specific σ-closed intermediate extensions, and equivalence
relations classifiable by countable structures correspond to choiceless interme-
diate models of a certain kind. We do stay fairly low in the Borel reducibility
hierarchy though, and do not have much to say about complicated equivalences
such as isometry of Polish spaces or isomorphism of Banach spaces.

The last chapter deals with the study of equivalence cardinals in choice-free
context. Whenever X is a Polish space and E is an equivalence relation on
it, then one can consider the set X/E of all E-equivalence classes. With the
Axiom of Choice, these sets typically all have the same cardinality, and therefore
from the cardinality point of view they are uninteresting. The situation changes
profoundly when the Axiom of Choice is dropped and replaced with principles
such as the Axiom of Determinacy. Then the comparison of cardinalities of
these sets for various equivalence relations E,F is very similar to the comparison
of E,F modulo Borel reducibility. Canonization and anti-canonization results
offer a very good tool for the study of these cardinalities. We will show that
a number of these cardinals are measurable and their respective measures have
great degree of completeness, that the comparison does not change much even
with a help of an ultrafilter etc.

1.3 Background facts

1.3a Descriptive set theory

Familiarity with basic concepts of descriptive set theory is assumed throughout.
[27] serves as a standard reference.

Definition 1.3.1. A collection I of subsets of a Polish space X is Π1
1 on Σ1

1 if
for every analytic set A ⊂ 2ω ×X the set {y ∈ 2ω : {x ∈ X : 〈y, x〉 ∈ A} ∈ I} is
coanalytic.

Fact 1.3.2. (The first reflection theorem, [27, Theorem 35.10]) If I is Π1
1 on

Σ1
1 then every analytic set in I has a Borel superset in I.

Fact 1.3.3. (Luzin-Novikov) If A ⊂ X×Y is a Borel set with countable vertical
sections, then A is the countable union of graphs of Borel functions from X to
Y .

Fact 1.3.4. (Luzin-Suslin) A Borel one-to-one image of a Borel set is Borel.

In several places, we will need the following folklore uniformization theorem.
It does not seem to have been published in print and so we include the proof.
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Theorem 1.3.5. Let Y be a Polish space and let A ⊂ 2ω × Y be a Π1
1 set with

a ZFC-provably Π1
2 projection. For every perfect set B ⊂ p[A] there is a perfect

set C ⊂ B and a continuous function f : C → Y such that f ⊂ A.

The odd assumption on the projection of A is necessary for the theorem to work
in ZFC; it really turns the theorem into a theorem scheme, one theorem for
every ZFC proof. If there is a Woodin cardinal, the theorem works without this
assumption. The proof uses the parlance introduced in the Definable Forcing
subsection below.

Proof. Note that B ⊂ p[A] is a Π1
2 statement, and so for every forcing P and

every P -name ẋ for an element of B, P 
 ẋ ∈ p[A] by Shoenfield absoluteness.
Consider B as a condition in Sacks forcing with its name ẋ for the Sacks real,
and choose a name ẏ such that B 
 〈ẋ, ẏ〉 ∈ Ȧ. Let M be a countable elemen-
tary submodel of a large structure containing B and ẏ. Use a standard fusion
argument to find a perfect set C ⊂ B such that for every dense open subset
D ∈ M of the Sacks forcing there are finitely many clopen sets {Oi : i ∈ n}
such that C ⊂

⋃
i∈nOi and for every i ∈ n, C ∩ Oi is a subset of some set

in D ∩M . It follows that C consists only of points which are M -generic for
the Sacks forcing, and the function f assigning any point x ∈ C the evaluation
of the name ẏ according to the Sacks generic point x, is continuous. By the
forcing theorem, M [x] |= 〈x, f(x)〉 ∈ A, and by analytic absoluteness between
transitive models of set theory 〈x, f(x)〉 ∈ A. Thus C, f are as desired.

1.3b Invariant descriptive set theory

If E,F are Borel or analytic equivalence relations on Polish spaces X,Y then
E ≤B F (E is Borel reducible to F ) denotes the fact that there is a Borel
function f : X → Y such that x0 E x1 ↔ f(x0) F f(x1). Bireducibility is an
equivalence relation on the class of all Borel equivalence relations. ≤B turns
into a complicated ordering on the bireducibility classes. There are several
equivalences occupying an important position in this ordering:

Definition 1.3.6. E0 is the equivalence on 2ω defined by x E0 y ↔ x∆y is
finite. E1 is the equivalence relation on (2ω)ω defined by ~x E1 ~y ↔ {n ∈
ω : ~x(n) 6= ~y(n)} is finite. E2 is the equivalence relation on 2ω defined by
x E2 y ↔ Σ{1/(n + 1) : x(n) 6= y(n)} < ∞. F2 is the equivalence relation on
(2ω)ω defined by ~x F2 ~y ↔ rng(~x) = rng(~y). EKσ

is the equivalence on Πn(n+1)
defined by x EKσ

y ↔ ∃m∀n |x(n)−y(n)| < m. Ec0 is the equivalence on [0, 1]ω

defined by x Ec0 y ↔ lim(x(n)− y(n)) = 0.

Definition 1.3.7. An equivalence E on a Polish space X is classifiable by
countable structures if there is a countable relational language L such that E is
Borel reducible to the equivalence relation of isomorphism of models of L with
universe ω.

Definition 1.3.8. An equivalence E on a Polish spaceX is essentially countable
if it is Borel reducible to a countable Borel equivalence relation: one all of whose
classes are countable.
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The countable Borel equivalences are governed by the Feldman–Moore the-
orem:

Fact 1.3.9. For every countable Borel equivalence relation E on a Polish space
X there is a countable group G and a Borel action of G on X whose orbit
equivalence relation is equal to E.

Fact 1.3.10 (Silver dichotomy, [40], [22, Section 10.1]). For every coanalytic
equivalence relation E on a Polish space, either E is covered by countably many
equivalence classes or there is a perfect set of mutually inequivalent points.

One consequence often used in this book: if E is a coanalytic equivalence relation
on X and A ⊂ X is an E-invariant analytic set then either A can be covered
by countably many classes or contains a perfect set of pairwise incompatible
elements. To see this, apply the Silver dichotomy to the equivalence relation Ē
defined by x Ē y ↔ (x /∈ A ∧ y /∈ I) ∨ x E y.

Fact 1.3.11 (Glimm-Effros dichotomy, [11], [22, Section 10.4]). For every Borel
equivalence relation E on a Polish space, either E ≤B ID or E0 ≤B E.

Fact 1.3.12. [14] If E ≤ E2 is a Borel equivalence relation then either E is
essentially countable, or E2 ≤B E.

Fact 1.3.13. [24], [22, Section 11.3] For every Borel equivalence relation E ≤
E1 on a Polish space, either E ≤B E0 or E1 ≤B E.

Fact 1.3.14. [35], [22, Section 6.6] Every Kσ equivalence relation on a Polish
space is Borel reducible to EKσ

.

Fact 1.3.15. [35], [22, Chapter 18] For every Borel equivalence relation E there
is a Borel ideal I on ω such that E ≤B=I .

Here, =I is the equivalence on 2ω defined by x =I y ↔ {n ∈ ω : x(n) 6= y(n)} ∈
I. It is not difficult to construct an Fσ-ideal I on a countable set such that =I

is bireducible with EKσ
, and such an ideal will be useful in several arguments in

the book. Just let dom(I) be the countable set of all pairs 〈n,m〉 such that n ∈ ω
and m ≤ n and let a ∈ I if there is a number k ∈ ω such that for every number
n ∈ ω, there are at most k many numbers m with 〈n,m〉 ∈ a. This ideal is
clearly Fσ and so =I≤B EKσ

by the above fact. On the other hand, EKσ
≤=I ,

as the reduction f : Πn(n+1) → dom(I) defined by f(x) = {〈n,m〉 : m ≤ x(n)}
shows.

1.3c Forcing

Familiarity with basic forcing concepts is assumed throughout the book. If
〈P,≤〉 is a partial ordering and Q ⊂ P then Q is said to be regular in P if every
maximal antichain of Q is also a maximal antichain in P ; restated, for every
element p ∈ P there is a pseudoprojection of p into Q, a condition q ∈ Q such
that every strengthening of q in Q is still compatible with p.
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Whenever κ is a cardinal, Coll(ω, κ) is the poset of finite functions from
ω to κ ordered by reverse extensions. If κ is an inaccessible cardinal, then
Coll(ω,< κ) is the finite support product of the posets Coll(ω, λ) for all cardinals
λ ∈ κ. The following fact sums up the homogeneity properties of these partial
orders.

Fact 1.3.16. Let κ be a cardinal, P a poset of size < κ, and G ⊂ Coll(ω, κ)
be a generic filter. In V [G], for every V -generic filter H ⊂ P there is a V [H]-
generic filter K ⊂ Coll(ω, κ) such that V [G] = V [H][K]. Identical statement
holds true if κ is an inaccessible cardinal and Coll(ω, κ) is replaced by the poset
Coll(ω,< κ).

The following definition sums up the common forcing properties used in this
book:

Definition 1.3.17. A forcing P is proper if for every condition p ∈ P and
every countable elementary submodel M of large enough structure containing
P, p there is a master condition q ≤ p which forces the generic filter to meet
all dense subsets in M in conditions in M . The forcing is bounding if every
function in ωω in its extension there is a ground model function with larger
value on every entry. The forcing preserves outer measure if every ground
model set of reals has the same outer measure whether evaluated in the ground
model or in the extension. The forcing preserves Baire category if every ground
model set of reals is meager in the ground model if and only if it is meager in
the extension. The forcing does not add independent reals if every sequence in
2ω in the extension has an infinite ground model subsequence.

Fact 1.3.18. (Shoenfield) Let x ∈ X be an element of a Polish space, and φ a
Π1

2 formula with one variable. Then the truth value of φ(x) is the same in all
forcing extensions.

As one application of Shoenfield’s absoluteness, observe that if I is a Π1
1

on Σ1
1 σ-ideal on some Polish space X, then its definition yields a σ-ideal in

any forcing extension. All Π1
1 on Σ1

1 classes of sets are closed under analytic
subsets by ???, so the only problem is that the definition of I applied in the
extension may yield a class of analytic sets no longer closed under countable
unions. This is not the case though: let A ⊂ 2ω × (ω × X) be a universal
analytic set for subsets of ω × X. The set B ⊂ 2ω × X be the analytic set
given by 〈y, x〉 ∈ B ↔ ∃n 〈y, n, x〉 ∈ A. The analytic sets in I form a σ-ideal
if and only if for every point y ∈ 2ω such that By /∈ I there is n ∈ ω such
that A〈y,n〉 /∈ I. This is a Π1

2 statement and therefore absolute throughout all
forcing extensions.

1.3d Idealized forcing

The techniques of the book depend heavily on the theory of idealized forcing as
developed in [49]. Let X be a Polish space and I be a σ-ideal on it. The symbol
PI stands for the partial ordering of all Borel I-positive subsets of X ordered by
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inclusion; we will alternately refer to it as the quotient forcing of the σ-ideal I.i
Its separative quotient is the σ-complete Boolean algebra of Borel sets modulo
I. The forcing extension is given by a unique point xgen ∈ X such that the
generic filter consists of exactly those Borel sets in the ground model containing
xgen as an element. One can also reverse this operation and for every forcing P
adding a generic point ẋ ∈ X, one may form the σ-ideal J associated with the
forcing P , generated by those Borel sets B ⊂ X such that P 
 ẋ /∈ Ḃ.

If I is a σ-ideal on a Polish space X, x ∈ X is a point and M is a wellfounded
model of a large part of ZFC, we will say that the point x is M -generic for PI

if for every D ∈ M for which M |= D is an open dense subset of PI , there is a
B ∈M such that B ∈ D and x ∈ B. (Here, Borel sets are identified with their
Borel codes.) In such a case, the collection g ⊂ PM

I consisting of those B ∈ PM
I

for which x ∈ B is an M -generic filter on PM
I . We then consider M [x] as the

transitive model obtained from the transitive isomorph of M by adjoining the
filter g. If τ ∈M is a PI -name then τ/x denotes the evaluation of the transitive
collapse image of τ according to the filter g.

Fact 1.3.19. Let I be a σ-ideal on a Polish space X. The following are equiv-
alent:

1. PI is proper;

2. for every Borel I-positive set B ⊂ X and every countable elementary
submodel of a large structure, the set C ⊂ B of all M -generic points in B
for the poset PI is I-positive.

Fact 1.3.20. Suppose that PI is proper and xgen is a generic real. Whenever
y ∈ V [xgen] is a real then V [y]∩2ω = {f(y) : f is a ground model Borel function
with y ∈ dom(f) and rng(f) ⊂ 2ω}.

The following general result will be convenient in several places in this book.
The proof is nontrivial and unfortunately does not appear in [49]. It is not in
any way related to equivalence relations and so it is included in this section.

Theorem 1.3.21. Let I be a suitably definable σ-ideal such that the forcing PI

is proper; let B be an I-positive Borel set. Let V [G] be some forcing extension
in which (2c) of V is countable. In V [G], there is an I-positive Borel set C ⊂ B
consisting only of V -generic points for the poset PI .

We will prove this in ZFC with the assumption that the ideal I is Π1
1 on

Σ1
1. The argument for more complicated ideals uses the determinacy of the

associated properness game, similar to [49, Proposition 3.10.5], and uses large
cardinal assumptions. One can obtain ZFC proofs for other classes of ideals.
The reader is advised to use the standard fusion arguments to prove the theorem
for such forcings as Sacks or Laver forcing.

Proof. Assume that the ideal I is Π1
1 on Σ1

1, fix a partition ω =
⋃

k ak of ω
into infinite sets, fix a universal analytic set A ⊂ 2ω × X, and fix a closed set
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Z ⊂ (2ω)ω × ωω projecting into the analytic set {~y : B ∩
⋂

n

⋃
m∈an

A~y(n) /∈
I} ⊂ (2ω)ω. Note that the latter set is analytic by the definability assumptions
on the ideal I.

Consider the game (an unraveled version of the properness game) between
Player I and II in which at round n ∈ ω Player I chooses an open dense subset
Dn of the poset PI , and Player II responds with a point y(n) ∈ 2ω and numbers
kn ≥ n, in ∈ ω. Player II has to satisfy the following extra requirements at his
n-th move: A~y(n) is an I-positive Borel set, and if n ∈ akm

for some m ∈ n then
A~y(n) ∈ Dm; moreover, there still is a point 〈~y, z〉 ∈ Z such that ∀m ≤ n ~y(m) =
y(m) and y(m) = im. Player II wins if he can pass all rounds. Note that if
Player II wins then the result of the game, the set B∩

⋂
k

⋃
n∈ak

A~y(n), is a Borel
I-positive subset of the set B, since the sequence 〈y(n) : n ∈ ω, in : n ∈ ω〉 must
be in the closed set Z. The game is closed for Player II and therefore determined.

Player I cannot have a winning strategy in this game. If σ was such a
strategy, find a countable elementary submodel M of a large enough structure
containing the strategy, enumerate the open dense subsets of PI in the model
M by Ek : k ∈ ω with infinite repetitions, and let Player II play against the
strategy σ in such a way that the moves ~y(n) : n ∈ ak enumerate the set Ek∩M .
Since the poset PI is proper, it must be the case that B ∩

⋂
k

⋃
n∈ak

Ay(n) /∈ I,
and therefore there must be a point z ∈ ωω such that 〈y(n) : n ∈ ω, z〉 ∈ Z. Let
Player II choose in = z(n). Observe that if Player II challenges the strategy
σ in this way, all of the moves will be in the model M no matter what the k
numbers are, and therefore at each stage n there must be a number kn ≥ n such
that Dn = Ekn . Let Player II play these numbers at each round. It is clear that
such a counterplay is going to defeat the strategy σ.

Thus, Player II must have a winning strategy σ. The fact that σ is winning
is a wellfoundedness statement, and therefore σ will be a winning strategy in
every transitive model containing it for the game with the same set of allowed
moves and the same closed winning condition for Player II. In particular, this
strategy is still a winning strategy in the generic extension V [G]. In this model,
the cardinal 2c of V is countable, therefore there are only countably many open
dense subsets of PI in V . Consider the counterplay against the strategy σ in
which Player I enumerates these sets. All moves of such a play will belong to
the ground model, the strategy σ wins, and the result of the play is the required
set C ⊂ B.

1.3e Ramsey theory on Polish spaces

Let (ω)ω be the space of all infinite sequences a of finite sets of natural numbers
with the property that min(an+1) > max(an) for every number n ∈ ω. Define a
partial ordering ≤ on this space by b ≤ a if every set on b is a union of several
sets on a.

Fact 1.3.22. [46, Corollary 4.49] (Bergelson-Blass-Hindman) For every par-
tition (ω)ω = B0 ∪ B1 into Borel sets there is a ∈ (ω)ω such that the set
{b ∈ (ω)ω : b ≤ a} is wholly included in one of the pieces.
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Suppose that 〈an, φn : n ∈ ω is a sequence of finite sets and submeasures on
them such that the numbers φn(an) increase to infinity very fast. The necessary
rate of increase is irrelevant for the applications in this book; suffice it to say
that it is primitive recursive in n and the sizes of the sets {am : m ∈ n}.

Fact 1.3.23. [38] For every partition Πnan×ω = B0∪B1 into two Borel pieces,
one of the pieces contains a product Πnbn × c where each bn ⊂ an is a set of φn

mass at least 1 and c ⊂ ω is infinite.

There is an similar partition theorem parametrized by measure. For the given
ε > 0 in the following theorem, the necessary rate of growth of the numbers
φn(an) must be adjusted.

Fact 1.3.24. [38] Suppose in addition that the submeasures φn are measures.
For every Borel set D ⊂ Πnan × ω × [0, 1] such that the sections of the set D
in the last coordinate have Lebesgue mass at least ε, there are sets {bn : n ∈ ω},
c ⊂ ω and a point z ∈ [0, 1] such that bn ⊂ an, φn(bn) ≥ 1, c ⊂ ω is inifnite,
and Πnbn × c× {z} ⊂ D.

1.4 Notation

We employ the set theoretic standard notation as used in [18]. If E is an
equivalence relation on a set X and x ∈ X then [x]E denotes the equivalence
class of x. If B ⊂ X is a set then [B]E denotes the saturation of the set B, the
set {x ∈ X : ∃y ∈ B xEy}. If E,F are equivalence relations on respective Polish
spacesX,Y , we write E ≤B F if E is Borel reducible to F , in other words if there
is a Borel function f : X → Y such that x0Fx1 ↔ f(x0)Ef(x1). If f : X → Y
is a Borel function between two Polish spaces and F is an equivalence relation
on the space Y , then f−1F is the pullback of F , the equivalence relation E on
the space X defined by x0Ex1 ↔ f(x0)Ff(x1); so E ≤ F . If T is a tree then
[T ] denotes the set of all of its infinite branches. ID is the identity equivalence
relation on any underlying set, EE is the equivalence relation making every two
points of the underlying set equivalent. If x ∈ 2ω and m ∈ ω then x � m is the
element of 2ω that differs from x exactly and only at its m-th entry. If h ∈ 2<ω

is a finite binary sequence then x � h is the sequence in 2ω obtained from x
by rewriting its initial segment of corresponding length with h.

Theorem is a self-standing statement ready for applications outside of this
book. Claim is an intermediate result within a proof of a theorem. Fact is a
result that has been obtained elsewhere and is not going to be proved in this
book; this is not in any way to intimate that it is an unimportant or easy or
peripheral result.
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Chapter 2

Basic tools

2.1 The trichotomy theorem

Let I be a σ-ideal on a Polish space X. The key idea underlying much of the
current of thought in this book is the correspondence between Borel equivalence
relations onX and intermediate forcing extensions of the generic extension given
by the quotient poset PI of Borel I-positive sets ordered by inclusion. The
correspondence is easiest to illustrate on smooth equivalence relations. If E is
a smooth equivalence on X and f : X → 2ω is a Borel function reducing it
to the identity, then the model V [f(ẋgen)] depends only on E and not on the
choice of the reduction. However, we need to find a sufficiently general definition
that covers the nonsmooth case, where most of interest and difficulty lies. If
x ∈ X is a point generic over the ground model V , we consider a ZFC model
V [x]E that depends on the E-equivalence class of x, not on x itself. The correct
formalization:

Definition 2.1.1. Let E be a Borel equivalence relation on a Polish space X.
Let x ∈ X be a point set-generic over the ground model V . Let κ be a cardinal
greater than (2|P |)V where P ∈ V is a poset from which the generic extension
is derived, and let H ⊂ Coll(ω, κ) be a V [x]-generic filter. The model V [x]E is
the collection of all sets hereditarily definable from parameters in V and from
the equivalence class [x]E in the model V [x][H].

It is clear that V [x]E is a model of ZFC by basic facts about HOD type models.
The basic observation:

Proposition 2.1.2. Let X be a Polish space, E an analytic equivalence relation
on it, and let x ∈ X be a set generic point over the ground model.

1. V [x]E ⊂ V [x];

2. the definition of V [x]E does not depend on the choice of the cardinal κ;

3. if y ∈ X is a point such that x E y and the pair 〈x, y〉 is set generic over
the ground model, then V [x]E = V [y]E.

13
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Proof. Fix P , a P -name τ ∈ V for the real x and a cardinal κ > 2|P |. Let
φ(~v, [x]E , α}) be a formula with parameters ~v ∈ V defining a set of ordinals in the
Coll(ω, κ) extension: a = {α ∈ β : φ(~v, [x]E , α)}. Homogeneity arguments such
as Fact 1.3.16 show that a = {α ∈ β : V [x] |= Coll(ω, κ) 
 φ(~v, [x]E , α̌)} ∈ V [x].
As φ was arbitrary, the first item follows.

For the second item, we will find a different formula θ( ~D, κ, [x]E , α) with
parameters in the ground model and another parameter [x]E , which defines a in
any other transitive model extending V containing x. This will show that the
Coll(ω, κ) extension of V [x] has the smallest possible HOD among all transitive
models extending V containing x. As κ > 2|P | was arbitrary, this will prove the
second item.

Let ~D = 〈Dα : α ∈ β〉 be the sequence of subsets of P in V defined by p ∈ Dα

if V |= p 
 Coll(ω, κ) 
 φ(~v, [τ ]E , α). Consider the formula ψ( ~D, [x]E , α) =there
exists a V -generic filter g ⊂ P such that τ/g ∈ [x]E and g∩Dα 6= 0. The formula
θ( ~D, κ, [x]E , α) says Coll(ω, κ) 
 ψ( ~D, [x]E , α); we claim that θ works as desired.

First, observe that in any transitive model extending V , containing x, and
containing an enumeration of P(P )∩V in ordertype ω, the formula ψ( ~D, [x]E , α)
is a statement about illfoundedness of a certain tree for any fixed ordinal α.
Namely, let Cn : n ∈ ω enumerate all open dense subsets of P in V , let A ⊂
X × X × ωω be a closed set coded in V that projects to the equivalence E,
and let T be the tree of all finite sequences 〈pi, Oi : i ∈ j〉 such that the
conditions pi ∈ P form a decreasing sequence such that p0 ∈ Dα, pi ∈ Ci, and
Oi ⊂ X×X×ωω form a decreasing sequence of basic open neighborhoods coded
in V of radius < 2−i with nonempty intersection with A, such that x belongs to
the projection of Oi to the first coordinate, and pi 
 τ belongs to the projection
of Oi in the second coordinate. It is immediate that ψ( ~D, [x]E , α) is equivalent
to the statement that T contains an infinite branch.

Second, observe that the validity of the illfoundedness statement does not
depend on the particular enumeration of open dense subsets of P chosen–if one
gets an infinite branch with one enumeration, then a subsequence of the condi-
tions in P used in this branch will yield a branch for a different enumeration.
Therefore, the formula ψ( ~D, [x]E , α) is absolute between all transitive models of
set theory containing V , x satisfying ”P(P )∩V is countable”. Ergo, the formula
θ( ~D, [x]E , α) is absolute between all transitive models containing V and x.

Lastly, the formula θ does define the set a in all such models. It is enough
to check that this is so in V [x]. If α ∈ a then θ( ~D, [x]E , α) is satisfied: if
H ⊂ Coll(ω, κ) is a V [x]-generic filter, then ψ will be witnessed by the V -
generic filter on the poset P obtained from the point x. On the other hand, if
θ( ~D, [x]E , α) holds, then for every V [x]-generic filterH ⊂ Coll(ω, κ) there is a V -
generic filter g ⊂ P in V [x][H] such that τ/g E x and g∩Dα 6= 0, by Fact 1.3.16
there is a V [g]-generic filter K ⊂ Coll(ω, κ) such that V [g][K] = V [x][H], and
by the forcing theorem applied in V [g], the model V [g][K] = V [x][H] satisfies
φ(~v, [τ/g]E , α), which is the same as φ(~v, [x]E , α). Thus α ∈ a as required!

For the third item, let κ be a cardinal larger than the density of the poset
in the ground model that yields the pair 〈x, y〉, let H ⊂ Coll(ω, κ) be a V [x, y]-
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generic filter, and let W be the class consisting of all sets hereditarily definable
from parameters in V and the additional parameter [x]E = [y]E in the model
V [x, y][H]. Standard homogeneity arguments using Fact 1.3.16 show that the
model V [x, y][H] is a Coll(ω, κ)-extension of both V [x] and V [y]. By the second
item above, W = V [x]E = V [y]E and the third item follows!

The definition and properties of the model V [x]E may be somewhat myste-
rious. Several more or less trivial examples will serve as a good illustration of
what can be expected. Let E = E0 and consider the cases of the Sacks real,
the Cohen real, and the Silver real. In the case of Sacks real x ∈ 2ω, a simple
density argument will show that there will be a perfect tree T in the Sacks
generic filter consisting of E0-inequivalent points. Then, x can be defined from
[x]E0 as the only point of [T ]∩ [x]E0 and therefore V [x] = V [x]E0 . In the case of
Cohen generic real x ∈ 2ω, the rational translations of 2ω that generate E0 can
transport any Cohen condition to any other one, and the equivalence class [x]E0

is invariant under all of them, leading to the conclusion that V [x]E = V . In the
case of Silver generic real x, the model V [x]E0 is a nontrivial σ-closed generic
extension of V , roughly speaking generated by the quotient of Silver forcing in
which E0-equivalent conditions are identified. On general grounds, V [x]E is a
generic extension of V , but it is not so easy to compute the forcing that induces
it. In a typical case, it is the poset of Borel E-invariant sets positive with respect
to some σ-ideal as in Theorem 2.2.7.

The importance of the model V [x]E is clarified in the main result of this
section, a trichotomy theorem:

Theorem 2.1.3. Suppose that X is a Polish space, I is a suitably definable
σ-ideal on it such that the quotient forcing PI is proper, and E is a Borel
equivalence relation on X. Let V [G] be a PI-generic extension of V and xgen ∈
X its associated generic point. One of the following holds:

1. (ergodicity) if V = V [xgen]E then there is a Borel I-positive set B ⊂ X
such that any two Borel I-positive sets C,D ⊂ B contain E-equivalent
points x ∈ C, y ∈ D;

2. (intermediate extension) the model V [xgen]E is strictly between V and
V [G];

3. (canonization) if V [xgen]E = V [G] then there is a Borel I-positive set
B ⊂ X such that E � B = ID.

The wording of the theorem must be discussed more closely. The argument
presented works in ZFC for ideals I which are Π1

1 on Σ1
1. Small changes in the

proof of Theorem 1.3.21 will produce a ZFC argument for other ideals as well.
If one desires to use ideals with much more complicated projective definitions,
suitable large cardinal assumptions will push the proof of that theorem through
as explained after its statement.
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The first item is fairly close to saying that the E-saturation of every Borel
set either has an I-small intersection with B, or contains all of B up to an I-
small set. This is indeed equivalent to (1) if every coanalytic set is either in I or
contains a Borel I-positive set, or if every positive Borel set has a positive Borel
subset whose E-saturation is Borel. Both of these assumptions frequently hold:
the former perhaps on the basis of the first dichotomy of the ideal I [49] or a
redefinition of the ideal I, and the latter perhaps on the basis of the quotient
PI being bounding and the equivalence E being Kσ.

A trivial way to satisfy the first item is to find an I-positive equivalence class
of E. A typical special case in which the ergodicity case holds nontrivially is that
of Laver forcing and the EKσ

equivalence relation, see Section 3.10. The Laver
forcing generates a minimal forcing extension, prohibiting the second item from
ever occurring, but still there is an equivalence relation that cannot be simplified
to ID or EE on any Borel I-positive set. Another interesting special case is the
Cohen forcing and the F2 equivalence relation, see Theorem 3.2.22. There,
the ergodicity is not at all surprising, but we get more information looking at
choiceless intermediate models of ZF as in Section 4.3.

In the second case we get a somewhat mysterious intermediate forcing ex-
tension strictly between V and the PI -extension V [G]. For many σ-ideals, the
existence of such an intermediate model is excluded purely on forcing grounds,
such as the ideal of countable sets or σ-compact subsets of ωω, or the more
general Theorem 2.4.5. In such cases, we get a neat dichotomy. It is not true
that every intermediate extension is necessarily obtained from a Borel equiva-
lence relation in this way, as Section 3.3 shows. In special cases though (such
as the countable length α ∈ ω1 iteration of Sacks forcing), the structure of in-
termediate models is well-known (each of them is equal to V [xγ : γ ∈ β] for
some ordinal β ≤ α) and they exactly correspond to certain critical equivalence
relations (such as the relations Eβ on (2ω)α connecting two sequences if they
are equal on their first β entries). We cannot compute the forcing responsible
for the extension V [xgen]E directly, but in all specific cases we can compute, it is
the poset of E-invariant I-positive Borel sets ordered by inclusion, as described
in Theorem 2.2.7 and its section. In the common situation that the model
V [xgen]E does not contain any new reals, we can compute the forcing leading
from V [xgen]E to V [G]–it is a quotient poset of the form PI∗ for a suitable
σ-ideal I∗ ⊃ I which has the ergodicity property of the first item of the theo-
rem. As Asger Tornquist remarked, in this context the theorem can be viewed
as a general counterpart to Farrell-Varadarajan ergodic decomposition theorem
[25, Theorem 3.3] for actions of countable groups by measure preserving Borel
automorphisms.

Proof. To prove the theorem, choose a cardinal κ > 2c and choose a V [G]-generic
filter H ⊂ Coll(ω, κ). There are the three cases.

Either, V [xgen]E = V . In this case, in the model V [G][H] consider the
collection K = {C ∈ PV

I : C ∩ [xgen]E 6= 0}. This collection is certainly in the
model V [xgen]E , and therefore it is in V . There must be conditions B ∈ PI and
p ∈ Coll(ω, κ) and an element L ∈ V such that 〈B, p〉 
 K̇ = Ľ. If there were
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two Borel I-positive sets C0, C1 ⊂ B with [C0]E ∩ [C1]E = 0, then only one, say
C0 of these sets can belong to the set L. But then 〈C1, p〉 
 C1 ∈ K̇ \ Ľ! This
contradiction shows that we are in the first case of the theorem.

In fact, V [xgen]E = V is equivalent to the statement that the filterG contains
an ergodic condition. If V [xgen]E = V then an ergodic condition can be found
in the generic filter by the argument in the previous paragraph, and a genericity
argument. On the other hand, suppose that B ∈ PI is an ergodic condition
and B 
 ȧ is a set of ordinals in V [xgen]E ; we must prove that B 
 a ∈ V .
Thinnig out the condition B if necessary find a formula φ with parameters in
the ground model or with the parameter [ẋgen ]E defining the set a and show
that B decides the statement β ∈ ȧ for every ordinal β. And indeed, if there
were Borel sets C0, C1 ∈ PI below the set B, one forcing β ∈ ȧ and the other
forcing the opposite, use Claim 1.3.21 below to find conditions C̄0 ⊂ C0, C̄1 ⊂ C1

in the forcing PI in the model V [G,H] consisting purely of V -generic points.
Note that the ergodicity of the set B is a Π1

2 statement and use Shoenfield’s
absoluteness 1.3.18 to transport the ergodicity of the condition B from the
ground model to the model V [G,H] and find points x0 ∈ C̄0 and x1 ∈ C̄1 which
are E-equivalent. Use a standard homogeneity argument, Fact 1.3.16, to find
generic filters H0,H1 on it so that V [x0,H0] = V [x1,H1] = V [G,H]. Note that
V [x0,H0] |= φ(β, [x0]E) if and only if V [x1,H1] |= φ(β, [x1]E) simply because
the two models are the same and the two E-equivalence classes are the same.
This contradicts the forcing theorem and the assumption on the conditions
C0, C1.

The second possibility is that V ⊂ V [xgen]E ⊂ V [G] and these inclusions are
proper. In this case, we are content to fall into the second item of the theorem.

Lastly, assume that V [xgen]E = V [G]; in particular, xgen ∈ V [xgen]E . Then,
there must be a condition B ∈ PI forcing ẋgen ∈ V̇ [xgen]E , say 〈B, 1〉 
 ẋgen is
the only element x ∈ X satisfying φ(x, [ẋgen ]E , ~v) for some sequence of parame-
ters ~v ∈ V and a formula φ. Let C ⊂ B be a Borel I-positive set of V -generic
points as guaranteed by Theorem 1.3.21.

Claim 2.1.4. E � C = ID.

Proof. Work in the model V [G,H]. Suppose for contradiction that x, y ∈
V [G,H] are two distinct E-equivalent points in the set C. The usual homo-
geneity properties of Coll(ω, κ) as in Fact 1.3.16 imply that there are filters
Hx,Hy ⊂ Coll(ω, κ) such that Gx × Hx, Gy × Hy ⊂ PI × Coll(ω, κ) are V -
generic filters, where Gx = {D ∈ PV

I : x ∈ D} and Gy = {D ∈ PV
I : y ∈ D},

and moreover V [G,H] = V [Gx,Hx] = V [Gy,Hy]. Since both filters Gx, Gy

meet the condition B ∈ PI , the forcing theorem implies that x is the only
point in X satisfying φ(x, [x]E , ~v), and similarly y is the only point satisfying
φ(y, [y]E , ~v). However, [x]E = [y]E , reaching a contradiction!

Thus, we see that in V [G,H] there is an I-positive Borel set C ⊂ B such
that E � C = ID. If the ideal I is Π1

1 on Σ1
1, this is a Σ1

2 statement, and
therefore pulls back into the ground model by Shoenfield’s absoluteness 1.3.18.
If the σ-ideal I is more complicated, we can use a large cardinal assumption
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and a corresponding absoluteness argument to find such a set C in the ground
model. We are safely in the third case of the theorem, and the proof is complete!

Again, it is not difficult to see that the statement V [xgen]E = V [G] is equiv-
alent with the existence in the generic filter G of a set B such that E � B = ID.

As with most models of set theory, the user wants to know which reals belong
to the model V [x]E . In the most interesting cases, 2ω ∩ V = 2ω ∩ V [x]E . Then,
the remainder forcing leading from V [x]E to V [x] can be computed via idealized
forcing.

Definition 2.1.5. Let I be a σ-ideal on a Polish space X, let E be a Borel
equivalence relation, and let x ∈ X be a PI -generic point. In V [x], let I∗ be the
collection of ground model coded Borel sets that are forced by a large collapse
to contain no PI -generic reals E-equivalent to x.

It should be clear that I∗ is a σ-ideal of Borel sets extending I, and I∗ ∈
V [x]E . Moreover, if 2ω ∩ V [x]E = 2ω ∩ V , the ideal I∗ has the ergodicity
property in V [x]E : any pair of I∗-positive Borel sets contains a pair of E-
connected points. This follows from the fact that in some large collapse, each
of the sets in the pair contains some points equivalent to x; in particular, such
points are equivalent to each other, and analytic absoluteness transports this
feature back to V [x]E .

Theorem 2.1.6. Suppose that X is a Polish space, I a Π1
1 on Σ1

1 σ-ideal on
X such that the quotient forcing PI is proper. Let x be a PI-generic point.
Then, 2ω ∩ V [xgen]E = {f(xgen) : f : X → 2ω is a Borel function coded in V
which is E-invariant on its domain}. Moreover, if 2ω ∩ V = 2ω ∩ V [x]E, then
V [x]E = V [I∗] and V [x] is a PI∗-extension of V [x]E.

Again, the theorem holds in ZFC for many ideals with a definition more com-
plicated than Π1

1 on Σ1
1.

Proof. For the first part, suppose that 〈B, p〉 ∈ PI × Coll(ω, κ) is a condition
that forces ẏ ∈ V [ẋgen ]E ∩ 2ω. Strengthening the condition we may assume
that there is a formula φ and a sequence ~v ∈ V of parameters such that it
is forced that ẏ is the unique element of 2ω satisfying φ(ẏ, [ẋgen ]E , ~v). Since
V [xgen]E ⊂ V [xgen], we may also strengthen the condition if necessary to find a
Borel function g : X → 2ω such that it is forced that ẏ = ġ(ẋgen).

We will now find a Borel I-positive set C ⊂ B on which the function g is E-
invariant. This will certainly complete the proof of the proposition, since then
〈C, p〉 forces that ẏ is the image of the generic real by an E-invariant function.
We will in fact find such a set in a model V [H] where H ⊂ Coll(ω, κ) is generic,
and then pull it back to V using Shoenfield absoluteness 1.3.18.

Indeed, in V [H] consider the set C ⊂ B of all V -generic points for the
poset PI in the set B. As in Claim 1.3.21, the set C is Borel and I-positive.
Suppose that x0, x1 ∈ C are two E-equivalent points. By standard homogeneity
arguments, find mutually V -generic filters G0 ⊂ PI ,H0 ⊂ Coll(ω, κ) and G1 ⊂
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PI ,H1 ⊂ Coll(ω, κ) such that x0 is the point associated with G0, x1 is the filter
associated with G1, p ∈ H0,H1, and V [H] = V [G0,H0] = V [G1,H1]. It is clear
that the formula φ must define the same point in V [H] whether x0 or x1 are
plugged into the generic real, since these two points share the same equivalence
class. By the forcing theorem, it must be the case that f(x0) = f(x1), and we
are done!

Now assume that V [x]E contains the same reals as V ; we will first show
that x is a PI∗ generic point over V [x]E . Move back to the ground model, and
assume for contradiction that a condition 〈B, p〉 ∈ PI × Coll(ω, κ) forces that
Ḋ ⊂ PI∗ is an open dense set in the model V [xgen]E such that the point ẋgen

does not belong to any of its elements. Strengthening the condition if necessary,
we may find a formula φ(u, [ẋgen ]E , ~v) with parameters in V ∪{[ẋgen ]E} defining
the set Ḋ: Ḋ = {C ∈ PI∗ : φ(C, [ẋgen ]E , ~v)}. Of course, the condition 〈B, p〉
forces B ∈ PI∗ , so there must be a strengthening B′ ⊂ B, p′ ≤ p and a Borel
set C ⊂ B such that 〈B′, p′〉 
 C ∈ Ḋ. Note that C ∈ PI must be an I-positive
Borel set in the ground model.

Find mutually generic filters G ⊂ PI ,H ⊂ Coll(ω, κ) with B′ ∈ G, p′ ∈ H,
let xgen ∈ X be the point associated with the filter G, use the definition of the
ideal I∗ to find a point y ∈ C ∩V [G,H] which is V -generic for the poset PI and
equivalent to xgen, and use the homogeneity features of the poset Coll(ω, κ) as ijn
Fact 1.3.16 to find mutually generic filters Ḡ ⊂ PI , H̄ ⊂ Coll(ω, κ) such that y is
the generic point associated with Ḡ (so C ∈ Ḡ), p ∈ H̄, and V [G,H] = V [Ḡ, H̄].

Since the points xgen, y are E-equivalent, the definition of the set Ḋ is evalu-
ated in the same way with either xgen or y plugged into the definition. Applying
the forcing theorem to the filters Ḡ, H̄, there must be a condition in that filter
stronger than 〈B, p〉 which forces C ∈ Ḋ and ẋgen ∈ C. However, this directly
contradicts the statement forced by the weaker condition 〈B, p〉!

To show that V [x]E = V [I∗], note that I∗ ∈ V [xgen]E , so the right to left
inclusion is immediate. For the opposite inclusion, assume that a ∈ V [x]E
is a set of ordinals, perhaps defined as a = {α : φ(α,~v, [x]E)} in the model
V [x,H], where ~v are parameters in the ground model and H ⊂ Coll(ω, κ). Let
b = {α : ∃B ∈ PV

I , B /∈ I∗ B 
 Coll(ω, κ) 
 φ(α̌, ~v, [xgen]E)} ∈ V [I∗] and
show that a = b. It is immediate that a ⊂ b since the filter defined by the
PI -generic point x ∈ X has empty intersection with I∗. On the other hand, if
α ∈ b as witnessed by a set B then there is a V -generic point y ∈ B ∩ [x]E , by
the usual homogeneity argument there is a V [y]-generic filter Hy ⊂ Coll(ω, κ)
such that V [y][Hy] = V [x][H], by the forcing theorem V [y][Hy] |= φ(α,~v, [x]E),
and therefore α ∈ a. The theorem follows.

The model V [x]E has a larger, less well understood, possibly choiceless com-
panion V [[x]]E . In spirit, this larger model is the intersection of all models
containing V and a point E-equivalent to x. In formal language,

Definition 2.1.7. Let E be a Borel equivalence relation on a Polish space X.
Let x ∈ X be a point set-generic over the ground model V . The model V [[x]]E
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consists of all sets a ∈ V [x] such that for every ordinal κ, Coll(ω, κ) forces that
for every y ∈ X with x E y, a ∈ V [y].

Proposition 2.1.8. V [[x]]E is a model of ZF with V [x]E ⊆ V [[x]]E ⊆ V [x].

Proof. Let φ(x) be the definition of the model V [[x]]E as described above. The
first observation is that for every ordinal κ, Coll(ω, κ) forces that for every
point y ∈ X E-equivalent to x, the formula φ(y) defines the same class in V [y]
as φ(x) defines in V [x]. We will show that {a ∈ V [x] : V [x] |= φ(a, x)} ⊂ {a ∈
V [y] : V [y] |= φ(a, y)}; the other inclusion has the same proof. Suppose that
a ∈ V [y] and V [y] |= φ(a, y). Then a ∈ V [x], since otherwise V [x] forms a
counterexample to V [y] |= φ(a, y) inside some large common generic extension
of both models V [y] and V [x]. Also, V [x] |= φ(a, x), because otherwise in some
common forcing extension of V [x] and V [y], there is a counterexample to φ(a, x)
which is also a counterexample to φ(a, y).

To show that V [[x]]E is a model of ZF, argue that L(V [[x]]E) = V [[x]]E .
Indeed, for every ordinal κ it is the case that Coll(ω, κ) forces that L(V [[x]]E)
is contained in every model V [y] where y E x, since as argued in the previous
paragraph, the models V [y] all contain V [[x]]E as a class. But then, every
element of L(V [[x]]E) belongs to V [[x]]E by the definition of V [[x]]E .

To show that V [x]E is a subset of V [[x]]E , let a ∈ V [x]E be a set of ordinals
and let V [g] be a set generic extension of V inside a set generic extension of V [x]
containing a point y ∈ X equivalent to x; we must argue that a ∈ V [g]. There
is a common Coll(ω, κ) extension V [h] of both V [g] and V [x] for a sufficiently
large cardinal κ. Then a is definable in V [H] from parameters in V and perhaps
the additional parameter [x]E = [y]E . Since V [h] is a homogeneous extension
of the model V [g] and all parameters of the definition are themselves definable
from parameters in V [g], it must be the case that a ∈ V [g] as desired, and the
proof is complete.

We do not know much more about the comparison of V [x]E and V [[x]]E
at this point. If the equivalence E is smooth and reduced to the identity by a
Borel function f : X → 2ω, then both of the models are equal to V [f(x)]. If the
equivalence E has countable classes, then every generic extension containing a
representative of an equivalence class contains the whole class by an absoluteness
argument, and therefore V [[x]]E = V [x] in such a case, while the model V [x]E
does not contain x unless x belongs to a ground model coded Borel set on which
the equivalence is smooth by Theorem realstheorem. If the Borel equivalence
E is classifiable by countable structures then V [[x]]E = V (a) for a hereditarily
countable set a, and the model fails the axiom of choice unless x belongs to a
ground model coded Borel set on which the equivalence is essentially countable.
Other cases are much less clear.

