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ABSTRACT

Single-cell gene expression levels show substantial
variations among cells in seemingly homogenous
populations. Astrocytes perform many control and
regulatory functions in the central nervous system.
In contrast to neurons, we have limited knowledge
about functional diversity of astrocytes and its
molecular basis. To study astrocyte heterogeneity
and stem/progenitor cell properties of astrocytes,
we used single-cell gene expression profiling in
primary mouse astrocytes and dissociated mouse
neurosphere cells. The transcript number vari-
ability for astrocytes showed lognormal features
and revealed that cells in primary cultures to a large
extent co-express markers of astrocytes and neural
stem/progenitor cells. We show how subpopulations
of cells can be identified at single-cell level using
unsupervised algorithms and that gene correlations
can be used to identify differences in activity of
important transcriptional pathways. We identified
two subpopulations of astrocytes with distinct gene
expression profiles. One had an expression profile
very similar to that of neurosphere cells, whereas
the other showed characteristics of activated
astrocytes in vivo.

INTRODUCTION

Brain contains three neuroectoderm-derived cell types:
astrocytes, neurons and oligodendrocytes. They all origin-
ate from the same multipotent neural stem cells.
Traditionally, astrocytes were viewed as a homogeneous
cell population that predominantly supports neuronal
functions. Recent findings point to many additional func-
tions of astrocytes in health and disease, including control
of the number and the function of neuronal synapses (1).
Cell diversity is commonly studied with immunohis-

tochemical analysis and gene expression profiling. Both
methods have several limitations. Immunohistochemical
and immunocytochemical analyses are restricted to few
markers and cannot be used in a truly quantitative
manner. Cell types are often defined by the presence or
absence of specific markers. Such binary approach to
define cell types or functional states is coarse and thus
not suitable to detect subpopulations differing only in the
degree of expression by individual genes. For example, the
hallmark of activated astrocytes is the upregulation of the
intermediate filament proteins glial fibrillary acidic protein
(GFAP), vimentin (Vim) and nestin (Nes) (2). Gene expres-
sion profiling can in principle be applied on the whole tran-
scriptome. Such measurements are in general limited to
large cell populations and thus only reflect global transcript
levels. Consequently, any important heterogeneity among
the cells remains undetected.
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With single-cell gene expression profiling we can study
heterogeneity among and within cell types in a precise
manner. The main obstacle to single-cell measurements
has been the absence of sensitive and reproducible
methods to measure small numbers of molecules. Single-
cells can be collected by microaspiration, flow cytometry
and laser capture microdissection (3–8). Transcript levels
are then measured using microarrays or reverse transcrip-
tion quantitative real-time PCR (RT-qPCR). Microarray
measurements require a pre-amplification step (9,10),
while RT-qPCR has the sensitivity to detect a single
mRNA molecule. However, pre-amplification is also
needed for RT-qPCR if many transcripts are to be
quantified. To characterize well-defined cell types, cells
can be enriched/selected for using specific antibodies.
Antibody based enrichment is compatible with all cell col-
lection methods, while morphology can only be used as a
selection criterion when collecting cells with laser capture
microdissection and microaspiration from tissues. Single-
cell analysis is refining cell type characterization (11–13).
Most single-cell studies so far have relied on preexisting
knowledge about the analyzed cells. For instance, hemato-
poietic subpopulations can be isolated by flow cytometry
using well-established surface markers (3,14). Specific
types of neurons can be collected based on localization
and/or immunohistochemistry using laser capture
microdissection or microaspiration (4–7). Single-cell gene
expression profiling can also be used to identify new
subpopulations of cells from heterogeneous cell popula-
tions. This approach is still largely unexplored and tools
for identification and classification of subpopulations
are missing. Furthermore, transcription takes place in
bursts in mammalian cells (15,16). Consequently, mRNA
levels are highly variable even within a homogeneous cell
population. Thus, gene expression levels between cells
cannot be analyzed in the same way as in conventional
cell population studies.
In this study, we have developed a strategy to identify

and characterize subpopulations of cells. We show how
subpopulations of primary astrocytes can be identified
and defined by differences in correlated expression levels
rather than by binary on/off responses from selected
genes. Further, we show how transcriptional correlations
can be used to reveal biologically important interactions
between genes at a cellular level. Based on this platform,
we identified two subpopulations of astrocytes, one with
features commonly ascribed to activated astrocytes in vivo
and one astrocyte subpopulation sharing characteristics
with neurosphere cells.

MATERIALS AND METHODS

Animals and cell cultures

Primary astrocyte and neurosphere cultures were
generated from mouse brains. The mice were housed in
standard cages in a barrier animal facility with a 12-h
light/dark cycle and feed ad libitum. All experiments
were conducted according to protocols approved by the
Ethics Committee of the University of Gothenburg.

Primary astrocytes were prepared from post-natal day
(P) 1 mouse brains and cultured in Dulbecco’s modified
Eagle’s medium (Sigma-Aldrich) containing 10% fetal calf
serum (FCS), 2mM L-glutamine, 100U/ml of penicillin
and 0.1mg/ml streptomycin (all Invitrogen) as described
(17). After 10–11 days in vitro, almost confluent astrocyte
cultures were harvested for gene expression profiling.

Neurosphere cultures were generated from P4 brains
with cerebellum removed. These were dissected in
Leibovitz medium (Invitrogen) and digested enzymatically
[0.1% trypsin, 0.5mM EDTA in Hank’s balanced salt
solution; (Sigma-Aldrich)] and mechanically dissociated
into a single-cell suspension. Cells (�105) were cultured
in Neurobasal medium (Invitrogen) containing 2mM
L-glutamine, 100U/ml of penicillin, 0.1mg/ml strepto-
mycin, 1X B27, 20 ng/ml basic FGF (all Invitrogen),
20 ng/ml EGF (Stemcell Technologies), 1U/ml heparin
(Sigma-Aldrich) and 0.25 mg/ml Fungizone (Bristol-
Meyers Squibb). After 9 days in vitro the cells were used
for gene expression profiling.

For cell population measurements, mice were killed at
P1, P4 and P60. Whole brains were dissected (P4 with
cerebellum removed) and stored at �80�C. Total RNA
was extracted using RNeasy Lipid Tissue Mini Kit,
including DNase treatment (Qiagen).

Single-cell isolation and cDNA synthesis

Astrocytes were washed twice in PBS and treated with
0.25% Trypsin/EDTA (Invitrogen) for 2min to dissociate
cells. Single-cells were kept in either PBS supplemented
with 2.5% FCS or in astrocyte culture medium and kept
on ice. The difference in cell medium had a negligible
effect, so the astrocyte data were pooled for analysis.
Neurospheres were enzymatically dissociated into single-
cell suspensions with TrypLE (Invitrogen) and kept in
neurosphere medium on ice until cell sorting. Cell aggre-
gates were removed by filtering with 40 mm cell strainer
(Becton Dickinson). Single cells were sorted with a BD
FACSAria (Becton Dickinson) into 96-well plates
(Sarstedt) containing 5 ml mQ water per well. Samples
were frozen at �80�C until subsequent analysis. Single-
cell sorting for gene expression profiling using flow
cytometry has been described elsewhere (18).