Theorem 2.1.9. Let I be a Π1
1 on Σ1

1 σ-ideal on a Polish space X such that
the quotient forcing P is proper. Let E be an analytic equivalence relation on
X, and let x ∈ X be a PI-generic point. Then 2ω ∩ V [[x]]E = {f(x) : f is
a Borel function coded in V which on its domain attains only countably many
values on each equivalence class}.
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An important observation complementary to the wording of the theorem: the
statement that a given Borel function f attains only countably many values on
each E-equivalence class is Π1

1 in the code for the function and the equivalence
relation, and therefore it is invariant under forcing by Shoenfield’s absoluteness.
To see this, note that every E-equivalence class is analytic, its image under f
is analytic, and so if countable it contains only reals hyperarithmetic in any
parameter that can define it as an analytic set. Thus, f attains only countably
many values on each E-equivalence class if and only if for every pair of points
x, y ∈ dom(f), either x, y are not equivalent or f(x) is hyperarithmetic in y, the
code for f and the code for E. This is a coanalytic formula by [22, Theorem
2.8.6]

Proof. Suppose that B ∈ PI is a Borel I-positive set and τ a name for an
element for the set 2ω ∩ V [[x]]E ; by thinning out the condition B if necessary
we may assume that τ is represented by a Borel function f : B → 2ω. We will
find a condition C ⊂ B such that f � C attains only countably many values on
each equivalence class; this will complete the proof.

Let H ⊂ Coll(ω, κ) be a generic filter for a sufficiently large cardinal κ. It
will be enough to find the set C in the model V [H] and then pull it back to the
ground model using Shoenfield absoluteness. Let C = {x ∈ B : x is V -generic}.
By Theorem 1.3.21 this is a Borel I-positive set. If there is an E-equivalence
class in C on which f takes uncountably many values, then choose a point x ∈ C
in such an equivalence class, note that the model V [x] contains only countably
many reals as viewed from the model V [H], and find a point y in the same
equivalence class such that f(y) /∈ V [x]. Now, the forcing theorem implies that
V [y] |= f(y) ∈ V [[x]]E ; however, in the forcing extension V [H] of V [y] there is
a forcing extension V [x] of V which contains an equivalent of y but does not
contain f(y). A contradiction.

2.2 Associated forcings

In all special cases investigated in this book, the intermediate extension V [xgen]E
of Definition 2.1.1 is generated by a rather natural regular subordering of PI :

Definition 2.2.1. (A somewhat incorrect attempt) Let X be a Polish space
and I a σ-ideal on it. PE

I is the partial ordering of I-positive E-saturated Borel
sets ordered by inclusion.

The problem here is that E-saturations of Borel sets are in general analytic,
and in principle there could be very few Borel E-saturated sets. There are two
possibilities for fixing this. The preferred one is to work only with σ-ideals I
satisfying the third dichotomy [49, Section 3.9.3]: every analytic set is either in
the ideal I or it contains an I-positive Borel subset. Then the quotient PI is
dense in the partial order of analytic I-positive sets, and we can define PE

I as
the ordering of analytic E-saturated I-positive sets.
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Another possibility is to prove that in a particular context, E-saturations
of many Borel sets are Borel. This is for example true if E is a countable
Borel equivalence relation. It is also true if the poset PI is bounding and the
equivalence E is reducible to EKσ

. There, if B ⊂ X is a Borel I-positive set
and f : B → Πn(n+ 1) is the Borel function reducing E to EKσ , the bounding
property of PI can be used to produce a Borel I-positive compact set C ⊂ B on
which the function f is continuous, and then [C]E is Borel. However, in general
the question whether every analytic I-positive E-saturated set has a Borel I-
positive E-saturated subset seems to be quite difficult even if one assumes that
every I-positive analytic set contains a Borel I-positive subset.

Definition 2.2.2. (The correct version) Let X be a Polish space and I a σ-ideal
on it such that every analytic I-positive set contains a Borel I-positive subset.
PE

I is the poset of I-positive E-saturated analytic sets ordered by inclusion. If
C ⊂ X is a Borel I-positive set then PE,C

I is the poset of relatively E-saturated
analytic subsets of C ordered by inclusion.

By a slight abuse of notation, if the ideal I has the third dichotomy, we will
write PI for the poset of all analytic I-positive sets ordered by inclusion, so that
PE

I ⊂ PI . The previous discussion seems to have little to offer for the solution
of the main problem associated with the topic of this book:

Question 2.2.3. Is PE,C
I a regular subposet of PI for some Borel I-positive

set C ⊂ X?

Even in quite natural cases, it may be necessary to pass to an I-positive
subset even in fairly simple cases to find the requested regularity:

Example 2.2.4. Consider X = ωω × 2 and the σ-ideal I generated by sets
B ⊂ X such that {y ∈ ωω : 〈y, 0〉 ∈ B} is compact and {y ∈ ωω : 〈y, 1〉 ∈ B}
is countable. The quotient forcing is clearly just a disjoint union of Sacks and
Miller forcing. Consider the equivalence relation E on X defined as the equality
on the first coordinate. Then E has countable classes, indeed each of its classes
has size 2, and PE

I is not a regular subposet of PI . To see that, consider a
maximal antichain A ⊂ ωω consisting of uncountable compact sets, and let
Ā = {C × 2 : C ∈ A}. It is not difficult to see that Ā is a maximal antichain in
PE

I , but the set ωω×1 ⊂ X is Borel, I-positive, and has an I-small intersection
with every set in Ā.

The answer to the previous question turns out to be positive in all specific
cases investigated here, and the set C is invariably equal to the whole space.
Even more, it always so happens that the model V [xgen]E introduced in The-
orem 2.1.3 is exactly PE

I extension of the ground model. We will use only one
way to prove that the forcing PE

I is a regular subforcing of PI . Namely, we
will show that there is a dense set of conditions B ∈ PI such that the set [B]E
is a pseudoprojection of B into PE

I . This is to say that for every E-saturated
set C ⊂ [B]E in PI the intersection C ∩ B is I-positive; restated, for every set
C ⊂ [B]E in PI the set B ∩ [C]E is I-positive.
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It will be often the case that the forcing PE
I is ℵ0-distributive. We will

always prove this through the following property of the equivalence:

Definition 2.2.5. The equivalence E on a Polish space X is I-dense if for every
I-positive Borel set B ⊂ X there is a point x ∈ B such that [x]E ∩ B is dense
in B.

Proposition 2.2.6. If the poset PI has the continuous reading of names, PE
I

is a regular subposet of PI , and E is I-dense, then PE
I is ℵ0-distributive.

Proof. Since PI is proper, so is PE
I , and it is enough to show that PE

I does
not add reals. Suppose that B ∈ PI forces that τ is a name for a real in the
PE

I -extension. Let M be a countable elementary submodel of a large enough
structure, and let C ⊂ B be the I-positive set of all M -generic points for PI .
If x ∈ C is a point, write Hx ⊂ PE

I for the M -generic filter of all sets D ∈ PE
I

such that [x]E ⊂ D. It is clear that the map x 7→ Hx is constant on equivalence
classes, and so is the Borel map x 7→ τ/Hx. Thin out the set C if necessary
to make sure that the map x 7→ τ/Hx is continuous on C. By the density
property, there is a point x ∈ C such that [x]E∩C is dense in C. Thus, the map
x 7→ τ/Hx is continuous on C and constant on a dense subset of C, therefore
constant on C. The condition C clearly forces τ to be equal to the single point
in the range of this function.

Note that typically the poset PE
I is fairly simply definable. If suitable large

cardinals exist, then the descending chain game on the poset PE
I is determined.

Thus, when the poset is ℵ0-distributive, Player I has no winning strategy in
this game, so it must be Player II who has a winning strategy and the poset
is strategically σ-closed. It is not entirely clear whether there may be cases in
which PE

I is ℵ0-distributive but fails to have a σ-closed dense subset. In many
situations, one can find forcing extensions in which PE

I is even ℵ1-distributive
or more.

If the poset PE
I is regular in PI , we will want to show that it generates the

model V [xgen]E introduced in Definition 2.1.1. This will always be done through
the following theorem:

Theorem 2.2.7. Suppose that I is a Π1
1 on Σ1

1 σ-ideal on a Polish space X such
that the quotient forcing PI is proper and every analytic I-positive set contains a
Borel I-positive subset. Suppose that E is a Borel equivalence relation such that
PE

I is a regular poset of PI . Suppose moreover that for all I-positive analytic
sets B,C ⊂ X,

• either there is a Borel I-positive subset B′ ⊂ B such that [B′]E ∩ C ∈ I;

• or there is a Borel I-positive subset B′ ⊂ B and an injective Borel map
f : B′ → C such that f ⊂ E and f preserves the ideal I: images of I-small
sets are I-small, and images of I-positive sets are I-positive.

Then the model V [ẋgen ]E is forced to be equal to the PE
I -extension.



24 CHAPTER 2. BASIC TOOLS

Proof. Let G ⊂ PI be a generic filter and H = G ∩ PE
I . It is clear that

V [H] ⊂ V [ẋgen ]E , since H is definable from [ẋgen ]E as the collection of those
Borel I-positive E-saturated sets coded in the ground model containing the calss
[ẋgen ]E as a subset. The other inclusion is harder.

Suppose that φ(α,~v, [ẋgen ]E) is a formula with an ordinal parameter, other
parameters in V , and another parameter [ẋgen ]E , and let κ be a cardinal. A
density argument shows that there must be a condition B ∈ PI such that the
condition 〈P, 1〉 ∈ PI ×Coll(ω, κ) decides the truth value of φ, and H contains a
condition below the pseudoprojection of B to PE

I . We will show that for every
two such conditions, the decision of the truth value must be the same. Thus, the
set of ordinals defined by φ in the PI ×Coll(ω, κ) must be already in the model
V [H], defined as the set of those ordinals α such that for some condition B ∈ PI

whose pseudoprojection to PE
I belongs to the filter H, 〈B, 1〉 
 φ(α,~v, [ẋgen ]E).

So suppose for contradiction that there are conditions C0, C1 ∈ PI and
B ∈ PE

I such that B is below the pseudoprojection of both C0, C1 into PE
I ,

and 〈C0, 1〉 
 φ(α,~v, [ẋgen ]E) and 〈C1, 1〉 
 ¬φ. Since B is below the pseudo-
projections, the first item of the assumptions is excluded for both C = C0 and
C = C1–the set [B′]E would be an extension of B in PE

I incompatible with the
condition C0 or C1. So the second case must happen, and strengthening twice,
we get a Borel I-positive set B′ ∈ PI below B and Borel injections f0 : B′ → C0

and f1 : B′ → C1 as postulated in the assumptions. Since these functions pre-
serve the ideal I and are subsets of the equivalence E, B′ forces in the forcing
PI that the points ẋgen ∈ Ḃ′, ḟ0(ẋgen) ∈ Ċ0 and ḟ1(ẋgen) ∈ Ċ1 are E-equivalent
V -generic points for the poset PI , giving the same generic extension. Thus, if
G ⊂ PI is a V -generic filter containing the condition B′ and K ⊂ Coll(ω, κ) is a
V [G]-generic filter, the forcing theorem applied to f0(xgen) and f1(xgen) implies
that V [G,K] |= φ(α,~v, [f0(xgen)]E) ∧ ¬φ(α,~v, [f1(xgen)]E), which is impossible
in view of the fact that f0(xgen) E f1(xgen).

Another forcing feature of the arguments in this book is the use of a reduced
product of quotient posets. There is a general definition of such products:

Definition 2.2.8. Let I be a σ-ideal on a Polish space X, and let E be a
Borel equivalence relation on X. The reduced product PI ×E PI is defined
as the poset of those pairs 〈B,C〉 of Borel I-positive sets such that for every
sufficiently large cardinal κ, in the Coll(ω, κ) extension there are E-equivalent
points x ∈ B and y ∈ C, each of them V -generic for the poset PI . The ordering
is that of coordinatewise inclusion.

It is not difficult to see that the left coordinates of conditions in a reduced
product generic filter form a PI -generic filter, and similarly for the right coor-
dinates. To see this, assume that 〈B,C〉 is a condition in PI ×E PI and D ⊂ PI

is a dense set. The poset Coll(ω, κ) forces that there exists a pair of V -generic
E-equivalent points ẋ ∈ Ḃ, ẏ ∈ Ċ. Find a condition p ∈ Coll(ω, κ) and condi-
tions B′ ⊂ B and C ′ ⊂ C in the dense set D such that p 
 ẋ ∈ B′, ẏ ∈ C ′ and
observe that 〈B′, C ′〉 is still a condition in the reduced product PI ×E PI and it
clearly forces that both filters on the left hand side and the right hand side meet
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the dense set D. Thus, the reduced produc generic filter is given by two points
ẋlgen, ẋrgen ∈ X, each of which is V -generic for the poset PI . These two points
are typically not E-related. The general definition of the reduced product is
certainly puzzling, and in all special cases, a good deal of effort is devoted to
the elimination of the Coll(ω, κ) forcing relation from it. The reduced products
are always used in the intermediate case of the trichotomy 2.1.3:

Proposition 2.2.9. If I is a Π1
1 on Σ1

1 σ-ideal on a Polish space X such that
the quotient forcing PI is proper, and E is a Borel equivalence relation on X
such that the ergodic case of Theorem 2.1.3 happens, then the E-reduced product
of PI with itself is equal to product.

Proof. Let B ⊂ X be a Borel I-positive subset such that every two Borel I-
positive subsets C0, C1 ⊂ B contain a pair of equivalent points. We will show
that the reduced product below the condition 〈B,B〉 consists of all pairs of
Borel I-positive subsets of B. And indeed, if C0, C1 are two such sets, then pass
to a Coll(ω, κ) extension, apply in it Theorem 1.3.21 to find Borel I-positive
sets D0 ⊂ C0, D1 ⊂ C1 consisting only of PI -generic points, use Shoenfield
absoluteness to transfer ergodicity from the ground model to the extension and
find E-equivalent points, one in D0, the other in D1. These points show that
the pair 〈C0, C1〉 is a condition in the reduced product as desired.

Proposition 2.2.10. Let I be a σ-ideal on a Polish space X such that the
quotient PI is proper. Suppose that E is a Borel equivalence relation on X such
that the model V [ẋgen ]E is forced to contain no new reals. Then the reduced
product forces that V [ẋgen ]E is equal to the intersection of V [ẋlgen] and V [ẋrgen].

2.3 The spectrum of an ideal

To the untrained eye, the most typical situation regarding a Borel equivalence
relation and a σ-ideal may appear to be that the equivalence relation cannot be
significantly simplified by passing to a Borel I-positive set. This is the contents
of the central definition in this book:

Definition 2.3.1. Let X be a Polish space, I a σ-ideal on X, and F an equiva-
lence relation on another Polish space. We say that F is in the spectrum of I if
there is a Borel I-positive set B ⊂ X and an equivalence relation E on B bire-
ducible with F such that for every Borel I-positive set C ⊂ B, the equivalence
E � C is still bireducible with F .

If the quotient forcing PI is more commonly known than the σ-ideal itself, as
is the case with the Laver forcing for example, we will refer to the spectrum of
the quotient forcing.

The notion of a spectrum is natural from several points of view. The study of
the interplay of the quotient forcing and the equivalence relation will gravitate
towards the cases that cannot be simplified by passing to a stronger condition.
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The study of structures that a given σ-ideal imparts on the quotient space of E-
equivalence classes will tend towards structures that disappear when restricted
to a simpler quotient space. And finally, identifying an equivalence relation that
is in a spectrum of a given σ-ideal is the strongest kind of negative canonization
results possible within the calculus developed in this book. Thus, how do we
investigate the notion of a spectrum?

One possible line of research is the attempt to evaluate the spectrum for a
given σ-ideal. Some ideals have trivial spectrum consisting of just the identity
and the equivalence relation with a single class. For others, the spectrum is
nontrivial, but still fairly easy to identify. Still some others may have extremely
complicated spectrum, rich in features or quite chaotic. In another direction,
one may fix an equivalence relation and ask what it means for a σ-ideal to
have it in the spectrum, especially in terms of forcing properties of the quotient
poset PI . These are fairly new and fine forcing properties mostly concerning the
nature of intermediate forcing extensions as the Trichotomy Theorem would lead
one to believe. There do not seem to be any obvious general forcing operation
preservation theorems dealing with the properties obtained in this way.

The notion of spectrum is informative, but not without its faults. In par-
ticular, there is no guarantee that there will be a Borel I-positive set B ⊂ X
such that the equivalence E will be as simple as possible in the sense of the
reducibility ordering on the set B. There just may be a decreasing chain of sets
B0 ⊂ B1 ⊂ . . . such that the equivalence relations E � B0, E � B1 . . . strictly
decrease in complexity, without a possibility of reaching a stable point. While
such a situation may appear to be somewhat exotic, it does occur in the impor-
tant case of the Lebesgue null ideal and countable Borel equivalence relations
by a result of Hjorth [16, Lemma 3.12]. The notion of spectrum will not detect
this type of behavior.

The spectrum does not appear to have any general monotonicity or closure
properties beyond the following simple observation.

Proposition 2.3.2. Suppose that I is a σ-ideal on a Polish space X and E is
in the spectrum of I as witnessed by some equivalence F on X bireducible with
E. If J ⊃ I is a larger σ-ideal on X then E is again in the spectrum of J as
witnessed by J .

2.4 Canonization of equivalence relations

The simplest situation that one may hope to encounter is that when a given
equivalence relation simplifies either to identity on a Borel I-positive set, or
makes all elements of an I-positive Borel set equivalent.

Definition 2.4.1. A σ-ideal I on a Polish space X has total canonization for
a certain class of equivalence relations if for every I-positive Borel set B ⊂ X
and every equivalence E on B in the given class there is a Borel I-positive set
C ⊂ B such that either E � C = ID or E � C = EE.
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As an example, the σ-ideal on ωω generated by compact sets has total canoniza-
tion for all Borel equivalence relations, and the Laver ideal has total canonization
for all equivalence relations classifiable by countable structures. In most cases
though, the total canonization is way too much to hope for, and one has to
settle for lesser, but still quite informative conclusion:

Definition 2.4.2. Let E, F be two classes of equivalence relations, and let I
be a σ-ideal on a Polish space X. E →I F denotes the statement that for every
I-positive Borel set B ⊂ X and an equivalence E ∈ E on B there is a Borel
I-positive set C ⊂ B such that E � C ∈ F.

For example, the ideal I associated with Silver forcing satisfies classifiable by
countable structures→I {⊂ E0,EE}, meaning that every equivalence relation on
a Borel I-positive set classifiable by countable structures either has an I-positive
equivalence class or else can be simplified to an equivalence relation which is a
subset of E0 on an I-positive Borel subset–Theorem 3.6.6.

The total canonization is often proved using the free set property, see below.
The trichotomy theorem 2.1.3 allows us to argue for total canonization from
fairly common abstract properties of the ideal I. In order to state a compre-
hensible theorem, we must introduce two properties of σ-ideals.

Definition 2.4.3. A σ-ideal I on a Polish space X has the rectangular property
if for Borel I-positive sets B,C ⊂ X and a Borel partition B × C =

⋃
nDn of

their product into countably many pieces one of the pieces contains a product
B′ × C ′ of Borel I-positive sets.

This property is useful for the study of the product forcing PI × PI . It
has been verified for all definable σ-ideals such that the quotient PI is proper,
bounding and Baire category preserving [49, Theorem 5.2.6], for the σ-ideal
generated by compact subsets of ωω [45], as well as for some other cases.

Definition 2.4.4. A σ-ideal I on a Polish space X has the transversal property
if for every Borel set D ⊂ 2ω × X such that the vertical sections are pairwise
disjoint I-positive sets there is an I-positive Borel set B ⊂ X which is covered
by the vertical sections of D and visits each of the vertical sections in at most
one point.

This property is a ZFC version of the determinacy dichotomies such as the
first dichotomy of [49, Section 3.9.1]. It holds true of all definable σ-ideals
generated by closed sets and many others, as in Proposition 3.2.1; its proof may
use an infinite integer game associated with the σ-ideal as in Theorem 3.10.1(3).
It fails for the likes of the E0 ideal and the ideal of subsets of P(ω) nowhere
dense in the algebra P(ω) modulo finite. Consider the set D ⊂ 2ω × P(2<ω)
defined by 〈y, x〉 ∈ D if and only if x is a set of initial segments of y. The vertical
sections of this set are somewhere dense in the algebra P(2<ω) modulo finite;
on the other hand, sets in distinct vertical sections have finite intersections, and
so every transversal must be nowhere dense. We do not have an example of a
σ-ideal with basis consisting of Borel sets of bounded complexity which does
not have the transversal property.
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The following theorem is not explicitly referred to in any further proofs.
However, it offers an initial guidance as to which canonization results are pos-
sible and isolates the connection between canonization and the rectangular and
transversal properties. Its proof also highlights the role of the model V [x]E and
the trichotomy theorem 2.1.3.

Theorem 2.4.5. (CH) Suppose that I is a suitably definable σ-ideal such that
the quotient forcing PI is < ω1-proper, has the rectangular and transversal prop-
erties. Then I has total canonization.

The wording of the theorem must be scrutinized more closely. The contin-
uum hypothesis assumption can be dropped if the quotient forcing is < ω1-
proper in all forcing extensions, which is the case for all σ-ideals investigated in
this book. A forcing P is < ω1-proper if for every countable ordinal α and every
ε-tower 〈Mβ : β ∈ α〉 of countable elementary submodels of a large structure
such as 〈Vκ, ε〉 for a sufficiently large ordinal κ, with P ∈M0, for every condition
p ∈ P ∩M0 there is a strengthening q ≤ p which is simultaneously Mβ-master
for each ordinal β ∈ α. This is a technical strengthening of properness due to
Shelah; it is satisfied for all σ-ideals in this book as proved by a standard transfi-
nite induction argument in each case. Ishiu [17] proved that < ω1-properness of
a forcing is equivalent to the Axiom A property of the complete Boolean algebra
of regular open subsets of P . For the purposes of the theorem, this property
does not seem to be replaceable by anything descriptive set theoretic in nature.

We will prove the theorem for Π1
1 on Σ1

1 σ-ideals, but small adjustments
will result in a proof for other specific ideals in ZFC and for larger definability
classes under large cardinal assumptions. The rectangular property is used to
rule out the nontrivial ergodicity clause of the trichotomy theorem, and the
example of Laver ideal and the EKσ equivalence–see Section 3.10–shows that
some such assumption is again necessary.

Proof. The main point of the proof is the analysis of the possible intermediate
extensions of the PI extension. We will show that every intermediate extension
must be c.c.c.–this uses the< ω1-properness and the transversal property. Then,
the possibilities for c.c.c. intermediate extensions will be discussed, revealing
that no such extension can exist either–this uses the rectangular property and
the definability. Looking back at the Trichotomy theorem 2.1.3, the second op-
tion is ruled out, the nontrivial ergodicity is ruled out as well by the rectangular
property applied to the given equivalence relation E, and the total canonization
is what is left from our options.

We start with showing that all intermediate extensions must be c.c.c. Sup-
pose that ḟ is a name for a function from ω1 to ω1 which is not bounded by
any ground model function; we will show that there is a condition B ∈ PI ,
an ordinal α ∈ ω1 and an injective Borel function h : B → αα such that
B 
 h(ẋgen) = ḟ � α. The injectivity of the function h is a coanalytic statement,
therefore absolute to the PI extension and so B forces that ẋgen is recovered
in V [ḟ ] as the unique element of the set B which is sent to ḟ � α by h. Since
the forcing PI has density ℵ1, every nowhere c.c.c. intermediate extension of
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PI must contain such an unbounded function ḟ , and therefore must be equal to
the whole PI -extension.

To obtain the condition B, let θ be a large regular cardinal, 〈Mβ : β ∈ ω1〉 a
continuous ε-tower of countable elementary submodels of Hθ containing X, I, ḟ ,
and let N be a countable elementary submodel containing this tower. Note
that no point x ∈ X can be simultaneously N -generic and Mβ-generic for all
β ∈ N : if it is N -generic then ḟ/x must not be bounded by the function
β 7→ ω1 ∩Mβ+1 which belongs to N , but this means that x cannot be Mβ+1-
generic for that β ∈ N for which ḟ(β)/x > ω1 ∩Mβ+1. Now build ε-towers
~Mn : n ∈ ω of elementary submodels and submodels Nn : n ∈ ω so that
~Mn ∈ Nn ∈ ~Mn+1(0). For every binary sequence y ∈ 2ω let Ty be the unique
continuous ε-tower of models containing the model Nn if y(n) = 0 and the
models { ~Mn(β) : β ∈ Nn ∩ ω1 + 1} if y(n) = 1 (and no other models). Let
By = {x ∈ X : x is generic for all models on the tower Ty}. This is a Borel
set by its definition, and it is I-positive by < ω1-properness: it is the set of
generic points for a certain tower of models of countable length. By the previous
observation, the set D ⊂ 2ω ×X defined by 〈y, x〉 ∈ D if x ∈ By is Borel, and
has pairwise disjoint I-positive sections by < ω1-properness. Use the transversal
property of the ideal I to find a Borel I-positive set B which visits each section
in at most one point, and is covered by the vertical sections of the set D.

Let α =
⋃

nNn ∩ ω1; this is the common value of
⋃
Ty ∩ ω1 for every point

y ∈ 2ω. Whenever y ∈ 2ω and x ∈ B are points such that x ∈ By, then the
point x is generic for all models on the tower Ty and therefore we may define
h(x) = ḟ/x, or in other words h(x) is the function from α → α defined by
h(x)(β) = γ iff x belongs to some set in PI ∩

⋃
Ty which forces ḟ(β̌) = γ̌. The

function h : B → αα is certainly Borel. We will show that B 
 ḟ � α = ḣ(ẋgen)
and that h is an injection. This will complete the first part of the proof.

For the injectivity, if x0 6= x1 ∈ B are distinct points, they must come from
distinct vertical sections of the set D indexed by some distinct y0 6= y1 ∈ 2ω.
Let n ∈ ω be such that y0(n) = 0 and y1(n) = 1, let γ = Nn ∩ ω1 and let
k ∈ γ → γ be the function defined by k(β) = ~Mn(β + 1) ∩ ω1; then h(x1) � γ
is bounded by the function k since x1 is generic for the models ~Mn(β) : β ∈ γ,
and h(x0) � γ is not bounded by this function since x0 is generic for the model
Mn and ḟ was forced to be unbounded. Thus h(x0) 6= h(x1).

To show B 
 ḟ � α = ḣ(ẋgen), let C ⊂ B be a Borel I-positive set and β ∈ α
be an ordinal. We must find an ordinal γ and a stronger condition C ′ ⊂ C
forcing ḟ(β) = γ and such that ∀x ∈ C ′ h(x)(β) = γ. Note that every point
x ∈ C is generic for all models on a tower Ty for some point y ∈ 2ω. The
countable set

⋃
Ty is the same for all these towers. Thus, the set C is covered

by the countably many sets in
⋃
Ty ∩ PI which force a specific value to ḟ(β),

and one of these countably many sets will have positive intersection C ′ with C.
It is not difficult to see that the set C ′ ⊂ C works.

The second part of the proof discusses the possibility of intermediate c.c.c.
extension, and the aim is to show that there cannot be one. First argue that it
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must add a real. Suppose for contradiction that it is effected by a c.c.c. forcing
Q which does not add a real. Let M be a countable elementary submodel of
a large enough structure containing Q. Since no real is added by Q, Q forces
that the intersection of its generic filter with M belongs to the ground model.
By c.c.c. of Q, there are only countably many possibilities {gn : n ∈ ω} for this
intersection, and each of them is in fact M -generic. Let h ⊂ Coll(ω, κ) ∩M be
an M -generic filter which is mutually generic with all the filters gn : n ∈ ω, and
work in the model M [h]. By Claim 1.3.21, M [h] contains (a code for) a Borel
I-positive set B ⊂ X consisting only of M -generic reals. Let f : B → P(Q)∩M
be the function defined by f(x) = {q ∈ Q ∩M : ∃C ∈ PI ∩M x ∈ C ∧ C
forces q to belong to the Q-generic filter}. This is a Borel function with code
in the model M [h]. In that model, there are obviously two cases: either the
f -preimage of every subset of Q ∩M is in the ideal I, or there is a subset of
Q ∩M with Borel I-positive preimage. In the first case, the property of B and
f is a coanalytic statement since the ideal I is Π1

1 on Σ1
1, therefore transfers

to the model V , and there B forces that the intersection of the Q-generic filter
with M is not in the ground model, contradicting the assumptions. In the latter
case, B 
 the intersection of the Q-generic filter with M is in the model M [h]
and therefore not on the list {gn : n ∈ ω}, reaching a contradiction again.

Thus, suppose that PI adds a nontrivial c.c.c. real; let B ∈ PI be a condition
forcing that f(ẋgen) is such a real for some fixed Borel function f : X → Y .
Let J be a σ-ideal on the Polish space Y defined by A ∈ J ↔ f−1A ∈ I. Since
f(ẋgen) is forced to be a c.c.c. real, falling out of all J-small sets, it must be
the case that it is PJ generic. If the ideal I is Π1

1 on Σ1
1, then so is J . There

are two cases.
If PJ adds an unbounded real, then it in fact adds a Cohen real by a result

of Shelah [2, Theorem 3.6.47]. One has to adjust the final considerations of that
proof very slightly to conclude that it works for all Π1

1 on Σ1
1 c.c.c. σ-ideals.

Let g : Y → 2ω be a Borel function representing the Cohen real. Now, the
meager ideal does not have the rectangular property, and it is easy to transport
this feature to the ideal I. Just let D ⊂ B × B be the set of all points 〈x0, x1〉
such that g(f(x0)) E0 g(f(x1)) and observe that neither D nor its complement
can contain a rectangle with Borel I-positive sides.

If PJ is bounding, then Player II has a winning strategy in the bounding
game [49, Theorem 3.10.7]. By a result of Fremlin [19, Theorem 7.5], there is a
continuous submeasure φ on the space Y such that J = {A ⊂ Y : φ(A) = 0}.
The relevant properties of such ideals were investigated in [7] and it turns out
that they cannot have rectangular property. They in fact fail to have even the
Fubini property with each other unless both of the submeasures in the product
share their null ideal with a σ-additive Borel probability measure. In this last
case, the rectangular property fails again since every Borel probability measure
is ergodic with respect to some hyperfinite Borel equivalence relation.

The conclusion is that there are no intermediate forcing extensions strictly
between the ground model and the PI extension, c.c.c. or otherwise. The first
paragraph of this proof then completes the argument for the theorem.
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The total canonization of Borel equivalence relations is not the strongest
possible statement one can obtain. A significant strengthening is the Silver
type dichotomy introduced in the next section. A strengthening in a different
direction concerns arbitrary graphs:

Definition 2.4.6. A σ-ideal I on a Polish space X has total canonization of
Borel graphs if for every Borel I-positive set B ⊂ X and every Borel graph G ⊂
[B]2 there is a Borel I-positive set C ⊂ B such that [C]2 ⊂ G or [C]2 ∩G = 0.

This can be restated in a somewhat different language: the collection of those
Borel sets G ⊂ [X]2 for which there is no Borel I-positive C ⊂ X with [C]2 ⊂ G,
is an ideal. Where the canonization of Borel equivalence relations is often at-
tained simply by an analysis of the forcing properties of the poset PI , the can-
onization of Borel graphs invariably needs strong partition theorems for Polish
spaces such as the Milliken theorem.

2.5 A Silver-type dichotomy for a σ-ideal

In fairly common circumstances, the total canonization takes up an even stronger
form:

Definition 2.5.1. A σ-ideal I on a Polish space X has the Silver property for
a class E of equivalence relations if for every I-positive Borel set B ⊂ X and
every equivalence relation E ∈ E on the set B, either B can be decomposed
into countably many equivalence classes and an I-small set or there is a Borel
I-positive set C ⊂ B such that E � C = ID. If E is equal to the class of all
Borel equivalence relations, it is dropped from the terminology and we speak of
the Silver property of I instead.

This should be compared with the classical Silver dichotomy [40], which
establishes the Silver property for the ideal of countable sets. Observe that
unlike total canonization, the Silver property introduces a true dichotomy: the
two options cannot coexist. It also has consequences for undefinable sets: if an
equivalence relation E ∈ E has an I-positive set A ⊂ X consisting of pairwise
E-inequivalent points, then it has an I-positive Borel set B ⊂ X consisting of
pairwise E-inequivalent points, simply because the first clause of the dichotomy
cannot hold in such circumstances.

Let us offer a perhaps artificial reading of the dichotomy which nevertheless
fits well with the techniques developed in this book or [49]. Given a σ-ideal I
on a Polish space X and a Borel equivalence E on X, consider the ideal I∗ ⊃ I
σ-generated by E-equivalence classes and sets in I. Then either I∗ is trivial,
containing the whole space, or else the quotient forcing PI∗ is equal to PI below
some condition.

Proposition 2.5.2. Suppose that total canonization holds for I and the ideal
I is Π1

1 on Σ1
1 and has the transversal property. Then the ideal I has the Silver

property.
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Proof. Let E be a Borel equivalence relation, and consider the set C = {x ∈
X : [x]E /∈ I}. This is an analytic set. Either there are only countably many
equivalence classes in the set C. In this case, the set C is even Borel. If the
complement of C is in the ideal I then we are in the first clause of the Silver
property, and if the complement of C is I-positive then we can apply total
canonization to it: the equivalence classes of E below the complement of C are
in the ideal I and so the application of total canonization must yield a Borel
I-positive set consisting of E-inequivalent points.

Or, there are uncountably many equivalence classes in the set C. The clas-
sical Silver dichotomy [40] then provides a perfect set P ⊂ C of pairwise in-
equivalent points. Let D ⊂ P × X be the set defined by 〈x, y〉 ∈ D ↔ xEy.
The transversal theorem yields an I-positive Borel set C covered by the vertical
sections of D, visiting each of its sections in at most one point. We are in the
second clause of the Silver property!

A quick perusal of the argument shows that the proposition in fact holds even
if restricted to any class of Borel equivalence relations closed under reduction.
Thus for example the ideal I(Fin × Fin) introduced in Section 3.2b is Π1

1 on
Σ1

1, has the transversal property, and has canonization for equivalences below
EKσ

, even though it perhaps does not have total canonization. The proof shows
that in fact I(Fin × Fin) has the Silver property for the class of equivalences
reducible to EKσ

.
Note that the failure of the transversal property as witnessed by some set

D ⊂ 2ω ×X implies the failure of the Silver property in the common case that
the projection of D to the X axis is a Borel set. Just consider the equivalence
relation E onX connecting two points if they are from the same section of the set
D or if they both fail to be in any section of the set D. This is Borel, since x E y
if and only if x, y are not in the projection ofD or else ∃z 〈z, x〉, 〈z, y〉 ∈ D, which
is equivalent to ∀z0, z1 〈z0, x〉, 〈z1, y〉 ∈ D → z0 = z1, therefore analytic co-
analytic. The equivalence relation E witnesses the failure of the Silver property
as the I-positive transversal for D does not exist; note that in fact E is smooth.

2.6 Free set property

Definition 2.6.1. An ideal I on a Polish space X has the free set property if
for every I-positive Borel set B ⊂ X and every Borel set D ⊂ B × B with all
vertical sections in the ideal I there is a Borel I-positive set C ⊂ B such that
(C × C) ∩D ⊂ ID.

This should be viewed as a generalization of the various free set properties
in combinatorics to the Borel context: if one assigns a small set to every point,
then there will be a large set which is free for this assignment. The search
for free sets of various sizes on uncountable cardinals is always present in the
work of Péter Komjáth, for example [29]. One nontrivial instance of the free
set property in the Borel context was obtained by Solecki and Spinas [43]. The
free set property implies total canonization of all Borel equivalences. Namely,
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if E is a Borel equivalence on a Borel I-positive set B ⊂ X, then either one of
its equivalence classes is I-positive (in which case this class is an I-positive set
on which E = EE), or one can use the free set property with D = E to find a
positive Borel set on which E = ID.

The free set property does not seem to be equivalent to the total canonization
of Borel equivalences, one such candidate is discussed in Section 3.2b. The most
important way to argue for the free set property is via the mutual generics
property.

2.7 Mutual genericity

Definition 2.7.1. The ideal I has the mutual generics property if for every
countable elementary submodelM of a large structure and every Borel I-positive
set B ∈M there is a Borel I-positive set C ⊂ B such that every pair of distinct
points in the set C is generic for the product of the forcings PI .

The mutual generics property holds for a variety of ideals. One important
class of ideals with this property is the class of all suitably definable ideals
generated by closed sets for which the quotient poset is bounding–Theorem 3.2.3.

Mutual generics property may fail for a variety of reasons. It may fail even
though the free set property holds–Section 3.3. However, the typical reason for
its failure is that there is a Borel equivalence relation E on the space X which
cannot be completely canonized. In such a case, one can consider variations of
the mutual generics property asserting that there is a Borel I-positive set such
that every pair of nonequivalent points is suitably generic etc. It is here where a
variety of reduced products of the poset PI may enter the scene. In the simplest
case, a reduced product PI ×E PI is the set of all pairs 〈B0, B1〉 ∈ PI ×PI such
that [B0]E = [B1]E , ordered by coordinatewise inclusion–Definition 2.2.8.

Mutual genericity is not equivalent to the free set property, as the example
of symmetric Sacks forcing in Section 3.3 shows. Another potential example is
the Miller forcing, where Solecki and Spinas [43] proved the free set property,
while the status of mutual genericity remains unknown.

One way to disable most versions of the mutual generics property is to find
a Borel function f : X2 → 2ω such that for every Borel I-positive set B ⊂ X,
the image f ′′B2 contains a nonempty open set. This means that a pair of
points in any given Borel I-positive set can code anything, in particular it can
code a wellordering of length greater than that of ordinals of any give countable
transitive model, and so it cannot be suitably generic.

2.8 Functions on squares

Thus, instead of equivalences on Polish spaces we may want to consider general
Borel functions on squares of Polish spaces and investigate their behavior on
squares of positive Borel sets. This turns out to have a close relationship with
the behavior of Borel equivalence relations:
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Proposition 2.8.1. If E0 is in the spectrum of I then there is a Borel I-positive
set B ⊂ X and a Borel function f : B2 → ωω such that f ′′C2 ⊂ ωω is unbounded
for every Borel I-positive set C ⊂ B.

Proof. Suppose that E0 is in the spectrum of the ideal I, as witnessed by a Borel
function g : B → 2ω on a Borel I-positive set B ⊂ X. Define f : B2 → ωω by
g(x, y)(n) =the least m > n such that g(x)(m) 6= g(y)(m) if ¬g(x) E0 g(y), and
f(x, y) =trash otherwise. We claim that this function works.

Suppose for contradiction that the conclusion fails for some Borel I-positive
set C ⊂ B; the set g′′C ⊂ ωω would be modulo finite bounded by some function
h ∈ ωω. In such a case, for any points x, y ∈ C it would be the case that
f(x) E0 f(y) if and only if ∀∞n f(x) � [n, h(n)) = f(y) � [n, h(n)) if and only
if ∃∞n f(x) � [n, h(n)) = f(y) � [n, h(n)). This means that the equivalence E0

on the analytic set f ′′C is relatively Gδ, and by the argument of [8, Theorem
6.4.4] it is in fact smooth on this set. This contradicts the assumption that E0

is in the spectrum of the ideal I.

The conclusion cannot be strengthened to obtain dominating images, as a
basic example shows. Consider the σ-ideal I associated with the E0-forcing as
in Section 3.4; thus E0 is in the spectrum of I. Let B ⊂ 2ω be an I-positive
Borel set, and f : [B]2 → ωω be a function. Let M be a countable elementary
submodel of a large structure containing all this information. The proof of
Theorem 3.4.5 yields a Borel I-positive subset C ⊂ B such that every pair of
non-E0-equivalent points of C is reduced product generic for the model M , and
every single point in C is PI -generic. Let g ∈ ωω be a function dominating all
the functions in M . The reduced product does not add a dominating real by
Theorem 3.4.7, and so if x, y ∈ C are not E0 related then f(x, y) cannot modulo
finite dominate g. And, if the points x, y ∈ C are E0-related, then the functional
value f(x, y) belongs to M [x], and as the PI forcing is bounding, f(x, y) cannot
modulo finite dominate g in this case either.

Proposition 2.8.2. If E2 is in the spectrum of I then there is a Borel I-
positive set B ⊂ X and a Borel function f : B2 → [0, 1] such that f ′′C2 ⊂ [0, 1]
is somewhere dense for every Borel I-positive set C ⊂ B.

Proof. Recall the summable metric d on 2ω, d(x, y) = Σ{1/n+1 : x(n) 6= y(n)};
the distance of two points may be infinite. E2 is the equivalence relation on 2ω

connecting points of finite distance. Now suppose that E2 is in the spectrum
of I as witnessed by a Borel function g : B2 → 2ω. Define a Borel function
f : B2 → [0, 1] by setting f(x, y) = d(g(x), g(y)) if this number is < 1, and
f(x, y) =trash otherwise. We claim that this function works. Consider an
arbitrary Borel I-positive set C ⊂ B.

Indeed, since E2 is in the spectrum of the ideal I, it must be that E2 � f ′′C is
not essentially countable, and therefore the analytic set f ′′C cannot be grainy
as described in Section 3.5. Thus, for every real ε > 0 there is a finite walk
through the set C such that its steps are shorter than ε and the endpoints have
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d-distance at least 1. If the set f ′′C ⊂ [0, 1] was not dense, perhaps avoiding a
basic open neighborhood of diameter ε, no such walk could exist for that ε!

Proposition 2.8.3. Suppose that there is a Borel function f : X2 → 2ω such
that f ′′C2 ⊂ 2ω contains a nonempty open set for every Borel I-positive set
C ⊂ B. Then I does not have the mutual generics property.

Proof. The mutual generics property most certainly fails since for every count-
able elementary submodel M of a large structure and a Borel I-positive set
C ⊂ B there are two points x, y ∈ C such that f(x, y) codes the transitive col-
lapse of the model M , and therefore this pair cannot be (mutually or otherwise)
generic over the model M .

Example 2.8.4. Consider the Laver forcing with the associated σ-ideal I on
ωω and the function f : (ωω)2 → 2ω defined by f(x, y)(n) = 1 ↔ x(n) > y(n).
Every I-positive Borel set B ⊂ ωω contains all branches of some Laver tree T
with trunk of length n, and then it is easy to find, for every binary sequence
z ∈ ωω, two branches x, y ∈ [T ] so that f(x, y) = z on all entries past n. So
f ′′B2 contains a nonempty open set.

Example 2.8.5. Consider the Silver forcing with the associated ideal I and the
function f : (2ω)2 → 2ω defined by f(x, y) = x ◦ π−1 where π is the increasing
enumeration of the set {n : x(n) 6= y(n)} if this set is infinite, and f(x, y) =trash
if this set is finite. Every I-positive Borel set B contains all total extensions of
some fixed partial function g : ω → 2 with co-infinite domain. Whenever z ∈ 2ω

is a binary sequence, let x, y ∈ 2ω be the unique points such that g ⊂ x, y and
z = x ◦ π−1 and 1 − z = y ◦ π−1 where π is the increasing enumeration of the
complement of the domain of g. Clearly then, f(x, y) = z and f ′′B2 = 2ω.

Both Silver and Laver forcing contain EKσ
in their spectrum, and also other

approaches in this book that insert EKσ into the spectrum of a σ-ideal immedi-
ately lead to a construction of a Borel function f : X ×X such that the image
of any Borel square with an I-positive side contains an open set. This brings
up the obvious question.

Question 2.8.6. Suppose that EKσ
is in the spectrum of a σ-ideal I on a Polish

space X. Does there have to exist a Borel I-positive set B ⊂ X and a Borel
function f : B2 → 2ω such that for every Borel I-positive subset C ⊂ B, the
image f ′′C2 contains a nonempty open set?
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Chapter 3

Particular forcings

3.1 Sacks forcing and variations

The exposition of canonization properties of various σ-ideals is best started
with the simplest and most instructive example, that of Sacks forcing, its finite
products and countable iterations. Sacks forcing is the poset of all perfect binary
trees ordered by inclusion. The associated σ-ideal is the ideal of countable
subsets of 2ω, as the perfect set theorem shows. Every uncountable Borel set
has a perfect subset, and therefore the map T 7→ [T ] is a dense embedding of
the Sacks forcing into PI . Restating the classical Silver dichotomy 1.3.10,

Fact 3.1.1. The ideal of countable sets has the Silver property.

Let us now move to a finite product of Sacks forcing of dimension n ∈ ω. The
associated ideal In on the space (2ω)n is generated by those Borel sets which
do not contain a product Πi∈nCi of nonempty perfect sets, as the rectangular
property of the ideal of countable sets shows [49, 5.2.6]. The map πn : 〈Ci : i ∈
n〉 7→ Πi∈nCi then constitutes a dense embedding of the n-fold product of the
Sacks forcing into the poset PIn . The ideal In is Π1

1 on Σ1
1 and every positive

analytic set contains a positive Borel subset. These fairly well-known facts and
more follow from [49, Section 5.2.1].