SuperScript III RT (Invitrogen) was used for RT. Lysed
single cells in 6.5ml water containing 0.5mM dNTP
(Sigma-Aldrich), 5.0mM oligo(dT15) (Invitrogen) and
5.0 mM random hexamers (Invitrogen) were incubated at
65�C for 5min; 50mM Tris–HCl, 75mM KCl, 3mM
MgCl2, 5mM dithiothreitol, 20U RNaseOut and 100U
SuperScript III (all Invitrogen; final concentrations) were
added to a final volume of 10 ml. RT was performed at
25�C for 5min, 50�C for 60min, 55�C for 10min and
terminated by heating to 70�C for 15min. All samples
were diluted to 30 ml with water before qPCR.

qPCR

LightCycler 480 (Roche Diagnostics) was used for all
qPCR measurements. To each reaction (10 ml) containing
iQ SYBR Green Supermix (Bio-Rad) and 400 nM of each
primer (Eurofins MWG Operon), we added 2–4 ml of
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diluted cDNA. Primer sequences used are listed in
Supplementary Table S1. All primers were designed with
Primer3 (http://frodo.wi.mit.edu/primer3/input.htm) and
Netprimer (Premier Biosoft International). The tempera-
ture profile was 95�C for 3min followed by 50 cycles of
amplification (95�C for 20 s, 60�C for 20 s and 72�C for
20 s). The formation of expected PCR products was con-
firmed by agarose gel electrophoresis. All samples were
analyzed by melting curve analysis. cDNA concentrations
were determined by qPCR relative to standard curves
based on purified PCR products (MinElute PCR
Purification Kit, Qiagen). The concentration of purified
PCR products was determined spectroscopically
(NanoDrop ND-1000, Nanodrop Technologies). qPCR
data were analyzed as described (19). Limit of detection
was determined for all single-cell assays by serial dilution
of known cDNA copy numbers. Six replicates were
analyzed at each concentration and level of detection
was determined by the lowest cDNA copy number
where all six replicates were positive (Supplementary
Table S1). All data points below the limit of detection
were excluded from further analysis. Potential reference
genes for cell population data were evaluated using
NormFinder. Cell population data were normalized
against the geometric mean expression of Gapdh and
B2m using assay specific PCR efficiencies (20).

Single-cell analysis

The number of genes that can be analyzed in a single cell is
limited by the number of transcripts of the studied genes.
Theoretically, only one molecule is needed for detection,
but �20 target molecules per PCR are needed for accurate
quantification (21). This requirement was fulfilled for most
of the cells and genes analyzed in this study. All single-cell
assays were optimized to be specific enough not to
produce primer-dimer signals within 45 cycles of amplifi-
cation. Highest reproducibility is achieved by minimizing
the dilution between RT and qPCR and avoiding the
usage of replicates (21). Data are shown as the number
of cDNA molecules per cell. The RT efficiency is gene
dependent and generally <100% (22). Hence, the
number of cDNA molecules is a lower-limit estimate of
the number of mRNA molecules that were present in the
cell. Since cDNA is single-stranded, we subtracted one
cycle from the measured value when calibrating against
standard curves based on double-stranded PCR products
(23). Most assays were designed to span introns
(Supplementary Table S1). All assays were checked by
BLAST for pseudogenes. Only GS revealed two potential
pseudogenes. All single-cell assays were tested for ampli-
fication of genomic DNA. Five individual cells per assay
were tested and no genomic DNA amplification was
observed.

Statistical analysis

Spearman correlation and partial correlation calcula-
tions were performed in SPSS (16.0 or later, SPSS Inc.)
software. We calculated first-order partial correlations for
all observed Spearman correlations. Heat maps, principal
component analysis (PCA), Kohonen self-organizing maps

(SOM) and potential curve analysis were performed in
GenEx software (MultiD). Expression of each gene was
mean-centered for the heat map analysis, which was
calculated using Ward’s algorithm and Euclidean
distance measure. For Kohonen SOMs and potential
curve analysis autoscaled gene expression values were
used to give all genes equal weight in the clustering algo-
rithms. Parameters for the Kohonen SOMs were: 2–3� 1
map, 0.10 learning rate, 2–3 neighbors and 10 000 iter-
ations. The resulting clusters did not depend on parameter
settings. The data were analyzed as described (24).
Neurosphere cells were classified by potential curve
analysis using the two subpopulations of astrocytes as
training set (25). The t-tests and Fisher’s tests were
performed with Bonferroni correction for multiple testing.