There are some new equivalence relations on the product as opposed to the
single Sacks forcing. Let a ⊂ n be a set, and define the equivalence relation Ea

on (2ω)n by setting ~xEa~y if and only if ~x � a = ~y � a. This is obviously a smooth
equivalence relation which is not equal to identity or everything on any Borel
In-positive set unless a = 0 or a = n. However, these equivalence relations are
the only obstacles to total canonization:

Theorem 3.1.2. Let n ∈ ω be a natural number. Then Borel→In {Ea : a ⊂ n}.

The much more complicated case of the infinite product of Sacks forcing will be
treated in its own section.

37
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Proof. Let a ⊂ n be a set. Define the reduced product Pa as the product of
n \ a many copies of Sacks forcing (indexed with elements of the set n \ a) with
a many copies of Sacks forcing (indexed with (i, 0) : i ∈ a) and further with
a many more copies of Sacks forcing (indexed with (i, 1) : i ∈ a). Clearly, the
reduced product is isomorphic to the product of n + |a| many copies of Sacks
forcing, and it adds n + |a| many mutually generic reals, indexed by the set
(n \ a) ∪ {(i, j) : i ∈ a, j ∈ 2}. We will organize these reals into sequences
~xlgen ∈ (2ω)n and ~xrgen ∈ (2ω)n with ~xlgen � (n \ a) = ~xrgen � (n \ a).

IfM is a countable elementary submodel of a large structure and ~y, ~x ∈ (2ω)n

are two sequences, we will say that they are reduced product generic for M , if
writing a = {i ∈ n : ~x(i) = ~y(i)}, the sequence ~z defined by ~z(i) = ~x(i) if i ∈ a,
~z(i, 0) = ~x(i) and ~z(i, 1) = ~y(i) if i ∈ n \ a, is Pa generic for the model M . The
following is the key claim:

Claim 3.1.3. Let M be a countable elementary submodel of a large structure,
and let Bi : i ∈ n be perfect subsets of 2ω in the model M . There are perfect
subsets Ci ⊂ Bi : i ∈ n of the Cantor space such that the product Πi∈nCi consists
of pairwise reduced product generic sequences for the model M .

This is to say that any two sequences ~x, ~y ∈ Πi∈nCi satisfying x(i) = y(i) ↔
i /∈ a, are reduced product generic for the model M .

The theorem immediately follows from the claim. Let E be a Borel equiv-
alence relation on the space (2ω)n, and find an inclusion minimal set a ⊂ n
such that some condition in Pa forces ~xlgen E ~xrgen. If a condition p =
〈Bi : i ∈ (n \ a), Bi : i ∈ a,Ci : i ∈ a〉 in Pa forces this, then so does
q = 〈Bi : i ∈ (n \ a), Bi : i ∈ a,Bi : i ∈ a〉: whenever ~xlgen, ~xrgen are generic
sequences meeting the condition q, in a further generic extension one can find
a condition ~ygen such that the pairs ~xlgen, ~ygen and ~xrgen, ~ygen are generic se-
quences meeting the condition q, so these pairs consist of E-equivalent sequences
by the forcing theorem, and consequently ~xlgen E ~xrgen by the transitivity of the
relation E. Now let M be a countable elementary submodel of a large struc-
ture and use the claim to find sets Ci ⊂ Bi : i ∈ n whose product consists of
pairwise reduced product generic sequences for the model M . We claim that
E � Πi∈nCi = Ea.

To show this, suppose that ~x, ~y ∈ Πi∈nCi are sequences and let b = {i ∈ n :
~x(i) = ~y(i)}. Find sequences ~x′, ~y′ in the product such that a = {i ∈ n : ~x(i) =
~x′(i)} = {i ∈ n : ~y(i) = ~y′(i)} and a ∩ b = {i ∈ n : ~x′(i) = ~y′(i)}. The forcing
theorem applied to the reduced product Pa together with Borel absoluteness
implies that ~x E ~x′ and ~y E ~y′. Now if a ∩ b = a then the forcing theorem
also implies that ~x′ E ~y′ and so ~xE~y. on the other hand, if a ∩ b 6= a then the
minimal choice of the set a together with the forcing theorem applied to Pa∩b

give ¬~x′ E ~y′ and ¬~x E ~y!
The claim is proved by a standard fusion argument.

The countable support iteration of Sacks forcing of countable length is an-
other natural subject of study. Let α ∈ ω1 be a countable ordinal, and consider
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the Polish space X = (2ω)α with the product topology. The ideal Iα associ-
ated with the countable support iteration of the Sacks forcing of length α is the
transfinite Fubini power of the countable ideal, as described in [49].

There are obvious obstacles to total canonization in this case. Let β ≤ α be
an ordinal and consider the equivalence relation Eβ on (2ω)α given by ~x Eβ ~y if
and only if ~x � β = ~y � β. Again, it turns out that these are exactly the optimal
irreducible list of obstacles:

Theorem 3.1.4. Let α ∈ ω1 be a countable ordinal. Then Borel→Iα {Eβ : β ≤
α}.

Proof. Given ordinals β ≤ α ∈ ω1, consider the reduced product Pα
β consisting

of pairs 〈p, q〉 ∈ Pα × Pα for which p � β = q � β. The reduced product adds
sequences ~xlgen, ~xrgen ∈ (2ω)α which coincide on their first β many coordinates.
If M is a countable elementary submodel of a large structure, we call sequences
~x, ~y ∈ (2ω)α reduced product generic if the set β = {γ ∈ α : ~x(γ) = ~y(γ)} is an
ordinal and the sequences are Pα

β -generic for the model M . As in the product
case, there is a key claim:

Claim 3.1.5. Let M be a countable elementary submodel of a large enough
structure, and B ∈ PIα ∩M is a condition. There is a Borel Iα-positive set
C ⊂ B consisting of pairwise reduced product generic sequences.

The theorem follows from the claim exactly as in the previous argument.
The claim itself is proved by a standard fusion process.

3.2 σ-ideals σ-generated by closed sets

Following the exposition of [49], the σ-ideals that should be easiest to deal
with are those σ-generated by closed sets. Indeed, there is a wealth of relevant
information available:

Proposition 3.2.1. Suppose that I is a σ-ideal on a Polish space σ-generated
by closed sets. Then

1. the poset PI is < ω1-proper and preserves Baire category;

2. if I is a Π1
1 on Σ1

1 then I has the transversal property;

3. moreover, if I is Π1
1 on Σ1

1 then every intermediate extension of the PI

extension is generated by a single Cohen real.

Proof. (1) is contained in [49, Theorem 4.1.2] and (3) is in [49, Theorem 4.1.7].
That leaves (2) to be proved.

Let D ⊂ 2ω × X be a Borel set with pairwise disjoint I-positive vertical
sections. Solecki’s theorem [41] shows that every vertical section contains a Gδ

I-positive subset. Further manipulation even yields a homeomorphic copy of ωω
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such that every nonempty relatively open set is I-positive. Note that for every
such a set the sets in the ideal I must be relatively meager.

Use the Sacks uniformization to find a perfect set C ⊂ 2ω and a continuous
injective map π : C × ωω → X fixing the first coordinate such that for every
y ∈ C, πy : ωω → X is a homeomorphic embedding with range included in Dy,
such that relatively open subsets of the range are I-positive. Find an Fσ set
F ⊂ P ×X such that its vertical sections range over all Fσ-subsets of X. The
set G ⊂ C × ωω, G = {〈y, z〉 : 〈y, π(y, z)〉 ∈ F} is Borel.

The set C ′ = {y ∈ C : Gy is meager in ωω} is Borel by [27, Theorem 16.1].
Use uniformization [27, Theorem 18.6] to find a Borel map f : C ′ → ωω such
that for every point y ∈ C ′, f(y) /∈ Gy. Consider the set B = {π(y, f(y)) : y ∈
C ′} ⊂ X. As a Borel one-to-one image of a Borel set it is Borel. It intersects
only the vertical sections Dy : y ∈ C ′, and each of them in exactly one point,
namely π(y, f(y)). Finally, the set B is I-positive: every I-small set is covered
by an Fσ set in the ideal I, indexed as Fy for some point y ∈ C. The set Fy

must be relatively meager in rng(πy), so y ∈ C ′ and π(y, f(y)) ∈ B \ Fy and
B /∈ I as desired!

Now, the spectrum of the Cohen forcing (associated with the meager ideal,
which certainly is σ-generated by closed sets) is extremely complicated, it is
treated as a separate case. We first concentrate on the treatment of those σ-
ideals whose quotient does not add a Cohen real. For these ideals, the interme-
diate generic extension case of Theorem 2.1.3 is ruled out by Proposition 3.2.1,
and a natural conjecture appears:

Conjecture 3.2.2. If I is a Π1
1 on Σ1

1 σ-ideal on a Polish space X σ-generated
by closed sets, then either the quotient forcing adds a Cohen real, or the ideal
I has the Silver property.

This section should be understood as a work towards the decision of this
conjecture by consideration of a number of special cases. Note that if the quo-
tient forcing adds no Cohen reals, then we have a minimal forcing extension, and
total canonization of equivalences classifiable by countable structures follows by
Corollary 4.3.8. Proposition 2.5.2 then yields the Silver property of I for Borel
equivalences classifiable by countable structures. Thus, the difficulty lies on the
other side of the Borel equivalence relation map.

3.2a The bounding case

The initial suspicions voiced in Conjecture 3.2.2 are fully confirmed in the case
of bounding quotient forcing. Recall that a forcing is bounding if every function
in ωω in its extension is forced to be pointwise dominated by a ground model
function.

Theorem 3.2.3. Suppose that I is a Π1
1 on Σ1

1 σ-ideal σ-generated by closed
sets such that the quotient forcing PI is bounding. Then I has the mutual
generics property.
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Corollary 3.2.4. In this case, the ideal I has the Silver property.

To prove the corollary, look at the trichotomy theorem 2.1.3. For every given
Borel equivalence relation on a Borel I-positive set B ⊂ X, the intermediate
model case is excluded by the bounding property and Proposition 3.2.1(3). Non-
trivial ergodicity is excluded as well by the free set property, which is implied by
the mutual generics property. Thus, we have total canonization. The transversal
property 3.2.1(2) and proposition 2.5.2 then close the deal.

The assumptions do not imply total canonization for Borel graphs, as the
basic example of the cmin-graph and the associated ideal shows [49, Section
4.1.5].

Proof. The argument is a sort of fusion of fusions, and it requires some prelim-
inary considerations and notation. [49, Section 5.2.1] shows that Player I has a
winning strategy in a certain game. The game between Players I and II starts
with Player II indicating an initial condition Bini ∈ PI . After that, there are
infinitely many mega-rounds, the n-th ending with a set Bn ∈ PI . The n-th
megaround proceeds in the following way. Player I indicates one by one condi-
tions Ci ∈ PI , and Player II responds with subsets Di ⊂ Ci, Di ∈ PI . After
some finite number of rounds, Player I decides to end the megaround n, and
the set Bn equals to

⋃
iDi. Player I wins if Bini ∩

⋂
nBn /∈ I.

We will need the following notation. If τ is a finite play of the game ending
after Player I finished the n-th megaround, we will write τ(ini) for the initial
condition indicated, and τ(end) = τ(ini) ∩

⋂
m∈nBm. If τ is an infinite play

then τ(end) = τ(ini)∩
⋂

nBn. The following is the essence of the proofs in [49,
Claim 5.2.7]:

Fact 3.2.5. If σ is a strategy for Player I and τ0, τ1 are finite play respecting the
strategy σ, and D ⊂ PI×PI is an open dense set, then there are finite extensions
τ ′0, τ

′
1 of the plays, still respecting the strategy σ, such that τ ′0(end)× τ ′1(end) is

covered with finitely many elements of D.

Now we are ready to start the argument for the theorem. Let B ∈ PI

be a set, let σ be a winning strategy for Player I in the game, let M be a
countable elementary submodel of a large enough structure. We must produce
an I-positive Borel subset of B consisting of points mutually generic for the
model M . Let tn : n ∈ ω enumerate ω<ω with infinite repetitions, let Oi : i ∈ ω
enumerate basic open sets of X, and let Dn : n ∈ ω enumerate dense open
subsets of PI × PI in the model M . By induction on n ∈ ω build finite trees
Tn ⊂ ω<ω and maps fn with dom(fn) = Tn such that

• T0 ⊂ T1 ⊂ T2 . . .

• for every node t ∈ Tn, fn(t) is a finite play of the game G in the model
M respecting the strategy σ with fn(t)(ini) ⊂ B, and if m > n then
fn(t) ⊂ fm(t);

• whenever t 6= s ∈ Tn are nodes then fn(t)(end)× fn(s)(end) is covered by
finitely many sets in the set Dn;
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• if tn ∈ Tn then Tn+1 = Tn∪ tan i from the smallest possible i ∈ ω such that
tan i /∈ Tn, fn+1(tan i)(ini) ⊂ fn(tn)(end) and if fn(tn)end)(ini) ∩ Oi /∈ I
then even fn(tan i) ⊂ fn(tn)(end) ∩Oi;

• if tn /∈ Tn then Tn+1 = Tn.

The induction is not difficult to perform using the previous Fact. Let x ∈ ωω

be a point. The third item implies that the sets fn(t)(ini) : t ⊂ x, t ∈ Tn form
a system of compact sets linearly ordered by inclusion, with a single point g(x)
in the intersection. The point g(x) is M -generic. The map g : ωω → X is a
Borel injection, and its range must be Borel. The following two claims show
that rng(g) ⊂ B is the required set.

Claim 3.2.6. rng(g) /∈ I.

Proof. Suppose that Cj : j ∈ ω are closed sets in the ideal I. By induction on
j ∈ ω build nodes sj ∈ ω<ω as follows: note that the set

⋃
n fn(sj)(end) is I-

positive, and let i be a number such that Cj∩Oi = 0 while
⋃

n fn(sj)(end)∩Oi /∈
I. In the end, let x =

⋃
j sj and observe that g(x) /∈

⋃
j Cj .

Claim 3.2.7. If x 6= y then g(x), g(y) are mutually PI-generic points for the
model M .

Proof. Let D = Dn ∈ M be an open dense subset of PI × PI in the model
M . Find a large enough number m > n such that the longest initial segments
t ⊂ x, u ⊂ y still in the tree Tm are already distinct. The third item of the
induction construction shows that 〈g(x), g(y)〉 ∈ fm(t)(end) × fm(u)(end). At
the same time, fm(t)(end)× fm(u)(end) ∈M is a set covered by finitely many
elements of D; these elements can be found in the model M as well. Thus, the
pair 〈g(x), g(y)〉 belongs to some element of D ∩M as required.

3.2b Miller forcing and generalizations

The basic example not covered in the previous section is the Miller forcing. It
is the poset of all superperfect trees in ω<ω ordered by inclusion is connected
with the σ-ideal I on ωω σ-generated by compact sets:

Fact 3.2.8. [26] Whenever A ⊂ ωω is an analytic set, exactly one of the fol-
lowing is true: either A ∈ I or A contains all branches of a superperfect tree.
The ideal I is Π1

1 on Σ1
1.

Thus the map π : T → [T ] is an isomorphism between Miller forcing and a
dense subset of the poset PI . The canonization properties of the ideal I have
been thoroughly studied by Otmar Spinas.

Fact 3.2.9. [43] The ideal I has the free set property. [45] The ideal I has the
rectangular property. The ideal I has total canonization for Borel graphs.
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As every Π1
1 on Σ1

1 σ-ideal σ-generated by closed sets, the ideal I has the
transversal property, its free set property implies total canonization, and so in
conjunction with Proposition 2.5.2 this yields

Corollary 3.2.10. The ideal I has the Silver property.

In another breakthrough, Otmar Spinas [44] computed the ideal associated
with the product of Miller forcing with itself and canonized smooth equivalence
relations on it. The ideal J on ωω×ωω consists of exactly those Borel sets which
do not contain a product of two superperfect trees. Every smooth equivalence
relation canonizes either to identity, or to equality on one of the two coordinates,
or to EE on a superperfect rectangle. The product adds a dominating real and
therefore, essentialy by the results of Section 3.10, EKσ belongs to the spectrum
of the ideal J .

We will now attempt to generalize Spinas’s results to partially ordered sets
of infinitely branching trees with varying measures of the size of branching. For
an ideal K on a countable set a let P (K) be the poset of all trees T ⊂ a<ω such
that every node of T extends to a splitnode of T , and every splitnode t ∈ T the
set {i ∈ a : tai ∈ T} is not in the ideal K. Thus for example the Miller forcing
is P (Frechet ideal on ω). The computation of the ideal I(K) associated with the
forcing gives a complete information. Let X = aω with the product topology,
where a is taken with the discrete topology. For every function g : a<ω → K
consider the closed set Ag = {x ∈ aω : ∀n x(n) ∈ g(x � n)} ⊂ X, and the
σ-ideal I(K) on the space X σ-generated by all these closed sets. The following
is obtained by a straightforward generalization of the proof of Fact 3.2.8.

Fact 3.2.11. Let A ⊂ X be an analytic set. Exactly one of the following
happens:

• A ∈ I(K);

• there is a tree T ∈ P such that [T ] ⊂ A.

Moreover, if the ideal K is coanalytic then the σ-ideal I(K) is Π1
1 on Σ1

1.

Thus the map T 7→ [T ] is a dense embedding of the poset P (K) into PI(K). It
is clear now that the poset P (K) is proper and preserves Baire category since
the corresponding ideal is generated by closed sets [49, Theorem 4.1.2]. If the
ideal K is nonprincipal then the forcing adds an unbounded real. Other forcing
properties depend very closely on the position of the ideal K in the Katětov
ordering. The poset may have the Laver property (such as with K =the Frechet
ideal), or it may add a Cohen real (such as in K =the nowhere dense ideal on
2<ω). Similar issues are addressed in [36, Section 3]. We first look at a very
well behaved special case, generalizing the result of [43].

Theorem 3.2.12. Suppose that K is an Fσ ideal on a countable set. Then
I(K) has the free set property.
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Proof. Fix a Fσ-ideal K on ω and use Mazur’s theorem [31] to find a lower
continuous submeasure φ on P(ω) such that K = {a ⊂ ω : φ(a) < ∞}. The
argument now proceeds with a series of claims.

Claim 3.2.13. The forcing P (K) has the weak Laver property.

Here, a forcing P has the weak Laver property if for every condition p ∈ P ,
every name ḟ for a function in ωω forced to be dominated by a ground model
function there is a condition q ≤ p, an infinite set b ⊂ ω, and sets cn : n ∈ b of
the respective size n such that q 
 ∀n ∈ b̌ ḟ(n) ∈ cn. This is a forcing property
appearing prominently in connection with P-point preservation [50].

Proof. Let p ∈ P (K) be a condition, g ∈ ωω a function and ḟ a P (K)-name for
a function in ωω pointwise dominated by g. By induction on n ∈ ω construct
trees Un ∈ P (K) and their finite subsets un ⊂ Un, numbers mn and finite sets
cn ⊂ ω so that

• T = U0 ⊃ U1 ⊃ . . . and {t} = u0 ⊂ u1 ⊂ . . . where t is the shortest
splitnode of T ;

• un is an inclusion initial set of splitnodes of Un and for every node t ∈ un,
the set of its immediate successors that have some successor in un+1 has
φ-mass at least n;

• Un+1 
 ḟ(mn) ∈ čn and |cn| ≤ mn.

The induction is not difficult to perform. Given Un, un, letmn = |un| and for
every splitnode t ∈ un and every immediate successor s of t that has no successor
in un, thin out the tree Un � s to decide the value of ġ(mn). Thinning out the
set of immediate successors further if necessary, the decision can be assumed to
be the same for all such immediate successors of t, yielding a number kt ∈ ω.
Let cn = {kt : t ∈ un} and let Un+1 be the thinned out tree. Finally, find
un+1 ⊂ Un+1 satisfying the second item.

In the end, U =
⋂

n Un is a tree in the poset P (K) forcing ∀n ḟ(mn) ∈ č(n)
as desired.

Claim 3.2.14. Whenever a ⊂ ω is a K-positive subset and T ∈ P (K) forces
ḃ ⊂ ω is an element of K̇, then there is a condition S ≤ T and a K-positive
ground model set c ⊂ a such that S 
 č ∩ ḃ = 0.

Proof. This is in fact true for any forcing with weak Laver property in place of
P (K). Thinning out the condition T if necessary we may find a number m ∈ ω
such that T 
 φ(ḃ) < m̌. Find disjoint finite sets an ⊂ a with φ(an) > 2mn,
and use the weak Laver property to find a condition S ≤ T , an infinite set
b ⊂ ω and sets Bn ⊂ P(an) for every n ∈ b such that all sets in Bn have φ-mass
< m, |Bn| < n, and S 
 ḃ ∩ ǎn ∈ B̌n. Then for every number n ∈ b, the set
cn = an \

⋃
Bn has mass at least nm, and it is forced by S to be disjoint from

ḃ. Thus the set c =
⋃

n∈b cn works as desired.
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Now, suppose that D ⊂ ωω × ωω is a Borel set with I(K)-small vertical
sections, and T ∈ P (K) is a tree. We must find a tree S ⊂ T such that
[S]×[S]∩D ⊂ ID. Thinning out the tree T if necessary we may assume that there
is a continuous function f : [T ]×ω<ω → K such that for every branch x ∈ [T ] the
section Dx is included in the I(K)-small set {y ∈ ωω : ∀∞n y(n) ∈ f(x)(y � n)}.
Let tn : n ∈ ω be an enumeration of ω<ω with infinite repetitions, and construct
trees Un ∈ P (K) and their finite subsets un ⊂ Un so that

• T = U0 ⊃ U1 ⊃ . . . and {t} = u0 ⊂ u1 ⊂ . . . where t is the shortest
splitnode of T ;

• un is an inclusion initial set of splitnodes of Un;

• if tn ∈ un then un+1 = un together with some set of splitnodes extending
tn. All the new splitnodes differ from all the old ones and among each other
already at their |tn|-th entry. Moreover the set {i ∈ ω : ∃t ∈ un+1 t

a
n i ⊂ t}

has φ-mass at least n. If tn /∈ un then un+1 = un;

• if tn ∈ un and t 6= tn is another node in un, then for every node s ∈ un+1\u
and every x ∈ [Un+1 � s] it is the case that f(x)(t) is disjoint from the set
{i ∈ ω : tai ∈ Un+1 but no node of un extends tai}.

This is not difficult to do using the previous claim. In the end, the tree
S =

⋂
n Un belongs to P (K), and its set of splitnodes is exactly

⋃
n un. We

must show that [S]× [S] ∩D ⊂ ID. To see this, suppose for contradiction that
x 6= y ∈ [S] are two branches and y ∈ Dx. This means that there is a number
m0 such that for every m > m0, y(m) ∈ f(x)(y � m). Find a number n ∈ ω
such that tn ∈ un is an initial segment of x, un+1 \ un contains still longer
initial segment of x, and the longest node t ∈ un which is an initial segment of
y is of length greater than m0. Then the last item shows that y(|t|) /∈ f(x)(t),
contradicting the choice of m0!

Corollary 3.2.15. For Borel ideals K as in the theorem, the ideal I(K) has
the Silver property.

The previous result cannot be generalized to much more general ideals. A
more or less canonical ideal on a countable set which is not a subset of an Fσ-
ideal is K = Fin × Fin, the ideal on ω × ω generated by vertical sections and
sets with all vertical sections finite.

Example 3.2.16. The ideal I(K) does not have the free set property.

Proof. Let π : ω×ω → ω be a bijection. For every point x ∈ X = (ω×ω)ω define
the function g(x) ∈ ωω by g(x)(n) = max{π(x(m)) : m ∈ n}. Let D ⊂ X ×X
be defined by 〈x, y〉 ∈ D if for all but finitely many n ∈ ω, writing y(n) = (l,m),
it is the case that g(x)(l) > m. It is not difficult to see that the vertical sections
of the Borel set D are in the ideal I(K).

To show that the set D contradicts the free set property, suppose that T,U ∈
P (K) are two trees. We will find x ∈ [T ] and y ∈ [U ] such that 〈x, y〉 ∈ D. By
induction build splitnodes tj ∈ T and uj ∈ U so that
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• uj : j ∈ ω form an increasing sequence as well as tj : j ∈ ω;

• whenever n ∈ dom(uj+1) \ dom(uj) and uj+1 = (l,m) then l > |tj | + 1
and m < π(tj+1(|tj |).

The choice of the splitnodes t0, u0 is arbitrary. Suppose tj , uj have been
found. Find a pair (l′,m′) such that l′ > |tj | and ua

j (l′,m′) ∈ U . Let uj+1

be an arbitrary splitnode of the tree U above the node ua
j (l′,m′). Find a pair

l,m ∈ ω such that taj (l,m) ∈ T and π(l,m) is larger than all numbers appearing
in rng(uj+1). Let tj+1 be an arbitrary splitnode of the tree T above the node
taj (l,m). The induction hypotheses continue to hold.

In the end, write x =
⋃

j tj and y =
⋃

j uj . It is clear from the construction
that for all numbers n > |u0|, writing (m, l) = y(n), it is the case that l ∈
g(x)(m) and therefore 〈x, y〉 ∈ D. Thus the free set property fails.

In view of the results of the next section, the ideal I(Fin×Fin) has the Silver
property for all Borel equivalence relations reducible to EKσ or Ec0 . For this,
it is just enough to show that the associated forcing preserves outer Lebesgue
measure, and that in turn is equivalent to the Fubini property of the ideal Fin×
Fin by [36]. The Fubini property is introduced in the next section. To prove
the Fubini property of the ideal Fin × Fin, work by the way of contradiction,
and fix a putative offending Borel set D ⊂ a× [0, 1] of vertical sections of mass
larger than some ε > 0. Thus, all horizontal sections of the set D are in the
ideal Fin × Fin. Use the continuity of Lebesgue measure in increasing unions
to find a set B ⊂ [0, 1] of mass larger than 1 − ε and numbers {n,mi : i ∈ ω}
such that for every z ∈ B and every pair 〈k,m〉 ∈ a such that 〈k,m, z〉 ∈ D it is
the case that either k < n or m < mk. use the positivity of the set a to find a
pair 〈k,m〉 ∈ a such that k > n and m > mk. The vertical section D〈k,m〉〉 is of
Lebesgue mass greater than ε, and therefore has nonempty intersection with the
set B. However, for any point z ∈ B ∩ D〈k,m〉, the triple 〈k,m, z〉 contradicts
the properties of the set B!

3.2c The measure preserving case

Another partial result towards Conjecture 3.2.2 deals with σ-ideals whose quo-
tient forcings preserve outer Lebesgue measure. The argument is very flexible
and yields other canonization results as well.

Theorem 3.2.17. If the σ-ideal I is Π1
1 on Σ1

1, it is σ-generated by closed sets,
and the quotient forcing preserves outer Lebesgue measure then I has the Silver
property below EKσ

and also below Ec0 .

Proof. We will start with EKσ
; the case of Ec0 is then only a minor variation

of the whole argument.
Recall that EKσ

is an equivalence relation on the space Y = ωω below the
identity, connecting two functions y0, y1 ∈ Y if their distance, the maximum of
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|y0(n)− y1(n)| : n ∈ ω, is finite. Suppose now that B is an I-positive Borel set
and E is a Borel equivalence relation on B Borel reducible to EKσ

by a Borel
function f : B → ωω. We must prove that E has either an I-positive Borel
equivalence class or an I-positive Borel set consisting of pairwise inequivalent
elements. The argument is then completed as in Proposition 2.5.2. If there is
an I-positive E-equivalence class, then we are certainly done. So assume that
preimages of EKσ

-equivalence classes are I-small, and work to produce a Borel
I-positive set of pairwise inequivalent elements. Proceed in two stages: first
get a Borel I-positive set C ⊂ B on which the equivalence classes of E are
countable, and then use the general Corollary 4.2.6.

The main tool in the argument is the trace ideal tr(I) on the countable
collection of basic open subsets of X introduced in [36]: a set a of basic open
sets is in tr(I) if the set the closed set p(a) = {x ∈ X : every open neighborhood
of x contains a subset which is in a} is in the σ-ideal I. Obviously, tr(I) is an
ideal. The following is an easy abstract claim:

Claim 3.2.18. If PI preserves outer Lebesgue measure then the ideal tr(I) has
the Fubini property.

Here, the Fubini property of ideals is the one introduced in [23]. An ideal J
has the Fubini property if for every J-positive set a, every positive real ε > 0 and
every Borel set D ⊂ a×2ω with vertical sections of µ-mass > ε for the standard
Borel probability measure µ on 2ω, for some point y ∈ 2ω the horizontal section
Dy is J-positive. Note that the definition does not depend on the choice of the
probability measure space on the vertical coordinate by the standard measure
isomorphism arguments.

Proof. Let a /∈ tr(I) be a set and D ⊂ a×2ω be a Borel set with vertical sections
of mass at least ε. Note that p(a) as a condition in the forcing PI forces the
set {y ∈ 2ω : some open neighborhood of the generic point ẋgen contains no
subset in a containing y} ⊂ 2ω is of mass at most 1 − ε, and as PI preserves
outer Lebesgue measure, there is a condition C ⊂ p(a) forcing some definite
point y ∈ 2ω to not belong to this set. Then the vertical section Dy ⊂ a is
tr(I)-positive since C 
 ẋgen ∈ p(Dy).

Thinning out the condition B if necessary we may assume that the function
f is continuous on it, that B is Gδ, B =

⋂
nOn, and that the intersection of

every open set with B is either empty or I-positive. By induction on n ∈ ω,
we will construct trees Tn of finite inclusion decreasing sequences of basic open
subsets of X with nonempty intersection with the set B, Tn is of height n,
Tn+1 is an end-extension of Tn and writing a(t) = {O : tO ∈ Tn} for the set of
immediate successors of a node t ∈ Tn, we have

• a(t) consists of pairwise disjoint sets of radius < 2−n;

• ∀O ∈ a(t) O ⊂ O|t|;

• a(t) /∈ tr(I);
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• whenever O,P ∈ a(t) are distinct sets and x ∈ O ∩ B and y ∈ P ∩ B are
points then d(f(x), f(y)) ≥ n.

In the end, let T =
⋃

n Tn and let C = {x ∈ X : x belongs to infinitely
many open sets on the tree T} be the set of points obtained by intersecting the
open sets along the branches of the tree T . The first item shows that there is
a one-to-one correspondence between points in C and infinite branches through
the tree T . The second item shows that C ⊂ B.

The third item secures the I-positivity of the set C. Indeed, if Di : i ∈ ω
are closed sets in the ideal I, one can induce on i to pick open sets 〈Pi : i ∈ ω〉
forming a branch through the tree T such that Di ∩ Pi+1 = 0, and then the
single point in the intersection of these sets will belong to the set C \

⋃
iDi,

witnessing the I-positivity of the set C. To pick the open set Pi once the
sequence t = 〈Pj : j ∈ i〉 has been constructed, note that if every set P ∈ a(t)
had nonempty intersection with Di, then p(a(t)) ⊂ Di, contradicting the third
item of the induction hypothesis above.

The fourth item shows that the E-equivalence classes on the set C are count-
able. If x ∈ C and n ∈ ω then every open set at level n of the tree T can
contain at most one point y ∈ B such that d(f(x), f(y)) < n/2. There are
only countably many numbers n and nodes in the tree T , and therefore the set
{y ∈ C : x E y} must be countable. The last item just makes the induction go
through.

Thus, once the induction is complete, the theorem for EKσ
will follow. The

induction is simple except for the fourth item. Suppose that some endnode
t ∈ Tn has been constructed, labeled with an open set O. The collection
b(t) = {P : P ⊂ O is a basic open set of radius < 2−n, a subset of O|t|, with non-
empty intersection with B} is positive in the ideal tr(I) since B ∩O ⊂ tr(b(t)).
Enumerate the set b(t) by {Pi : i ∈ ω} and by induction on i ∈ ω build sets
ci ⊂ O ∩B and numbers ki ∈ ω so that

• ci is a set of size 2i consisting of pairwise inequivalent elements of Pi ∩B;

• for each pair {x, y} of distinct elements of ci there is a number k ∈ ki such
that |f(x)(k)− f(y)(k)| > 2n;

• for all elements x ∈ ci+1, the finite sequence f(x) � ki is the same.

This is easy to do. To obtain ci+1, first pick an arbitrary point x ∈ B∩Pi+1

and note that the set P = {y ∈ Pi : f(x) � ki = f(y) � ki} is relatively open
in B by the continuity of the function f , it has nonempty intersection with
B ∩ Pi+1 and therefore an I-positive intersection with this set, and since E-
classes are I-small, there must be a collection of 2i+1 many inequivalent points
in B ∩Pi+1 ∩P . Then choose the number ki+1 to be sufficiently large to satisfy
the second item.

In the end, consider the space Z = Πici and the Borel probability measure
µ on it which is the product of the normalized counting measures on the various
ci’s. Consider the set D ⊂ b(t)×Z of those pairs 〈Pi, z〉 such that there is j ∈ i
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such that f(z(j)) � kj is n-close to f(z(i)) � ki. Observe that given numbers
j ∈ i ∈ ω, there can be at most one x ∈ cj such that f(x) � kj is n-close to some
(any) f(y) � ki : y ∈ ci, and so the vertical sections of the set D have µ-mass at
most Σi2−i−2 = 1/2. By the Fubini property of the ideal tr(I), there is z ∈ Z
such that the set d(t) = {Pi : 〈Pi, z〉 /∈ D} is not in the trace ideal. For every
open set Pi ∈ d let Qi ⊂ Pi be a basic open set with nonempty intersection with
B and such that ∀x ∈ B∩Qi f(x) � ki = z(Pi) � ki. The set e(t) = {Qi : Pi ∈ d}
is not in the trace ideal since p(d(t)) ⊂ p(e(t)). If the immediate successors of
the node t in Tn+1 will be the basic open sets in the set e(t), the induction
hypotheses will be satisfied

Now, let us return to the case of equivalence relations below Ec0 . Recall that
Ec0 is the equivalence relation on Rω connecting sequences x, y if lim |x(n) −
y(n)| = 0. Suppose that B ∈ PI is a Borel I-positive set and E a Borel
equivalence relation on it reducible to Ec0 by a Borel function f : B → Rω. We
must find a Borel I-positive subset of B such that E is equal to the identity or
everything on it. As always, thinning out the set B if necessary we may assume
that the function f is continuous on it, B is a Gδ set, and its intesection with
any open set is either I-positive or empty. There are two distinct cases.

In the first case, for every relatively open I-positive subset of B and every
ε > 0 there is a still smaller I-positive relatively open subset of B such that
for every two points x, y in it, lim sup |f(x)(n) − f(y)(n)| < ε. In this case,
a similar construction as in the EKσ

case yields a tree T labeled by open sets
such that for any open set at n-th level and any points x, y ∈ B in this open
set, lim sup |f(x)(n) − f(y)(n)| < 2−n. Let C ⊂ B be the Borel I-positive set
associated with the tree T . It is immediate that the complement of E is relatively
open in C2, and therefore E is smooth on C2 by [8, Proposition 5.4.7]. The
forcing PI adds a minimal forcing extension by [49, Theorem 4.1.7] and so has
total canonization for smooth equivalences, which concludes the proof in this
case.

In the second case, there is a relatively open I-positive subset B′ ⊂ B and
a positive real ε > 0 such that every smaller relatively open set contains points
x, y such that the lim sup |f(x)(n)− f(y)(n)| > ε. In this case, proceed just as
in the treatment of EKσ

.

3.2d Cohen forcing

The Cohen forcing is the partial ordering of finite binary sequences with inclu-
sion. The associated ideal I is the ideal of meager subsets of 2ω as the following
fact shows.

Fact 3.2.19. Whenever B ⊂ 2ω is an analytic set the there is an open set
O ⊂ 2ω such that O∆B is meager.

The spectrum of Cohen forcing is quite complicated; we only point out several
fairly simple features.

Proposition 3.2.20. E0 is in the spectrum of Cohen forcing.
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No other countable Borel equivalence relations belong to the spectrum as by
Theorem 4.2.7, essentially countable→Ireducible to E0.

Proof. It is enough to show that for every Borel nonmeager set B ⊂ 2ω, E0 ≤
E0 � B. By the Baire category theorem, there is a finite sequence s ∈ 2<ω such
that B is comeager in Os, B ⊂ Os ∩

⋂
n Pn where Pn ⊂ 2ω is open dense. By

induction on n ∈ ω build pairs {t0n, t1n} of distinct finite binary sequences of the
same length such that for every number n ∈ ω, writing t for the concatenation
sa(ti(0)0 )a(ti(1)1 )a . . .a (ti(n)

n ), we have Ot ⊂ Pn no matter what the choices of
i(0), i(1), . . . i(n). Now let f : 2ω → B be the continuous function for which
f(x) is defined as the concatenation of s with all tx(n)

n : n ∈ ω. It is not difficult
to see that f is the required reduction of E0 to E0 � B.

Proposition 3.2.21. E2 is in the spectrum of Cohen forcing.

Proof. Consider the E2 equivalence on 2ω. The σ-ideal J σ-generated by Borel
grainy subsets of 2ω consists of meager sets only, as shown in Claim 3.5.7. Thus,
whenever B ⊂ 2ω is a Borel non-meager set then B /∈ J and therefore E2 is
Borel reducible to E2 � B by Fact 3.5.1. The proposition follows.

Proposition 3.2.22. F2 is in the spectrum of Cohen forcing.

Proof. Consider the underlying space of the Cohen forcing to beX = (2ω)ω with
the product topology, and the ideal I to be the meager ideal in this topology.
Consider the equivalence relation F2 on this space. It will be enough to show
that F2 reduces to F2 restricted to any Borel non-meager set.

we will need a preliminary observation. Let M be a countable elementary
submodel of a large enough structure and b be a countable dense subset of 2ω

Cohen generic over M in finite tuples. It turns out that M(b) is the M [[ẋgen ]]F2

choiceless model; in order to prove the proposition, we need to look at it more
closely. We will show that every Borel non-meager subset of X in the model
M contains many one-to-one enumerations of the set b. Consider b with the
discrete topology, the space bω with product topology, and the space Zb of all
bijections between b and ω as a Gδ subset of bω with the inherited (and therefore
Polish) topology.

Claim 3.2.23. Whenever B ⊂ X is a Borel nonmeager set in the model M ,
the set B ∩ Zb is nonmeager in Zb.

Proof. Let Pn : n ∈ ω be open dense subsets of the space Zb; we must find a
point in the intersection B ∩

⋂
n Pn. Find a nonempty basic open set O ⊂ X

and countably many open dense sets {On : n ∈ ω} such that B ⊃ O ∩
⋂

nOn;
by elementaricity these objects can be found in the model M . Use the density
of the set b to find a finite injection g0 : ω → b such that any totalization of it
will belong to the basic open set O. By induction on n ∈ ω build finite partial
injections gn : ω → b so that
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• g0 ⊂ g1 ⊂ . . . , n ∈ dom(gn+1) and the n-th element of b in some fixed
enumeration belongs to rng(gn+1);

• every totalization of gn+1 in X belongs to On;

• the basic open subset of Zb determined by gn+1 is a subset of Pn.

In the end, the function
⋃

n gn will clearly be an element of Zb in
⋂

n Pn ∩B.
To perform the induction step, suppose that the function gn has been found.

First, find an extension g′n such that all of its totalizations in X belong to On:
the set On ∈M is open dense, its projection to the dom(gn) coordinates is open
dense as well, it is in the model M , and since gn is Cohen-generic over the model
M , it must be the case that gn ∈ A. The vertical section Agn

is nonempty an
open, and as the set b\ rng(gn) is dense, there must be an injective extension g′n
such that all of its totalizations belong to On. Now, just extend g′n to gn+1 in an
arbitrary way to satisfy the first and third item of the induction hypothesis.

Now, let B ⊂ X be a Borel nonmeager set. To find the reduction of F2 to
F2 � B, choose a countable elementary submodel M of a large structure. It
is not difficult to find a Borel set D ⊂ 2ω with uncountable intersection with
every nonempty open set, consisting of points Cohen generic for the model M
in finite tuples, and a Borel reduction f : X → Dω of F2 to F2 � Dω such
that rng(f(~x)) is dense for every ~x ∈ X. Let S∞ be the infinite permutation
group with its natural Polish topology. Consider the Borel set A ⊂ (2ω)ω × S∞
given by 〈~x, π〉 ∈ A if f̂(x) ◦ π ∈ B. The previous claim shows that the vertical
sections of the set A are nonmeager in S∞ and so by [27, Theorem 18.6], there
is a Borel uniformization h : (2ω)ω → (2ω)ω. It is immediate that the function
h is a reduction of F2 to F2 � B.

Proposition 3.2.24. The spectrum of Cohen forcing is cofinal in ≤B and it
includes EKσ .

Proof. In the Section 3.8 on the infinite countable support product of Sacks
forcing, we prove that its associated ideal on (2ω)ω consists of meager sets, and
its spectrum is cofinal in ≤B . Thus, the equivalence relations exhibited in that
proof will also yield the same feature for Cohen forcing. These equivalence
relations include EKσ

, among others.

3.3 Halpern-Läuchli forcing

The Halpern-Läuchli forcing P consists of those trees T ⊂ 2<ω such that there
is an infinite set aT ⊂ ω such that t ∈ T is a splitnode if and only if |t| ∈ aT .
The ordering is that of reverse inclusion. P is quite similar to the Sacks or
Silver forcing notions, and the standard fusion arguments showthat it is proper
and has the continuous reading of names. Consequently, the computation of the
associated ideal can be found in [49, Proposition 2.1.6]. Let X = 2ω, and let
I be the σ-ideal generated by those Borel sets A such that for no tree T ∈ P ,
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[T ] ⊂ A. Then I is a Π1
1 on Σ1

1 σ-ideal, every positive analytic set contains a
positive Borel subset, and the map T 7→ [T ] is a dense embedding from P to
PI .

This forcing serves as a good example refuting several natural conjectures.
It has the free set property, but not the mutual generics property. It has total
canonization, but not the Silver dichotomy. There is a natural σ-closed regular
subforcing, which then cannot be obtained as PE

I from any Borel equivalence
relation E on X.

Proposition 3.3.1. I has the free set property.

Proof. We will need a sort of a reduced product of the Halpern-Läuchli forcing.
Let P×rP be the poset of all pairs 〈T,U〉 ∈ P×P such that aT = aU . Similarly
to the usual product, the reduced product adds points ẋlgen, ẋrgen ∈ X which are
the intersections of all trees on the left (or right, respectively) side of conditions
in the generic filter. Still, the difference between P ×r P and P × P should be
immediately apparent. A more detailed analysis will show that P forces that
the set {aT : T ∈ G} is a generic filter for the poset P(ω) modulo finite, and the
reduced product is equivalent to the two step iteration of P(ω) modulo finite
followed with the product of two copies of the remainder forcing P/P(ω) modulo
finite.

We will need a computation of the σ-ideal associated with the product P ×r

P . Let I ×r I be the collection of all Borel subsets B ⊂ 2ω × 2ω such that there
is no pair 〈T,U〉 ∈ P ×r P such that [T ]× [U ] ⊂ B.

Claim 3.3.2. I ×r I is a σ-ideal of Borel sets, and the map T,U 7→ [T ] × [U ]
is a dense embedding of P ×r P into PI×rI .

Proof. Suppose that T,U ∈ P ×r P , and [T ] × [U ] =
⋃

nBn is a countable
union of Borel sets. We must find a pair of trees T̄ , Ū ∈ P ×r P such that
the set [T̄ ] × [Ū ] is a subset of one of the Borel sets in the union. Strengthen
the condition 〈T,U〉 if necessary to find a specific number n ∈ ω such that
〈T,U〉 
 ẋlgen, ẋrgen ∈ Ḃn. Let M be a countable elementary submodel of
a large enough structure, and let Dm : m ∈ ω be an enumeration of all open
dense subsets of P×rP in the modelM . By induction onm ∈ ω build conditions
〈Tm, Um〉 ∈M in the reduced product so that

• T0 = T , the conditions Tm ∈M ∩ P form a decreasing sequence, and the
first m+1 splitting levels of Tm are equal to the first m+1 splitting levels
of Tm+1, and the same on the U side;

• for every choice of nodes t ∈ Tm+1, u ∈ Um+1 just past the m-th splitting
level, the condition 〈Tm+1 � t, Um+1 � u〉 ∈ P ×r P is in the set Dm.