RESULTS

Primary astrocyte cultures prepared from P1 mouse brains
and neurospheres from P4 brains are routinely used in
many experimental paradigms. Single cells were collected
by flow cytometry, lysed and analyzed by RT-qPCR.
Expression of glutamine synthase (GS), glial fibrillary
acidic protein a (GFAP), GFAP�, nestin (Nes), vimentin
(Vim), synemin (Syn), SRY-box containing gene 2 (Sox2),
endothelin type B receptor (ETBR), wingless-related
MMTV integration site 3 (Wnt3), leukemia inhibitory
factor (Lif) and neuronal pentraxin 1 (Nptx1) was
profiled in 164 astrocytes and 83 neurosphere cells
(Figure 1). A second set of 164 astrocytes was measured
and analyzed independently; the results were comparable
to those in the first set (Supplementary Tables S2 and S3
and Supplementary Figures S2 and S4). To characterize
individual cells we performed descriptive statistics, correl-
ation studies and subpopulation screens using unsuper-
vised learning algorithms.
To characterize the purity of the cultures of primary

astrocytes and neurospheres, we compared the gene ex-
pression profiles with those of brain tissue from P1, P4
and P60 mice at cell population level (Supplementary
Figure S1). In primary astrocyte enriched cultures,
markers for microglia [allograft inflammatory factor 1
(Aif1/Iba1)] (26), oligodendrocytes [myelin basic protein
(Mbp) (27,28) and 20-30-cyclic nucleotide 30 phosphodiester-
ase (Cnp) (27,28)], neurons [microtubule-associated protein
2 (Mtap2) (29,30), neurofilament, light polypeptide (Nefl)
(28,31) and Nptx1 (32)] and endothelial cells [platelet/
endothelial cell adhesion molecule 1 (Pecam1) (28,33), von
Willebrand factor homolog (Vwf) (28,33) and angiopoietin 2
(Angpt2) (33)] were downregulated, while markers for
astrocytes [GFAP (2,28,34,35), aldehyde dehydrogenase 1
family, member L1 (Aldh1l1) (28) and GS (36,37)] were
upregulated compared to mature P60 brains. These data
confirm that our primary astrocytes were enriched for
astrocytes and astrocyte progenitors. The expression
profile of neurospheres was more complex with high ex-
pression of some but not all astrocyte (Aldh1l1), neuronal
(Mtap2 and Nptx1) and endothelial cell (Angpt2) markers,
indicating that neurospheres are a more heterogeneous cell
population.
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Most cells in primary astrocyte cultures and neurosphere
cells co-express astrocyte and stem cell markers

Glutamine synthase converts the neurotransmitter glu-
tamate into glutamine and is expressed by astrocytes in
the brain (36,37). Of 164 cells from primary astrocyte
cultures, 153 (93%) expressed GS (Table 1). Among GS-
positive cells, 78% expressed Nes, 75% expressed Sox2
and 65% expressed Nes and Sox2, both markers of
stem/progenitor cells (38) and found also in some astro-
cytes (39,40). The intermediate filament protein genes
GFAP and Vim were expressed by 139 (85%) and 161
(98%) cells, respectively.
Among neurosphere cells, 90% expressed GS; of these,

91% expressed Nes and 63% expressed Sox2. All cells that

expressed GS and Sox2 also expressed Nes. GFAP, which
is expressed in astrocytes and some progenitor cells
(28,34,35), was expressed in 86% of the cells—the same
proportion as in astrocyte cultures. All neurosphere cells
expressed Vim.