The induction is elementary, at each step making a pass through all pairs 〈t, u〉
as in the second item to handle them all. In the end, the pair 〈T̄ =

⋂
m Tm, Ū =⋂

n Um〉 ∈ P ×r P is a condition such that every pair 〈x, y〉 ∈ [T̄ ] × [Ū ] is M -
generic for the reduced product below the condition 〈T,U〉. The forcing theorem
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implies that M [x, y] |= 〈x, y〉 ∈ Bn, and by analytic absoluteness 〈x, y〉 ∈ Bn.
In other words, [T̄ ]× [Ū ] ⊂ Bn as desired.

An essentially identical argument yields

Claim 3.3.3. Suppose that M is a countable elementary submodel of a large
enough structure and T ∈M ∩P is a tree. There is a tree U ∈ P , U ⊂ T , such
that every two distinct elements of U are M -generic for the reduced product.

The proposition immediately follows. Let D ⊂ X ×X be a Borel set with
all vertical sections in the ideal I; clearly, such a set belongs to the σ-ideal
I. Let T ∈ P . Let M be a countable elementary submodel of a large enough
structure containing both D and T . Let U ⊂ T be a tree in P such that every
two distinct points of [U ] are reduced product generic for M . An absoluteness
argument immediately shows that ([U ]× [U ]) ∩D ⊂ ID.

Proposition 3.3.4. I does not have the mutual generics property.

Proof. Suppose that M is a countable elementary submodel of a large structure,
and suppose for contradiction that there is a tree T ∈ P such that [T ] consists
solely of points mutually generic for P × P over M . For every point x ∈ [T ]
let gx ⊂ P ∩M be the M -generic filter generated by x. The key point: the set
B = {x ∈ [T ] : ∃S ∈ gx aT ⊂ aS modulo finite} is relatively meager in [T ]. If
not, by the Baire category theorem there would be a tree S ∈ P ∩M and a node
t ∈ T such that for comeagerly many points x ∈ [T ] passing through T , S ∈ gx

and aT \ aS contains some elements above |t|. Take two extensions t0, t1 ∈ T of
the tree T that split at some level in aT \ aS and points x0, x1 ∈ [T ] extending
them respectively such that S ∈ gx0 , gx1 . However, this means that t0 ∩ t1 is a
splitnode of S, contradicting the choice of the two nodes t0, t1.

Now, choose two distinct ponts x0, x1 ∈ B and observe that the set aT ⊂ ω
diagonalizes both of the filters hx0 , hx1 on P(ω) modulo finite in M given by
gx0 , gx1 . In particular, hx0 does not contain a set with finite intersection with
some set in hx1 as would be the case if the filters gx0 , gx1 were M -generic for
the product P × P !

Proposition 3.3.5. I does not have the transversal property.

Proof. Find a Borel injection f : 2ω → [ω]ℵ0 whose range consists of pairwise
almost disjoint sets. Let D ⊂ 2ω × 2ω be the Borel set of all pairs 〈x, y〉 such
that y(n) = 0 whenever n /∈ f(x). It is fairly obvious that the vertical sections
of the set D are pairwise disjoint I-positive sets. It turns out that D is the
sought counterexample to the transversal property.

Indeed, suppose that T ∈ P is a tree such that the closed set [T ] ⊂ 2ω is
covered by the sections of the set D, and visits each section in at most one
point. There must be distinct points y0, y1 ∈ [T ] such that the set a = {n :
y0(n) = y1(n) = 1} is infinite. If x ∈ 2ω is such that y0 ∈ Dx, it must be the
case that a ⊂ f(x), and the same for y1. However, since the sets in the range
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of f are pairwise almost disjoint, there can be only one such point x ∈ 2ω, and
both y0, y1 must belong to Dx, contradicting the choice of the tree T ∈ P .

Proposition 3.3.6. PI regularly embeds a nontrivial σ-closed forcing.

Proof. If G ⊂ PI is a generic filter, then H ⊂ P(ω) mod finite, H = {aT :
T ∈ G} is a generic filter as well. The function T 7→ aT is the associated
pseudoprojection from P to P(ω) mod finite.

3.4 E0 forcing

Let I be the σ-ideal on the spaceX = 2ω generated by Borel partial E0 selectors.
The quotient forcing PI is proper, bounding, preserves outer Lebesgue measure
as well as Baire category [49, Section 4.7.1]. We will use a combinatorial descrip-
tion of the quotient forcing as creature forcing with gluing. A creature is a pair
of distinct finite binary sequences of the same length; for notational simplicity
we will require that the two sequences differ at their first entry. If c(i) : i ∈ n is
a finite sequence of creatures then [c(i) : i ∈ n] is the set of all binary sequences
obtained by choosing one sequence from each creature and concatenating them
all. A composition of the finite sequence of creatures is another creature, a pair
of distinct binary sequences in [ci : i ∈ n] which differ at their first entry–thus
there are only finitely many different compositions. A partial order P consists
of pairs p = 〈tp,~cp〉 where ~cp is an ω-sequence of creatures and tp is a finite
binary string. The order is defined by q ≤ p if there is a decomposition of ω
into finite consecutive intervals in : n ∈ ω such that tq = tap s

a
0 s

a
1 . . . where

sm ∈ ~cp(m) : m ∈ i0, and the creatures ~cq(n) are obtained as a composition of
creatures in ~cp(m) : in ≤ m < in+1.

We will need some notation. If p ∈ P is a condition, then sp(p), the collec-
tion of splitnodes of p, is the collection of all binary sequences obtained as the
concatenation of the trunk tp with some binary sequence in [cp(i) : i ∈ n] for
some n ∈ ω; such a splitnode is said to be at n-th splitting level of p. If t ∈ sp(p)
is a splitnode at splitting level n and then p � t is the condition 〈t, cp(i) : i ≥ n〉;
so p � t ≤ p. Two splitnodes s, t ∈ s(p) at the same splitting level n + 1 will
be called forked if the sequences in cp(n) which are subsequences of s and t
respectively are distinct. For a condition p, let [p] ⊂ 2ω be the closed set of all
binary sequences x such that x = tap s

a
0 s

a
1 . . . where sn ∈ ~cp(n) for all n ∈ ω.

Theorem 3.4.1. 1. Every analytic subset of 2ω is either in the ideal I, or
it contains a subset of the form [p] for some p ∈ P , and these two options
are mutually exclusive;

2. the σ-ideal I on 2ω is Π1
1 on Σ1

1;

3. the forcing PI is proper, bounding, preserves Baire category and outer
Lebesgue measure, and it adds no independent reals.

In particular, the map p 7→ [p] is an isomorphism of P and a dense subset of PI .
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Proof. The first two items were proved essentially in [48, Theorem 2.3.29] The
other features come from [49, Section 4.7.1] except for adding no independent
reals. This is as always more difficult than the other preservation properties,
and it uses a partition claim of independent interest:

Claim 3.4.2. If p ∈ P is a condition and π : sp(p) → 2 is an arbitrary function
then there is a condition q ≤ p such that π � sp(q) is constant.

Restated, the collection of those subsets of 2<ω which do not contain a subset
of the form sp[q] for some condition q ∈ P is an ideal.

Proof. It is necessary to use a partition theorem here. Hindman theorem 1.3.22
is strong enough; in order to maintain the style of the exposition, we will
use Fact 1.3.23. Choose subsequent intervals im : m ∈ ω of ω such that for
every number m ∈ ω, every coloring of pairs of 2|im| with m colors contains
a monochromatic triangle. Let am = [[~cp(j) : j ∈ im]]2 and let φm be the
submeasure on am assigning a set b the minimum number of triangle-free sets
covering b; thus φm(am) ≥ m. Consider the following partition π̄ of the set
Πmam × ω into two Borel pieces: π(y,m) = π(s) where s is the splitnode of
p obtained by concatenatingtp, the lexicographically smaller sequences in the
pairs y(n) : n ∈ m and the longest common initial segment of the two sequences
in y(m). By Fact 1.3.23, there are nonempty sets bm : m ∈ ω whose respective
φm-masses tend to infinity and an infinite set c ⊂ ω such that π̄ � Πmbm × c is
constant.

Thininning out the set c if necessary, we may assume that the sets bm : m ∈ a
all have φm-mass at least two, so they contain a triangle. For every number
m /∈ a, pick a pair in bm and a lexicographically smaller sequence sm in it, and
for every number m ∈ a find a triangle in bm and let sm(0), sm(1) be the two
lexicographically smallest sequences in this triangle. It is not difficult to find the
unique condition q ∈ P such that all points in [q] are obtained by concatenating
sequences sm and sm(jm) for m ∈ ω and some choice of bits jm ∈ 2 for m ∈ a.
The definition of the partition π̄ shows that π � sp(q) is constant as desired.

To prove that no independent reals are added, suppose p ∈ P is a condition
and ẋ a name for an element of 2ω. We must find a condition q ≤ p and an
infinite set a ⊂ ω such that q 
 ẋ � a is constant. First, use an obvious fusion
argument to thin out the condition p so that for every splitnode t ∈ sp(p) at n-th
splitting level, p � t decides ẋ(ň). Now let π : sp(p) → 2 be the map recording
this decision, and use the claim to find a condition q ≤ p such that π � sp(q) is
constant, with the constant value equal to, say, 0. There are numbers nk : k ∈ ω
such that every splitnode of q at k-th splitting level is a splitnode of p at nk-th
splitting level. Clearly, q 
 ẋ � {nk : k ∈ ω} is constant with value 0, completing
the proof.

Clearly, the ideal I defined in such a way that the poset PI has E0 in its
spectrum:
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Theorem 3.4.3. E0 is in the spectrum of the ideal I. The poset PE0
I is regularly

embedded in PI , it is ℵ0-distributive, and it yields the V [ẋgen ]E0 extension.

Proof. This is just a particular case of the work of Section 4.2.

No equivalence relation beyond E0 is in the spectrum, and in fact, every
Borel equivalence relation on 2ω simplifies to ID, E0 or EE on a Borel I-positive
set. This strong canonization result is the consequence of the fact that the
reduced product PI ×E0 PI is exceptionally well behaved. Recall its general
definition from Definition 2.2.8: it is the set of those pairs 〈A,B〉 ∈ PI × PI

such that some large collapse forces that there are V -generic points x ∈ A, y ∈ B
which are E0 related. The reduced product adds a pair of points ẋlgen, ẋrgen,
each of which is PI -generic. We will denote the associated ideal by I ×E0 I; it
consists of those analytic subsets of 2ω × 2ω such that the reduced-generic pair
is outright forced not to belong to them. We will first define its combinatorial
version and prove that it is equivalent to the general notion.

Definition 3.4.4. P ×E0 P is the set of all pairs 〈p, q〉 ∈ P × P such that
|tp| = |tq| and ~cp = ~cq, ordered coordinatewise.

Theorem 3.4.5. The ideal I ×E0 I is Π1
1 on Σ1

1. For every analytic set A ⊂
2ω × 2ω, exactly one of the following happens:

1. A ∈ I ×E0 I;

2. there is a condition 〈p, q〉 ∈ P ×E0 P such that [p]× [q] \ E0 ⊂ A.

Thus, the map 〈p, q〉 7→ [p]× [q]\E0 is an isomorphism of P ×E0 E with a dense
subset of PI×E0I .

Proof. First observe that the map 〈p, q〉 7→ 〈[p], [q]〉 is an isomorphism of P×E0P
with PI ×E0 PI . It is clear that 〈[p], [q]〉 is a condition of the general reduced
product. We just must show that every condition 〈B,C〉 ∈ PI ×E0 PI has a
strengthening of this form. To see this, note that it must be the case that the
analytic [B]E0 ∩ [C]E0 must be I-positive and therefore it must contain a subset
of the form [r] for some r ∈ P . Using the σ-additivity of the ideal I, it is possible
to strengthen the condition r so that there will be finite sequences u, v ∈ 2<ω

shorter than the trunk of r such that [tr�u,~cr] ⊂ B and [tr�v,~cr] ⊂ C. Thus,
the conditions p = 〈tr � u,~cr〉 and q = 〈tr � v,~cr〉 will be as required.

To proceed, the following claim will be useful:

Claim 3.4.6. Whenever M is a countable elementary submodel of a large
enough structure, and 〈p, q〉 ∈ P ×E0 P ∩ M is a condition, then there is a
condition p′, q′ ≤ p, q with the same trunks such that whenever x ∈ [p] and
y ∈ [q] are non-E0-equivalent sequences then the pair is P ×E0 P -generic for the
model M .

The dichotomy immediately follows: if A ⊂ 2ω×2ω is an analytic I×E0I-positive
set and 〈p, q〉 
 〈ẋlgen, ẋrgen〉 ∈ Ȧ. M is a countable elementary submodel and
〈p′, q′〉 is a condition as in the claim, then ([p′]× [q′])\E0 is a subset of A by the
forcing theorem and analytic absoluteness between transitive models of ZFC.
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Proof. To get the condition 〈p′, q′〉, by induction on n ∈ ω build a decreasing
sequence of conditions 〈pn, qn〉 ∈ P ×E0 P ∩M so that

• tpn
= tp, tqn

= tq, ~cpn
� n = ~cpn+1 � n;

• whenever u, v are two forked sequences at n+ 1-st splitting level of pn, qn
respectively then the condition 〈pn � u, qn � v〉 is in all the first n open
dense subsets of P ×E0 P in the model M under some fixed enumeration.

The induction is elementary. In the end, consider p′ = limn pn and q′ =
limn qn. The first item of the induction shows that the pair 〈p′, q′〉 is indeed
a condition in P ×E0 P . The second item shows that all elements of [p′, q′]
are M -generic. Clearly, 〈p′, q′〉 ∈ P ×E0 P is an M -master condition with the
desired properties.

The complexity of the ideal is a direct corollary of the previous method of
proof. Let A ⊂ 2ω × 2ω × 2ω be an analytic set. We must show that the set
B = {x ∈ 2ω : Ax /∈ I ×E0 I} is analytic. To this end, choose a closed set
C ⊂ 2ω × 2ω × 2ω × ωω whose projection A is, and prove that x ∈ B if and
only the following formula φ(x) holds: there is a condition 〈p, q〉 ∈ PI ×E0 PI

and a function f mapping forked pairs 〈u, v〉 of nodes u ∈ sp(p), v ∈ sp(q) to
ω<ω such that f preserves extension, and whenever u, v are at the n-th splitting
level then f(u, v) ∈ ωn is a node such that the basic open set Ox�n,u,v,f(u,v) ⊂
2ω × 2ω × 2ω × ωω has nonempty intersection with the closed set C. φ(x) is
clearly an analytic formula, and if we show the equivalence φ(x) ↔ x ∈ B, we
will have shown that B ⊂ 2ω is an analytic set.

Now, φ(x) certainly implies that Ax is I ×E0 I-positive and so x ∈ B: if
〈p, q〉, f witness φ(x), then for every pair y ∈ [p], z ∈ [q] of non E0-equivalent
points the functional values of f(y � n, z � n) eventually converge to an infinite
sequence w ∈ ωω, by the closedness of the set C it must be the case 〈x, y, z, w〉
must belong to the set C, and so 〈y, z〉 ∈ Ax. Thus, [p]× [q] \E0 ⊂ Ax and the
set Ax is indeed I ×E0 I-positive.

For the opposite implication, suppose that Ax /∈ I ×E0 I, so there is a
condition 〈p, q〉 ∈ P ×E0 P such that ([p] × [q] \ E0) ⊂ Ax by the work in
the previous paragraphs. This inclusion is a Π1

2 statement and therefore per-
sists into the P ×E0 P extension by Shoenfield’s absoluteness. So 〈p, q〉 

〈ẋlgen, ẋrgen〉 ∈ Ȧx, and there must be a name τ for an element of ωω such
that 〈p, q〉 
 〈x, ẋlgen, ẋrgen, τ〉 ∈ Ċ. The fusion arguments in the previous para-
graphs then show that thinning out the condition 〈p, q〉, there is a function f
on forked pairs of nodes that reads off the initial segments of τ from initial
segments of ẋlgen, ẋrgen. The objects 〈p, q〉, f then witness the formula φ(x)!

Theorem 3.4.7. The reduced product forcing is proper. It adds an unbounded
real and an independent real. It preserves outer Lebesgue measure and Baire
category.

Proof. The first sentence is proved in the previous argument. Simple genericity
arguments will show that the function ḟ : n 7→ min{m : ẋlgen(m) 6= ẋrgen(m)}
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is not bounded by any ground model function in ωω. The function g : n 7→
ẋlgen(ḟ(n)) in 2ω cannot contain a ground model infinite subfunction, and so an
independent real is added as well. The two preservation properties are harder.

For the preservation of Baire category, it is enough to verify that the ideal
I ×E0 I is an intersection of a collection of meager ideals associated with Polish
topologies generating the given Borel structure as in [49, Corollary 3.5.4]. Let
〈p, q〉 ∈ P ×E0 P be a condition; it will be enough to produce a Polish topology
on the set ([p] × [q]) \ E0 such that I is a subset of its meager ideal. It is not
difficult to verify that the product topology on [p]× [q] restricted to the set [p, q]
is exactly such. Note that ([p]× [q])\E0, so it is a dense Gδ set in this topology
and therefore Polish.

The preservation of outer measure seems to be a much more complicated
deal. We need to use a probability version of a partition theorem of ??? to
establish the following auxiliary claim. For a condition p ∈ P let sp(p), the
set of splitnodes of p, be the collection of all binary sequences obtained as the
concatenation of tp and ui : i ∈ n where ui ∈ ~cp(i) are arbitrary sequences and
n ∈ ω is a natural number. Clearly, q ≤ p→ sp(q) ⊂ sp(p)

Claim 3.4.8. For every condition p ∈ P , every positive real number ε > 0,
and every assignment t 7→ Bt of Borel subsets of 2ω of Lebesgue mass > ε to
splitnodes of p, there is q ≤ p and y ∈ 2ω such that y ∈ Bt for every splitnode t
of q.

Proof. Let 0 = i0 < i1 < i2 < . . . be a sequence of natural numbers, increasing
very fast. For every n ∈ ω, let an be the collection of all distinct pairs of
sequences obtained as concatenations of sequences ui : i ∈ [i0, i1), ui ∈ ~cp(i).
Recall the quantitative Ramsey theorem ???: for every number n ∈ ω there
is a positive real δn > 0 such that every subset of an of normalized counting
measure mass > δn contains a triangle, and the real δn can be made arbitrarily
small by increasing the number in+1 and therefore the size of the set an. Thus,
the numbers in : n ∈ ω can be chosen increasing so fast that for some numbers
mn : n ∈ ω, writing φn for the normalized counting measure on an multiplied
by mn, every set of φn-mass contains a triangle and the numbers mn increase
so fast as to satisfy [38, Theorem 1.5] for the given positive number ε.

Now, define a Borel set D ⊂ Πnan × ω × 2ω in the following way: 〈wn :
n ∈ ω, k, y〉 ∈ D if y ∈ Bt, where t ∈ 2<ω is the splitnode of p obtained by the
concatenation of tp together with un : n ∈ k, (where un ∈ wn is the lexicograph-
ically smaller sequence in the pair), together with the longest common initial
segment of the two sequences in the pair wk. Note that the vertical sections
of this set have Lebesgue mass at least ε. By [38, Theorem 1.5], there are sets
bn : n ∈ ω of respective φn-masses at least 1, an infinite set c ⊂ ω and a point
y ∈ 2ω such that Πnbn × c× {y} ⊂ D.

Now, for every number n ∈ c, the set bn contains a triangle, and two vertices
of the triangle will be lexicographically smaller than the third vertex, forming
a pair wk. For every n /∈ c, just pick any pair wn ∈ bn, and consider the set
B = {x ∈ 2ω : x is a concatenation of tp and 〈un : n ∈ ω〉, where for n ∈ c the
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sequence un ∈ wn is arbitrary, and for n /∈ c, un ∈ wn is the lexicographically
smaller sequence}. It is not difficult to see that there is exactly one condition
q ∈ P such that [q] = B, and this condition together with the point y ∈ 2ω

witness the statement of the claim!

Now, suppose that some condition in the reduced product forces that Ȯ ⊂ 2ω

is an open set of Lebesgue mass < 1/4. It will be enough to find a point z ∈ 2ω

and a stronger condition forcing ž /∈ Ȯ. To simplify the considerations, assume
that the original condition has empty stem part, that is, it is of the form 〈p, p〉
for some p ∈ P with tp = 0. Assume also that Ȯ is given as a union of
{Ȯn : n ∈ ω} where Ȯn are clopen sets such that the mass of

⋃
n>m Ȯn is

smaller than 2−4m for every number m ∈ ω. It is possible to strengthen the
condition p by a straightforward fusion argument so that for every forked pair
s, t ∈ sp(p) of splitnodes at m-th level of p, the condition 〈p � s, p � s〉 decides
the union

⋃
n≤m Ȯn to be equal to some specific clopen set Os,t.

The strong canonization properties of the ideal I are now very easy to prove.

Theorem 3.4.9. Every Borel equivalence relation on an I-positive Borel set
B ⊂ 2ω simplifies to ID or to EE or to E0 on I-positive Borel subset. Moreover,
the ideal has total canonization of graphs disjoint from E0.

The total canonization of graphs is a result of Clinton Conley; we will prove a
probabilistic version of it.

Proof. To argue for the canonization of Borel equivalences, fix a Borel I-positive
set B ⊂ 2ω and a Borel equivalence relation E on it. We will first prove that
there is a Borel I-positive set C ⊂ B such that on it, either E ⊆ E0 or E = C2.

Choose a countable elementary submodel M of a large structure and as in
Claim 3.4.6 find an I-positive Borel set C ⊂ B such that any two E0-inequivalent
points of C are M -generic for the reduced product. Thinning out the set C we
may assume that its intersection with any Borel set in the model M is either
I-positive or empty. If no two E0-inequivalent points x, y ∈ C are E-equivalent,
then E ⊂ E0 as desired. If there are two such points x, y ∈ C such that
x E y, then there must be a condition 〈p, q〉 ∈ P ×E0 P in the model M forcing
ẋlgen E ẋrgen, and such that 〈x, y〉 ∈ [p]× [q] \E0. The set C ∩ [q] is I-positive,
and by the forcing theorem applied in the model M to P ×E0 P , all of its points
not E0-related to x are M -generic with x for the reduced product, and hence
E-related to x. Thus the I-positive set (C ∩ [q]) \ [x]E0 is a subset of a single
E-class [x]E .

To complete the proof of the canonization of equivalence relations from here,
it is just necessary to handle the special case E ⊆ E0. So let p ∈ P be a condition
such that E � [p] ⊆ E0. By a standard fusion argument, find a condition q ≤ p
such that for every splitnode t ∈ q, if there is a condition r ≤ q � t with tr = t
such that for all splitnodes s0 6= s1 of r of the same length r � s0 
 ¬ẋgen E
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ẋgen � s1, then q � t is such a condition. Let π : sp(q) → 2 be the map assigning
the node t color 0 if this option occurred, and color 1 if it did not. Thin out
the condition q if necessary so that the map q is homogeneous on sp(q). If
the homogeneous color is 0, it is not difficult to see that if M is a countable
elementary submodel of a large structure containing q and r ≤ q is a condition
such that the set [r] consists solely of M -generic points, then E � [r] = ID: no
two distinct E0-equivalent elements of [r] can be E-equivalent since there was
no opportunity for them to be forced equivalent. If the homogeneous color is
1, then use a standard fusion argument to thin out the condition q so that for
every number n ∈ ω there is a splitnode tn ∈ sp(q) at n-th splitting level so
that for the two splitnodes s0 6= s1 extending t on the next splitting level of
q, it is the case that q � s0 
 ẋgen E ẋgen � s1. Then use the transitivity of
the equivalence relation E to argue by induction on n that for every pair u, v of
splitnodes on n-th splitting level of q, q � u 
 ẋgen E ẋgen � u. Now let M be a
countable elementary submodel of a large structure containing q, and let r ≤ q
be a condition such that [r] consists of M -generic points only. It is not difficult
to see that E = E0 � [r].

We will argue for the total canonization of graphs disjoint from E0 in the
following stronger form: if B ⊂ 2ω is a Borel I-positive set and D ⊂ [B]2 × 2ω

is a Borel set whose vertical sections are of µ-mass bounded away from zero
where µ is some fixed Borel probability measure on 2ω, then there is a Borel
I-positive set C ⊂ B and a point z ∈ 2ω such that for every two E-unrelated
points x, y ∈ C, z ∈ D{x,y}. The total canonization of graphs disjoint from E0

then immediately follows: if [B]2 = G0∪G1 is a Borel partition of [B]2 \E0 into
two pieces, then find two disjoint subsets A0, A1 of 2ω of nonzero measure, let
D = {〈{x, y}, z〉 : z ∈ A0 if {x, y} ∈ G0 and z ∈ A1 if {x, y} ∈ G1}. If C ⊂ B
is a Borel I-positive set as above, either [C]2 \ E0 ⊂ G0 or [C]2 \ E0 ⊂ G1

depending on whether the homogeneous point z falls into A0 or A1.
Now, to produce the set C ⊂ B and the point z ∈ 2ω, find a condition

p ∈ P with [p] ⊂ B and consider the P ×E0 P name for the generic section
D{ẋlgen,ẋrgen}. This is a Borel set forced by the condition 〈p, p〉 to be of mass
larger than zero. By the preservation of outer measure by the reduced product,
there is a point z ∈ 2ω and a condition 〈r, s〉 forcing z into the generic section.
By Theorem ???, thinning out the conditions r, s if necessary we may arrange
that z ∈ D{x,y} for all E0-unrelated points x ∈ [r], y ∈ [s]. Now, since the set
D is symmetric–the vertical section of D depends only on the points in the pair
and not on their enumeration, this means that ???

3.5 E2 forcing

E2 is the equivalence relation on X = 2ω defined by xE2y if Σ{ 1
n+1 : x(n) 6=

y(n)} < ∞. It is a basic example of a turbulent equivalence relation, and
therefore it is not classifiable by countable structures. There is an associated σ-
ideal and a quotient proper notion of forcing. For xE2y define d(x, y) = Σ{ 1

n+1 :
x(n) 6= y(n)}, otherwise let d(x, y) = ∞. Thus, d is a metric on each equivalence
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class. Kanovei [22, Definition 15.2.2] defined the collection of grainy subsets of
X as those sets A ⊂ 2ω such that there is a real number ε > 0 such that there
is no finite sequence of elements of A, the successive elements of which have
d-distance at most ε and the two endpoints are at a distance at least 1 from
each other. Let I be the σ-ideal generated by the Borel grainy sets.

Fact 3.5.1. [22, Section 15.2] The ideal I is Π1
1 on Σ1

1, and every analytic
I-positive set has a Borel I-positive subset. A Borel set B ⊂ X is in the ideal
I if and only if the equivalence E2 � B is essentially countable if and only if E2

is not reducible to E2 � B.

The features of the quotient forcing were surveyed in [22, 49]. Here, we will
provide a more thorough treatment:

Theorem 3.5.2. The forcing PI is proper, bounding, preserves Baire category
and outer Lebesgue measure, and adds no independent reals.

Proof. We will need some preliminary notation and observations. Abuse the
notation a little and include I-positive analytic sets in it; by Fact 3.5.1, Borel
sets will be dense in it anyway. For points x, y ∈ 2ω and a number k ∈ ω write
dk(x, y) =

∑
{ 1

n+1 : n ≥ k, x(n) 6= y(n)} < ε; this is a notion of pseudodis-
tance between sets satisfying triangle inequality which can be infinite or zero
for distinct points. For sets A,B ⊂ 2ω let dk(A,B) be the associated Hausdorff
distance: the infimum of all ε such that for every x ∈ A there is y ∈ B such
that dk(x, y) < ε and vice versa, for every x ∈ B there is y ∈ A such that
dk(x, y) < ε. The following claims will be used repeatedly:

Claim 3.5.3. If A,B ⊂ 2ω are analytic sets such that A /∈ I and ∀x ∈ A∃y ∈
B x E2 y then B /∈ I.

Proof. If B ∈ I then B can be enclosed in a countable union of Borel grainy sets,
a Borel set B′ ∈ I, and E2 � B′ can be reduced to some countable equivalence
relation E on 2ω via a Borel function f : B′ → 2ω. The set A can be thinned
out to a Borel I-positive set A′ ⊂ A. Consider the relation R ⊂ A′ × 2ω where
〈x, y〉 ∈ R if ∃z ∈ B′ x E2 z ∧ f(z) = y. This is an analytic relation such that
non-E2-equivalent points in A′ have disjoint vertical sections, and the union of
vertical sections of points belonging to the same fixed E2 class is countable.
These two are Π1

1 on Σ1
1 properties of relations, and so by the first reflection

theorem, R can be enclosed in a Borel relation R′ with the same properties. Let
g : A′ → 2ω be a Borel uniformization of R′. This is a Borel function under
which distinct E2-classes have disjoint countable images. By a result of Kechris,
[22, Lemma 7.6.1], E2 � A′ must then be essentially countable.

Claim 3.5.4. If Ai : i ∈ n are I-positive analytic sets with dk(Ai, Ai+1) < ε
for all i ∈ n− 1 and D ⊂ PI is an open dense set, then there are analytic sets
A′i : i ∈ n such that A′i ⊂ Ai, A′i ∈ D, and dk(A′i, A

′
i+1) < ε for all i ∈ n− 1.

Note that in the conclusion, the dk-distances between the various sets A′i : i ∈ n
must be smaller than (n− 1)ε.
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Proof. By induction on i ∈ n find sets Ai
j ⊂ Aj : j ∈ n such that at stage i, the

dk-distances are still < ε and Ai
i ∈ D. The sets An−1

j : j ∈ n will then certainly
work as desired. The induction is easy. Given the sets Ai

j : j ∈ n, strengthen
Ai

i+1 to a set B in the dense set D. Then, for every j ∈ n, write Ai+1
j = {x ∈

2ω : ∃~y ∈ (2ω)n ∀l ∈ n − 1 dk(~y(l), ~y(l + 1)) < ε and ∀l ∈ n ~y(l) ∈ Ai
l and

~y(i+1) ∈ B and ~y(j) = x}. These are all analytic sets with dk(Ai+1
j , Ai+1

j+1) < ε,
Ai+1

i+1 = B, and by the previous claim they must all be I-positive since the set
B is. The induction can proceed.

Claim 3.5.5. Suppose that Ai : i ∈ n are I-positive analytic sets with d-distance
< ε, and 1 > δ > 0, γ > 0 are real numbers. Then there are I-positive analytic
sets Ab

i : i ∈ n, b ∈ 2, binary sequences tbi ∈ 2<ω of the same length k such that

1. |d(t0i , t1i )− δ| < 2ε and d(t0i , t
0
j ), d(t

1
i , t

1
j ) are both smaller than 2ε;

2. Ab
i ⊂ Ai ∩Otb

i
, and the dk-distances of the sets Ab

i : i ∈ n, b ∈ 2 are < γ.

Proof. For each choice of k and ~t = tbi : i ∈ n, b ∈ 2 as in the first item of the
claim let B~t ⊂ (2ω)n×2 be the analytic set of all tuples xb

i : i ∈ n, b ∈ 2 such that
tbi ⊂ xb

i , x
b
i ∈ Ai, and the dk-distances between points on the tuple are < γ. If

for some ~t, the projection of B~t into the first coordinate is I-positive, then the
projections into any coordinate are I-positive analytic sets by Claim 3.5.3, and
they will work as Ab

i : i ∈ n, b ∈ 2 required in the claim.
So it will be enough to derive a contradiction from the assumption that the

projections of the sets B~t into the first coordinate are always in the ideal I.
These are countably many I-small analytic sets, so they can be enclosed in a
Borel I-small set C ⊂ 2ω. The set A0 \ C is analytic and I-positive, and so it
contains an ε-walk whose endpoints have d-distance > 1, so it has to contain
two points x0

0, x
1
0 with |d(x0

0, x
1
0) − δ| < ε. Choose points xb

i : i > 0, b ∈ 2 in
the sets Ai so that d(x0

0, x
0
i ), d(x

1
0, x

1
i ) are always smaller than ε, find a number

k such that the dk-distance of these points is pairwise smaller than γ, and let
~t = 〈xb

i � k : i ∈ n, b ∈ 2〉. This sequence should belong to the set B~t, but its
first coordinate should not belong to the projection of B~t. This is of course a
contradiction.

This ends the preliminary part of the proof. For the properness of PI , let M
be a countable elementary submodel of a large enough structure and let B ∈ PI

be a Borel I-positive set. We need to show that the set C = {x ∈ B : x is
M -generic} is I-positive. To do that, we will produce a continuous injective
embedding of the equivalence E2 into E2 � C. Fix positive real numbers εn

whose sum converges. Enumerate the open dense subsets of PI in the model M
by Dn : n ∈ ω. By induction on n ∈ ω build functions πn : 2n → 2<ω as well as
sets At : t ∈ 2n so that:
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• if m ∈ n then πn extends πm in the natural sense: for every t ∈ 2m and
every s ∈ 2n, πm(t) ⊂ πn(s). Also As ⊂ At, and As ∈ PI ∩M ∩Dn is an
I-positive analytic set;

• all sequences in the range of πn have the same length kn ∈ ω, and
πn approximately preserves the d-distance: |d(u, v) − d(πn(u), πn(v))| <
Σm∈nεm;

• the sets Au : u ∈ 2n have dkn
-distance smaller than εn/2.

The induction step is handled easily using the previous two claims. In the
end, for every sequence y ∈ 2ω the sets At : t ⊂ y generate an M -generic
filter, so they do have a nonempty intersection which must contain a single
point π(y) =

⋃
n πn(x � n). It is immediate from the second item that the map

π : 2ω → C is a continuous injective reduction of E2 to E2 � C and so C /∈ I as
desired.

For the bounding part, we must show that for every I-positive Borel set
B ⊂ 2ω and every Borel function f : B → 2ω there is a compact I-positive
subset of B on which the function f is continuous. This is obtained by a
repetition of the previous argument. Just note that the image of the map π
obtained there is compact, and if the open dense set Dn consists of sets B′ on
which the bit f(x)(n) : x ∈ B′ is constant, then f � rng(π) is continuous.

For the preservation of outer Lebesgue measure, it is enough to argue that
the ideal I is polar in the sense of [49, Section 3.6.1]; i.e., it is an intersection of
null ideals for some collection of Borel probability measures. In other words, we
need to show that every Borel I-positive set B ⊂ 2ω carries a Borel probability
measure that vanishes on the ideal I. This uses a simple claim of independent
interest:

Claim 3.5.6. The usual Borel probability measure µ on 2ω vanishes on the ideal
I, meaning that every set in I has µ-mass zero.

Proof. First, an auxiliary statement: let a ⊂ ω be a finite set, and let S ⊂ 2a

be a set containing more than half of all elements of 2a. Then S contains
two elements u, v with d(u, v) =

∑
n∈a

1
n+1 . To prove this, note that the map

π : 2a → 2a flipping all bits of sequences in its domain is an involution, and so
the set S must contain two points connected by π.

Now let C ⊂ 2ω be a Borel set of positive mass; we must argue this set
is not grainy. Let ε > 0 be a real number. We will construct a sequence of
points xi : i ≤ n in the set C such that ε/4 ≤ d(xi, xi+1) < ε, and the sets
ai = {m ∈ ω : xi(m) 6= xi+1(m)} are finite and pairwise disjoint. If such a
sequence has length at least 4/ε, then its endpoints will have distance at least
1 as required to show that C is not grainy.

By induction on i ∈ ω build pairwise disjoint finite sets ai ⊂ ω, numbers
mi ∈ ω, and sequences ui, vi ∈ 2ai , wi : mi \

⋃
j∈i aj so that

• ε/2 ≤ d(ui, vi) < ε;
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• the set Ci = {y ∈ 2ω\mi : whenever x ∈ 2ω is a point satisfying wi ∪ y ⊂ x
and for every j ∈ i, x � aj is equal either to uj or vj , then x ∈ C} has
mass greater than 3/4.

This is easy to do. To find m0, w0, use the Lebesgue density theorem to find
a finite binary sequence w0 of length greater than 4/ε such that C has relative
mass in the basic open neighborhood defined by w0 close to one, and let m0 =
|w0|. Suppose mi, wi as well as aj , uj , vj : j ∈ i have been found. Let k > mi

be a number such that the sum
∑

mi≤m<k
1

m+1 is smaller than, but as close to
ε as possible and let ai = [mi, k). There must be a sequence ui ∈ 2ai such that
Ci∩Oui has relative mass greater 3/4. The set S ⊂ 2ai of those v such that the
set Ci∩Ov has relative mass at least 1/4, contains more than half of all elements
of 2ai . The set S contains two elements of maximal possible distance, so one of
these elements, some vi ∈ S, has distance at least 1/2·Σmi≤m<k

1
m+1 ≥ ε/4 from

ui. The set D = {y ∈ 2ω\k : whenever x ∈ 2ω is a point satisfying wi ∪ y ⊂ x
and for every j ≤ i, x � aj is equal either to uj or vj , then x ∈ C} has nonzero
mass, and so one can use the Lebesgue density theorem again to find a number
mi+1 ∈ ω and a binary sequence t ∈ 2mi\k such that the set D∩Ot has relative
mass close to 1. Let wi+1 = wi ∪ t and continue the induction.

After some n > 4/ε many steps of the induction, choose a point y ∈ Cn, and
define points xi ∈ C for i ∈ n by wn ∪ y ⊂ xi and uj ⊂ xi if j ∈ i and vj ⊂ xi if
j ∈ n\ i. These points constitute an ε-walk in C whose endpoints have distance
at least 1.

If B ⊂ 2ω is a Borel I-positive set and π : 2ω → B is a continuous one-to-one
reduction of E2 to E2 � B then the transported measure µ̂ on B must vanish
on the sets in the ideal I as well.

For the preservation of Baire category, it is enough to argue that every Borel
I-positive set B ⊂ 2ω there is a Polish topology on B generating the same Borel
structure as the usual one, such that all sets in the ideal I are meager in this
topology. Then, a reference to Kuratowski-Ulam theorem and/or [49, Corollary
3.5.8] will finish the argument. Just as in the treatment of Lebesgue measure,
it is enough to show

Claim 3.5.7. The ideal I consists of meager sets.

Proof. Let B ⊂ 2ω be a Borel nonmeager set; we must show that it is not
grainy. Let ε > 0 be a positive real number. Find a finite sequence t ∈ 2<ω

such that B is comeager in Ot. By a standard argument, find a point x ∈ 2ω

such that t ⊂ x and all points obtained by rewriting t on finitely many positions
above dom(t) belong to B. Find finite pairwise disjoint sets ui : i ∈ j of natural
numbers larger than dom(t) such that

∑
n∈ui

1
n+1 < ε for every i ∈ j, and∑

{ 1
n+1 : n ∈

⋃
i∈j ui} > 1. Let xk : k ≤ j + 1 be points obtained from x by

rewriting x to its opposite on the respective sets
⋃

i∈k ui. It is clear that these
points form an ε-walk in the set B with endpoints of distance at least 1; thus
B is not grainy for the constant ε.
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The proof that no independent reals are added is as always more complicated.
One can use an infinitary partition theorem to prove this, such as a theorem
of Henle [12]. We take a different route which implicitly uses concentration of
measure. Theorem 3.12.4 produces a fat tree forcing with E2 in its spectrum.
The fat tree forcings do not add independent reals by [49, Theorem 4.4.8]. It is
now not difficult to transfer this feature to the E2 forcing.

Suppose that B ⊂ 2ω is an I-positive Borel set and f : B → 2ω is a Borel
function. We must find an infinite partial function y : ω → 2 such that the set
{x ∈ B : y ⊂ f(x)} is still I-positive. In order to do that, let Tini be a finitely
branching tree and J be a σ-ideal on [Tini] corresponding to some fat tree forcing
with E2 in its spectrum, as witnessed by some equivalence E on [Tini] and a
Borel function g : [Tini] → B reducing E to E2 � B. Since the fat tree forcing
PJ does not add an independent real, there must be an infinite partial function
y : ω → 2 such that the set C = {z ∈ [Tini] : y ⊂ f(g(z))} is I-positive. Since E
showed that E2 is in the spectrum of the ideal J , it must be the case that the
range g′′C is an I-positive analytic set; otherwise E2 restricted to it would be
essentially countable and so E � C would be essentially countable. We conclude
that the set {x ∈ B : y ⊂ f(x)} ⊃ g′′C is I-positive as desired!

Theorem 3.5.8. I has total canonization for equivalences classifiable by count-
able structures.

In particular, this shows that the forcing PI adds a minimal real, improving [22,
Theorem 15.6.3].

Proof. One can argue directly by a demanding fusion argument via the separa-
tion property of the poset PI , which was our original way of dealing with the
challenge. There is a simple proof that uses the existence of a forcing with E2 in
the spectrum and total canonization for equivalences classifiable by countable
structures.

Let B ⊂ 2ω be a Borel I-positive set and E an equivalence on B that is
classifiable by countable structures. Fix a Borel function f with domain B
reducing E to isomorphism of countable structures. Fix a function g : 2ω → B
reducing E2 to E2 � B. Fix a σ-ideal J on a compact space Y such that J has
total canonization for equivalences classifiable by countable structures and E2

is in the spectrum of J as witnessed by a Borel equivalence F on Y , reduced to
E2 by a Borel function h : Y → 2ω–see theorem 3.12.4.

Consider the equivalence relation G on Y defined by y0 G y1 if the structures
fgh(y0) and fgh(y1) are isomorphic. Use the total canonization feature of the
σ-ideal J to find a Borel J-positive set D ⊂ Y such that the function g ◦ h is
one-to-one and the equivalence relation G � D is either equal to identity or to
D2. The set C = gh′′D ⊂ B is a one-to-one image of a Borel set and therefore
Borel. It is also I-positive, since E2 Borel reduces to F � D which Borel reduces
to E2 � C via g ◦ h. The equivalence relation E � C is either equal to identity
or to C2 depending on the behavior of G � D. The theorem follows.

Theorem 3.5.9. E2 is in the spectrum of I. Moreover,
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1. PE2
I is a regular ℵ0-distributive subposet of PI , and it generates the model
V [ẋgen ]E2 of Definition 2.1.1;

2. V [[ẋgen ]]E2 = V [ẋgen ]E2 .

Proof. The first sentence follows from the analysis of the ideal I immediately.
The Borel sets in I are exactly those sets B for which E2 � B is essentially
countable, and so by the E2 dichotomy 3.5.1, E2 is Borel reducible to E2 � B
for every Borel I-positive set B.

Suppose that B ∈ PI is an analytic I-positive set. Its saturation, [B]E2 , is
a pseudoprojection of B to PE2

I : if C ⊂ [B]E2 is an analytic E2-saturated I-
positive set, the set D = B∩C is analytic and must be I-positive by Claim 3.5.3.
The ℵ0-distributivity follows from Proposition 2.2.6. Note that the fusion
process from the previous proofs starts with an arbitrary analytic I-positive
set B and inscribes into it a compact I-positive set C ⊂ B such that the equiv-
alence class of any point in C is dense in C.

To show that the poset PE
I generates the V [ẋgen ]E2 model, first observe that

for every I-positive Borel set B and every Borel one-to-one map f : B → 2ω

whose graph is a subset of E2, the function f induces an isomorphism between
PI below B and PI below rng(f), mapping any analytic set C ⊂ B to its
f -image. Note that C ∈ I ↔ f ′′C ∈ I by Claim 3.5.3.

?????

Question 3.5.10. Find another equivalence relation in the spectrum of I.

3.6 Silver forcing

The well-known Silver forcing is just the partial order P of all partial functions
f : ω → 2 with coinfinite domain, ordered by reverse inclusion. The calculation
of the associated σ-ideal gives complete information.

Let X be the Cantor space and let G be the graph on X given by xGy if
and only if there is exactly one n such that x(n) 6= y(n). A set B ⊂ X is G
independent if no two elements of B are G-connected. Let I be the σ-ideal
generated by Borel G-independent sets. The following is true:

Theorem 3.6.1. 1. Whenever A ⊂ X is an analytic set, either A ∈ I or
there is f ∈ P such that {x ∈ X : f ⊂ x} ⊂ A, and these two options are
mutually exclusive;

2. the ideal I is Π1
1 on Σ1

1;

3. the ideal I does not have the transversal property;

4. the forcing P is proper, bounding, preserves outer Lebesgue measure and
Baire category, and adds an independent real.
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Proof. (1) comes from [48, Lemma 2.3.37]. (2) follows from (1) and [49, Theorem
3.8.9], or one can compute directly. (4) is well-known; the independent real ȧ ⊂
ω is read off the generic real ẋgen ∈ 2ω as a = {n ∈ ω : {m ∈ n : ẋgen(m) = 1}
has even size}. Finally, the failure of the transversal property is witnessed by
the set D ⊂ 2ω × 2ω given by 〈y, x〉 ∈ D if x(3n) = x(3n+ 1) = y(n).

From now on, we will write Bf = {g ∈ X : f ⊂ g} and call sets of this form
Silver cubes. The theorem shows that the map f 7→ Bf is a dense embedding
of the Silver forcing P into the quotient forcing PI . The failure of the Silver
property can be exhibited by any perfect collection of functions {fy : y ∈ 2ω}
from ω to 2 with coinfinite domain such that any two distinct functions in the
collection disagree on more than one entry, and the set D ⊂ 2ω × 2ω given by
〈y, x〉 ∈ D ↔ fy ⊂ x. Any transversal for this set would be G-independent, and
if Borel then it would be in the ideal I.

Several features of the spectrum can be identified without much effort:

Theorem 3.6.2. The ideal I has total canonization for smooth equivalences.
In other words, Silver forcing adds a minimal real degree.

This was originally proved by Grigorieff [9, Corollary 5.5] in a rather indirect
fashion. We provide a direct argument.

Proof. The argument uses a claim of independent interest.

Claim 3.6.3. Whenever fi : i ∈ n is a finite collection of continuous functions
from X to X such that preimages of singletons are I small, and A ⊂ X is an
analytic I-positive set, there is a point x ∈ X and a number m ∈ ω such that
x ∈ A, x�m ∈ A and for every i ∈ n, fi(x) 6= fi(x�m).

Proof. This is proved by induction on n. The case n = 0 is trivial. Suppose
that we know it for a given n, and fi : i ∈ n + 1 is a collection of continuous
functions of size n+ 1, and the conclusion fails for some I-positive analytic set
A ⊂ X. By induction on j ∈ ω build numbers mj and functions gj ∈ P so that

• Bg0 ⊂ A and g0 ⊂ g1 ⊂ . . .

• m0 ∈ m1 ∈ . . . and mj /∈ dom(gk) for all k;

• for every point x ∈ Bgj+1 , the value of fn(x) does not depend on the values
of x at mk : k ≤ j.

Once this induction is finished, find a function h ∈ P with
⋃

j gj ⊂ h and
ω \dom(h) = {mj : j ∈ ω}. The continuity of the function fn together with the
last item of the induction hypothesis shows that f � Bh is constant, contradicting
the assumptions on the function fn.

To perform the induction step, suppose that the function gj and the numbers
mk : k ∈ j have been found. Use the induction hypothesis for the n induction
to conclude that there is a number m ∈ ω greater than all the mk : k ∈ j and
an I-positive Borel set B ⊂ Bgj such that for every x ∈ B it is the case that



68 CHAPTER 3. PARTICULAR FORCINGS

x � m ∈ Bj and for every i ∈ n, fi(x � m) 6= fi(x). (If for every number m
the set Bm of all such points x were I-small, consider the I-positive Borel set
B \

⋃
mBm and apply the n induction hypothesis to it to reach a contradiction.)

Now the assumption that the n-induction step cannot be performed implies that
for every x ∈ B, fn(x) = fn(x�m). Let m = mj and find a function gj+1 ∈ P
such that Bgj+1 ⊂ B and erase the numbers mk : k ≤ j from its domain if
necessary. This completes the j-induction step and the proof of the claim.

Now suppose that B ⊂ X is an I-positive Borel set and f : B → 2ω is a
Borel function with I-small preimages of singletons. We must produce a Borel
I-positive set C ⊂ B such that f � C is an injection. By standard homogeneity
and bounding arguments, we may assume that the function f is continuous and
the set B in fact equals to the whole space 2ω. By induction on n ∈ ω build
functions gn ∈ P and numbers mn, jn ∈ ω such that

• g0 ⊂ g1 ⊂ . . . , m0 ∈ j0 ∈ m1 ∈ j1 ∈ . . . , mn /∈ dom(gk) for every n, k ∈ ω;

• Whenever x ∈ Bgn
then f(x�mn) 6= f(x) and the least point of difference

between these two infinite binary sequences as well as their values at this
point depend only on x � jn.

To perform the induction, suppose that the function gn and the numbers
mn and jn have been found. Let a = {mi : i ≤ n} and for each element h ∈ 2a

define the continuous function fh : Bgn → 2ω by setting fh(x) = f(x � h).
Use the claim to find a number mn+1 and an I-positive Borel set D ⊂ Bgn

such that for every point x ∈ B and every function h ∈ 2a it is the case that
fh(x�m) 6= fh(x). Let jn+1 be a number large enough so that the least points
of difference at all these sequences as well as the values at those points depend
only on x � jn+1, Let gn+1 ∈ P be a function such that Bgn+1 ⊂ D, erase the
numbers mk : k ≤ n+ 1 from the domain of gn+1 if necessary and continue the
induction.

After the induction process is complete, choose a function h ∈ P such that⋃
n gn ⊂ h and ω \ dom(h) = {mn : n ∈ ω}. It is clear that the function f is an

injection on the set Bh!

Theorem 3.6.4. E0 belongs to the spectrum of the Silver forcing. The poset
PE0

I is regularly embedded in PI , it is ℵ0-distributive, and it yields the model
V [ẋgen ]E0 of Definition 2.1.1.

Proof. Look at the equivalence relation E0 on X. Whenever Bf /∈ I is a Silver
cube and π : ω → ω \dom(f) is a bijection then the map g : X → Bf defined by
g(x) = f ∪ (x ◦ π−1) is a continuous reduction of E0 to E0 � Bf , and therefore
E0 is in the spectrum. The remainder of the theorem is a consequence of the
work in Section 4.2 as soon as we prove that E0-saturations of sets in I are still
in I. The easiest way to see that is to consider the action of the countable group
of finite subsets of ω with symmetric difference on the space X where a finite
set acts on an infinite binary sequence by flipping all entries of the sequence on
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the set. This action generates E0 as its orbit equivalence relation, and it also
preserves the graph G and with it the σ-ideal I. Thus, E0-saturations of I-small
sets are still I-small.

As an interesting extra bit of information, the equivalence class [xgen]E0 is
the only one in the extension V [G] which is a subset of all sets in the filter K,
where G ⊂ PI is a generic filter and K = G ∩ PE0

I . In the ground model, this
is immediately translated to the following: If B ⊂ X is an I-positive Borel set
and f : B → X is a Borel function such that ∀x ∈ B ¬f(x) E0 f(y), then there
is a Borel I-positive set C ⊂ B such that f ′′C ∩ [C]E0 = 0.

Since the forcing PI is bounding, there must be a partition of ω into intervals
In : n ∈ ω and an I-positive compact set Bg ⊂ B such that for every x ∈ C and
every n ∈ ω there is a number m ∈ In with f(x)(m) 6= x(m), and the function
f � Bg is continuous. Strengthen the function g if necessary so that infinitely
many of the intervals do not intersect the set ω\g. The condition C = Bg works
as desired.

Theorem 3.6.5. EKσ
is in the spectrum of I as witnessed by a certain Borel

equivalence relation E on X. Moreover,

1. the poset PE
I is regular in PI , it is ℵ0-distributive and it yields the V [ẋgen ]E

extension of Definition 2.1.1;

2. the reduced product PI ×E PI is not proper.

Proof. Let c : 2ω → ωω be the continuous function defined by c(x)(n) = |{m ∈
n : x(m) = 1}| and let E be the Borel equivalence relation on 2ω connecting
x0, x1 ∈ 2ω if the function |c(x0)−c(x1)| ∈ ωω is bounded. Clearly, the function
h reduces the equivalence relation E to EKσ

. To show that EKσ
≤B E, choose

successive finite intervals In ⊂ ω of length 2n+ 1 and for every function y ∈ ωω

below the identity consider the binary sequence g(y) ∈ 2ω specified by the
demand that g(y) � In begins with f(n) many 1’s, ends with n− f(n) many 1’s
and has zeroes in all other positions. It is not difficult to see that if y0, y1 ∈ ωω

below the identity are two functions then |c(g(y0)) − c(g(y1)) � In| is bounded
by |y0(n) − y1(n)| and the bound is actually attained at the midpoint of the
interval In. Thus, the function g reduces EKσ

to E. To show that E ≤ E � B for
every Borel I-positive set B, find a Silver cube Bg ⊂ B, let π : ω → ω \ dom(g)
be the increasing bijection, and observe that the map π̄ : 2ω → Bg defined by
π̄(x) = g ∪ (x ◦ π−1) reduces E to E � B. Thus, the equivalence relation E
shows that EKσ

is in the spectrum.
The following definition will be helpful for the investigation of the poset PE

I .
Let Bg, Bh ⊂ 2ω be two Silver cubes. We will say that they are n-dovetailed
if between any two successive elements of ω \ dom(g) is exactly one element of
ω \ dom(h) and min(ω \ dom(g)) ∈ min(ω \ dom(h)), and moreover, for every
number m ∈ ω, the difference |{k ∈ m : g(k) = 1}| − |{k ∈ m : h(k) = 1| is
bounded in absolute value by n. The two Silver cubes are dovetailed if they
are n-dovetailed for some n. It is clear that if Bg, Bh are dovetailed and f :
ω \dom(g) → ω \dom(h) is the unique increasing bijection, then the continuous
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function π : x 7→ h∪x◦f−1 from Bg to Bh preserves the σ-ideal I, and its graph
is a subset of E. Moreover, if Bg, Bh are arbitrary Silver cubes and x ∈ Bg and
y ∈ Bh are E-equivalent points such that both x\g, y\h take both 0 and 1 value
infinitely many times, then there are dovetailed cubes Bg′ ⊂ Bg and Bh′ ⊂ Bh:
just let a, b ⊂ ω be dovetailed infinite subsets of ω \ dom(g) and ω \ dom(h)
respectively such that x � a and y � b both return constantly zero value, and let
g′ = x � (ω \ a) and h′ = y � (ω \ b).

For the regularity of PE
I , let B = Bg be a Silver cube and let Bh ⊂ [Bg]E

be another one. We must show that Bg ∩ [Bh]E is an I-positive set. Choose a
point y ∈ 2ω such that h ⊂ y and on ω \ dom(h), y attains both values 0 and 1
infinitely many times. Since y ∈ Bh ⊂ [Bg]E , there must be a point x ∈ Bg such
that x E y. Note that x must attain both values infinitely many times on ω \ g:
if it attained say 1 only finitely many times, there would be no E equivalent
point in Bg to the point y′ ∈ Bh which extends h with only zeroes. As in the
previous paragraph, find dovetailed Silver cubes Bg′ ⊂ Bg and Bh′ ⊂ Bh, and
conclude that Bg′ ⊂ Bg ∩ [Bh]E as desired.

For the distributivity just note that E is I-dense and apply Proposition 2.2.6.
To show that PE

I yields the V [xgen]E extension, it is enough to prove that for
all I-positive analytic sets B,C ⊂ X, either there is a Borel I-positive subset
B′ ⊂ B such that [B′]E∩C ∈ I, or there is a Borel I-positive subset B′ ⊂ B and
an injective Borel map f : B′ → C such that f ⊂ E and f preserves the ideal I;
and then apply Theorem 2.2.7. So fix the sets B,C. First, inscribe a Silver cube
Bg into B. If [Bg]E ∩ C ∈ I then we are done; otherwise inscribe a Silver cube
Bh into [Bg]E ∩C. As in the previous paragraph, there will be dovetailed Silver
cubes Bg′ ⊂ Bg and Bh′ ⊂ Bh and a homeomorphism π : Bg′ → Bh′ whose
graph is a subset of E and which preserves the ideal I. Thus, the assumptions
of Theorem 2.2.7 are satisfied and PE

I yields the V [xgen]E extension.
As an additional piece of information, in the PI -generic extension V [G] the

equivalence class [xgen]E is the only one contained in every set in the filter
H = G ∩ PE

I . In the ground model, this translates to the statement that
whenever B ∈ PI is an I-positive Borel set and g : B → 2ω is a Borel function
such that ∀x ∈ B ¬g(x) E x then there is a Borel I-positive set C ⊂ B such
that C ∩ [g′′C]E = 0. Since Silver forcing is bounding, thinning out the set B
if necessary we may assume that g � B is continuous and there are successive
intervals In : n ∈ ω in ω such that for every x ∈ B and every n ∈ ω there is
m ∈ In such that |f(x)(m) − f(g(x))(m)| > 2n. Find a function h ∈ P such
that Bh ⊂ B and moreover the set ω \ dom(h) visits every interval In : n ∈ ω
in at most one point. It is immediate that C = Bg works as required.

For the nonproperness of the reduced product forcing, we will show that it
forces the following sentence Ψ: for every k ∈ ω there are numbers l0 < l1 larger
than k and a ground model partition of ω into finite intervals such that for
every interval J in it, the set {c(ẋlgen)(n)− c(ẋrgen)(n) : n ∈ J} has cardinality
between l0 and l1. However, no condition in the reduced product can identify
a countable ground model set of partitions such that one of them is guaranteed
to work; this will contradict properness.

To proceed with this plan, first use the general definition of the reduced
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product forcing to see that the dovetailed pairs of Silver cubes are dense in
it. On one hand, if Bg, Bh are dovetailed Silver cubes and π : Bg → Bh is
the natural homeomorphism, then Bg 
 π(ẋgen) ∈ Bh is a Silver generic real
E-equivalent to ẋgen , and therefore the pair 〈Bg, Bh〉 is in the reduced product.
On the other hand, if 〈B,C〉 ∈ PI×EPI is a pair of analytic sets, there are Silver
cubes Bg ⊂ B and Bh ⊂ C such that the pair 〈Bg, Bh〉 is still in the reduced
product. The large collapse then forces E-equivalent Silver generic reals x ∈ Bg

and y ∈ Bh; these points extend g, h respectively with infinitely many zeroes
and ones, and by analytic absoluteness there must be E-equivalent points in Bg

and Bh extending g, h in this fashion already in the ground model. It follows
that there are dovetailed cubes Bg′ ⊂ Bg and Bh′ ⊂ Bh as required.

To see why Ψ is forced, let 〈Bg, Bh〉 ∈ PI ×E PI be a pair of n-dovetailed
cubes for some n, and let k ∈ ω. Let Ji : i ∈ ω be successive finite intervals
of natural numbers, each of them containing exactly nk + 1 many elements of
ω \ dom(g) and ω \ dom(h). Extend g to g′ by assigning value 1 to the first nk
many elements of Ji \ dom(g) if i is even, and value 0 if i is even. Extend h
to h′ similarly, exchanging 0’s for 1’s. It is not difficult to see that the cubes
Bg′ , Bh′ are n(k+1)-dovetailed, and as a condition in the reduced product they
force that for every i ∈ ω, the set {c(ẋlgen)(m)− c(ẋrgen)(m) : m ∈ Ji} has size
between k and n(k + 1).

To see why the partitions cannot be enclosed into a ground model countable
set, suppose that 〈Bg, Bh〉 is a pair of n-dovetailed Silver cubes, and suppose
that A is a countable set of partitions. Find a partition ~J = 〈Ji : i ∈ ω〉 of
ω into finite intervals such that for every partition in A, all but finitely many
intervals in it meet at most two intervals in ~J , and moreover, every interval in
~J contains numbers m0 ∈ m1, ???

There are also complementary canonization results regarding the spectrum
of I:

Theorem 3.6.6. If B ∈ PI is a Borel I-positive set and E is an equivalence
relation on it classifiable by countable structures, then there is a Borel I-positive
set C ⊂ B such that either E � C = EE, or E � C ⊂ E0.

Note that every equivalence relation which is a subset of E0 is hyperfinite and
as such reducible to E0. The relation E on 2ω defined by x E y if and only if
the set {n ∈ ω : x(n) 6= y(n)} is finite and of even cardinality, happens to be an
equivalence relation reducible to E0 which is not equal to E0 on any I-positive
Borel set.

Proof. Suppose that B ⊂ 2ω is a Borel I-positive set and E is an equivalence
on it classifiable by countable structures. Since the Silver forcing extension
contains a single minimal real degree, Corollary 4.3.10 implies that E simplifies
to an essentially countable equivalence relation on a positive Borel set. Since
the Silver forcing extension preserves Baire category, Theorem 4.2.7 shows that
E restricted to a further I-positive subset is reducible to E0. Now we can deal
with this fairly simple situation separately.
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Suppose that B ∈ PI is a Borel I-positive set, and E is an equivalence
relation on B reducible to E0 by a Borel function f : B → 2ω. By standard
homogeneity and bounding arguments, we may assume that B = X and f is
continuous. Suppose that E has no I-positive equivalence classes. We must
produce a Borel set such that on it, E ⊂ E0.

By induction on n ∈ ω build functions gn ∈ P and numbers mn such that

• g0 ⊂ g1 ⊂ . . . , m0 ∈ m1 ∈ . . . and ∀n, k mk /∈ dom(gn);

• writing a = {mk : k ∈ n}, for every x ∈ Bgn and functions h0, h1 ∈ 2a,
if the functions h0, h1 differ in at least l many values then the functions
f(x� h0), f(x� h1) differ in at least l many values, and these differences
are visible already when looking at x � mn.

If the induction has been performed, then choose a function h ∈ P ,
⋃

n gn ⊂ h
and ω \ dom(h) = {mn : n ∈ ω}. The second item immediately implies that
E � Bh ⊂ E0 as required.

To perform the induction, suppose that a = {mk : k ∈ n} as well as gn−1

have been found. Thin out the condition Bgn−1 to some set C such that there is
an equivalence relation F on 2a such that for every x ∈ C, h0 F h1 → f(x�h0) �
(mn−1, ω) = f(x � h1) � (mn−1, ω) and ¬h0 F h1 → f(x � h0) � (mn−1,m) 6=
f(x�h1) � (mn−1,m). Choose representatives hj : j ∈ J for each F -equivalence
class, and consider the functions gj : x 7→ f(x�hj) � mn−1, ω) for every number
j ∈ J . The preimage of any singleton under any of these maps must be an
I-small set–otherwise there would be an I-positive E-equivalence class. Use
Claim 3.6.3 to find a function gn and a number mn = min(ω \ dom(gn) > m
such that for every index j ∈ J and every point x ∈ Bgn , gj(x) 6= gj(x �mn).
The induction can proceed.

Theorem 3.6.7. (Michal Doucha) Every equivalence relation reducible to E2

canonizes to a subset of E0 or EE on a Borel I-positive set.

Proof. Let f : B → 2ω be a Borel function from a Borel I-positive set, and let
E be the pullback equivalence relation f−1E2. we will canonize E on a Borel
I-positive subset of B. By the usual homogeneity and fusion arguments we may
assume that 2ω = B and f is a 1-Lipschitz function with the usual minimum
difference metric on 2ω.

We will need a little bit of notation. For distinct finite binary sequences
s, t ∈ 2<ω of the same length and a positive real ε > 0 we will write sEεt if for
every infinite sequence x ∈ 2ω, d(f(sax), f(tax)) < ε. We will also write sE2t
if for every infinite binary sequence x ∈ 2ω, f(sax)E2f(tax). There are several
cases.

In the first case, for every real ε > 0 the set Sε = {s : ∃t ∈ 2<ω (sa0at)Eε(sa1at)} ⊂
2<ω is dense. In this case we will find an I-positive Borel set of pairwise equiv-
alent elements. By induction on n ∈ ω construct binary sequences sn and sets
an ⊂ dom(sn) so that



3.6. SILVER FORCING 73

• s0 ⊂ s1 ⊂ . . . , a0 ⊂ a1 ⊂ . . . , |an| = n;

• any two sequences u, v of the same length as sn such that for every i ∈
dom(sn) \ an, sn(i) = u(i) = v(i), are E1−2−n related.

If this succeeds then in the end let g : ω → 2 be the partial function with
domain ω \

⋃
n an equal to sn on its domain and note that every two points in

Bg are E-related since their f -images have distance at most one. To perform
the induction step, given an and sn, extend sn into an element s ∈ S2−n−2 with
witness t ∈ 2<ω, let sn+1 = sa1at and an+1 = an∪{|s|}. The triangle inequality
applied to d will show that the induction hypothesis continues to hold.

In the second case, suppose that the first case fails and find a positive number
ε > 0 and a sequence s̄ ∈ 2<ω such that no extension of s is in Sε, and let
S = {s ⊃ s̄ : ∃t sa0at)E2(sa1at)}. The second case will occur when the set
S is dense below s̄. Here, we will find an I-positive Borel set such that on
it E = E0. By induction on n ∈ ω construct binary sequences sn and sets
an ⊂ dom(sn) so that

• s0 ⊂ s1 ⊂ . . . , a0 ⊂ a1 ⊂ . . . , |an| = n;

• for any two sequences u, v of the same length as sn such that for every
i ∈ dom(sn) \ an, sn(i) = u(i) = v(i), and for every x ∈ 2ω, d(f(uax) �
dom(sn), f(vax) � dom(sn)) > ε/2 · |{i : u(i) 6= v(i)}| and d(f(uax) \
dom(sn), f(vax) \ dom(sn) < ε/4 · (1− 2−n).

If this succeds then let g : ω → 2 be the partial function with domain ω \
⋃

n an

equal to sn on its domain and observe that E � Bg = E0 by the second item. The
induction step uses the Lipschitz condition on the function f . To perform the
induction step, assume that sn, an have been found. Find an extension s ∈ S of
sn and a witness t ∈ 2<ω. Since s /∈ Sε, we can extend t if necessary so that for
every point x ∈ 2ω, d(f(sa0atax) � |s|+ |t|+ 1, f(sa1atax) � |s|+ |t|+ 1 > ε.
Extending t further if necessary we may arrange that for every point x ∈ 2ω,
d(f(sa0atax) \ |s|+ |t|+ 1, f(sa1atax) \ |s|+ |t|+ 1)) < ε/4 · 2−n−3. It is not
difficult to use the triangle inequality to show that sn+1 = sa1at together with
an+1 = an ∪ {|s|} satisfies the induction hypothesis.

In the last case, the first and second case both fail, and so there is an
extension¯̄s such that none of its extensions belong to the set S. In this case, we
will find a Borel I-positive set B such that on it the E-equivalence classes are
countable and finish by the result of the previous section. To find the Borel set
B, note that for every number n ∈ ω and every finite set a of sequences extending
¯̄s there is a sequence t ∈ 2<ω such that for every s ∈ a, ¬(sa0at)En(sa1at).
This allows a standard fusion process to build a partial function g : ω → 2
such that for points x0, x1 ∈ Bg, d(f(x0), f(x1)) >minimal n such that x0(n) 6=
x1(n). Clearly, the equivalence classes of the relation E � Bg are at most
countable, and the results of the previous subsection apply to yield the desired
conclusion.
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3.7 Milliken forcing

Let (ω)ω be the space of all infinite sequences a of finite sets of natural numbers
with the property that min(an+1) > max(an) for every number n ∈ ω. Define
the partial ordering P to consist of all pairs p = 〈tp, ap〉 where tp ⊂ ω is a
finite set and ap ∈ (ω)ω, ordered by q ≤ p if tp ⊂ tq and tq is the union of
tp with some sets on the sequence ap, and all sets on aq are unions of some
sets on ap. This partial ordering is folklorically well-known to resemble Miller
forcing in many aspects. In this section, we will establish its main forcing and
canonization properties.

Note that the poset P adds an infinite set ẋgen ⊂ ω, the union of the first
coordinates of the conditions in the generic filter. As always, the most important
issue from the strategic point of view is the identification of the associated σ-
ideal I on the space [ω]ℵ0 . For every condition p ∈ P define [p] ⊂ [ω]ℵ0 to be
the collection of all sets which are the union of tp with infinitely many sets on
the sequence ap, and let I be the collection of all analytic sets which do not
contain a subset of the form [p] where p ∈ P .

Theorem 3.7.1. 1. The collection I is a σ-ideal and the map p 7→ [p] is an
isomorphism of P with a dense subset of PI ;

2. Iis Π1
1 on Σ1

1;

3. I fails to have the transversal property;

4. the forcing P is proper, preserves Baire category and outer Lebesgue mea-
sure, and it adds no independent reals. It adds an unbounded real.

Proof. The proof starts with the identification of basic forcing properties of the
poset P . The following notation and terminology will be helpful: q ≤ p is a
direct extension of p if tq = tp. If a ∈ (ω)ω is a sequence and m ∈ ω then a \m
is the sequence in (ω)ω obtained by erasing the first m entries on the sequence
a. We will start with basic two claims.

Claim 3.7.2. Let O ⊂ P be an open dense set and p ∈ P a condition. There is a
direct extension q ≤ p such that for every n ∈ ω, the condition 〈tq∪aq(n), aq \n〉
belongs to the set O.

Proof. Set up a simple fusion process to find a sequence b ≤ a such that for
every finite set u ⊂ ω, either 〈tp ∪

⋃
n∈u a(n), b \ max(u)〉 ∈ O or else none

of direct extensions of this condition belong to O. Applying Fact 1.3.22 to the
partition π : (ω)ω → 2 given by π(d) = 0 if the former case holds for d(0), we get
a homogeneous sequence c ⊂ b. The homogeneous color cannot be 1 since the
condition 〈tp, c〉 has an extension in the open dense set O. If c is homogeneous
in color 0 then it confirms the statement of the claim with q = 〈tp, c〉.

Claim 3.7.3. If p ∈ P is a condition and [p] = B0 ∪B1 is a partition into two
Borel sets then there is a direct extension q ≤ p such that [q] is contained in one
of the pieces of the partition.
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Proof. This is an immediate consequence of Fact 1.3.22.

For the proof of properness of the poset P , let M be a countable elementary
submodel of a large enough structure, let p ∈ P ∩M be a condition. We must
produce a master condition q ≤ p. Enumerate the open dense sets of P in
the model M by 〈On : n ∈ ω〉 and use the claim and the elementarity of the
model M repeatedly to build a sequence p = p0, p1, p2, . . . of direct extensions
of p in the model M such that for every n ∈ ω, apn

� n = apn+1 � n and
for every finite set u ⊂ ω with max(u) > n it is the case that the condition
〈tp ∪

⋃
m∈u apn+1(m), apn+1 \ max(u)〉 ∈ M belongs to the open dense set On.

The limit q ≤ p of the sequence of conditions 〈pn : n ∈ ω〉 will be the required
master condition.

In order to show that I is a σ-ideal, suppose that {Bn : n ∈ ω} are Borel sets
in the collection I and suppose for contradiction that there is a condition p ∈ P
such that [p] ⊂

⋃
nBn. Clearly p 
 ẋgen ∈

⋃
nBn and so, strengthening p if

necessary, we may find a single natural number n ∈ ω such that p 
 ẋgen ∈ Ḃn.
Let M be a countable elementary submodel of a large enough structure, and let
q ≤ p be anM -generic condition described in the previous proof. It is immediate
that for every point x ∈ [q] the conditions 〈tq ∪ (q ∩

⋃
i∈n aq(i), aq \ n〉 : n ∈ ω

generate an M -generic filter gx ⊂ P ∩M . By the forcing theorem applied in the
model M , M [x] |= x ∈ Bn, and by Borel absoluteness, x ∈ Bn. Thus [q] ⊂ Bn,
contradicting the assumption that Bn ∈ I.

In order to show that p 7→ [p] is an isomorphism between P and a dense
subset of PI , it is necessary to show that if p, q ∈ P are conditions such that
[q] ⊂ [p] then in fact q ≤ p. To simplify the discussion a bit, assume that
tp = tq = 0. Suppose that q ≤ p fails, and find a number n ∈ ω such that aq(n)
is not a union of sets on the sequence ap. In such a case, either there is an
element i ∈ aq(n) such that i /∈

⋃
rng(a), in which case no set x ∈ [q] containing

i can be in [p]; or else there is a number m such that ap(m) ∩ aq(n) 6= 0 and
ap(m) \ aq(n) 6= 0. In the latter case find a point x ∈ [q] containing aq(n) as
a subset and disjoint from the set ap(m) \ aq(n); such a point cannot belong
to p] either. In both cases we have a contradiction with the assumption that
[q] ⊂ [p]!

To show that the ideal I is Π1
1 on Σ1

1, let A ⊂ 2ω × [ω]ℵ0 be an analytic set,
a projection of a closed set C ⊂ 2ω × [ω]ℵ0 × ωω. We must show that the set
{y ∈ 2ω : Ay ∈ I} is coanalytic. Fix a point y ∈ 2ω and suppose that Ay /∈ I.
This means that there is a condition p ∈ P such that [p] ⊂ Ay, by Shoenfield
absoluteness this will be true in the P -forcing extension as well, and so there
must be a P -name τ for a point in ωω such that p 
 〈y̌, ẋgen , τ〉 ∈ Ċ. By a fusion
argument, there is a condition r ≤ p and a function g : [ω]<ℵ0 → ω<ω such that
the following holds. For every b ∈ [ω]<ℵ0 , write rb ≤ r to be that condition
whose trunk consists of tr and the union of i-th elements of the sequence ar for
all i ∈ b, and arb

= ar \ max(b) + 1; we will have that for every b ∈ [ω]<ℵ0 ,
dom(g(b)) = max(b) + 1 and rb 
 g(b) ⊂ τ . In particular, the following formula
φ(y, r, g) holds: the function g respects inclusion, dom(g(b)) = max(b) + 1 and
the basic open neighborhood of the space 2ω×[ω]ℵ0×ωω given by the first max(b)
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elements of y in the first coordinate, the trunk trb
in the second coordinate, and

the sequence g(b) in the third coordinate has nonempty intersection with the
closed set C. It is also clear that ψ(y, r, g) implies that [r] ⊂ Ay since the
function g yields the requisite points in the set C witnessing that elements of
the set [r] belong to Ay. We conclude that Ay /∈ I if and only if there is r ∈ P
and a function g : [ω]<ℵ0 → ω<ω such that ψ(y, r, g) holds, and this is an
analytic statement.

For the continuous reading of names, let p ∈ P and let f : [p] → ωω be a
Borel function. Use Claim 3.7.2 to find a direct extension q ≤ p such that for
every number n ∈ ω and every set u ⊂ n + 1 with n ∈ u there is a number m
such that the condition 〈tp ∪

⋃
i∈u aq(i), aq \ n+ 1〉 forces ḟ(ẋgen)(ň) = m̌. Let

M be a countable elementary submodel of a large structure and find a direct
extension r ≤ q as in the previous argument. The forcing theorem will then
show that f � [r] is a continuous function.

For the preservation of Baire category, there is a simple fusion-type proof.
A more elegant argument will show that the ideal I is the intersection of a
collection of meager ideals corresponding to Polish topologies on the Polish
space [ω]ℵ0 that yield the same Borel structure, and use the Kuratowski-Ulam
theorem as in [49, Corollary 3.5.5]. This is the same as to show that for every
condition p ∈ P there is a Polish topology on [p] such that all sets in the ideal
I are meager with respect to it.

We will deal with the case of the largest condition p ∈ P ; there, tp = 0 and
ap(n) = {n}, so [p] = [ω]ℵ0 . We will show that every Borel nonmeager set in
the usual topology on the space [ω]ℵ0 is I-positive. Suppose that B ⊂ [ω]ℵ0 is
such a nonmeager set, containing the intersection O ∩

⋂
On : n ∈ ω, where O is

a nonempty basic open set and On : n ∈ ω are open dense sets. Let r0 ∈ 2<ω

be a finite sequence such that whenever the characteristic function of a point
x ∈ [ω]ℵ0 contains r0 then x ∈ O. By a simple induction on n ∈ ω build
finite sequences r0 ⊂ r1 ⊂ r2 ⊂ . . . such that for every point x ∈ [ω]ℵ0 whose
characteristic function contains rn+1 \ rn, x ∈

⋂
m∈nOm holds. In the end, let

t = {i ∈ dom(r0) : r0(i) = 1} and let a ∈ (ω)ω be the sequence defined by
a(n) = {i ∈ dom(rn+1 \ rn) : rn+1(i) = 1}, and observe that [t, a] ⊂ B and so
B /∈ I as required.

For the preservation of outer Lebesgue measure, suppose that A ⊂ 2ω is a
set of outer Lebesgue mass > ε+ δ and p ∈ P is a condition forcing Ȯ to be a
subset of 2ω of mass < ε. We must find a condition q ≤ p and a point z ∈ A
such that q 
 ž /∈ Ȯ.

Find positive real numbers δu : u ∈ [ω]<ℵ0 that sum up to less than δ, and
find names Ȯj : j ∈ ω for basic open sets whose union Ȯ is. Using Claim 3.7.2
and a simple fusion process, find a direct extension q ≤ p such that for every
nonempty set u ∈ [ω]<ℵ0 , there is an open set Pu such that the condition
tp ∪

⋃
i∈u aq(i) 


⋃
j∈max(u) Ȯj ⊂ Pu ⊂ Ȯ and the mass of Ȯ \ Pu is less than

δu. Clearly, the set R0 =
⋃
{Pu \ Pu∩max(u) : u ∈ [ω]<ℵ0 , |u| > 1} has mass at

most δ, and the set R1 = lim sup{P{n} : n ∈ ω} has size at most ε. Find a
point z ∈ A \ (R0 ∪R1), thin out the sequence q if necessary to make sure that
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z /∈ P{n} for any n ∈ ω and conclude that q 
 ž /∈ Ȯ as desired.
Not adding independent reals is always a somewhat more delicate issue. Sup-

pose that p ∈ P is a condition and ẏ a name for an infinite binary sequence.
A simple fusion process using Corollary 3.7.3 repeatedly at each stage yields
a direct extension 〈tp, b〉 ≤ p such that for every n ∈ ω and every set u ⊂ n
the condition 〈tp ∪

⋃
i∈u b(i), b \ n + 1〉 decides the value ẏ(min(b(n)). Define

a partition π : ([ω]<ℵ0)2 → 2 by setting π(u, v) = 0 if the decision for u and
min(bmin(v)) was 0. This is clearly a clopen partition and therefore there is a ho-
mogeneous sequence d ∈ (ω)ω by Fact 1.3.22. Let us say that the homogeneous
color is 0. Consider the condition q ≤ p given by tq = tp ∪

⋃
i∈d(0) b(i), and

aq(j) =
⋃

i∈d2j+1
b(i). It is not difficult to use the homogeneity of the sequence

d to show that the condition q forces ẏ � {min(bmin(d(2j))) : j > 0} = 0.
Finally, P certainly adds an unbounded real: the increasing enumeration of

the generic subset of ω cannot be bounded by any ground model function. The
failure of the transversal property of the ideal I is also simple. Let C ⊂ P(ω)
be a perfect set consisting of pairwise almost disjoint sets, and consider the set
D ⊂ C× [ω]ℵ0 consisting of all pairs 〈c, x〉 such that c ∈ C and x ⊂ c. It is clear
that D is a Borel set with I-positive vertical sections. If B ⊂ [ω]ℵ0 is a Borel set
covered by the vertical sections of the set D, visiting each vertical section in at
most one point, it must be the case that the elements of B are pairwise almost
disjoint, therefore B cannot contain a subset of the form [p] for any p ∈ P , and
so B ∈ I.

The investigation of the spectrum of the ideal I begins with identifying the
only obvious feature:

Theorem 3.7.4. E0 is in the spectrum of the σ-ideal I. The poset PE0
I is

regularly embedded in PI , it is ℵ0-distributive, and it yields the model V [ẋgen ]E0 .

Proof. This is an immediate corollary of the work in Theorem 4.2.1 and the
simple observation that E0-saturations of I-small sets are still I-small.

As an additional piece of information, the equivalence class [xgen]E0 is forced
by PI to be the only E0 equivalence class in the intersection of all E0-invariant
sets in the generic filter. Suppose that p is a condition and p 
 ẏ ⊂ ω is an
infinite set not E0 related to ẋgen . Strengthening the condition p if necessary
we may find a continuous function f : [p] → P(ω) such that p 
 ẏ = ḟ(ẋgen).
We must find a condition q ≤ p such that no element of [q] is E0-equivalent to
f ′′[q]; then clearly q 
 ẏ /∈ [q]E0 and so the class [ẏ]E0 is not a subset of all
E0-invariant sets in the PI -generic filter.

To produce the condition q, first use a standard fusion process to strengthen
p so that for every finite set u ∈ ω, the condition 〈tp ∪

⋃
n∈u ap(n), ap \max(u)〉

identifies some number mu > max(ap(max(u) − 1)) such that mu ∈ ẋgen∆ẏ,
and some number ku > max(ap(max(u) − 1)) such that ku ∈ ẏ. Thinning out
the sequence ap if necessary, assume that the numbers {ku,mu : u ⊂ n} are all
smaller than min(ap(n)). It is now not difficult to verify that the thinned out
condition q works as desired; that is, whenever u, v ⊂ ω are infinite sets, writing
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xu = tp ∪
⋃

n∈u aq(n)) and xv = tq ∪
⋃

n∈v aq(n) we must show ¬f(xu) E0 xv.
For every n ∈ u, we must produce a number k > max(aq(n− 1)) which belongs
to the symmetric difference of f(xu) and xv. There are two cases:

• either n /∈ v. Then k = ku∩n+1 will work: as n ∈ u, k ∈ f(xu), while
xv contains no numbers in the interval (max(aq(n− 1)),min(aq(n+ 1))),
where k belongs;

• or n ∈ v. In this case, k = mu∩n+1 will work. Either it is in the set aq(n),
in which case it belongs to both xu, xv and does not belong to f(xu), or
it is not in the set aq(n), in which case it does not belong to either xu, xv

and does belong to f(xu).

The proof is complete.

In the absence of any other tangible features of the spectrum, it is difficult to
resist making a sweeping general conjecture.

Conjecture 3.7.5. Borel→I {ID,EE, E0}.

This would strengthen the canonization results of Section ??, since the charac-
teristic functions of sets in any given set [p] form a positive set with respect to
the E0-ideal investigated there. However, the treatment of the reduced product
forcing seems to yield much less information in the present case, and we are
limited to affirmative results in several particular cases only.

Theorem 3.7.6. ≤ EKσ
→I {ID,EE, E0}.

In particular, I has total canonization for smooth equivalence relations and so
the forcing P adds a minimal real degree.

Proof. Let p ∈ P be a condition and E ≤ EKσ
be a Borel equivalence relation

on [p], and let f : [p] → ωω below the identity be a Borel function witnessing
the reducibility. To simplify the notation assume that tp = 0 and the function
f is continuous. Assume that E has I-small equivalence classes and proceed to
find an I-positive Borel set on which the equivalence E is either equal to ID or
to E0. We will first show that there is an I-positive Borel set on which E ⊂ E0

and then handle that fairly simple case separately.
We will start with a sequence of simple considerations. If t ∈ [ω]<ℵ0 , n ∈ ω

and a ∈ (ω)ω, we will say that a is t, n-separated if there is a map g : ω → ω<ω

such that for every i < j it is the case that dom(g(i)) ⊂ dom(g(j)) and there is
k ∈ ω such that |g(i)(k)− g(j)(k)| > n, and moreover, for every x ∈ [taq a(i), a \
i+ 1] it is the case that g(i) ⊂ f(x).

Claim 3.7.7. Whenever t ∈ [ω]<ℵ0 , n ∈ ω and a ≤ ap then there is b ≤ a such
that b is t, n-separated.

Proof. Note that in every Borel positive set there are two inequivalent elements.
This observation means that there are finite sets u(m, j) : m ∈ ω, j ∈ 2 and finite
sequences of natural numbers g(m, j) : m ∈ ω, j ∈ 2 so that
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• all numbers in u(m, j) are smaller than all numbers in u(m + 1, k) no
matter what j, k ∈ 2 are;

• the two sequences g(m + 1, j) : j ∈ 2 have the same domain larger than
the common domain of g(m, j), they are equal on dom(g(m, j)) and there
is i such that |g(m+ 1, 0)− g(m+ 1, 1)| > 2n;

• for all x ∈ [tp ∪
⋃

i∈u(m,j) a(i), a \max(u(m, j)) + 1], g(m, j) ⊂ f(x).

Find an infinite set v ⊂ ω such that the sequence g(m + 1, j) � dom(m, j) :
m ∈ v converges to some z ∈ ωω below the identity. For every numberm ∈ v find
jm ∈ 2 such that there is i ∈ dom(g(m+1, jm) such that |g(m+1, jm)(i)−z(i)| >
n. Thinning out v even further, we can achieve now that for every m < m′ ∈ v
there is i ∈ dom(g(m+1, jm)) such that |g(m+1, jm)(i)−g(m′+1, jm′)(i)| > n.
The sequence b ∈ (ω)ω given by b(m) =

⋃
i∈u(m+1,jm) a(i) is n separated as

required.

If t, s ∈ [ω]<ℵ0 , n ∈ ω and a ∈ (ω)ω, say that a is t, s, n-separated if there are
maps g0, g1 : ω → ω<ω such that for every i < j it is the case that dom(g0(i)) ⊂
dom(g1(j)) and there is k ∈ dom(g0) such that |g0(i)(k) − g1(j)(k)| > n, and
moreover, for every x ∈ [taa(i), b \ i + 1] it is the case that g0(i) ⊂ f(x), and
for every x ∈ [saa(j), b \ j + 1] it is the case that g0(i) ⊂ f(x).

Claim 3.7.8. Whenever t, s ∈ [ω]<ℵ0 , n ∈ ω and a ≤ ap, there is b ≤ a which
is s, t, n-separated.

Proof. Use the previous claim to find b which is both s, n-separated and t, n-
separated and then thin out if necessary.

Now, by a simple fusion process using the claim repeatedly at each step we
can find a sequence b ≤ ap such that for every number n and sets u, v ⊂ n, the
sequence b\n+1 is s, t, n-separated where s = tp∪

⋃
i∈u b(i) and t = tp∪

⋃
i∈v b(i).

It is immediate then that E � [tp, b] ⊂ E0.
Now suppose that there is no I-positive Borel subset of [tp, b] such that

E = E0 on it and work to find a Borel positive set of pairwise inequivalent
elements. If t, s ∈ 2<ω and a ∈ (ω)ω, say that a is s, t-discrete if for every finite
set v ⊂ ω and every point x ∈ [0, a\max(v)+1] the points s∪x, t∪

⋃
i∈v a(i)∪x

are inequivalent.

Claim 3.7.9. Whenever t, s ∈ [ω]<ℵ0 and a ∈ (ω)ω then there is c ≤ a which
is s, t-discrete.

Proof. By a simple fusion process one can strengthen the sequence a such that
for every finite set u ⊂ ω, one of the following happens:

• for every x ∈ [0, a \max(u) + 1], s∪ x is equivalent with t∪
⋃

i∈u a(i)∪ x;

• for every such x, the two points are inequivalent.
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Let π : [ω]<ℵ0 → 2 be defined by π(u) = 0 if the first item above holds.
Fact 1.3.22 yields a homogeneous sequence c. Observe that the homogeneous
color cannot be 0. In such a case E � [t, d] = E0: whenever y, z ∈ [t, d] are
E0-equivalent points, we can find a number m such that y \m = z \m and then
both y, z are equivalent to s ∪ (y \m) by the homogeneity of the set d. This
contradicts our assumption that there is no positive Borel set on which E = E0.
If the homogeneous color is 1, then c is easily seen to be s, t-discrete.

By a simple fusion process (inducing on n and using the previous claim at
each step of the induction repeatedly), build a sequence c ≤ b such that for
every n ∈ ω and sets u, v ⊂ n, c \ n is s, t-discrete where s = tp ∪

⋃
i∈u c(i) and

t = tp ∪
⋃

i∈v c(i). We claim that in the end E � [q] = ID. Indeed, if x 6= y ∈ [q]
are two distinct E0 equivalent points, then there is the largest number m such
that aq(m) ⊂ x and aq(m) ∩ y = 0 or vice versa. The definition of discreteness
then immediately shows that ¬x E y as required. The claim follows!

Theorem 3.7.10. Classifiable by countable structures→I {ID,EE, E0}.

Proof. This follows by modus ponens from previous results. The forcing PI adds
a minimal real degree as per the previous theorem. Corollary 4.3.10 then shows
that every equivalence relation calssifiable by countable structures simplifies to
an essentially countable one on a Borel I-positive set, which then is reducible
to EKσ , and by the previous theorem simplifies to either ID,EE, or E0 on a
further Borel I-positive subset.

3.8 Infinite product of Sacks forcing

The infinite product of Sacks forcing is the poset P of all ω-sequences ~T of
perfect binary trees, ordered by coordinatewise inclusion. The computation of
the associated ideal yields a complete information. Let I be the collection of
those Borel subsets of X = (2ω)ω which do not contain a product ΠnCn of
nonempty perfect subsets of 2ω. The following Fact is a conjunction of the
rectangular property of Sacks forcing [49, Theorem 5.2.6] and [49, Proposition
2.1.6].