GFAP�, a splice form of GFAP found in neural progeni-
tor cells (41), was expressed in 38% of primary astrocytes
but in only 10% of neurosphere cells. Among GFAP�-
positive primary astrocytes, 92% also expressed GFAP.
Syn, coding for the intermediate filament protein
synemin, was expressed in 13% of astrocytes and 22% of
neurosphere cells. Lif, a factor important for stem cell
self-renewal and astrocyte differentiation (42), was
expressed in 13% of primary astrocytes and 13% of

Figure 1. Cell heterogeneity among primary astrocytes and neurosphere cells. Heat maps for 164 primary astrocytes (A) and 83 primary neurosphere
cells (B) were constructed using Ward’s algorithm and Euclidean distance measure for all cells. Expression levels of all genes were mean-centered.
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neurosphere cells, and Wnt3, another regulator of self-
renewal and neurogenesis (43), in 7 and 6%, respectively.
The most prominent difference between the cultures was
in the expression ofNptx1 that was found in 2.4% of astro-
cytes and 37% of neurosphere cells. We conclude
that the majority of primary astrocytes and neurosphere
cells co-express common astrocyte and stem/progenitor
markers.

Transcript levels in primary astrocytes and neurosphere
cells show lognormal features

The distributions of GS, GFAP, GFAP�, Vim, Nes, ETBR,
Sox2 and Nptx1 transcripts are shown in Figure 2 (see
Supplementary Figure S2 for the second data set). Except
for Vim, the distributions showed lognormal features, as
described in other studies of mammalian cells (3,15,44).Lif,
Syn and Wnt3 transcripts were detected in only few cells
(Table 1 and Supplementary Table S2) and thus their dis-
tributions could not be reliably determined. The geometric
and arithmetic means of the expression of individual genes
are shown in Table 1. In a lognormal population, the geo-
metric mean reflects the characteristic expression in a
typical/median cell. The geometric mean is more conserva-
tive than the arithmetic mean. The latter overestimates the
characteristic expression when expression levels are
lognormally distributed.

The variations in gene expression levels between indi-
vidual cells were substantial. Some astrocytes had �50 000
transcripts of Vim and GFAP per cell, while others had
fewer than 100. The observed transcript variability is in

agreement with transcriptional bursting (15,16). A conse-
quence of the observed lognormallity is that a majority of
the transcripts for a particular gene originate from a
minority of the cells in a given population. For example,
the 30 primary astrocytes with highest number of GFAP
transcripts contributed to �75% of all transcripts for this
gene.

Expression of genes upregulated in activated astrocytes
correlates at the cellular level

Next, we looked for correlations between the mRNA levels
of multiple genes in each cell. Table 2 shows Spearman
correlation coefficients for all gene pairs. The correlation
coefficient is a value between �1 and 1, where 1 reflects
perfect positive correlation,�1 reflects negative correlation
and 0 indicates no correlation. Interestingly, genes that are
upregulated in activated astrocytes (GFAP, Vim, Nes, GS
and ETBR) (45–49) showed positive correlations (P< 0.01)
in individual cells collected from primary astrocyte cultures
(Table 2). Also, expression of Sox2 and to some degree
GFAP� correlated with the expression of the intermediate
filament genes GFAP, Vim and Nes, as well as with the
expression ofGS and ETBR (P< 0.01). The only negatively
correlation observed was between Sox2 and Wnt3. In
neurosphere cells, however, these genes showed little or
no correlation, except forVim, whose expression correlated
with Nes and ETBR. In contrast, neurosphere cells
expressed high levels ofNptx1, whose expression correlated
positively with that of Sox2.

Table 1. Statistical parameters describing gene expression in 164 primary astrocytes and 83 neurosphere cells

Gene Cell
type

na Arithmetic
meanb

Geometric
meanc

Log10 geometric
mean (SD)