Fact 3.8.1. I is a Π1
1 on Σ1

1 σ-ideal of Borel sets. Every positive analytic set
contains a Borel positive subset.

Thus, the function π : P → PI defined by π : ~T 7→ Π~T is a dense embedding of
P to PI , where Π~T denotes the product Πn[~T (n)].

The spectrum of the ideal I is very complicated. Already the understanding
of smooth equivalence relations (i.e. names for reals) seems to be out of reach.
We will include several basic results. First, consider the obvious equivalence E1

on X.

Theorem 3.8.2. E1 is in the spectrum of I. Moreover,
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1. the poset PE1
I is regular in PI , it is ℵ0-distributive, and its extension is

equal to V [~xgen ]E1 ;

2. the reduced product PI ×E1 PI is proper and adds a dominating real and a
Cohen real;

3. V [[~xgen ]]E1 = V [~xgen ]E1 .

Proof. To see that E1 is indeed in the spectrum, if B ⊂ X is an I-positive set,
use Fact 3.8.1 to find a sequence ~T ∈ P of perfect trees such that Π~T ⊂ B
and let πn : 2ω → [~T (n)] be a homeomorphism for every number n. Then
π : ~x 7→ 〈πn~x(n) : n ∈ ω〉 is a Borel reduction of E1 to E1 � B.

To prove that PE1
I is a regular ℵ0-distributive subposet of PI , suppose that

B is a Borel I-positive set, and thinning it out if necessary assume that it is a
product of countably many perfect sets, B = ΠnCn. We will show that [B]E1 is
a pseudoprojection of PI into PE1

I . For that, suppose that ΠnDn ⊂ [B]E1 is a
positive set below the saturation of B. We must show that the set B∩ [ΠnDn]E1

is I-positive. Indeed, since ΠnDn ⊂ [B]E1 , for all but finitely many numbers
n ∈ ω, say for all n > n0, it must be the case that Dn ⊂ Cn. Then the product
Πn≤n0Cn × Πn>n0Dn is the required I-positive subset of B ∩ [ΠnDn]E1 . The
distributivity of the poset PE1

I follows immediately from the I-density of the
equivalence E1 and Proposition 2.2.6.

To show that the poset PE1
I yields the model V [ẋgen ]E1 , we must show that

for analytic I-positive sets B,C ⊂ X, either there is I-positive Borel B′ ⊂ B
such that [B′]E1 ∩ C ∈ I, or there is an I-positive Borel B′ ⊂ B and an I-
preserving Borel injection f : B′ → C with f ⊂ E1. After that, Theorem 2.2.7
completes the proof.

Thus, fix the sets B,C and find a product Π~T ⊂ B. If [Π~T ]E1 ∩ C ∈ I,
then we are done, otherwise find a product Π~S ⊂ [Π~T ]E1 ∩ C. There must be
a number n0 ∈ ω such that ∀n ≥ n0

~S(n) ⊂ ~T (n). Consider the set B′ =
Πn∈n0

~T (n) × Πn≥n0
~S(n), fix homeomorphisms πn : [~T (n) → ~S(n) for every

n ∈ n0, and consider the map f : B′ → C defined by f(~x)(n) = πn(~x)(n) if
n ∈ n0 and f(~x)(n) = ~x(n) for n ≥ n0. It is not difficult to see that the function
f is a Borel injection with the required properties. As an interesting aside, note
that in V [G], [~xgen ]E1 is the only equivalence class contained in all sets in the
filter K and so K and [~xgen ]E1 are interdefinable elements. This is to say, in
the ground model, if B ⊂ X is an I-positive Borel set and f : B → X is a Borel
function such that ∀x ∈ B ¬f(x) E1 x, then there is an I-positive Borel set
C ⊂ B such that [C]E1 ∩ f ′′C = 0. Since the poset PI is bounding, there are
increasing functions g, h ∈ ωω and an I-positive Borel set C ⊂ B such that for
every point x ∈ C and every number i ∈ ω there are numbers n ∈ [g(i), g(i+1))
and k ∈ h(i) such that f(x)(n)(k) 6= x(n)(k). Thinning the set C further if
necessary we may assume that C = Πn[Tn] for some perfect binary trees Tn

such that whenever n ∈ [g(i), g(i + 1)) then the first splitnode of the tree Tn

is past the level h(i). It is not difficult to see that such a set C ⊂ B works as
desired.
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For the computation of the reduced product forcing, suppose that ~S, ~T ∈ P
are sequences of trees such that in some generic extension, Π~S and Π~T contain
E1-related generic sequences of Sacks reals. It is clear then that for all but
finitely many n ∈ ω, the intersection ~T (n) ∩ ~S(n) must contain a perfect tree:
for all but finitely many n ∈ ω, the n-th entry on the E1-equivalent generic
sequences must be a branch through both ~T (n) and ~S(n) and so the set [~T (n)]∩
[~S(n)] ∈ V must not be countable. It follows that the collection of all pairs 〈~T , ~S〉
such that for all but finitely many n ∈ ω, ~T (n) = ~S(n) holds, is dense in the
reduced product PI ×E1 PI .

To prove the properness of the reduced product, let M be a countable el-
ementary submodel of a large structure, let 〈~T , ~S〉 ∈ M be a condition in the
reduced product. By the previous paragraph we may assume that ~T = ~S on all
but finitely many entries, and to simplify the notation, we will assume that in
fact ~S = ~T . To construct the master condition for the model M , enumerate the
open dense subsets of the reduced product in the model M with repetitions by
Dn : n ∈ ω, and by a simple induction produce sequences ~Tn ∈ P ∩M such that

• the first n splitnodes of the first n trees on the sequence ~Tn also belong to
the trees on the sequence ~Tn+1;

• for every two sequences ~u,~v ∈ (2<ω)n picking one node at n+1-th splitting
level for all trees ~Tn+1(i) : i ∈ n, if there is a condition 〈~U, ~V 〉 ≤ 〈~Tn+1 �
~u, 〈~Tn+1 � ~v〉 ∈ Dn such that for every i ∈ n, ~U(i) ⊂ ~Tn+1(i) � ~u(i),
~V (i) ⊂ ~Tn+1(i) � ~v(i) ∧ ~u(i) = and if ~u(i) = ~v(i) then ~U(i) = ~V (i), and
for all i ≥ n, ~U(i) = ~V (i), then 〈~U, ~V 〉 ≤ 〈~Tn+1 � ~u, 〈~Tn+1 � ~v〉 is such a
condition.

In the end, the sequence ~W which is in the natural sense the limit of 〈~Tn : n ∈ ω
will be a condition in the poset P by the first item, and the condition 〈 ~W, ~W 〉
will be the desired master condition for the model M by the second item. For
if n ∈ ω is a number and 〈~U, ~V 〉 ≤ 〈 ~W, ~W 〉 is a condition, then thin it out
if necessary to fall into the open dense set Dn, and for some m > n such
that Dm = Dn it is the case that for all i ≥ m, ~U(i) = ~V (i) holds, and
for all i ∈ m, there is a unique node ~u(i) at m + 1-th splitting level of ~W (i)
such that ~U(i) ⊂ ~W (i) � ~u(i), also a unique node ~v(i) at that level such that
~V (i) ⊂ ~W (i) � ~v(i), and if ~u(i) = ~v(i) then ~U(i) = ~V (i). The second item of the
induction hypothesis then implies that the condition 〈~Tm+1 � ~u, ~Tm+1 � ~v〉 is a
condition in Dn ∩M compatible with 〈~U, ~V 〉 as desired.

The reduced product adds a dominating real ḟ ∈ ωω defined as ḟ(n) =the
minimal number k such that ~xlgen(n)(k) 6= ~xrgen(n)(k). The Cohen real is then
read off as ~xlgen ◦ ḟ .

To show that V [~xgen ]E1 = V [[~xgen]]E1 , suppose that ~T ∈ P is a condition
forcing σ ∈ V [[~xgen ]]E1 and σ is a set of ordinals; it will be enough to find a
stronger condition ~S forcing σ ∈ V [~xgen ]E1 . By induction on n build a decreas-
ing sequence of trees ~Tn ≤ ~T and names condition ~S ≤ ~T and names σn for the
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product of the Sacks reals indexed by numbers larger than n such that

• ~T0 = ~T , σ0 = σ and ~Tn � n = ~Tn+1 � n;

• ~Tn+1 
 σ/~xgen = σn+1/~xgen � (n, ω).

To see how this is done, suppose that ~Tn, σn are known. Now ~Tn � [n, ω) forces
in the tail of the product that τn ∈ V [[~xgen � [n, ω)]]E1 and therefore there must
be a tree S ⊂ ~Tn(n+1) and a sequence ~U ≤ ~Tn � [n+1, ω) and a name σn+1 such
that in the tail of the product, (S, ~U) 
 σn/~xgen � [n, ω) = σn+1~xgen � [n+1, ω).
The name σn+1 together with the sequence ~Tn+1 = ~Tn � naSa~U will work.

In the end, the natural limit of the sequences ~Tn forces that σ is definable
from parameters in V and the equivalence class [~xgen ]E1 as the eventual stable
value of the sequence 〈σn/~y � [n, ω) : n ∈ ω〉 for any ~y ∈ [~xgen ]E1 .

Theorem 3.8.3. The spectrum of I is cofinal among the Borel equivalence
relations under ≤B. It contains EKσ

.

Proof. Let J be a Borel ideal on ω, then the equivalence relation EJ , the modulo
J equality of sequences in (2ω)ω is a Borel equivalence, it is in the spectrum of
the ideal I by the same reason as E1, and the equalities of this type are cofinal
in ≤B by Fact 1.3.15. There is an Fσ ideal J such that equality modulo J is
bireducible with EKσ

, and so EKσ
is in the spectrum of I as well.

The equivalences from the previous proof are never reducible to orbit equiv-
alences of Polish group actions, which leaves open the possibility of a strong
canonization theorem for I and orbit equivalences. We will prove something
weaker. The proofs transfer to infinite products of other forcings in place of
Sacks–for example the bounding forcings generated by Π1

1 on Σ1
1 σ-ideals of

closed sets.
In order to avoid the nightmarish and repetitive fusion arguments, the fol-

lowing definitions will be useful.

Definition 3.8.4. if a ⊂ ω is a finite set then IDa is the equivalence relation
on (2ω)ω connecting two sequences if they agree on all entries outside of the set
a.

Definition 3.8.5. if ~S ≤ ~T are two sequences of trees in P and k is a number,
we write ~S ≤k

~T if every node at k-th splitting level of a tree ~T (i) for some
i ∈ k still belongs to the tree ~S(i).

It is not difficult to see that if ~T0 ≥0
~T1 ≥1

~T2 ≥2 . . . is a decreasing sequence of
trees then its coordinatewise intersection is still a sequence of trees in the poset
P .

Definition 3.8.6. Let M be a countable elementary submodel of a large struc-
ture. A condition ~T ∈ P is strong master condition for M if
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1. the set Π~T consists of M -generic sequences, and every subset of the space
(2ω)ω in the model M is relatively open in it;

2. whenever a ⊂ ω is a finite set and t0i , t
1
i are incomparable nodes of ~T (i) for

every number i ∈ a, then the set Πi∈a[~T � ti0]× Πi∈a[~T � ti1]× Πi/∈a[~T (i)]
consists of M -generic sequences of Sacks product reals, and every subset
of the product space in the model M is relatively open in it.

Every condition in the model M can be thinned out to a strong master condition
by a straightforward fusion argument, and further strengthening of a strong
master condition is still strong master.

Theorem 3.8.7. Equivalences classifiable by countable structures→Ismooth.

Proof. We will show that the product of Sacks forcing has the separation prop-
erty of Definition 4.3.4. The proof is then concluded by a reference to Theo-
rem 4.3.5.

So suppose that ~T ∈ P is a condition forcing ẏ ∈ 2ω, ȧ ⊂ 2ω is a countable
set not containing ẏ. We must produce a ground model coded Borel set A and
a condition ~S such that ~S 
 A separates ẏ from ȧ. Thinning out the trees on
the sequence ~T if necessary, find continuous functions f, gn : Π~T → 2ω for all
n ∈ ω such that ~T 
 ẏ = ḟ(~xgen) and ȧ = {ġn(~xgen) : n ∈ ω} and for all
~x ∈ Π~T , f(~x) /∈ {gn(~x) : n ∈ ω}. Let M be a countable elementary submodel
of a large enough structure containing all the above information, and thin out
~T to a strong master condition for M .

By induction on k ∈ ω, build conditions ~Tk ∈ P and clopen sets Uk ⊂ 2ω so
that

• ~Tk form a decreasing fusion sequence in P . That is, ~Tk+1 ≤k
~Tk;

• f ′′Π~Tk+1 ⊂ Uk+1 and g′′kΠ~Tk+1 ∩ Uk+1 = 0;

• for every number n ∈ ω and all pairs ~x, ~y ∈ Π~Tk, if ~x IDk ~y then f(~x) 6=
gn(~y).

Once this construction is complete, the coordinatewise intersection ~S of the
conditions ~Tk will be a condition in the poset P by the first item. Writing
U =

⋂
k Uk, ~S forces that the set U̇ separates ẏ from the set ȧ by the second

item. The third item is there just to keep the induction going.
Start the induction with ~T = ~T0 and U0 = {0}. Suppose that ~Tk, Uk have

been constructed. Thin out the sequence ~Tk to ~T ′k ≤k
~Tk so that for every

choice ~t of splitnodes on k-th splitting level from the trees ~T ′k(j) : j ∈ k, if there
is some condition below ~T ′k � ~t on which the value of f does not depend on
the k-th coordinate of the input, then already ~T ′k � ~t is such a condition. Note
that this thinned out sequence ~T ′k already satisfies the third item for k+ 1. For
suppose that ~x, ~y ∈ Π~T ′k are such that ~x IDk+1 ~y and f(~x) = gn(~y). Note that
~x(k) 6= ~y(k) by the third item of the induction hypothesis. Use the second item
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of strong master property of ~T ′k to conclude that there is a condition below ~T ′k
containing ~x such that the values of the function f on this condition do not
depend on the k-th coordinate of the input. The choice of ~T ′k then implies that
f(~x) = f(~x′) where ~x′ is obtained from ~x(k) by replacing ~x(k) with ~y(k). But
then, ~x′, ~y contradict the third item of the induction hypothesis at k.

Now, pick a sequence ~y ∈ Πl>k[~T ′k(l)]. Let R = Πl≤k
~T ′k(l) × {y}. The

induction assumption at k implies that f ′′R ∩ g′′kR = 0. These two sets are
compact, disjoint, and therefore separated by a clopen set Uk+1. By the first
item of the strong master property, there is a sequence ~Tk+1 ≤k

~T ′k which
satisfies the first item of the induction hypothesis and such that f ′′Π~Tk+1 ⊂
Uk+1 and g′′kΠ~Tk+1 ∩ Uk+1 = 0 as required in the second item. This completes
the inductive step.

Theorem 3.8.8. ≤B E2 →Ismooth.

The proof transfers without change to other equivalence relations E on 2ω

defined by x E y ↔ {n ∈ ω : x(n) 6= y(n)} ∈ K, where K is an Fσ P-ideal,
using a theorem of Solecki [42] to find a suitable submeasure.

Proof. Suppose that ~T ∈ P is a sequence of perfect trees and F on Π~T is an
equivalence relation reducible to E2 by a Borel function f : Π~T → 2ω. We will
construct a condition ~S ≤ ~T such that on it, F is reducible to E0. A reference
to the previous theorem will complete the proof. The reduction to E0 will take
a quite specific form. There will be numbers {mk : k ∈ ω} such that for every
~x, ~y ∈ Π~S the real number dk(~x, ~y) = Σ{1/m+ 1 : mk ≤ m < mk+1, f(~x)(m) 6=
f(~y)(m)} is either smaller than 2−k−2 or else larger than 1. This means that
the relation Gk connecting two sequences ~x, ~y ∈ Π~S if dk(~x, ~y) ≤ 2−k is an
equivalence relation with finitely many classes. Moreover, ~x, ~y are F -connected
if and only if they are Gk connected for all but finitely many numbers k. Thus
the function assigning a sequence ~x its sequence of Gk-equivalence classes for
k ∈ ω reduces the equivalence F � Π~S to a hyperfinite equivalence relation.

Let M be a countable elementary submodel of a large enough structure
containing the equivalence F , and thin out ~T to a strong master condition for
M .

Claim 3.8.9. On the product Π~T , for every number n ∈ ω, the equivalence
relation F ∩ IDn has a Borel selector.

Proof. First show that the complement of the equivalence relation F ∩ IDn is
Fσ by the second item of the strong master definition, and for the same reason
the equivalence relation F ∩ IDn is Fσ itself. So it is a Gδ equivalence relation,
therefore smooth, and has Kσ equivalence classes, therefore a Borel selector
exists.

Let {gn : n ∈ ω} be the Borel selectors indicated by this claim. By induction
on k ∈ ω build sequences ~Tk of trees and numbers mk ∈ ω so that
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• ~Tk form a descending fusion sequence of trees below ~T . That is, ~Tk+1 ≤ ~Tk

and the k-th splitting level of all trees ~Tk(i) : i ∈ k is included in the
corresponding tree ~Tk+1(i);

• the numbers dk(~x, ~y) are either smaller than 2−k−2 or else larger than 1
for all sequences ~x, ~y ∈ Π~Tk;

• for all ~x ∈ Π~Tk, the number Σ{1/m+1 : m ≥ mk, f(~x)(m) 6= f(gk(~x))(m)}
is smaller than 2−k−3.

The first two items show that the fusion ~S of the sequence ~Tk : k ∈ ω will
have the required properties. The third item is present just to keep the induction
going.

Now suppose that ~Tk,mk have been found so that the first and third item are
satisfied. There is a strengthening ~T ′k ≤ ~Tk and a number m′

k > mk such that
for every ~x ∈ Π~T ′k, the number Σ{1/m+1 : m ≥ m′

k, f(~x)(m) 6= f(gk+1(~x))(m)}
is smaller than 2−k−4. Note that no matter what ~Tk+1 ≤k

~T ′k and mk+1 > m′
k

we produce, the first and third item of the induction hypothesis will be satisfied,
so it is just enough to concentrate on the second item.

For every i ∈ k and every node t on the k-th splitting level of the tree
~T ′k, choose a branch xt

i through the tree ~T ′k(i) � t. Choose also a sequence
~y ∈ Πi≥k

~T ′k(i). Let Z = {~t : ~t is a sequence of length k picking a node at k-th
splitting level of the tree ~T ′k(i) for every i ∈ k}. For every sequence ~x ∈ Z

let ~x~t be the concatenation 〈x~t(i)
i : i ∈ k〉a~y, and for sequences ~t, ~s ∈ Z let

e(~s,~t) be the sum Σ{1/m + 1 : mk ≥ m, f(~x~t)(m) 6= f(~x~s)(m)}. The critical
observation: if the sequences ~x~t and ~x~s are F -connected, then the number e(~t, ~s)
cannot be larger than 2−k−2 by the third item of the induction hypothesis, since
in this case gk(~x~s) = gk(~x~t). On the other hand, if the sequences are not F -
connected then the sum e(~t, ~s) is infinite. Thus, there is a number mk+1 > mk

such that all pairs of sequences among {~x~t : ~t ∈ Z} satisfy the second item of
the induction hypothesis. Use the first item of the strong master definition to
find a relatively open tree ~Tk+1 ≤k

~T ′k such that {~x~t : ~t ∈ Z} ⊂ Π~Tk+1 and
moreover {f(~x) � [mk,mk+1) : ~x ∈ Π~Tk+1} = {f(~x~t) � [mk,mk+1) : ~t ∈ Z}.
The induction hypothesis continues to hold.

This leaves a basic question begging for an answer:

Question 3.8.10. Can every equivalence relation on (2ω)ω, Borel reducible to
an orbit equivalence, be simplified to smooth on a Borel I-positive subset?

3.9 Illfounded iteration of Sacks forcing

The illfounded iterations of forcings are significantly more difficult to handle
than products or wellfounded iterations. A general treatment is provided in [49,
Section 5.4] In this book, we will only mention the relatively well-understood
case of iteration of Sacks forcing along the ordertype inverted ω.



3.10. LAVER FORCING 87

Start with a combinatorial description of the poset. Let X = (2ω)ω. A
continuous injective function h : X → X is called a projection-keeping homeo-
morphism if the functional value h(x) � (n, ω) depends only on x � (n, ω) for
every natural number n ∈ ω. Let P be the poset of the ranges of projection-
keeping homeomorphisms ordered by inclusion. The associated σ-ideal I on
X is the σ-ideal on σ-generated by sets of the form Ay, where y ∈ 2ω and
Ay = {~x ∈ X : for some number n ∈ ω, ~x(n) is hyperarithmetic in ~x � (n, ω)
and y}. The fundamental theorem of the inverse ω Sacks iteration:

Theorem 3.9.1. The ideal I is Π1
1 on Σ1

1. For every analytic set A ⊂ X,
exactly one of the following holds:

1. A ∈ I;

2. A contains the range of a projection-keeping homeomorphism.

Theorem 3.9.2. The forcing PI is proper, bounding, and for every number
n ∈ ω, the point ~xgen(n) is forced to be Sacks-generic over the model V [~xgen �
(n, ω)].

The canonization of the smooth equivalence relations reveals an interesting
structure. For every number n ∈ ω, let Fn be the smooth equivalence relation
on X defined by ~x Fn ~y iff ~x � [n, ω) = ~y � [n, ω).

Theorem 3.9.3. Let B ⊂ X be a Borel I-positive set and E a smooth equiva-
lence relation on it. Then there is a Borel I-positive set C ⊂ B and a number
n ∈ ω such that E � C = Fn � C.

Theorem 3.9.4. E1 is in the spectrum of I.

Proof. If B ⊂ X is an I-positive set then we can inscribe the range of a
projection-keeping homeomorphism into it. It is immediate that projection-
keeping homeomorphisms preserve the equivalence E1, and so E1 ≤B E1 � B as
desired.

3.10 Laver forcing

The Laver forcing P is the partial order of those infinite Laver trees T ⊂ ω<ω

such that there is a finite trunk and all nodes past the trunk split into infinitely
many immediate successors. The associated Laver ideal I on ωω is generated
by all sets Ag where g : ω<ω → ω is a function and Ag = {f ∈ ωω : ∃∞n f(n) ∈
g(f � n)}.

Theorem 3.10.1. 1. Every analytic subset of ωω is either in I or it contains
all branches of a Laver tree, and these two options are mutually exclusive;

2. the ideal I is ∆1
2 on Π1

1;

3. the ideal I has the transversal property;
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4. the forcing P is < ω1-proper, preserves outer Lebesgue measure, and ad-
joins a minimal generic extension.

Proof. The first item comes from [4], [49, Proposition 4.5.14]. The second item
comes from [49, Proposition ??]. The minimality of Laver extension is due to
Groszek [10, Theorem 7]; it can be also derived from the general treatment in
[49, Theorem 4.5.13]. This leaves us with the third item. The proof of the
transversal property is very flexible, it will be recalled in other places in this
book, and we therefore treat it in some detail. It uses an integer game associated
with the ideal. The Laver game was in its simplest form presented in [49, Section
4.5]. If A ⊂ ωω is a set, Players I and II can play in the following fashion: Player
II indicates an initial finite sequence tini ∈ ω<ω and then in every round n Player
I indicates a number mn ∈ ω and Player II responds with kn > mn. Player II
wins if the result of the play, the sequence x = taini〈k0, k1, . . . 〉 ∈ ω<ω belongs
to the set A. There is also the appropriate unraveled version of this game if the
set A is analytic. We have

Fact 3.10.2. Player II has a winning strategy (in the original or unraveled
version) if and only if the set A contains all branches of some Laver tree. Player
I has a winning strategy if and only if A ∈ I. If the set A is analytic then the
game is determined.

Now let D ⊂ 2ω × ωω be a Borel I-positive set with pairwise disjoint I-
positive sections. First argue that there is a perfect set C ⊂ 2ω and a continuous
function f on C assigning to each point y ∈ C a winning strategy for player
I in the unraveled game associated with the vertical section Dy. To do this,
consider the space Z of all strategies for Player I in this game with a suitable
Polish topology on it, fix a lightface Σ1

1 set A ⊂ 2ω×2ω×ωω universal for analytic
subsets of 2ω×ωω and the set A′ ⊂ 2ω×2ω×Z defined by 〈x, y, z〉 ∈ A′ if z is a
winning strategy for Player I in the unraveled game associated with the section
Ax,y. This is a Π1

1 set whose projection into the first two coordinates is, by the
above fact, provably Π1

2: it is the set of those pairs 〈x, y〉 such that Player II has
no winning strategy in the game. Now find x ∈ 2ω such that D = Ax; thus the
set {〈x, y〉 : y ∈ 2ω} is a subset of the projection of A′. Now use Theorem 1.3.5
to find a perfect set C and a map f as desired.

Let τy : y ∈ C be a Borel list of all strategies for Player I in the unraveled
game, and let B be the set of all results of plays of the strategies f(y) against
τy as y ranges over all elements of the set C. The set B is Borel, since it is
the image of the Borel set A under the Borel function y 7→the play of f(y)
against τy, that function is injective as the vertical sections of the set D are
pairwise disjoint, and injective Borel images of Borel sets are Borel. The set B
also I-positive, since if it was I-small, one of the strategies τy : y ∈ A should
be winning in the game associated with it, but the play of σy against that τy
would defeat it. Thus, the set B is the required transversal.

There are a standard set of corollaries and remarks. The function π : P → PI

defined by π(T ) = [T ], is a dense embedding of the poset P into PI . The study of
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the ideal I is complicated by the fact that it is not Π1
1 on Σ1

1. Laver forcing adds
a dominating real and therefore its ideal cannot have such a simple definition by
[49, Proposition 3.8.15]. Theorem 1.3.21 remains true for the Laver ideal, as a
manual fusion construction immediately shows. We also have The computation
of the spectrum of the Laver ideal is then facilitated by the general results such
as Corollary 4.3.8 and Theorem 4.3.5 to yield

Theorem 3.10.3. The σ-ideal I has total canonization for equivalences classi-
fiable by countable structures.

The application of Proposition 2.5.2 to get the Silver dichotomy for Borel equiv-
alences classifiable by countable structures hits a snag: the Laver ideal is not
Π1

1 on Σ1
1 and the complexity calculations seem not to work out to yield a ZFC

theorem. Instead, we have

Theorem 3.10.4. Suppose that ∆1
2 determinacy holds. Then the Laver ideal

has the Silver property for Borel equivalences classifiable by countable structures.

Proof. Follow the argument for Proposition 2.5.2. Let E be a Borel equivalence
classifiable by countable structures on a Borel I-positive set B ⊂ ωω. Let
C = {x ∈ B : [x]E ∈ I}. The set C is ∆1

2: it is the set of those points x ∈ B
for which Player I has a winning strategy in the game associated with [x]E ,
and also the set of those points x ∈ B for which Player II does not have such
a winning strategy. By ∆1

2 determinacy applied to the Laver game, the set
C contains all branches of some Laver tree T or else is in the ideal I. In the
former case, use the total canonization below the tree T , where it has to yield
a Borel I-positive set of pairwise inequivalent elements and we are done. In the
latter case, enclose C by a Borel set D in the ideal I and consider the Borel
set B \D. By the Silver dichotomy applied to E and this set, either there are
only countably many classes of E meeting this set, or there is a perfect set of
mutually E-inequivalent points in B \ D. In the former case, we decomposed
B into a set in the ideal and countably many E-equivalence classes and we are
done. In the latter case, note that each point in the perfect set has an I-positive
equivalence class, and the transversal property of the ideal I yields the desired
Borel I-positive set of pairwise inequivalent elements. The theorem follows.

Question 3.10.5. Is the determinacy assumption necessary in the above the-
orem?

Further inquiry into the spectrum identifies a nontrivial feature:

Theorem 3.10.6. EKσ
is in the spectrum of the Laver forcing.

Proof. Consider the equivalence relation E on the set of increasing functions in
ωω defined by fEg if and only if there is a number n ∈ ω such that for all m,
f(m) < g(m + n) and g(m) < f(m + n). In other words, a finite shift of the
graph of f to the right is below the graph of g, and vice versa, a finite shift of
the graph of g is below the graph of f .
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It is not difficult to show that E ≤B E � B for every Borel E-positive set.
Such positive set must contain all branches of some Laver tree T ; to simplify
the notation assume that T has empty trunk. Find a level-preserving injection
π from the set of all finite increasing sequences of natural numbers into T so
that if the last number on s is less than the last number on t then also the last
number on π(s) is less than the last number on t. It is immediate that π extends
to a continuous map which embeds E to E � B.

The last point is to show that EKσ
is bireducible with E. To embed EKσ

in E, look at the two partitions ω =
⋃

nKn =
⋃

n Ln into consecutive intervals
such that |Kn| = n + 1, |Ln| = 2(n + 1) and for a point y ∈ domEKσ

let f(y)
be the function in ωω specified by f(y)(min(Kn) + i) = min(Ln) + i + y(n)
for every n and i ∈ n. It is not difficult to see that f reduces EKσ to E. To
embed E into EKσ

, note that E =
⋃

n Fn is a countable union of closed sets
with compact sections. Viewing ωω as a Gδ subset of a compact metric space Y ,
it is clear that the sets F̄n =the closures of Fn in Y × Y have the same sections
corresponding to the points in ωω as the sets Fn. Thus, Ē, the relation on the
space Y defined by y Ē z if either z, y /∈ ωω or there is n such that 〈y, z〉 ∈ F̄n,
is a Kσ equivalence relation equal to E on ωω. By a result of Rosendal [35], it
is Borel reducible to EKσ

and the restriction of that Borel reduction reduces E
to EKσ

as desired.

Corollary 3.10.7. Whenever J is a σ-ideal on a Polish space X such that the
quotient forcing PJ is proper and adds a dominating real, then EKσ

is in the
spectrum of the ideal J .

Question 3.10.8. Is E2 in the spectrum of Laver forcing?

3.11 Mathias forcing

Adrian Mathias introduced the Mathias forcing P as the poset of all pairs p =
〈ap, bp〉 where ap ⊂ ω is finite and bp ⊂ ω is infinite, ordered by q ≤ p if ap ⊂ aq,
bq ⊂ bp, and aq \ ap ⊂ bp. The computation of the ideal gives full information.
Let I be the σ-ideal on X = [ω]ℵ0 consisting of those sets A ⊂ X which are
nowhere dense in the quotient partial order P(ω) modulo the ideal of finite sets.

Fact 3.11.1. [30] Let A ⊂ X be an analytic set. Exactly one of the following
is true:

1. A ∈ I;

2. there is a condition p ∈ P such that Bp ⊂ A.

Here, for a condition p ∈ P the set Bp ⊂ X consists of those infinite sets c ⊂ ω
such that ap ⊂ c and c ⊂ ap ∪ bp. Thus, the map p 7→ Bp is a dense embedding
of the poset P into the quotient PI .
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The structure of real degrees in the Mathias extension is fairly complicated,
and therefore the canonization of smooth equivalences with respect to the σ-ideal
I cannot be simple. Prömel and Voigt gave an explicit canonization formula
which can be also derived from earlier work of Mathias [30, Theorem 6.1]. For
a function γ : [ω]<ℵ0 → 2 let Γγ : [ω]ℵ0 → [ω]≤ℵ0 be the function defined by
Γγ(a) = {k ∈ a : γ(a∩k) = 0} and Eγ the smooth equivalence relation on [ω]ℵ0

induced by the function Γγ .

Fact 3.11.2. [30, 34] For every smooth equivalence relation E on [ω]ℵ0 there
is an infinite set a ⊂ ω and a function γ such that on the set [a]ω, E = Eγ .

Theorem 3.11.3. E0 is in the spectrum of Mathias forcing. The poset PE0
I is

regularly embedded in PI , it is ℵ0-distributive and it yields the V [ẋgen ]E0 model.

Proof. Identify subsets of ω with their characteristic functions and use this iden-
tification to transfer E0 to the spaceX. The theorem follows from Theorem 4.2.1
once we prove that E0 saturations of Borel I-small sets are I-small. However, it
is clear that E0-saturation of a set nowhere dense in the algebra P(ω) modulo
finite is again nowhere dense, because the saturation does not change the place
of the elements of the set in this algebra.

In fact, it is not difficult to see that the decomposition of Mathias forcing as-
sociated with the E0 equivalence is just the standard decomposition into P(ω)
modulo finite followed with a poset shooting a set through a Ramsey ultrafilter.
Note that in the Mathias extension, there are many E0-classes which are subset
of every E0-invariant set in the generic filter; every infinite subset of the generic
real will serve as an example.

Theorem 3.11.4. The spectrum of the Mathias forcing is cofinal among Borel
equivalence relations in ≤B. It includes EKσ

and Eω
0 .

Proof. Let K be a Borel ideal on ω containing all finite sets and let EK be
the equivalence relation on the space Y of increasing functions in ωω defined
by y EK z if {n ∈ ω : y(n) 6= z(n)} ∈ K. For the cofinality of the spectrum,
by Fact 1.3.15, it is enough to show that EK is in the spectrum of Mathias
forcing. Look at E, the relation on [ω]ℵ0 connecting two points if their increasing
enumerations are EK-equivalent. Clearly, this is an equivalence relation Borel
reducible to EK . On the other hand, if B ⊂ X is a Borel I-positive set, then
EK is Borel reducible to E � B. Just find a condition p ∈ P such that Bp ⊂ B
and let π : ω → ap ∪ bp be the increasing enumeration. To each point y ∈ Y
associate the set by = ap ∪ rng((π ◦ y) � ω \ |ap|) and observe that the map
y 7→ by reduces EK to E � B.

If K is an Fσ-ideal on ω such that =K is bireducible with EKσ , then also EK

is bireducible with EKσ , showing that EKσ is in the spectrum of I. To see that
Eω

0 is in the spectrum, choose a partition ω =
⋃

n an of ω into infinitely many
infinite pairwise disjoint sets, for x ∈ [ω]ℵ0 let f(x) ⊂ ω × ω be the set of all
pairs 〈n,m〉 such that m is i-th element of x in the increasing enumeration for
some i ∈ an, and let x E y if f(x) Eω

0 f(y). This is clearly a Borel equivalence
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relation reducible to Eω
0 . To show that Eω

0 is Borel reducible to E � Bp for
every condition p ∈ P , just find ???

Theorem 3.11.5. (Mathias) Essentially countable→I≤ E0.

Question 3.11.6. Is F2 in the spectrum of Mathias forcing?

3.12 Fat tree forcings

Let Tini be a finitely branching tree without terminal nodes, and for every
node t ∈ Tini fix a submeasure φt on the set at of immediate successors of t in
Tini, such that limt φt(at) = ∞. Consider the fat tree forcing P of those trees
T ⊂ Tini such that limt∈T φt(bt) = ∞, where bt ⊂ at is the set of all immediate
successors of the node t in the tree T ; the ordering is that of inclusion.

This is a special case of the generalized Hausdorff measure forcings of [49,
Section 4.4]. The computation of the associated ideal gives a complete informa-
tion. The underlying space is X = [Tini] and the σ-ideal I on X is generated
by all sets Af , where f is a function with domain Tini associating with each
node t ∈ Tini a set of its immediate successors of φt-mass ≤ nf for some number
nf ∈ ω. The set Af is defined as {x ∈ X : ∃∞n x(n) ∈ f(x � n)}. The following
sums up the work in [49]:

Theorem 3.12.1. Let φt : t ∈ Tini be submeasures such that limt φt(at) = ∞.
Then

1. Every analytic subset of X either is in the ideal I or contains all branches
of some tree T ∈ P , and these two options are mutually exclusive;

2. The ideal I is Π1
1 on Σ1

1;

3. the ideal I has the transversal property;

4. The forcing P is < ω1-proper, bounding, adds no independent reals, and
adds a minimal forcing extension.

Proof. The first item comes from [49, Proposition 4.4.14], the second item comes
from [49, Theorem 3.8.9]. For the transversal property, use the integer game
associated with the ideal I as described in [49, Proposition 4.4.14], and then
follow the proof of Theorem 3.10.1(3). The first three assertions in the last item
follow from [49, Theorem 4.4.2, Theorem 4.4.8]. The minimality of the extension
can be proved either by an awkward manual argument, or by an analysis of the
possible intermediate extensions parallel to the proof of Theorem 2.4.5. First,
the transversal property and < ω1-properness imply that every intermediate
extension is c.c.c. and potential c.c.c. intermediate extensions without new
reals are ruled out just as in the proof of that theorem. Thus, it is enough to
rule out the possibility that the forcing P adds c.c.c. reals. Since the ideal I is
Π1

1 on Σ1
1, these c.c.c. reals would have to be obtained from a Π1

1 on Σ1
1 σ-ideal

which then is guaranteed to either add a Cohen real or else be generated by
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a Maharam submeasure. However, all of these options would add independent
reals [1, Lemma 6.1], while P does not add such a real!

The usual corollaries apply. The map π : T 7→ [T ] is an isomorphism between
the poset P and a dense subset of the quotient poset PI , and Corollary 4.3.8
and Proposition 2.5.2 yield

Corollary 3.12.2. The ideal I has the Silver property for Borel equivalence
relations classifiable by countable structures.

Further forcing and/or canonization properties very much depend on the choice
of the submeasures φt.

Theorem 3.12.3. There is a choice of submeasures such that the resulting ideal
I has the Silver property for all Borel equivalence relations.

Proof. For a submeasure φ on a finite set a let add(φ) be the minimum size of
a set B ⊂ P(a) such that φ(

⋃
B) ≥ max{φ(b) : b ∈ B}+ 1. Submeasures with

large add can be obtained for example by starting with the counting measure
and then inflicting on it the operation φ 7→ log(1 + φ) repeatedly many times.
Now choose a tree Tini with the submeasures φt : t ∈ ω so that there is a linear
ordering of Tini in type ω in which add(φt) is much bigger than Πs|as| where s
ranges over all nodes of Tini preceding t in the linear order. We claim that this
choice of submeasures works.

Let T ⊂ Tini be a fat tree and E be a Borel equivalence relation on [T ]. For
simplicity of notation assume that the masses of sets of immediate successors of
nodes in T are always greater than 1. We must find a fat subtree S ⊂ T such
that E � [S] is equal either to the identity or to [S]2. The Silver property of the
associated σ-ideal then follows from Proposition 2.5.2.

For a node t ∈ T let bt be the set of immediate successors of t in T , equipped
with the pavement submeasure φt obtained from the pavers b ⊂ bt for which
φt(b) < φt(bt)−1 and each paver is assigned weight 1. The additivity properties
of the submeasures φt imply that the numbers ψt(bt) increase to infinity very
fast. Consider the space Y = Πt∈T bt. For every node u ∈ T there is a continuous
map fu : Y → X which assigns to every point y ∈ Y the unique path x ∈ X
such that u ⊂ x and for all n ≥ |u|, u(n) = y(u � n). Consider the sets
Bu,v = {y ∈ Y : fu(y)Efv(y)} for all pairwise incompatible nodes u, v ∈ T .
The creature forcing arguments of [38] yield nonempty sets ct ⊂ bt : t ∈ T such
that the numbers ψt(ct) are all greater than 1 and tend to infinity, and all the
Borel sets Bu,v are relatively clopen in Πtct. Note that φt(ct) > φt(bt) − 1.
Find a tree S ⊂ T in the forcing P such that for every node t ∈ S, the set
of the immediate successors of t in S is exactly ct. It is not difficult to see
that the equivalence relation E on the product [S] × [S] is now a union of an
open set together with the diagonal. Thus, E � [S] is a Gδ equivalence relation
and as such it must be smooth [8, Theorem 6.4.4]. Now, the ideal I has total
canonization of smooth equivalence relations, and so it canonizes E!
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Theorem 3.12.4. There is a choice of submeasures such that E2 and EKσ are
in the spectrum of the associated σ-ideal.

In fact, it will be obvious from the construction that there are very many com-
plicated equivalence relations on the underlying space X. For every Borel equiv-
alence relation E there will be a Borel equivalence relation F on X such that
on every Borel I-positive set B ⊂ X, E ≤ F � B holds. In order to see this,
just note that the equivalence relations =K , where K is a Borel ideal on ω and
x =K y if {n : x(n) 6= y(n)} ∈ K for x, y ∈ 2ω, are cofinal in the reducibility
ordering of Borel equivalence relations by Fact 1.3.15.

Proof. Recall that the Hamming cubes 2n with the normalized counting mea-
sure µn and the normalized Hamming distance dn(x, y) = |{m ∈ n : x(m) 6=
y(m)}|/n form a Levy family with concentration of measure as n varies over all
natural numbers, see for example [33, Theorem 4.3.19]. This means that for all
real numbers ε, δ, γ > 0, for every sufficiently large number n, every set A ⊂ 2n

of µn-mass at least ε the set Aδ = {x ∈ 2n : dn(x,A) < δ} has µ-mass at least
1− γ. We will need the following corollary of this fact:

Claim 3.12.5. For every m ∈ ω and positive reals ε, δ > 0, there is a number
n ∈ ω such that whenever Ai : i ∈ m are subsets of 2n of µn-mass at least ε,
there is a ball of dn-radius δ intersecting them all.

Now, choose a fast increasing sequence of numbers ni : i ∈ ω so that for
every subset of P(2ni) of cardinality 2Πj∈i2nj , consisting of sets of µni

-mass
at least 1/i, there is a ball of radius 2−i intersecting them all. Consider the
tree Tini consisting of all finite sequences t such that ∀i ∈ dom(t) t(i) ∈ 2ni ,
and for every t ∈ T of length i let φt be the normalized counting measure on
2ni multiplied by i. We claim that the fat tree forcing given by this choice of
submeasures works.

To get EKσ
in the spectrum, let J be an Fσ-ideal on 2ω such that =J

is bireducible with EKσ
as in the construction after fact 1.3.15. Define an

equivalence E on [Tini] by setting x E y if there is a set a ∈ J and a number
k ∈ ω such that for every i ∈ ω \ a, 2idni(x(i), y(i)) < k. This is clearly Kσ, so
reducible to EKσ

. We will show that =J is Borel reducible to E � B for every
Borel I-positive set B ⊂ [Tini].

So suppose B is such a Borel I-positive set, and inscribe a fat tree T into
it. Find a node t ∈ T such that past t, the nodes of the tree T split into a
set of immediate successors of mass at least 1. Let j = dom(t). The choice of
the numbers ni shows that for every i > j there is a point pi ∈ 2ni such that
its neigborhood of dni-radius 2−i intersects all sets of immediate successors of
nodes in T extending the node t of length i, and also their flips (a flip of a subset
of 2ni is obtained by interchanging 0’s and 1’s in all of its elements). Now it is
easy to find a continuous function h : 2ω → [T ] such that for every x ∈ 2ω and
every i > j, h(x)(i) is some point within dni

-distance 2−i from pi if x(i) = 0,
and h(x)(i) is some point within dni

-distance 2−i from the flip of pi if x(i) = 1.
Note that the dni-distance of pi from its flip is equal to 1. This clearly means
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that for x, y ∈ 2ω, x =J y if and only if h(x) E h(y), and therefore EKσ is in
the spectrum.

To get E2 in the spectrum, consider the equivalence relation F on Tini

defined by x F y if Σ{1/j + 1 : for some i ∈ ω, ni ≤ j < 2ni and x(i)(j − ni) 6=
y(i)(j − ni)} < ∞. This is clearly reducible to E2; we must show that E2 is
Borel reducible to F � B for every I-positive Borel set B ⊂ [Tini].

A direct construction of the embedding is possible by a trick similar to the
previous paragraph. We note that if E2 was not reducible to F � B, then
F � B would be essentially countable by the E2 dichotomy, the ideal I has
total canonization for essentially countable equivalences, and so there would be
a Borel I-positive subset consisting of either pairwise inequivalent or pairwise
equivalent elements. So it is enough to show that every Borel I-positive set
B contains a pair of equivalent elements, and a pair of inequivalent elements.
Inscribe a fat tree T into B, choose the node t and the points pi ∈ 2ni : i >
dom(t) as in the EKσ

case. Note that u, v ∈ 2ni are sequences such that u is
2−i-close to pi and v is 2−i-close to the flip of pi, then Σ{1/j + 1 : ni ≤ j < 2ni

and u(i)(j − ni) 6= v(i)(j − ni)} > 1/2− 4 · 2−i, and if u, v are both close to pi

or both close to the flip of pi, then this sum is smaller than 4 · 2−i. Thus, with
the continuous function h constructed in the EKσ

argument, h(x) F h(y) if and
only if x E0 y; in particular, there are both F -related and F -unrelated pairs in
[T ] ⊂ B.

The theorem (and its proof) has an interesting corollary, complementary
to the treatment of turbulent equivalence relations in [22, Chapter 13]. If E
and F are equivalence relations on respective Polish spaces X and Y , follow
Hjorth and Kechris and say that E is generically ergodic with respect to F if
for every partial Borel map f : X → Y defined on a comeager set, such that
x0 E x1 → f(x0) F f(x1), there is a comeager set B ⊂ X such that f ′′B is a
subset of a single F -equivalence class. Hjorth and Kechris showed that every
generically turbulent equivalence relations (such as E2) are generically ergodic
with respect to every equivalence relation classifiable by countable structures.
The previous theorem allows a similar treatment for measure. If µ is a Borel
probability measure on the space X, say that E is µ-ergodic with respect to E
if for every partial Borel map f : X → Y defined on a co-µ-null set, such that
x0 E x1 → f(x0) F f(x1), there is a co-µ-null set B ⊂ X such that f ′′B is a
subset of a single F -equivalence class. Of course, this can be satisfied trivially
if the measure µ concentrates on a single E-equivalence class. The interesting
cases occur when the µ-mass of every E-equivalence class is zero.

Corollary 3.12.6. E2 is µ-ergodic with respect to every equivalence relation
classifiable by countable structures.

Here, µ is the usual Haar probability measure on 2ω invariant under coordinate-
wise binary addition.

Proof. The argument uses a similar fat tree forcing as the previous theorem,
with an improved computation of measure concentration. Let ω =

⋃
n Jn be a
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partition of ω into successive finite intervals so long that for every n ∈ ω, 1/n2 ≥
e−2−n−1/8kn+1 . Here, kn = Σj∈Jn1/(j + 1)2. Such a partition exists since the
sum Σj∈ω1/(j + 1)2 converges. [33, Theorem 4.3.19] now shows that whenever
A ⊂ 2Jn is a set of normalized counting measure ≥ 1/n2 then A2−n ⊂ 2Jn has
normalized counting measure greater than 1/2. Here, Aε is the set of all points
with dn-distance at most ε from the set A, and dn is the metric on 2Jn defined
by dn(x, y) = Σx(j) 6=y(j)1/j+ 1. Just as in the previous proof, if A,B ⊂ 2Jn are
two sets of normalized counting measure at least 1/n2, then they contain points
x ∈ A, y ∈ B of dn-distance at most 2−n: the 2−n−1-neighborhoods of the
sets A and B have normalized counting measure greater than 1/2 and therefore
they intersect. Replacing the set A with the flips of its points and repeating
this argument, we also find other points x̄ ∈ A, ȳ ∈ B of dn-distance at least
(Σj∈Jn1/j + 1)− 2−n.

Consider the fat tree forcing on the initial tree Tini = Πn2Jn , and the sub-
measure φn is simply the normalized counting measure on 2Jn multiplied by
n2. Clearly, every branch through the tree Tini can be identified with the union
of the labels on its nodes, which is an element of 2ω. With this identification,
the generating sets of the associated σ-ideal I have µ-mass 0 by the Borel-
Cantelli lemma, since the sum of the numbers 1/n2 converges. And just as in
the previous proof, one can show that every two trees T, S ∈ P contain branches
x ∈ [T ], y ∈ [S] which are E2-related, and branches x̄ ∈ [T ] and ȳ ∈ [S] that are
E2-unrelated.

Now, suppose that f : 2ω → Y is a partial Borel map defined on a co-µ-
null set, where Y is some Polish space with an equivalence relation F gen-
erated by a Polish action of a closed subgroup of S∞, and f is such that
x0 E2 x1 → f(x0) F f(x1). Let E be the pullback of F , so E2 ⊂ E. Thinning
out to a co-µ-null set B ⊂ 2ω, we may assume that E is Borel by Theorem 4.4.1.
Now, the ideal I has the Silver property for Borel equivalence relations classi-
fiable by countable structures by Corollary 3.12.2. This means that either B
decomposes into an I-small set and countably many E-classes, or B contains a
Borel I-positive subset consisting of pairwise E-unrelated elements. The latter
case cannot occur, since every Borel I-positive set contains distinct E2-related
elements which then would have to be E-related. In the former case, only one
of the E-classes can be I-positive, since any two Borel I-positive sets contain
E2-related elements that then have to be E-related. Thus, the whole space2ω

decomposes into the µ-null complement of B, an I-small set which must be
µ-null, countably many I-small E-classes, which then must be µ-null as well,
and a single I-positive E-class, which then has to have full µ-mass.

Note that as the fat tree forcings allow total canonization of equivalence re-
lations classifiable by countable structures and the one exhibited in the previous
theorem does not allow canonization of an equivalence relation reducible to E2,
we have a new proof of the fact that E2 is not classifiable by countable struc-
tures which does not use Hjorth’s concept of turbulence [15], [8, Chapter 10], [22,
Chapter 13]. Note also that the fat tree forcings have the separation property
of Definition 4.3.4 by Theorem 4.3.5, and so the collection of Borel equiva-
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lence relations for which they have total canonization and the Silver property is
closed under the operation of Friedman-Stanley jump and modulo finite count-
able product, which is reminiscent of the treatment of turbulence and generic
ergodicity in [22, Chapter 13].

3.13 The random forcing

Let λ be the usual Borel probability measure on 2ω, and let I = {B ⊂ 2ω :
λ(B) = 0}. The quotient forcing PI is the random forcing.

Proposition 3.13.1. E0 is in the spectrum of I.

Proof. The classical Steinhaus theorem [2, Theorem 3.2.10] shows that in every
Borel set of positive mass there are two distinct E0-related points. Thus, Borel
partial E0-selectors must have Lebesgue mass zero, and since every Borel set
on which E0 is smooth is a countable union of partial Borel E0 selectors, all
such sets must have Lebesgue mass zero. It follows that E0 is non-smooth on
every Borel set B ⊂ 2ω of positive mass, and by the Glimm-Effros dichotomy,
E0 ≤ E0 � B as desired.

Proposition 3.13.2. E2 is in the spectrum of I.

Proof. this follows from the treatment of the ideal J associated with E2 of
Section 3.5. As Claim 3.5.6 shows, J ⊂ I, and so E2 is Borel reducible to
E2 � B for every Borel non-null set B ⊂ 2ω.

Proposition 3.13.3. The spectrum of I is cofinal in the Borel equivalence
relations under the Borel reducibility order, and it includes EKσ

.

Proof. Look at the space X = (2ω)ω with the product Borel probability measure
instead. Consider the ideal J associated with the product of Sacks forcing, as
in Section 3.8. Then J ⊂ I, the ideal J is suitably homogeneous, and so the
spectrum of J is included in the spectrum of I. This proves the proposition.
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Chapter 4

Particular equivalence
relations

4.1 Smooth equivalence relations

In the case that the equivalence relation E is smooth, the model V [xgen]E as
described in Theorem 2.1.3 takes on a particularly simple form.

Proposition 4.1.1. Let I be a σ-ideal on a Polish space X such that the quo-
tient forcing PI is proper, and suppose that E is a smooth equivalence relation
on the space X. Then V [xgen]E = V [f(ẋgen)] for every ground model Borel
function f reducing E to the identity.

Proof. Choose a Borel function f : X → 2ω reducing the equivalence E to the
identity. Let G ⊂ PI and H ⊂ Coll(ω, κ) be mutually generic filters, and let
xgen ∈ X be a point associated with the filter G. First of all, f(xgen) ∈ 2ω

is definable from the equivalence class [xgen]E : it is the unique value of f(x)
for all x ∈ [xgen]E . Thus, V [f(xgen)] ⊂ V [xgen]E . On the other hand, the
equivalence class [xgen]E is also definable from f(xgen), and the model V [G,H]
is an extension of V [f(xgen)] via a homogeneous notion of forcing Coll(ω, κ),
and therefore V [xgen]E ⊂ V [f(xgen)].

The total canonization of smooth equivalence relations has an equivalent re-
statement with the quotient forcing adding a minimal real degree. It is necessary
though to discern between the forcing adding a minimal real degree, and the
forcing producing a minimal extension. In the former case, we only ascertain
that V [y] = V or V [y] = V [xgen] for every set y ⊂ ω in the generic extension.
In the latter case, this dichotomy in fact holds for every set y of ordinals in the
extension. For example, the Silver forcing adds a minimal real degree, while it
produces many intermediate σ-closed extensions.

Proposition 4.1.2. Let X be a Polish space and I be a σ-ideal on X such that
the quotient forcing PI is proper. The following are equivalent:

99
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1. PI adds a minimal real degree;

2. I has total canonization of smooth equivalence relations.

Proof. First, assume that the canonization property holds. Suppose that B ∈ PI

forces that τ is a new real; we must show that some stronger condition forces
V [τ ] = V [ẋgen ]. Thinning out the set B if necessary we may find a Borel
function f : B → 2ω such that B 
 τ = ḟ(ẋgen). Note that singletons must
have I-small f -preimages, because a large preimage of a singleton would be a
condition forcing τ to be that ground model singleton. Consider the smooth
equivalence relation E on B, E = f−1ID. Since it is impossible to find a Borel
I-positive set C ⊂ B such that E � B = EE, there must be a Borel I-positive
set C ⊂ B such that E � C = ID, in other words f � C is an injection. But then,
C 
 V [τ ] = V [ẋgen ] since ẋgen is the unique point x ∈ C such that f(x) = τ .

Now suppose that PI adds a minimal real degree, and let B ∈ PI be a
Borel I-positive set and E a smooth equivalence relation on B with I-small
classes. We need to produce a Borel I-positive set on which E is equal to the
identity. Let f : B → 2ω be a Borel function reducing E to the identity. Note
that since f -preimages of singletons are in the ideal I, ḟ(ẋgen) is a name for
a new real and therefore it is forced that V [ẋgen ] = V [ḟ(ẋgen)]. Let M be
a countable elementary submodel of a large structure, and let C ⊂ B be the
Borel I-positive set of all M -generic points in B for the poset PI . The set f ′′C
is Borel. Consider the Borel set D ⊂ f ′′C ×C defined by 〈y, x〉 ∈ D if and only
if f(x) = y. The set D has countable vertical sections: If f(x) = y then by the
forcing theorem applied in the model M it must be the case that M [x] = M [y]
and thus the vertical section Dy is a subset of the countable model M [y]. Use
the uniformization therem to find countably many graphs of Borel functions
gn : n ∈ ω whose union is D. The sets rng(gn) : n ∈ ω are Borel since the
functions gn are Borel injections, and they cover the whole set C. Thus there is
a number n ∈ ω such that the set rng(gn) is I-positive. On this set, the function
f is an injection as desired.

4.2 Countable equivalence relations

Borel countable equivalence relations are a frequent guest in mathematical prac-
tice. Their treatment in this book is greatly facilitated by essentially complete
analysis of the associated forcing extensions.

Theorem 4.2.1. Suppose that I is a σ-ideal on a Polish space X such that
the quotient forcing is proper. Suppose that E is a countable Borel equivalence
relation on X. Then for every Borel I-positive set B ⊂ X there is a Borel I-
positive set C ⊂ B such that PE,C

I is a regular subposet of PI below C. Moreover,
C forces the model V [ẋgen ]E to be equal to the PE,C

I extension. The remainder
forcing PI � C/PE,C

I is homogeneous and c.c.c.



4.2. COUNTABLE EQUIVALENCE RELATIONS 101

Here, PE,C
I is the poset of I-positive Borel subsets of C which are relatively E-

saturated inside C. The set C ⊂ X may not be the whole space, as Claim 2.2.4
shows.

Proof. Use the Feldman–Moore theorem to find a Borel action of a countable
group G on B whose orbit equivalence relation is exactly E.

Claim 4.2.2. There is a Borel I-positive set C ⊂ B such that the E-saturation
of any I-small Borel subset of C has I-small intersection with C.

Proof. Let M be a countable elementary submodel of a large structure and let
C be the set of all M -generic elements of the set B for the poset PI . We claim
that this set works.

Suppose for contradiction that there is an I-small Borel subset D of C whose
E-saturation has an I-positive intersection with C. Note that [D]E is a Borel
set again as E is a countable Borel equivalence relation. Thinning out the set
C ∩ [D]E we may find a Borel I-positive subset C ′ and a group element g ∈ G
such that gC ′ ⊂ D.

Now consider the set O = {A ∈ PI : if there is a Borel I-positive subset of A
whose shift by g is I-small, then A is such a set}. Clearly, this is an open dense
subset of PI below B in the model M , and therefore there is A ∈ M ∩ O such
that A∩C ′ /∈ I. Now g(A∩C ′) ⊂ D and therefore this set is in the ideal I, and
by definition of the set O it must be the case that gA ∈ I. But as gA ∈ I ∩M ,
it must be the case that C ∩ gA = 0, which contradicts the fact that g(A ∩ C ′)
is a nonempty subset of C.

Fix a set C ⊂ B as in the claim.

Claim 4.2.3. PE,C
I is a regular subposet of PI below C.

Proof. We will show that whenever D ⊂ C is a Borel I-positive set, then the
E-saturation of D is a pseudoprojection of PI to PE,C

I . Indeed, if D ⊂ C is
a Borel I-positive set, then every Borel I-positive set A ⊂ [D]E ∩ C which is
E-saturated relatively in C, must have a Borel I-positive intersection with D.
Otherwise, A ⊂ C would be a Borel I-positive subset of the E-saturation of the
I-small set A ∩D, which contradicts the choice of the set C.

Claim 4.2.4. The remainder forcing PI � C/PE,C
I is homogeneous and c.c.c.

Proof. Let G ⊂ PI be a generic filter containing the condition C with its asso-
ciated generic point xgen, and let H = G∩PE,C

I . Note first that the remainder
forcing consists of exactly those Borel sets D ⊂ C such that their E saturation
belongs to the filter H, or restated, those Borel sets containing some element of
the equivalence class of xgen.

For the c.c.c. suppose that Dα : α ∈ ω1 is a putative antichain in the remain-
der poset in the model V [H]. Since the equivalence class of xgen is countable
and ℵ1 is preserved in V [G], there must be α 6= β ∈ ω1 such that Dα, Dβ contain
the same element of the equivalence class. It follows that Dα ∩ Dβ is a lower
bound of Dα, Dβ in the remainder forcing.
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For the homogeneity, return to the ground model. Suppose thatD0, D1, D2 ⊂
C are Borel I-positive sets, D2 is E-saturated and forces in PE,C

I both D0, D1

to the remainder forcing. By the countable additivity of the ideal I there must
be an element g ∈ G and a positive set D̄0 ⊂ D0∩D2 such that gD̄0 ⊂ D1. The
map π defined by π(A) = gA preserves the ideal I, preserves the E-saturations
and therefore the condition [D̄0]E ∈ PE,C

I forces that it induces an automor-
phism of the remainder poset moving a subset of D0 to a subset of D1. The
homogeneity of the quotient forcing follows.

The fact that PE,C
I generates the V [ẋgen ]E model now follows directly from

Theorem 2.2.7; the group action provides the necessary automorphisms of the
poset PE,C

I .

Inspecting the proofs in the previous chapter, the fact that the model V [ẋgen ]E
is obtained by the forcing PE

I are invariably proved in a significantly tighter fash-
ion: it is proved that in the PI extension, the equivalence class of the generic
real is the only one which is a subset of all E-invariant Borel sets in the generic
filter. This means that, in the notation of the previous proof, the filter H is
interdefinable with [xgen]E in the PI -extension V [G] and they therefore have to
define the same HOD model. This, however, does not have to be the case in
general even in the very restrictive case that the forcing PI adds a minimal real
degree. Consider the case where PI is the Silver forcing and E is the equiva-
lence relation on 2ω defined by x E y if x, y differ on finite set of entries, and
moreover, the set of their differences has even cardinality. Comparing E with
E0, we see that E ⊂ E0 and every E0 equivalence class decomposes into exactly
two E classes. Note that the E0-saturation of any Silver cube is equal to its
E-saturation, and therefore the posets PE0

I and PE
I are co-dense. If G is the

Silver generic filter and H = G∩PE
I then the E0-class of the Silver real belongs

to all sets in H, and it splits into two E-classes, each of which has the property
that it is a subset of all sets in the PE

I -generic filter. Moreover, neither of these
classes is ordinally definable from H or parameters in V .

Let us now return back to the general treatment of Borel countable equiv-
alence relations. In the common case that the forcing PI adds a minimal real
degree, there is much more information available about the V [ẋgen ]E model.

Theorem 4.2.5. Suppose that I is a σ-ideal on a Polish space X such that the
quotient forcing is proper and adds a minimal real degree. Suppose that E is an
essentially countable equivalence relation on X which does not simplify to smooth
on any Borel I-positive set. Then the model V [ẋgen ]E is forced to contain no
new countable sequences of ordinals, and it is the largest intermediate extension
in the PI-extension.

Proof. Let f : X → Y be a Borel reduction of E to a Borel countable equivalence
relation F on a Polish space Y . Let B ⊂ X be an I-positive Borel set. By the
total canonization of smooth equivalences we may pass to a Borel I-positive set
C on which the function is injective and therefore E itself has countable classes,
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and by the previous theorem we may assume that the poset PE,C
I is a regular

subposet of PI below C.
We will first argue that the poset PE,C

I is ℵ0-distributive. The forcing is
a regular suposet of a proper forcing, therefore proper, and so it is enough to
show that it does not add reals. Suppose that τ is a PE,C

I -name for a real, and
D ⊂ C is a Borel I-positive set. We must produce a Borel I-positive subset of
D forcing a definite value to τ . Let M be a countable elementary submodel of a
large enough structure, and let A ⊂ D be the Borel I-positive subset consisting
of all M -generic points. The map x 7→ Kx assigning to each generic point the
corresponding PE,C

I generic filter for M , is E-invariant: Kx is the set of all
relatively E-saturated Borel subsets containing x, which depends only on the
E-equivalence class of a point x ∈ C. Thus the map x 7→ τ/Kx is Borel and
also E-invariant. Since the forcing PI adds a minimal real degree, there is a
Borel I-positive set A′ ⊂ A such that this map is either one-to-one or constant
on A′. The former possibility cannot occur–since the function is E-invariant,
it would have to be the case that E � A′ = ID, contradicting the assumption
that E cannot be reduced to a smooth equivalence on a positive Borel set. The
latter possibility forces τ to be equal to the constant value of the function on
A′, as desired.

Now we need to argue that the model V [xgen]E is the largest intermediate
model between V and V [G], in other words, if U is a model of ZFC such that
V ⊆ U ⊆ V [G] then either U = V [G] or U ⊆ V [xgen]E . Suppose that U = V [Z]
is an intermediate model of ZFC, for a set Z ⊂ κ for some ordinal κ. Fix
a name Ż for the set Z. If there is a countable set a ⊂ κ in V such that
Z ∩ a /∈ V then V [G] = V [Z] by the minimal real degree assumption. Suppose
then that for every countable set a ∈ V , it is forced that Ż ∩ ǎ ∈ V . Consider
the names for countably many sets Ż/y : y ∈ [ẋgen ]E and y is V -generic. There
must be a countable set b ⊂ κ such that if any two of these sets differ at some
ordinal, then they differ at an ordinal in b. By properness, this set b has to be
covered by a ground model countable set a ⊂ κ. Suppose that D ⊂ C in PI is
a condition which forces this property of the set a, and moreover decides the
value of Ż ∩ ǎ to be some definite set c ∈ V . Then D forces that Z is definable
from [xgen]E , D, c, and Ż in the model V [G] by the formula ”Z is the unique
value of Ż/y for all V -generic points y ∈ [xgen]E ∩D such that Ż/y ∩ a = c”.
Thus, V [Z] ⊂ V [xgen]E !

An important heuristic consequence of the last sentence of this theorem: if
the poset PI adds a minimal real degree, we cannot use the model V [ẋgen ]E
to discern between the various nonsmooth countable equivalence relations on
the underlying Polish space X, because they all happen to generate the same
model. This is apparently not to say that every two such countable equivalence
relations must be similar or of the same complexity at some I-positive Borel
set.

Corollary 4.2.6. If the forcing PI is proper, nowhere c.c.c. and adds a minimal
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forcing extension, then I has total canonization for essentially countable Borel
equivalences.

Proof. Looking at the previous two theorems, if the poset PI adds a minimal real
degree and E is an essentially countable equivalence relation on the underlying
Polish space, then PI decomposes into an iteration of ℵ0-distibutive and c.c.c.
forcings. If PI is nowhere c.c.c. then the first extension of the iteration must
be nontrivial, contradicting the assumptions.

In the next section, we will be able to extend the conclusion of the corollary to
total canonization of equivalences classifiable by countable structures, but the
treatment of the essentially countable equivalences is a necessary preliminary
step towards that goal.

The final observation in this section concerns the simplification within the
class of countable equivalence relations. The class of Borel countable equivalence
relations is very complex and extensively studied. It is possible that many
forcings have highly nontrivial intersection of their spectrum with this class.
In the fairly common case that the forcing preserves Baire category, all that
complexity boils down to E0 though.

Theorem 4.2.7. Whenever I is a σ-ideal on a Polish space X such that the
forcing PI is proper and preserves Baire category, then every essentially count-
able Borel equivalence relation is reducible to E0 on a positive Borel set.

Proof. Suppose B ∈ PI is an I-positive Borel set and f : B → Y is a Borel
map into a Polish space with a countable equivalence relation E on it. The
argument of Miller and Kechris [25, Theorem 12.1] shows that there is a Borel
set D ⊂ ωω × Y × Y such that for every z ∈ ωω the section Dz is a Borel
hyperfinite equivalence relation included in E, and for every y ∈ Y the set
Ay = {z ∈ ωω : [y]E = [y]Dz} is comeager in ωω. Now the set D′ ⊂ B × ωω

of all pairs x, z such that z ∈ Af(x), has comeager vertical sections. Since the
forcing PI preserves the Baire property, it must be the case that there is a point
z ∈ ωω such that the corresponding horizontal section C ⊂ B is I-positive. But
then, Dz = E on f ′′C and therefore the pullback f−1E is on C reducible to a
hyperfinite equivalence relation Dz and therefore to E0.

Question 4.2.8. Is there a σ-ideal I such that the quotient PI is proper, E0

is not in the spectrum of I and still there is some countable Borel equivalence
relation in the spectrum of I?

4.3 Equivalences classifiable by countable struc-
tures

The main purpose of this section is to bootstrap Corollary 4.2.6 to include all
equivalences classifiable by countable structures.
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Definition 4.3.1. An equivalence relation E on a Polish space X is classifiable
by countable structures, cbcs if there is a Borel map f : X → ΠnP(ωn) such
that elements x, y ∈ X are E-related if and only if f(x), f(y) are isomorphic as
relational structures on ω.

An isomorphism of structures on ω is naturally induced by a permutation of
ω, and therefore every cbcs equivalence relation is Borel reducible to an orbit
equivalence generated by a Polish action of the infinite permutation group S∞.
The converse implication also holds by a result of Becker and Kechris [22, The-
orem 12.3.3]: every orbit equivalence relation generated by a Polish action of
the infinite permutation group or its closed subgroups is cbcs.

Cbcs equivalence relations are in general analytic; however, the results of
Section 4.4 show that for canonization purposes we only need to look at the
Borel case. The analysis of the structure of such Borel equivalence relations
uses the Friedman-Stanley jump:

Definition 4.3.2. Let E be an equivalence relation on a Polish space X. E+ is
the equivalence relation on Xω defined by ~x E+ ~y if the E-saturations of rng(~x)
and rng(~y) are the same.

If E is a Borel equivalence relation then E+ is again Borel and it is strictly
higher than E in the Borel reducibility hierarchy. By induction on α ∈ ω1

define Borel equivalence relations Fα by setting F1 = ID on the Cantor space,
Fα+1 = F+

α and Fα =the disjoint union of Fβ : β ∈ α for limit ordinals α.

Fact 4.3.3. [22, Theorem 12.5.2] Every cbcs Borel equivalence relation is Borel
reducible to some Fα for some α ∈ ω1.

This fact allows one to prove general facts about Borel cbcs equivalences by
showing that the property in question is downward directed in the Borel re-
ducibility hierarchy and persists under the Friedman-Stanley jump and count-
able disjoint union. This is the path taken in [22, Chapter 13], and we will take
it here. The following purely forcing property will be instrumental:

Definition 4.3.4. A poset P has the separation property if it forces that for
every countable set a ⊂ 2ω and every point y ∈ 2ω \ a there is a ground model
coded Borel set B ⊂ 2ω separating y from a: y ∈ B and a ∩B = 0.

Theorem 4.3.5. Suppose that I is a σ-ideal on a Polish space X such that PI

is proper.

1. If PI has the separation property then classifiable by countable structures→Ismooth;

2. if I has total canonization for essentially countable Borel equivalence re-
lations, then PI has the separation property.

Proof. The first item follows abstractly from two claims of independent interest.

Claim 4.3.6. Suppose that I is a σ-ideal on a Polish space X such that the quo-
tient PI is proper and has the separation property. Let F be a Borel equivalence
relation on some Polish space. If ≤B F →Ismooth then ≤ F+ →Ismooth.
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Proof. Let Y be a Polish space and F a Borel equivalence relation on it. Let
E be an equivalence relation on some Borel I-positive set B ⊂ X that is Borel
reducible to F+ by a Borel function f : B → Y ω. We need to find a Borel
I-positive set C ⊂ B on which E is smooth.

Let M be a countable elementary submodel of a large structure and let
C ⊂ B be the Borel I-positive set of generic points. Let A = {f(x)(n) : n ∈
ω, x ∈ C} ⊂ Y . We will show that F � A is smooth by decomposing A into
countably many Borel sets on which F is smooth and applying [22, Corollary
7.3.2]. For every number n ∈ ω, consider the equivalence relation En on B
given by x0 En x1 ↔ f(x0)(n) F f(x1)(n), the Borel function fn : B → X,
fn(x) = f(x)(n) reducing En to F and the set Dn = {B′ ⊂ B : B′ ∈ PI and
En � B′ is smooth and f ′′nB

′ is Borel}. The set Dn ∈ M is dense in PI by
the assumptions. Moreover, for every set B′ ∈ Dn, the equivalence F � f ′′nB

′

is smooth: the fn-image of a countable analytic separating family for En � B′

will be a countable analytic separating family for F � f ′′nB
′. Finally, since

the set C ⊂ B consists of M -generic points only, it must be the case that
C ⊂

⋂
n

⋃
(Dn ∩M) and so A =

⋃
n f

′′
nC ⊂

⋃
{f ′′nB′ : n ∈ ω,B′ ∈ Dn ∩M}

decomposes into countably many sets on which F is smooth.
Let g : A → 2ω be a Borel function reducing F � A to identity. Consider

the Borel functions gn : C → 2ω defined by gn(x) = g(f(x)(n)). The separation
property implies that C forces every element of this set to be separated from the
rest of the set by a ground model coded Borel set. Let N be another countable
elementary submodel of a large structure and D ⊂ C a set of its generic points.
Let Am : m ∈ ω be a list of the Borel sets in the model N . By the forcing
theorem, for every x ∈ D and every n ∈ ω there is m ∈ ω such that gn(x) is
the only point of {gk(x) : k ∈ ω} in the set Am. Now, let h : D → (2ω)ω be
the function defined by h(x)(m) = y if the intersection {gk(x) : k ∈ ω} ∩ Am

contains exactly one point y, and h(x)(m) =trash otherwise. The function h
is Borel: h(x)(m) = gk(x) if and only if there is a Borel set B′ ∈ N such that
x ∈ B′ and B′ 
 Ȧm separates gk(ẋgen) from the set {gl(ẋgen) : l 6= k} bz
the forcing theorem applied in N and analytic absoluteness between V and the
generic extensions of N . It is not difficult to see that h reduces the equivalence
E � D to the identity.

Claim 4.3.7. Suppose that I is a σ-ideal on a Polish space X and Gn : n ∈ ω
are equivalence relations on some Polish spaces. If ≤B Gn →Ismooth holds for
every number n ∈ ω then ≤B G→Ismooth holds as well, where G is the disjoint
union of {Gn : n ∈ ω}

Proof. Suppose that B ⊂ X is a Borel I-positive set and E an equivalence
relation on it reducible to G by a Borel function f . Since I is a σ-ideal, for
some number n ∈ ω the set C = {x ∈ B : f(x) ∈ dom(Gn)} is Borel and
I-positive. By ≤B Gn →Ismooth, it is possible to thin out C so that E � C is
smooth, and the claim follows.
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Now by induction on α ∈ ω1 prove that ≤ Fα →Ismooth: the successor
and limit stage are handled by the two separate claims. Finally, every cbcs
equivalence relation is reducible to an orbit equivalence relation induced by a
Polish action of S∞, and therefore it simplifies to a Borel equivalence relation
on a Borel I-positive set by Theorem 4.4.1. The first item follows by Fact 4.3.3.

For the second item, suppose that the assumptions hold and B 
 ȧ ⊂ 2ω

is a countable set. Without loss of generality we may assume that V ∩ ȧ = 0
is forced as well. (If not, use properness to enclose the countable set ȧ ∩ V
into a ground model countable set, and separate it from the rest by a countable
collection of singletons.) Thinning out the set B we may assume that there are
Borel functions fn : n ∈ ω on the set B such that B 
 ȧ = {ḟn(ẋgen) : n ∈ ω}.
Let M be a countable elementary submodel of a large enough structure, and let
C ⊂ B be the I-positive Borel set of all M -generic points for PI in the set B.

Observe that each of the functions fn : n ∈ ω is countable-to-one on the set
C: since the poset PI adds a minimal real degree, the set Dn ⊂ PI consisting
of those conditions on which the function fn is one-to-one is dense in PI , and
C ⊂

⋃
(M ∩Dn). This means that the equivalence relation E generated by the

relation x0Ex1 ↔ ∃n0∃n1 fn0(x0) = fn1(x1) has countable equivalence classes;
it is easily verified that it is Borel as well. Since (1) holds, this equivalence
relation can be reduced to smooth, and since the minimal real degree is added,
there must be then a Borel I-positive set D ⊂ C such that E � D = ID. This
means that for distinct points x0, x1 ∈ D the countable sets {fn(x0) : n ∈ ω}
and {fn(x1) : n ∈ ω} are disjoint; in particular, the functions fn : n ∈ ω are
all injections on D. Let f̄n = (fn � D) \

⋃
m∈n fm and let Bn = rngf̄n. The

sets Bn are ranges of Borel injections and as such they are Borel, and for every
point x ∈ D their collection separates the set {fn(x) : n ∈ ω}. It follows that
D 
 the sets in {Bn : n ∈ ω} separate each point of the set a from the rest of
the set a.

Corollary 4.3.8. If the quotient forcing PI is proper, nowhere c.c.c. and gen-
erates a minimal forcing extension, then the ideal I has total canonization for
equivalences classifiable by countable structures.

Proof. This follows by modus ponens from the previous results. I has total
canonization for smooth equivalences since it adds a minimal real degree. Once
that is known, Corollary 4.2.6 shows that it has total canonization for essentially
countable equivalence relations. Theorem 4.3.5(2) then yields the separation
property of PI , and (1) together with the minimal real degree yields the total
canonization for equivalences classifiable by countable structures.

To conclude this section, we will show that the theory of the choiceless model
V [[x]]E corelates with the canonization properties of the equivalence relations
classifiable by countable structures.

Theorem 4.3.9. Suppose that X is a Polish space and I is a Π1
1 on Σ1

1 σ-
ideal on it such that the forcing PI is proper. Let E be an equivalence on X
classifiable by countable structures. The following are equivalent:
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1. E is not reducible to a countable equivalence relation on any I-positive
Borel set;

2. it is forced that V [[ẋgen ]]E fails the axiom of choice.

If E is a more complicated Borel equivalence relation, then AC can probably
fail in the model V [[x]]E for more complicated reasons, even though we do not
see any good examples at this point.

Proof. First, ¬(1) → ¬(2). If B ⊂ X is a Borel I-positive set on which the
equivalence E is reducible to a countable equivalence F on a Polish space Y ,
as witnessed by a Borel function f : B → Y , then f attains only countably
many values at each equivalence class and so B 
 ḟ(ẋgen) ∈ V [[xgen]]E by
Theorem 2.1.9. For absoluteness reasons, every generic extension containing
ḟ(ẋgen) will also contain one of its f -preimages in the set B, which then must
be E-equivalent to ẋgen ; thus V [[ẋgen ]]E = V [ḟ(ẋgen)] by the definition of the
model V [[ẋgen ]]E and this model satisfies the axiom of choice.

For the opposite implication, we will first inductively define functions hα on
dom(Fα) which assign each Fα-equivalence class a countable transitive set in a
fairly canonical fashion, this for every countable ordinal α ∈ ω1. For α = 1,
identify dom(F1) with the space of all infinite co-infinite subsets of ω and set
h1(x) = trcl({1, x}). For the induction, let hα+1(x) = trcl({α + 1, hα(x(n))})
and hα(x) = trcl({α, hβ(x(β))}) for a limit ordinal α ∈ ω1. A simple transfinite
induction argument will show that two points in dom(Fα) are Fα-related if and
only if their hα-images are the same.

So now assume that some condition B forces V [[ẋgen ]]E to satisfy the axiom
of choice. Thinning out the condition B if necessary, we may assume that there
is an ordinal α such that E � B is Borel reducible to Fα via some Borel function
f–Theorem 4.4.1. Let a = hα(ḟ(ẋgen)).

First argue that B forces V [[ẋgen ]]E = V (ȧ). To see this, note that every
generic extension containing an E-equivalent of xgen will contain one of its E-
equivalents in the Borel set B by an absoluteness argument, so it will contain
an Fα-equivalent of the point f(xgen) and so the set a; thus a ∈ V [[xgen]]E . On
the other hand, any two mutually generic extensions V (a)[y], V (a)[z] satisfying
ZFC that contain an enumeration of the set a in type ω will contain points in
the set B that are mapped by hα ◦ f to a, and these are E-equivalent to xgen.
By mutual genericity, V [[xgen]]E ⊂ V (a) = V (a) ∩ V (a)[y] ∩ V (a)[z], and so
V [[xgen]]E = V (a).

Now, if V [[xgen]]E satisfies the axiom of choice, then it must be equal to
V [z] for a certain point z ∈ 2ω which in some simple fixed way codes the set
a. By Theorem 2.1.9, it must be the case that there is a Borel I-positive set
C ⊂ B and a Borel function g : C → 2ω representing ż such that g attains only
countably many values on each E-equivalence class, and g(x) codes hα(f(x))
for every x ∈ C; in particular, the g images of distinct E-equivalence classes
are disjoint. By a result of Kechris, [8, Lemma 12.5.6], the existence of such a
function guarantees that E � C is essentially countable.
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Corollary 4.3.10. If I is a Π1
1 on Σ1

1 σ-ideal such that PI is proper and
adds a minimal real degree then classifiable by countable structures→Iessentially
countable.

Proof. To see this, let B be an I-positive Borel set and E an equivalence on
B that is classifiable by countable structures, and look at the set a in the
extension defined in the previous proof; so V [[x]]E = V (a). Look at the ∈-
minimal element z ∈ a ∪ {a} \ V . If there is no such an element, then a ∈ V ,
V (a) = V [[ẋgen ]]E = V satisfies the axiom of choice and we are finished by the
theorem. If z is well-defined, then by properness z is covered by a ground model
countable set, so V [z] contains a real not in V . Since PI adds a minimal real
degree, V [xgen] = V [z] ⊂ V [[xgen]]E = V [xgen], the model V [[xgen]]E satisfies
choice and the theorem seals the deal again.

A brief discussion is in order here. The analysis of the failure of choice in
the model V [[x]]E may provide further information about the Borel reducibility
properties of the equivalence relation E. We provide three examples:

Consider the countable support product of infinitely many copies of E0-
forcing, with the equivalence relation Eω

0 on it. Thus, the underlying space X is
(2ω)ω, and the equivalence relation connects x, y ∈ X if ∀n x(n) E0 y(n). The
model V [[x]]Eω

0
contains the sequence of E0-orbits of the points xgen(n) : n ∈ ω.

Each of these sets is countable there, since it is just an E0-orbit, the sets form
a countable sequence, but their union is not countable in V [[xgen]]Eω

0
.

A more significant violation of choice occurs in the model V [[~xgen ]]Eω
0

where
~xgen is the countable sequence of points in 2ω obtained by the countable support
product of Silver forcing. Again, the model contains the sequence 〈[~xgen(n)]E0 :
n ∈ ω〉 of countable sets whose union is not countable. Each of the equivalence
classes [~xgen(n)]E0 splits into two equivalence classes of the equivalence Es con-
necting two binary sequences if they differ on a finite set of even size. The
model V [[~xgen ]]Eω

0
does not contain a choice function on this countable system

of pairs. This is in contradistinction to the previous case. In the countable
support product of E0-forcings, there is a dense set consisting of conditions p
such that for every n ∈ ω, E0 � p(n) = Es � p(n) by the canonization theorem
???. Thus, in that model one could simply choose for every number n ∈ ω
that unique Es-equivalence class included in [~xgen(n)]E0 which has nonempty
intersection with p(n).

In contrast, look at the finite support product of infinitely many copies of
Cohen forcing, with the equivalence relation F2 on it. That is, the underlying
space is X = (2ω)ω, with the equivalence relation connecting points x, y if
{x(n) : n ∈ ω} = {y(n) : n ∈ ω}. The model V [[xgen]]F2 contains the set
{xgen(n) : n ∈ ω} and not its enumeration. In this model, countable unions of
countable sets are countable.

If the equivalence E is not classifiable by countable structures, the axiom of
choice may probably fail in the model V [[x]]E in much more complex fashion.
The possibility that V [[x]]E has the same reals as V and still cannot well-order
its P(ω1) is left open in this book.
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4.4 Orbit equivalence relations

Orbit equivalence relations of Polish group actions form a quite special subclass
of analytic equivalence relations. In our context, they can be simplified to Borel
equivalence relations by passing to a Borel I-positive Borel set:

Theorem 4.4.1. Suppose that X is a Polish space, I a σ-ideal on it such that
the quotient poset PI is proper, B ∈ PI an I-positive Borel set, and E an
equivalence relation on the set B reducible to an orbit equivalence relation of
a Polish action. Then there is a Borel I-positive set C ⊂ B such that E � C
is Borel. If the ideal I is c.c.c. then in fact the set C can be found so that
B \ C ∈ I.

Note that the equivalence E may have been analytic non-Borel in the beginning.

Proof. Suppose that a Polish group G acts on a Polish space Y , and f : B → Y
is a Borel reduction of E to the orbit equivalence relation EG of the action. By
[3, Theorem 7.3.1], the space Y can be decomposed into a union of a collection
Aα : α ∈ ω1 of pairwise disjoint invariant Borel sets such that EG � Aα is Borel
for every ordinal α; moreover, this decomposition is absolute between various
transitive models of ZFC with the same ℵ1.

Let M be a countable elementary submodel of a large enough structure
and let C ⊂ B be the Borel I-positive subset of all M -generic points for PI

in the set B. This is a Borel I-positive set by the properness of the quotient
poset PI , and if I is c.c.c. then in fact B \ C ∈ I. For every point x ∈ C,
M [x] |= f(x) ∈

⋃
{Aα : α ∈ M ∩ ω1}. Absoluteness considerations imply that

f ′′C ⊂
⋃

α∈ω1∩M Aα. The equivalence relation EG restricted on the latter set
is Borel, and so E � C is Borel.

This feature is quite special to orbit equivalence relations, and elsewhere it
may not hold. Consider the following example:

Example 4.4.2. Let K be an analytic non-Borel ideal on ω and the equivalence
relation EK on X = (2ω)ω defined by ~xEK~y if {n ∈ ω : ~x(n) 6= ~y(n)} ∈ K.
Consider the ideal I on X associated with the countable support product of
Sacks forcing. Then The equivalence EK is non-Borel, and since EK ≤ EK � B
for every Borel I-positive set B ⊂ X, it is also the case that EK � B is non-Borel.

4.5 Hypersmooth equivalence relations

Equivalence relations reducible to E1 are connected to decreasing sequences of
real degrees in the generic extension.

Theorem 4.5.1. Suppose that X is a Polish space and I is a σ-ideal such that
the forcing PI is proper. The following are equivalent:

1. E1 is in the spectrum of I;
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2. some condition forces that in the generic extension there is an infinite
decreasing sequence of V -degrees.

Proof. Suppose first that E1 is in the spectrum of I, as witnessed by a Borel
I-positive set B ⊂ X an equivalence relation E on B, and a Borel reduction
f : B → (2ω)ω of E to E1. We claim that B forces that in the generic extension,
for every number n ∈ ω there is m ∈ ω such that f(xgen) � [n, ω) /∈ V [f(xgen) �
[m,ω)].

Suppose for contradiction that some condition C ⊂ B forces the opposite
for some definite number n ∈ ω. Let M be a countable elementary submodel
of a large enough structure containing C and f , and let D ⊂ C be the Borel
I-positive set of all M -generic points in the set C. Consider the Borel set
Z ⊂ (2ω)ω\n defined by z ∈ Z if and only if for every number m > n there is
a Borel function g ∈ M such that g(z � [m,ω)) = z. It is not difficult to see
that E1 restricted to Z has countable classes, since there are only countably
many functions in the model M . Now, whenever x ∈ D then f(x) � [n, ω) ∈ Z
by the forcing theorem, and for x, y ∈ D, f(x)E1f(y) if and only if f(x) �
[n, ω)E1f(y) � [n, ω). This reduces E � D to a Borel equivalence relation with
countable classes, which contradicts the assumption that E1 is embeddable into
it.

Now, in the generic extension V [x] define a function h ∈ ωω by induction:
h(0) = 0, and h(n + 1) =the least number m ∈ ω such that f(x) � [h(n), ω) /∈
V [f(x) � [m,ω)]. The function h clearly belongs to all models V [f(x) � [m,ω)],
and therefore the sequence f(x) � [h(n), ω) : n ∈ ω forms the required strictly
decreasing sequence of degrees.

For the other direction, suppose that some condition forces a decreasing
sequence of V -degrees into the forcing extension. Thus, some condition forces
ẋn : n ∈ ω to be the decreasing sequence in 2ω. We can adjust the sequence to
attain the following properties:

• for every n ∈ ω, xn /∈ V [〈xm : m > n〉]

• 〈xm : m > n〉 ∈ V [xn].

The second item is necessary to the construction below. To secure it, replace
xn : n ∈ ω by a decreasing sequence x̄n : n ∈ ω such that V [x̄n] |= x̄n+1 is the
≤n-least point below which there is an infinite decreasing sequence of degrees
and V [x̄n+1] 6= V [xn]. Here, ≤n is any well-ordering of 2ω ∩ V [x̄n] simply
definable from a wellordering of V and x̄n; for example, let Q be the least poset
of size ≤ c in V for which x̄n is generic, and then turn any well-order of Q-names
for reals into a well-order of V [x̄n].

Moving to a stronger condition B ⊂ PI , we may represent each of the degrees
as a Borel function fn : B → 2ω, for each n ∈ ω. We claim that the product
of these functions, g : B → (2ω)ω defined by g(x)(n) = fn(x), has the property
that the pullback E = g−1E1 cannot be reduced to a countable Borel equivalence
relation on any Borel I-positive set. This will prove the theorem. Suppose for
contradiction that there is a Borel I-positive set set C ⊂ B such that E1 6≤ E �
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B; by the dichotomy 1.3.13 it must be the case that E � C ≤ E0 via some Borel
map g : C → 2ω. Move to the forcing extension V [xgen] for some PI -generic
point xgen ∈ C.

Claim 4.5.2. For every number n ∈ ω, g(xgen) ∈ V [fn(xgen)].

Proof. Working in V [fn(xgen)], we see that there is a point x ∈ C such that
〈fm(x) : m > n〉E1〈fm(xgen) : m > n〉, since such an x exists in the model
V [xgen] and analytic absoluteness holds between the two models. Note that
the sequence 〈fm(xgen) : m > n〉 is in the model V [fn(ẋgen)]. Now all such
numbers x must be mapped by g into the same E0-equivalence class. This class
is countable and contans g(xgen). The claim follows.

Now in the model V [g(xgen)], there is a point x ∈ C such that g(x) = g(xgen),
since there is such a point x in the model V [xgen] and analytic absoluteness holds
between the two models. The sequence 〈fn(x) : n ∈ ω〉 must be E1-equivalent
to the sequence 〈fn(xgen) : n ∈ ω〉; let us say that they are equal from some m
on. But then, fm(xgen) ∈ V [g(xgen)] ⊂ V [fm+1(xgen)], contradiction!