Maximum
expressiond

GS A 153 520 320 2.5 (0.40) 2700
NS 75 300 250 2.4 (0.26) 1100

GFAP A 139 2900 1000 3.0 (0.56) 45 000
NS 71 640 560 2.7 (0.25) 1600

GFAP� A 63 110 79 1.9 (0.38) 720
NS 8 33 33 1.5 (0.07) 40

Vim A 161 7500 5000 3.7 (0.38) 48 000
NS 83 2600 2500 3.4 (0.15) 5600

Nes A 124 460 320 2.5 (0.41) 3700
NS 74 260 170 2.3 (0.42) 1200

ETBR A 70 390 320 2.5 (0.35) 1600
NS 44 240 200 2.3 (0.30) 750

Sox2 A 122 160 130 2.1 (0.34) 560
NS 52 160 130 2.1 (0.25) 380

Nptx1 A 4 120 130 2.1 (0.10) 140
NS 31 430 230 2.4 (0.40) 2700

Wnt3 A 12 200 200 2.3 (0.13) 340
NS 5 670 630 2.8 (0.17) 1100

Syn A 22 130 100 2.0 (0.39) 650
NS 18 130 110 2.0 (0.34) 280

Lif A 21 110 100 2.0 (0.31) 340
NS 11 97 87 1.9 (0.24) 160

A, astrocytes; NS, neurosphere cells.
aNumber of cells expressing a given gene.
bThe arithmetic mean was calculated as: �A ¼ ð

P
XnÞ=n.

cThe geometric mean was calculated as: �G ¼ �Xnð Þ
1=n.

dHighest number of cDNA molecules of a gene in any cell.
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To discriminate between direct and indirect interactions
among the observed correlations, we calculated partial
correlations between gene expression levels in individual
cells. This was done by specifying a control gene that may
interact with two other correlated genes and thus account
for the observed correlation (50). The resulting partial
correlation then becomes a unique correlation between
the two initial genes that remains when the correlated
variance explained by the control gene has been
removed. Using partial correlations, we could determine
if a measured correlation between two genes was unique or
rather a consequence of the two genes both being depend-
ent on a third gene (Figure 3A). Figure 3B shows the gene
interaction map for Vim based on partial correlations.
Vim interacts directly with ETBR and Nes. These inter-
actions are independent of the other genes studied. The
Vim interactions with GS, GFAP and Sox2 were partially
direct, while its interaction with GFAP� was indirect and
could be explained as being a consequence of Vim’s inter-
action with either GFAP or ETBR. Interaction maps for
the other genes are shown in Supplementary Figure S3.
From the 20 statistically significant correlations in Table
2, nine interactions were direct while eleven could be fully
explained by other genes using partial correlations. All
direct correlations were dependent on Vim except for
those that involved GFAP� and the interaction between
Sox2 and Wnt3. Figure 3C shows the complete interaction
map based on the correlations in Table 2.

Primary astrocytes can be divided into two subpopulations

To identify possible subpopulations of cells based on
their expression profile, we applied Kohonen SOMs
(Figure 4A). SOM is an unsupervised learning algorithm
that divides the cells into a given number of groups based
on their characteristics. SOM uses random numbers to
initiate and perform the classification. As a consequence
reiterated SOM analysis may generate different classifica-
tions. If the same SOM is repeatedly produced, it evi-
dences robust classification. The classification depends
on gene expression levels. Highly expressed genes have
greater influence than lowly expressed genes. This effect
can be removed by subtracting the average of the expres-
sion level of each gene and dividing it by its standard
deviation, i.e. performing autoscaling (24).

The astrocytes were divided into two groups using a
2� 1 SOM (Figure 4A). The SOM was based on the
autoscaled expression levels of all eleven genes and was
fully reproducible. The SOM classification was confirmed
using principal component analysis (PCA), another un-
supervised classification method based on different prin-
ciples (Figure 4B) (24). To characterize the two
subpopulations, we plotted the transcript distributions of
the highly expressed genes: Vim, GS, GFAP, GFAP�, Nes,
Sox2 and ETBR (Figure 4C). This analysis revealed two,
albeit overlapping, lognormal distributions. In the first
subpopulation Vim, GS, GFAP, GFAP�, Nes, Sox2
and ETBR were upregulated two- to five-fold (P< 0.01,
Table 3) relative to the second subpopulation. In
addition, more cells expressed GFAP�, Syn and ETBR
in the first subpopulation (P< 0.01). No significant