Corollary 4.5.3. If the forcing PI adds a minimal real degree then E1 does not
belong to the spectrum of I.



Chapter 5

Cardinals in choiceless
models

The study of Borel reducibility of Borel equivalences is reminiscent of the study
of the cardinalities of the sets X/E, where E is a Borel equivalence on a Polish
space X and X/E is the set of all E-equivalence classes. This is of course not
at all true in the context of the axiom of choice, since these sets are either
countable or of size at least continuum by Silver dichotomy 1.3.10, and since
they are all surjective images of the continuum, there are only two possibilities
for their cardinality: ℵ0 or c. Without the axiom of choice, a surjective image
of a set may have cardinality strictly larger than the domain set itself; thus,
the previous argument breaks down and the cardinalities of the quotient spaces
take a life on their own.

The study of cardinal inequalities in the choiceless context is much more
complicated and meaningful than the corresponding subject under the axiom of
choice. In order to delineate the subject, we will only study the cardinalities of
surjective images of the reals. Note that for every surjection f : R → A there is
the correspoding equivalence E on R defined by xEy ↔ f(x) = f(y), for which
|R/E| = |A|; thus these cardinals can be called equivalence cardinals. It is clear
that if E is an equivalence on a Polish space X Borel reducible to an equivalence
F on a Polish space Y , then |X/E| ≤ |Y/F | since the map [x]E 7→ [f(x)]F is an
injection whenever f : X → Y is a Borel reduction. On the other hand, there
does not seem to be any clear way of using a cardinal inequality to find a Borel
(or even more complicated) reduction between the underlying Polish spaces.
The connection between these two notions of comparison was investigated in
print by [13] and [3, Chapter 8].

One should point out the connection with so-called Turing thesis for analysis
??? Many results in the theory of Borel equivalence relations are worded in the
following way: a certain equivalence on a certain class of structures is not Borel
reducible to another equivalence on another class of structures. On the face
of it, the validity of this statement depends on the way how the structures in

113



114 CHAPTER 5. CARDINALS IN CHOICELESS MODELS

question are represented as points in Polish spaces, so that the statement can
be formalized properly. A question arises whether the validity of this statement
may change if a different presentation appears. The Turing thesis for analysis
asserts that this never occurs:

Whenever C is a natural class of mathematical structures with a natural
equivalence on it, then for every representation X of objects in this class as
points in a Polish space, with a corresponding equivalence relation E, and for
every other representation Y, F of this class, it is the case that E ≤B F and
vice versa, F ≤B E.

This is never an issue when we compare only cardinalities of the sets of
equivalence classes; for two representations as above, there is the obvious bi-
jection between the sets X/E and Y/F that maps any E-class to that unique
F -class that represents the objects equivalent to those in the E-class. Thus,
obtaining a Borel reduction from a mere cardinal inequality may be viewed as
a confirmation of Turing thesis for the equivalences concerned, in the particular
model of set theory without choice.

In order to simplify the expressions, for a Borel equivalence relation E on a
Polish space X we will denote by |E| the cardinality of the set X/E.

5.1 Completely regular models

We will first turn our attention to the study of completely regular models.
By this we understand either the choiceless Solovay extension derived from a
strongly inaccessible cardinal, or any of the models satisfying the axiom of
determinacy and containing all the reals, as obtained in the presence of suitable
large cardinals. The Solovay model is easier to study and requires weaker initial
assumtpions; on the other hand, the axiom of determinacy or even the theory
ZF+ADR+θ regular offers a nearly complete resolution of questions regarding
the cardinalities of surjective images of the reals as well as other issues. However,
the answers to the questions we pose here are the same in both contexts.

What is the cardinal structure of the surjective images of reals under AD
or ADR+θ regular? Well, first there are the wellorderable equivalence cardinal,
whose size is capped by the cardinal θ. The study of wellordered cardinals
under θ was the main concern of the Cabal school of set theory. There is the
smallest non-well-orderable equivalence cardinal, which happens to be the size
of the powerset of ω. By the celebrated coding theorem of Moschovakis, the
powersets of the wellorderable cardinals below θ are also surjective images of
the reals; these are the linearly orderable equivalence cardinals. Their structure
was studied by Woodin in [47]. There is the smallest non-linearly-orderable
equivalence cardinal, which happens to be E0 [5]. Beyond that, there is the rich
realm of Borel equivalences and a whole zoo of other things that no one has ever
seen.
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5.1a Turning cardinal inequalities into Borel reductions

As indicated in the introduction to this chapter, if E is an equivalence on a
Polish space reducible to another equivalence F , then |E| ≤ |F |, but the reverse
implication does not quite seem to hold. In this section we will show that the
metods of this book can be used to turn cadinal inequalities into Borel and even
more regular reductions between equivalence relations.

Proposition 5.1.1. Suppose that E is a Borel equivalence relation on a Polish
space X and I is a Π1

1 on Σ1
1 σ-ideal on X such that ZFC proves that the

quotient forcing is proper and has E in its spectrum. Then in the Solovay
model, whenever F is an equivalence relation on a Polish space and |E| ≤ |F |,
then E is Borel reducible to F .

Proof. Suppose that some condition in Coll(ω,< κ) forces |E| ≤ |F | as witnessed
by an injection f̂ . Since the Solovay model has uniformization, there will be also
a name ḟ for a lifting from dom(E) to dom(F ) of f̂ . By standard homogeneity
arguments as in Fact 1.3.16 we may assume that both F and ḟ are definable from
parameters in the ground model. Let I be the σ-ideal from the assumptions.
Note that PI 
there is y such that Coll(ω,< κ) 
 ḟ(ẋgen) = y̌, since in the
PI -extension, the homogeneity of the collapse implies that the largest condition
in Coll(ω,< κ) decides whether ḟ(ẋgen) belongs to any given basic open set,
and so there will be only one possibility left. Let ẏ be the PI -name for the value
of ḟ(ẋgen). There is a condition B ∈ PI and a Borel function g : B → dom(F )
such that B 
 ẏ = ġ(ẋgen). Now in the Solovay model V (R), the set C ⊂ B
consisting only of PI -generic points for the model V is Borel and I-positive by
Theorem 1.3.21–this is the only place where we use the definability of the ideal
I. The forcing theorem then implies that for every point x ∈ C it is the case
that g(x) = f(x) and so g is a Borel reduction of E � C to F . However, the
assumptions imply that E is reducible to E � C, and the proposition follows.

In fact, the statement of the proposition can be strengthened in many cir-
cumstances. Theorem 1.3.21 holds true in ZFC for many ideals that are not Π1

1

on Σ1
1, for example for the Laver ideal. If the forcing PI is bounding, then the

Borel function g in the proof will be continuous on a Borel I-positive set. If
one wants to get a continuous reduction of E to F in such a case, it still has to
be proved that E reduces continuously to E � B for every Borel I-positive set.
This is satisfied in most examples discussed in this book, but it always requires
a nontrivial argument. A similar degree of caution applies to the search for
injective reduction from the assumption that the forcing PI adds a minimal real
degree.

Corollary 5.1.2. In V (R), if F is an equivalence relation and |E0| ≤ |F | then
E0 reduces to F in a continuous injective fashion.

Proof. Consider the ideal I on 2ω of Section 3.4. It has E0 in its spectrum, and
the quotient forcing is bounding and adds a minimal real degree. In view of the
proposition, it is enough to verify that for every I-positive Borel set B ⊂ 2ω,
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there is a continuous injection f : 2ω → B reducing E0 to E0 � B. To see
that, let P be the creature forcing in that section, choose p ∈ P such that
[p] ⊂ B by Fact 3.4.1; p = 〈tp,~cp〉 where ~cp is a sequence of pairs of finite binary
sequences and the sequences in any given pair have the same length. Let f be
the continuous function from 2ω to [p] for which f(x) is the concatenation of tp
with ~cp(n)(x(n)) : n ∈ ω. This is the desired injective continuous reduction.

Corollary 5.1.3. In V (R), if F is an equivalence relation and |E1| ≤ |F | then
E1 reduces to F in a continuous injective fashion.

Proof. There are a number of bounding forcings with E1 in the spectrum, but
none of them add a minimal real degree, as Theorem 4.5.1 shows. How does
one manufacture an injective reduction then?

Look at the illfounded iteration of Sacks forcing of length inverted ω. ???

Corollary 5.1.4. In V (R), if F is an equivalence relation and |E2| ≤ |F | then
E2 reduces to F in a continuous injective fashion.

Proof. Consider the ideal I on 2ω of Section 3.5. It has E2 in its spectrum and
the quotient forcing PI is proper, bounding, and adds a minimal real degree.
If B ⊂ 2ω is an I-positive Borel set, the properness proof of Theorem 3.5.9
provides a continuous injective reduction of E2 to E2 � B. Together with the
proposition, this completes the proof of the corollary.

Corollary 5.1.5. In V (R), if F is an equivalence relation and |E3| ≤ |F | then
E3 reduces to F in a continuous injective fashion.

Corollary 5.1.6. In V (R), if F is an equivalence relation and |EKσ
| ≤ |F |

then EKσ reduces to F in a continuous injective fashion.

Proof. Consider the Silver forcing of Section 3.6 and its associated σ-ideal I
on 2ω. EKσ

is in the spectrum of I as witnessed by some Borel equivalence
relation E on 2ω to which EKσ continuously injectively reduces. Also, for every
I-positive Borel set B ⊂ 2ω, E reduces to E � B by a continuous injective
function. Moreover, the Silver forcing is bounding and adds a minimal real
degree, Theorem 3.6.2. The corollary follows.

5.1b Regular and measurable cardinals

The commonly discussed equivalence cardinals have features that resemble reg-
ular and measurable cardinals in ZFC. We will make several perhaps ad hoc
definitions and show how they relate to the common ZFC notions.

Definition 5.1.7. A set A is a regular cardinality if for every equivalence rela-
tion E on A, either one of the classes of E has the same cardinality as A, or there
is a set B ⊂ A of the same cardinality as A consisting of pairwise inequivalent
elements.
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Definition 5.1.8. An ideal I on a set A is weakly normal if for every equivalence
relation E on A, either one of the classes of E is I-positive, or there is an I-
positive set B ⊂ A consisting of pairwise inequivalent elements.

It is not difficult to see that if κ is a wellordered cardinal regular in the
usual sense, it is also regular in the sense of Definition 5.1.7. Moreover, if I is
a normal ideal on κ in the usual sense, it is also weakly normal in the sense of
Definition 5.1.8. If S ⊂ κ is I-positive and E is an equivalence relation on S,
let f : S → S be defined as f(α) =the least ordinal equivalent to α. Either this
function is equal to identity on an I-positive set, leading to an I-positive set
of pairwise inequivalent elements, or it is regressive on an I-positive set, which
after stabilization leads to an I-positive equivalence class. However, the ideal of
bounded subsets of κ is not normal, and still it is weakly normal in the above
sense.

From now on we will work in the Solovay model V (R), derived from a
Coll(ω,< κ) extension for some inaccessible cardinal κ.

Proposition 5.1.9. R is a regular cardinality.

Proposition 5.1.10. E0 is a regular cardinality.

The notion of ergodicity as introduced in the wording of Theorem 2.1.3
gives rise to ultrafilters on the equivalence cardinals with a great degree of
completeness.

Definition 5.1.11. An ideal on a set A is B-complete, where B is a set, if for
every function f from an I-positive set to B there is an I-positive set on which
f is constant.

This should be compared with the notion of F -ergodicity of Hjorth and Kechris
[22, Lemma 13.3.4].

Proposition 5.1.12. There is no nonprincipal ω-complete ultrafilter on 2ω.

Proof. Suppose that U is a ω-complete ultrafilter on 2ω. For every number
n ∈ ω, there will be an element in ∈ 2 such that An = {x ∈ 2ω : x(n) = in} ∈ U .
The set

⋂
nAn is in the ultrafilter U , and it contains only one point, so U is a

principal ultrafilter.

Theorem 5.1.13. In V (R), there are at least two pairwise Rudin-Keisler in-
comparable R-complete ultrafilters on E0.

Proof. Let J0 be the ideal on 2ω/E0 defined by B ∈ J0 ↔
⋃
B is meager. It

is not difficult to argue that J0 is a maximal ideal. Suppose for contradiction
that B ⊂ 2ω/E0 is a set such that neither

⋃
B nor its complement are meager

subsets of 2ω. Since all sets in V (R) have the Baire property, both
⋃
B and its

complement are equal to a nonempty open set modulo the meager ideal, and it
is well known that any two such sets contain E0-connected elements, which is
of course impossible. To see that the ideal J0 is R-complete, let f : B → R be
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an arbitrary function. The function f̂ :
⋃
B → R defined by f̂(x) = f([x]E0)

is continuous on a comeager set by [27, Theorem 8.38], since all sets in V (R)
have the Baire property. A continuous E0-invariant function on a comeager set
is constant, proving the R-completeness.

Let J1 be the ideal on 2ω/E0 defined by B ∈ J1 ↔
⋃
B is null in the usual

Borel probability measure on 2ω. The proof in the previous paragraph transfers
literally using the Steinhaus theorem [2, Theorem 3.2.10] and the fact that all
sets in V (R) are measurable.

To show that the two ideals from the previous paragraphs are not Rudin-
Keisler reducible to each other, we will argue that J0 is Rudin-Keisler above
the meager ideal but not above the null ideal and J1 is above the null ideal and
not above the meager ideal. Obviously, J0 is above the meager ideal. Suppose
for contradiction that it is above the null ideal as witnessed by a function f̂ :
2ω → 2ω/E0. V (R) satisfies uniformization, so there is a function f : 2ω → 2ω

such that [f(x)]E0 = f̂(x). Since all sets are measurable, this function is Borel
when restricted to a measure one set; to simplify the notation assume that
this measure one set is the whole space 2ω. Since ”random real does not add
a Cohen real”, there is a Borel meager set B ⊂ 2ω whose f -preimage is not
null. Since the standard countable group action inducing the equivalence E0

preserves the meager ideal, the E0 saturation [B]E0 is meager as well. Thus,
the set {x ∈ 2ω/E0 : x ∩ B 6= 0} is in the ideal J0 while its f̂ -preimage is not
null, contradicting the properties of a Rudin-Keisler reduction. The treatment
of J1 is similar.

Theorem 5.1.14. In V (R), there are at least two Rudin-Keisler ES∞-complete
ultrafilters on E2.

Proof. By a result of Hjorth and Kechris, E2 is generically ES∞ -ergodic. This
means that for every comeager set B ⊂ 2ω and every Borel function f : B →
(2ω)2 such that xE2y implies f(x) is as a graph isomorphic to f(y), there is a
comeager set C such that the range of f � C is contained in a single ES∞ class.
This can be fairly easily turned into the proof that the σ-ideal J0 on 2ω/E2

defined by B ∈ J0 ↔
⋃
B is meager, is an ES∞ -complete nonprincipal maximal

ideal on E2.
By Corollary 3.12.6, E2 is µ-ergodic for some Borel probability measure µ

on P(ω) that assigns mass zero to E2 equivalence classes. As in the previous
paragraph, this means that the σ-ideal J1 on 2ω/E2 defined by B ∈ J1 ↔

⋃
B

has µ-mass zero, is an ES∞ -complete nonprincipal maximal ideal on E2.
It is now necessary to prove that the two maximal ideals are not Rudin-

Keisler reducible to each other. We will show that J0 is Rudin-Keisler above
the meager ideal but not above the null ideal, while J1 is above the null ideal
but not above the meager ideal. ????

Theorem 5.1.15. In V (R), there is a ES∞-complete ultrafilter on EKσ
, which

is not Rudin-Keisler above the meager or the Lebesgue null ideal.
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Proof. Let E be the equivalence relation on ωω introduced in Section 3.10; that
is, xEy if there is a number m ∈ ω such that for all n ∈ ω, x(n) < y(m + n)
and y(n) < x(m + n). The equivalence E is bireducible with EKσ

and so we
can treat the space ωω/E instead of EKσ

.
Let J be the σ-ideal on ωω/E defined by the formula B ∈ J ↔

⋃
B ∈ I

where I is the Laver ideal. To show that J is a maximal ideal, assume for
contradiction that B ⊂ ωω/E is a set such that both

⋃
B and its complement

are I-positive. In the model V (R), every subset of ωω is either in the Laver ideal
or else it contains all branches of a Laver tree [49, Section 4.5.2, Theorem 4.5.6
(2)]. Thus both

⋃
B and its complement contain all branches of some Laver

tree, but two Laver trees always contain a pair of E-connected branches by the
proof of Theorem 3.10.6. This is of course a contradiction. The completeness of
the ideal J follows from the Silver property of the Laver ideal for equivalences
classifiable by countable structures.

We must now show that the ideal J is neither Rudin-Keisler above the
meager ideal nor above the Lebesgue null ideal. The proofs are similar, we
will treat the meager ideal. Suppose that f̂ : 2ω → ωω/E is a function. By the
uniformization in the model V (R), there is a function f : 2ω → ωω such that
for every x ∈ 2ω, [f(x)]E = f̂(x). Since all sets in V (R) are Baire measurable,
the function f is Borel if restricted to a comeager set; without loss of generality
assume that this set is the whole space 2ω. Since ”Cohen real does not add
a dominating real”, there is a function y ∈ ωω such that the set {x ∈ 2ω : y
is modulo finite dominated by f(x)} is meager. The E-saturation of the set
B = {z ∈ ωω : y is not modulo finite dominated by z} is in the Laver ideal,
since none of its elements modulo finite dominate the function n 7→ max{y(i) :
i ∈ 2n}. Thus, the set {x ∈ ωω/E : x ∩ B 6= 0} is in the maximal ideal J , and
its preimage is comeager in 2ω, contradicting the properties of Rudin-Keisler
reduction.

5.2 Ultrafilter models

The completely regular models of the previous section are long studied and fairly
well understood. New insights are possible if one inserts fractions of the axiom
of choice into them. One can ask for example what is the possible structure
of cardinal inequalities between surjective images of the reals in various forcing
extensions of models of the Axiom of Determinacy. A sample question:

Question 5.2.1. Is there a generic extension of L(R) in which |ω1| ≤ |E1| and
¬|ω1| ≤ |E0|?

Very little is known in this direction. There one exceptionally well understood
generic extension of L(R), and that is the model L(R)[U ] obtained from L(R)
by adjoining a single Ramsey ultrafilter U to it. Recall that an ultrafilter is
Ramsey if it contains a homogeneous set for every partition π : [ω]2 → 2. Such
ultrafilters may fail to exist. Forcing with the σ-closed poset P(ω) modulo finite
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adds such an ultrafilter as the generic set, and under suitable assumptions this
is the only way to obtain it:

Fact 5.2.2. [6] If suitable large cardinals exist, every Ramsey ultrafilter U is
P(ω) modulo finite generic set for the model L(R).

This fact generalizes to all standard models of the Axiom of Determinacy con-
taining all the reals. Since the poset P(ω) modulo finite is homogeneous, the
theory of the model L(R)[U ] can be identified within L(R), as such it cannot be
changed by set forcing under suitable large cardinal assumptions, and therefore
it is an interesting, canonical object to study. What is true in L(R)[U ]? On
one hand, this model contains an ultrafilter on ω, which is a non-measurable set
without the Baire property. On the other hand, many consequences of determi-
nacy survive, such as the perfect set property [6]. In this section, we will study
the reducibility of Borel equivalence relations in this model and show how the
work of the previous chapters can be applied to this end.

5.2a Basic features

We will study the model V (R)[U ], where κ is a strongly inaccessible cardinal,
G ⊂ Coll(ω,< κ) is a V -generic filter, R is the set of reals in the model V [G],
and U ⊂ P(ω) modulo finite is a V [G]-generic filter. While under large cardi-
nal assumptions, the theory of this model is not equal to that of L(R)[U ] (for
example there are stationary costationary subsets of ω1 in V (R)[U ] while in
L(R)[U ] the closed unbounded filter on ω1 is an ultrafilter), still all theorems
we prove transfer directly to the model L(R)[U ] by the following proposition.
At the same time, the model V (R)[U ] is easier to study and its analysis does
not require any large cardinal assumptions beyond an inaccessible, in contradis-
tinction to L(R)[U ].

Proposition 5.2.3. Suppose ψ is a Π2
1 sentence with real parameters. If

V (R)[U ] |= ψ then also L(R)[U ] |= ψ.

This is an immediate consequence of the fact that L(R)[U ] ⊂ V (R)[U ] and that
the two models share the same reals. A careful look at the sentences proved in
this section will show that all of their interesting instances are of Π2

1 form.
The basic tool for the study of the model V (R)[U ] is the diagonalization

forcing PÛ for a Ramsey ultrafilter Û on ω. It is the set of all pairs p = 〈ap, bp〉
such that ap ⊂ ω is finite and bp ∈ Û , with the ordering defined by q ≤ p if
ap ⊂ aq, bq ⊂ bp, and aq \ ap ⊂ bp. The forcing adds an infinite subset of ω, the
union of the first coordinates of the conditions in the generic filter, that we will
denote ȧgen . The following is a basic fact:

Fact 5.2.4. Suppose that V is a transitive model of ZFC and Û is a Ramsey
ultrafilter in it. The following are equivalent for an infinite set a ⊂ ω:

1. a is a PÛ -generic set for the model V ;
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2. a diagonalizes the filter Û : for every b ∈ Û , a \ b is finite.

Proposition 5.2.5. Let Û be a Ramsey ultrafilter and let κ be an inaccessible
cardinal. Let φ be a formula with ground model parameters, another parameter
U̇ , and one free variable x such that PÛ ∗Coll(ω,< κ)∗P(ω) forces that there is
a unique x ∈ V (R) satisfying φ(x, U). Then the first two steps of the iteration
force that ȧgen decides which x it is.

Here, V (R) is the model obtained from the reals after the first two stages of the
iteration. Note that PÛ ∗Coll(ω,< κ) is isomorphic to Coll(ω,< κ) by the basic
homogeneity Fact 1.3.16.

Proof. Suppose for contradiction that p0, p1 forces that ȧgen does not decide
the value of x. Find generic filters G0 ⊂ PÛ and G1 ⊂ Coll(ω,< κ) such that
p0 ∈ G0, p1 ∈ G1, and work in the model V [G0, G1]. Find a ⊂ ȧgen/G0 and
x such that a 
 φ(x̌, U̇). By virtue of Fact 5.2.4, a ⊂ ȧgen/G0 is V -generic
for the poset PÛ . Find a V -generic filter H0 ⊂ PÛ containing the condition p0

such that ȧgen/H0 = a modulo finite, use the collapse homogeneity 1.3.16 to
find a filter H1 ⊂ Coll(ω,< κ) so that p1 ∈ H1 and V [G0, G1] = V [H0,H1],
and observe that a forces φ(x̌, U̇) by its choice, and at the same time a should
not force φ(y, U̇) for any y ∈ V (R) by the assumption and the forcing theorem
applied to the ground model and the filters H0,H1!

Proposition 5.2.6. Suppose that φ is a formula with parameters in the ground
model and perhaps another parameter U , and no free variables. Let Û be a
Ramsey ultrafilter and let κ be an inaccessible cardinal. In the iteration PÛ ∗
Coll(ω,< κ) ∗ P(ω), the condition 1, 1, ȧgen decides the truth value of φ(U̇).

Proof. Assume for contradiction that 〈p0, p1, p2〉, 〈q0, q1, q2〉 are two conditions
below 〈1, 1, ȧgen〉 that decide φ in different ways. Then 〈p0, p1〉 forces p2 to
be a PÛ -generic set over the ground model as per Fact 5.2.4. Let G0 ∗ G1

be a V -generic filter on the iteration PÛ ∗Coll(ω,< κ) containing the condition
〈p0, p1〉. In the model V [G0∗G1], make a finite change to the set a = ṗ2/G0∗G1

to get a V -generic filter H0 on PÛ containing the condition q0 producing this
set. Use the homogeneity of the collapse 1.3.16 in the model V [H0] to find
a V [H0]-generic filter H1 ⊂ Coll(ω,< κ) containing the condition q1 such that
V [G0, G1] = V [H0,H1]. Thus, the set q2/H0∗H1 is modulo finite included in the
set ȧgen/H0, which is modulo finite equal to p2/G0∗G1. Looking into the model
V [G0, G1] = V [H0,H1], these two conditions should decide φ in a different way
in the poset P(ω) modulo finite, which is of course a contradiction.

5.2b Preservation of cardinals

A basic question regarding any forcing extension is whether cardinals are pre-
served. In the context of the axiom of choice, this question may be difficult in
exceptional cases. However, in the choiceless context, the question takes on a
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whole new dimension of complexity. Suppose that A and B are two (non-well-
orderable) sets such that ¬|A| ≤ |B|. Is this still true in our favorite generic
extension? The basic question remains open:

Question 5.2.7. (In the context of the Solovay model or AD+) Does the forcing
with P(ω) modulo finite add new cardinal inequalities between old sets?

Of course, the most intriguing case is that of cardinal inequalities between sets
that are surjective images of the real line. There, the question can be rephrased
in a more intuitive and attractive way: can a (Ramsey) ultrafilter be used to
construct new reductions between equivalences, where there are no such Borel
reductions? A little bit of experimentation will show that it is difficult to even
conceive of a way to use an ultrafilter in this way. Correspondingly, we conjec-
ture that the answer to the question is negative.

The question can be motivated from another angle as well. Nonexistence of
Borel reductions between various equivalences is often a difficult problem, and its
resolution always leads to significant progress in understanding the equivalence
relations concerned. Nearly all known results in this direction use Baire category
or measurability methods in one way or another. It may be of interest to
find diametrally different arguments. One way to generate such arguments will
attempt to prove that the cardinal inequality between the sets of equivalence
classes concerned fails to hold even in the presence of an ultrafilter. Such a
proof must use a trick different from Baire category or measurability, since
the ultrafilter in question is a nonmeasurable set without Baire property and
therefore is likely to kill any such trick.

While the general negative answer to the above question seems to be out of
reach, the methods of this book allow us to prove that no cardinal inequalities
are added for many of the equivalence cardinals. The results of this form will
essentially always use the following proposition.

Proposition 5.2.8. Suppose that E is a Borel equivalence relation on a Polish
space X. If ZFC proves that there is a σ-ideal I on the space X which has E
in its spectrum and such that the forcing PI preserves Ramsey ultrafilters, then
whenever A ∈ V (R)[U ] is a set then V (R) |= |E| ≤ |A| ↔ V (R)[U ] |= |E| ≤ |A|.

Proof. Suppose that Coll(ω,< κ) ∗ P(ω) forces |E| ≤ |Ȧ| as witnessed by an
injection ḟ . The standard homogeneity arguments as in Fact 1.3.16 show that we
may assume withut loss of generality that the set A is definable from parameters
in the ground model, the injection ḟ is definable from the parameters in the
ground model and U̇ , and the ground model contains a Ramsey ultrafilter u. Let
PI be the forcing with E in its spectrum, and observe that PI 
 Pu 
 Coll(ω,<
κ) 
 ȧgen decides the value of ḟ([ẋgen ]E) by Proposition 5.2.5. Pass to the
Solovay model V (R), and in this model find an infinite set a ⊂ ω diagonalizing
the ultrafilter u, and use Claim 1.3.21 to find an I-positive Borel set B ⊂ X
consisting of V -generic reals only. Note that a is Pu generic over all the models
V [x] : x ∈ B since PI preserves the ultrafilter u. Since E is in the spectrum of
the ideal I, |E| ≤ |E � B|, and |E � B| can be injectively mapped to A by the
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map [x]E 7→the unique element of the set A such that a forces it to be equal to
ḟ([x]E). The proposition follows.

Designing quotient forcings that preserve Ramsey ultrafilters and contain a
given equivalence relation in its spectrum is not an entirely trivial endeavor.
The notion of spectrum is the subject of this book. Suitably definable forcings
preserve Ramsey ultrafilters if they are proper, bounding, and add no indepen-
dent reals by [49, Theorem 3.4.1]. The bounding condition is usually fairly easy
to verify, but not adding independent reals is more difficult, and it typically
requires some nontrivial applications of Ramsey theory on Polish spaces.

Theorem 5.2.9. Suppose that A ∈ V (R) is a set such that in V (R), ¬|E0| ≤
|A|. Then in V (R)[U ], ¬|E0| ≤ |A| as well.

Proof. Consider the E0 forcing P and the corresponding σ-ideal I on 2ω as
defined in Section 3.4. We know that the forcing P is proper and bounding, and
E0 is in the spectrum. We must prove that independent reals are not added.

Suppose that B 
 ȧ ⊂ ω is a set. Thinning out the condition B if necessary
we may find a Borel function f : B → P(ω) representing the name ȧ. Using the
fact that E0 ≤ E0 � B, it is not difficult to find a Borel injection g : ωω → B
preserving the equivalence E0, which on the space ωω is defined by xE0y ↔
{n : x(n) 6= y(n)} is finite. Consider the partition ωω × ω = D0 ∪D1 into two
Borel pieces defined by 〈x, n〉 ∈ D0 ↔ n ∈ g(f(x)). Use a result of Henle [12]
to find two element sets ai : i ∈ ω as well as an infinite set c ⊂ ω such that
the product Πiai × c is a subset of one piece of the partition, say of D0. The
equivalence E0 � Πiai is still not smooth, and so the Borel set C = g′′Πiai ⊂ B
is still I-positive. At the same time, for every point x ∈ C it is the case that
c ⊂ f(x), and by the usual absoluteness argument it follows that C 
 č ⊂ ȧ!

Theorem 5.2.10. Suppose that A ∈ V (R) is a set such that in V (R), ¬|E1| ≤
|A|. Then in V (R)[U ], ¬|E1| ≤ |A| as well.

Proof. Consider the poset P , the product of countably many copies of Sacks
forcing. The poset is proper, bounding, and E1 is in its spectrum by the results
in Section 3.8. The poset adds no independent reals by a theorem of Laver, and
therefore it preserves Ramsey ultrafilters. Perhaps a tighter argument would
use the illfounded iteration of Sacks forcing of length inverted ω as developed
for example in [21] or [49, Section 5.4].

Theorem 5.2.11. Suppose that A ∈ V (R) is a set such that in V (R), ¬|E2| ≤
|A|. Then in V (R)[U ], ¬|E2| ≤ |A| as well.

Proof. One approach is to recall Theorem 3.12.4. It yields a fat tree forcing
with E2 in the spectrum. The fat tree forcings are proper, bounding, and do
not add independent reals by [49, Theorem 4.4.8]. Together with the definability
it implies that the forcing preserves Ramsey ultrafilters by [49, Theorem 3.4.1].
The theorem follows!
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Another option is to use the E2 forcing of Section 3.5 and use a complex
Ramsey theoretic argument to argue that it does not add independent reals.

Theorem 5.2.12. Suppose that A ∈ V (R) is a set such that in V (R), ¬|EKσ
| ≤

|A|. Then in V (R)[U ], ¬|EKσ
| ≤ |A| as well.

Proof. Theorem 3.12.4 provides for a fat tree forcing such that EKσ
is in the

spectrum of the associated ideal. Then continue as in the previous argument.

Theorem 5.2.13. Suppose that A ∈ V (R) is a set such that in V (R), ¬|F2| ≤
|A|. Then in V (R)[U ], ¬|F2| ≤ |A| as well.

Proof. The previous proof scheme cannot be used since there is no proper forc-
ing that adds an interesting new F2 class. Instead, consider the finite support
product P of infinitely many Sacks forcings with finite support, adding Sacks
reals {xn : n ∈ ω}. This poset of course collapses the continuum to ℵ0 and there-
fore does not preserve any Ramsey ultrafilters, but we will instead consider the
intermediate choiceless model V ({xn : n ∈ ω}), with the ground model enriched
by the symmetric Sacks set of the Sacks generics without the function that enu-
merates them. This is the symmetric Sacks extension. The usual symmetricity
arguments yield the following.

Claim 5.2.14. The symmetric Sacks extension contains only those sets of or-
dinals that belong to V [xn : n ∈ m] for some finite m.

Claim 5.2.15. Every infinite set of reals in finite tuples product generic for
Sacks forcing, which intersects every ground model perfect set, is a symmetric
Sacks set.

If u is a Ramsey ultrafilter in the ground model, then it generates a Ramsey
ultrafilter in finite Sacks product extensions, and so even in the symmetric Sacks
extension. Every infinite set diagonalizing u is Pu-generic for the symmetric
Sacks extension.

Now suppose that Coll(ω,< κ) 
 Ȧ is a set such that P(ω) 
 |F2| ≤ |A| as
witnessed by an injection ḟ . We must argue that Coll(ω,< κ) 
 |F2| ≤ |A|. By
the usual symmetricity arguments we can assume that the set A is definable from
parameters in the ground model, and the function f is definable from parameters
in the ground model and the ultrafilter U̇ , and the ground model contains a
Ramsey ultrafilter u. Pass to the extension V [G] where G ⊂ Coll(ω,< κ) is a
generic filter. Find an Fσ-set C ⊂ 2ω that meets every ground model perfect set
in a perfect set and consists of reals that are Sacks generic in finite tuples over V .
For example, a finite support product of infinitely many copies of the amoeba
for Sacks forcing will yield such a set. Find a Borel function f : 2ω → Cω such
that for every x ∈ 2ω, f(x) enumerates a set which intersects every perfect set
in the ground model, and for distinct x, y ∈ 2ω, rng(f(x)) ∩ rng(f(y)) = 0.
Note that for every countable set b ⊂ 2ω, the set cb =

⋃
x∈b rng(f(x)) ⊂ 2ω is a

countable symmetric Sacks set over the ground model. Fix an infinite set a ⊂ ω
diagonalizing the filter u. By Proposition 5.2.5 applied in the model V (cb), a
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decides the value of ḟ(cb) for every countable set b ⊂ 2ω. It is now easy to check
that the map b 7→that element of the set A that a forces f(cb) to be equal to, is
the required injection of [R]ℵ0 to the set A in the model V (R)!

5.2c Linear orderability

Without the axiom of choice, certain sets may fail to carry a linear ordering.
Clearly, if |A| ≤ |B| and the set B is linearly orderable then so is A, and so
the concept of linear orderability may serve as a tool for disproving inequalities
between sizes of various sets. Under hypotheses such as ADR, this a priori
interesting tool proves to be fairly blunt: the linearly ordered sets are exactly
those whose size is smaller than some P(κ) for an ordinal κ, and there is a
smallest cardinal which is not linearly ordered, namely the E0 cardinal [5].
However, if we insert an ultrafilter into our universe, the situation changes and
linear orderability turns into a much more intriguing concept. Start with a
seminal observation:

Theorem 5.2.16. (Paul Larson, personal communication) (ZF) If there is an
ultrafilter, the E1 and E3 cardinals are linearly orderable.

Proof. For E1, choose linear orderings ≤n on (2ω)ω\n and let ≤ be the pre-
ordering on (2ω)ω defined by ~x ≤ ~y if the set {n : x � ω \ n ≤n y � ω \ n}
belongs to the fixed ultrafilter. It is immediate that ≤ linearly orders the set
ofE1 equivalence classes. For E3, first observe that since E0 ≤ E1, the set of
all E0 classes is linearly orderable from an ultrafilter and fix such a linear order
≺0. The linear order ≺3 on E3 = Eω

0 is then defined by ~x ≺3 ~y if for the least
n such that ~x(n) 6= ~y(n) it is the case that ~x(n) ≺0 ~y(n).

The proof clearly shows that the class of linearly ordered sets is closed under
power ω (or any ordinal power) and, if an ultrafilter is present, under power ω
modulo finite. How does one argue that a set is not linearly orderable? We
know of exactly one trick:

Definition 5.2.17. Let P be a partial ordering and E a Borel equivalence
relation on a Polish space X. We say that P adds interchangeable E equivalence
classes if there are P -names τ, σ for non-E-equivalent elements of X such that
for every condition p ∈ P there are, in some further generic extension, V -
generic filter G,H ⊂ P containing the condition p so that (σ/G)E(τ/H) and
(σ/H)E(τ/G).

The most basic example is the Cohen forcing and the E0-equivalence. If one
considers the name σ for the Cohen generic and τ for its flip, then their E0-
classes are interchangeable: whenever p ∈ 2<ω is a Cohen condition and x ∈
2ω is a Cohen real extending p, then the flip of x rewritten with p at the
appropriate initial segment is also a Cohen real, E0-equivalent to the flip of
x. This feature can be used to argue that in the Solovay model, the set of
E0 classes is not linearly orderable. If one wants to argue that other sets are
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not linearly orderable even if an ultrafilter is present, it is necessary to produce
forcings adding interchangeable equivalence classes with additional preservation
properties:

Proposition 5.2.18. Suppose that E is a Borel equivalence relation. If ZFC
proves that there is a Ramsey ultrafilter preserving forcing adding interchange-
able equivalence classes, then in V (R)[U ], the set of E equivalence classes is not
linearly orderable.

Proof. Suppose for contradiction that some condition in Coll(ω,< κ) ∗ P(ω) 

V (R)[U ] |=≤ linearly orders E-equivalence classes. Then ≤ will be definable
from parameters which may be elements of the ground model, reals, or the
ultrafilter U itself. The homogeneity arguments show that we can assume that
all of the parameters except for the Ramsey ultrafilter lie in the ground model,
and the condition is the largest condition. We may also assume that the ground
model contains a Ramsey ultrafilter u.

By the assumption, there is a forcing P adding interchangeable E-equivalence
classes which preserves the Ramsey ultrafilter u. By Proposition 5.2.6, P 
 the
condition 1, 1, ȧgen in the iteration PŪ ∗Coll(ω,< κ) ∗P(ω) decides [τ ]E ≤ [σ]E
or vice versa. Let p ∈ P be a condition which decides which way this decision
will go, thus for example p, 1, 1, ȧgen 
 [τ ]E ≤ [σ]E . The interchangeability
feature of the names σ and τ together with standard homogeneity arguments
shows that there are filters G0 ⊂ P,G1 ⊂ Pu, G2 ⊂ Coll(ω,< κ) and H0 ⊂
P,H1 ⊂ Pu,H2 ⊂ Coll(ω,< κ) such that the two triples are generic for the iter-
ation indicated, p ∈ G0 ∩H0, V [G0, G1, G2] = V [H0,H1,H2], (σ/G0)E(τ/H0),
(σ/H0)E(τ/G0), and ȧgen/G1 = ȧgen/H1. Let U be a Ramsey ultrafilter in
V [G0, G1, G2] containing the set ȧgen/G1. The forcing theorem then shows that
both [σ/G0]E ≤ [τ/G0] and [τ/G0]E ≤ [α/G0]E should hold, which is impossi-
ble.

Designing posets adding interchangeable equivalence classes is an interesting
discipline in its own right. We mastered the discipline well enough to be able
to prove two theorems:

Theorem 5.2.19. In V (R)[U ], the set of E2 equivalence classes is not linearly
orderable.

Proof. We will design a fat tree forcing adding two interchangeable E2 classes.
These forcings are simply definable, bounding, add no independent reals, and
therefore preserve Ramsey ultrafilters. The construction uses concentration of
measure on Hamming cubes, similarly to Theorem 3.12.4. The following will
come handy:

Claim 5.2.20. For arbitrary positive reals ε, δ > 0 there is a natural number
n ∈ ω such that for any sets A0, A1 ⊂ 2n of normalized counting measure
mass ≥ ε there are points x0 ∈ A0, x1 ∈ A1 such that x0 is within normalized
Hamming distance ≤ δ to the flip of x1.
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To prove this, use the concentration of measure to find a number n such that
for every set A ⊂ 2n of normalized counting measure mass ≥ ε, the set Aδ =
{y ∈ 2n : ∃x ∈ A d(x, y) ≤ δ} has mass greater than 1 − ε. This number must
work, since the set (A0)δ must intersect with the set of flips of all points in A1;
their masses added give a number greater than 1!

Now consider the finitely branching tree Tini such that for every node t ∈ Tini

at level m there is a number nm ∈ ω such that the set of immediate successors
of t is the set at = 22nm\nm , and such that nm satisfies the previous claim
with ε = 1/m and δ = 2−m. Moreover, we require that nm+1 > 2nm. The
submeasure φt will be defined by φt(b) = m times the normalized counting
measure mass of the set b ⊂ at.

It is immediately clear that the numbers φt(at) : t ∈ Tini tend to infinity and
so the forcing P of fat trees associated with this system of submeasures is well
defined and nonatomic. To describe the interchangeable names for E2 classes,
note that P adds a cofinal branch ẋgen ∈ [Tini]. Define σ = {i ∈ ω : ∃m i ∈
[nm, 2nm)∧ ẋgen(m)(i) = 1} and τ = {i ∈ ω : ∃m i ∈ [nm, 2nm)∧ ẋgen(m)(i) =
0}. These two subsets of ω are not E2-equivalent since σ∆τ =

⋃
m[nm, 2nm);

this is not a summable set since Σ{1/i : i ∈ [nm, 2nm)} > 1/2 for every m ∈ ω.
How does one interchange their equivalence classes though?

Suppose that p ∈ P is a condition, and move to a generic extension V [K]
collapsing the ground model powerset of the continuum to ℵ0. Using standard
fusion arguments or Theorem 1.3.21, find a tree q ≤ p in the poset PV [K]

consisting exclusively of V -generic branches through the tree Tini. There is a
node t ∈ q such that all nodes above it split into a set of immediate successors
of mass at least 1. Use the property of numbers nm : m ≥ |t| described in
Claim 5.2.20 to find tow distinct branches x, y ∈ [q] such that t ⊂ x, y and
for all numbers m ≥ |t| the sequence x(m) is 2−m close in the normalized
Hamming distance of the cube 22nm\nm to the flip of y(m). Let Gx, Gy ⊂ P
be the associated V -generic filters. It is clear that (σ/Gx)E2(τ/Gy), since for
every number m ≥ |t|, the symmetric difference of the two sets intersected with
[nm, 2nm) has cardinality at most 2−mnm, its summable mass is ≤ 2−m, and
the numbers 2−m : m ≥ |t| have a finite sum! Similarly, (σ/Gy)E2(τ/Gx), and
the theorem follows.

Theorem 5.2.21. The class of all c0 equivalence classes is not linearly orderable
in L(R)[U ].

Theorem 5.2.22. In V (R)[U ], the set of F2 equivalence classes is not linearly
orderable.

Proof. Consider the product of two copies of Sacks forcing, P × P . For every
condition 〈p, q〉 ∈ P × P there is a automorphism π of P × P � 〈p, q〉 such that,
when we naturally extend the automorphism to the space of all P × P names,
π(R∩V [ẋlgen]) = R∩V [ẋrgen] and vice versa, π(R∩V [ẋrgen]) = R∩V [ẋlgen]. Here
ẋrgen, ẋlgen denote the right and left Sacks reals obtained from the corresponding
copies of the Sacks forcing P . It is easy to describe the automorphism π: note
that p, q are perfect binary trees, choose a homeomorphism between [p] and
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[q], abuse the notation by calling it π again, and let π(p0, q0) = (p1, q1) where
q1 is a perfect tree such that [q1] = π′′[p0] and p1 is a perfect tree such that
[p1] = π′′[q0].

Now, the forcing P × P does not really add an interchangeable pair of F2

degrees in the sense of Definition 5.2.17, because the sets R ∩ V [ẋlgen] and
R ∩ V [ẋrgen] are forced to be uncountable in the P × P extension. However,
they will be countable in the larger Solovay extension and define interchangeable
F2-classes, which is all that is needed in the proof of Proposition 5.2.18. The
proof of the theorem is completed by noting that the product of Sacks reals
preserves Ramsey ultrafilters.

As a final remark, in all of the nonorderability theorems it is really necessary
to specify that U is a Ramsey ultrafilter, as the following result shows:

Theorem 5.2.23. (Shelah) There is a Borel ideal J on ω such that for every
ultrafilter U disjoint from it, the set of all EKσ

classes is linearly orderable in
the model V (R)[U ].

In fact, the set of all EKσ -equivalence classes is Boolean linearly orderable in
ZF+DC, in the sense that there is a Borel map f : dom(EKσ

)2 → P(ω) satisfy-
ing the following demands:

1. x0EKσ
x1 and y0EKσ

y1 implies f(x0, y0) = f(x1, y1) modulo J ;

2. f(x, y) = ω \ f(y, x) modulo J when ¬xEKσ
y. Moreover f(x, x) = ω

modulo J ;

3. f(x, y) ∩ f(y, z) ⊂ f(x, z) modulo J .

Question 5.2.24. Is the set of E∞ equivalence classes linearly orderable in
V (R)[U ]?

Question 5.2.25. (ZF+DC) Suppose that the set of all E0 equivalence classes
is linearly orderable. Does it follow that there is a nonprincipal ultrafilter on ω?
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