Figure 2. Gene expression levels in 164 primary astrocytes and 83
neurosphere cells. Gene expression is shown as the number of
cDNAs per cell. GS expression is shown in both linear and log10
scales; other genes are shown in log10 scale. Inset shows a more
detailed histogram of Vim expression in astrocytes.
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differences for Lif, Nptx1 and Wnt3 were observed. The
presence of two astrocyte subpopulations was confirmed
in the independent data set (Supplementary Figure S4).
The SOM analysis of the neurosphere cells revealed no
distinguishable subpopulations (data not shown).

It was not possible to identify subpopulations of
primary astrocytes based on the presence or absence of
expression of any unique marker. All genes showed a
unimodal distribution of transcript levels, except for
Vim transcript levels, which had a bimodal distribution
(Figure 2), implying two subpopulations of cells. Next,
we tested if Vim can be used as a single classifier for the
two subpopulations by indexing the cells using a threshold
of 6300 transcripts, placed centrally between the two
peaks in the distribution (Figure 2). Out of 164, 155 of
astrocytes were accurately classified using Vim as a classi-
fier (Supplementary Figure S5). Clearly, the Vim expres-
sion level is highly characteristic for these two astrocyte
subpopulations. To test if Vim is the sole determinant
we excluded it from the analysis. The resulting SOM
classification correctly classified 159 of 164 astrocytes
(Supplementary Figure S6). Furthermore, we also tested
if the expression data support the presence of three astro-
cyte subpopulations using a 3� 1 SOM (Supplementary
Figure S7). Again, two of the groups were characterized
by an overall high and low expression, respectively of Vim,
GS, GFAP, GFAP�, Nes, Sox2 and ETBR. The new third
group had an intermediate expression pattern relative the
other two, but most similar to the low expressing group.
The intermediate group showed no unique features, sug-
gesting the existence of only two distinct subpopulations
of astrocytes. This conclusion was supported by PCA
(Supplementary Figure S7B).

Finally, we determined if the neurosphere cells had gene
expression profile similar to any of the astrocyte
subpopulations using PCA and potential curve analysis
(Figure 5). The principal component space was calculated
using the expression profiles of the astrocytes only. When
the neurosphere cells were positioned in this space based
on their expression profiles, the classification revealed a
high degree of similarity between gene expression profile
of neurosphere cells and the astrocyte subpopulation
characterized by low expression of Vim, GS, GFAP,
GFAP�, Nes, Sox2 and ETBR.

DISCUSSION

Most single-cell gene expression studies in the brain have
focused on neurons and neuronal progenitors (4–7,11,
51,52). Here, we characterized primary astrocytes and
neurosphere cells. Primary astrocyte cultures prepared
from neonatal rodent brains have long served as an ex-
perimental system to study the properties of astrocytes
(53). These cultures are derived from unidentified popula-
tions of proliferating precursor cells. Comparative micro-
array experiments have shown that primary astrocytes are
similar, but not identical, to in vivo astrocytes (28). Here,
we studied eleven different markers selected to reflect
astrocyte properties, including astrocyte activation and
stem/progenitor cell properties.
Our analysis of primary astrocytes showed prominent

expression of established markers for astrocytes, while
the expression of other cellular markers was low
(Supplementary Figure S1). At a single-cell level, 94% of
astrocytes expressed GS (Table 1), a marker of immature
and mature astrocytes (36). Low expression of GS has also

Table 2. Spearman correlation coefficients for primary astrocytes and neurosphere cells

Gene Cell type GS GFAP GFAP� Vim Nes ETBR Sox2 Nptx1 Wnt3 Syn Lif

GS A 1
NS

GFAP A 0.51 1
NS 0.05

GFAP� A 0.35 0.57 1
NS 0.09 0.26

Vim A 0.59 0.56 0.23 1
NS 0.21 0.08 0.15

Nes A 0.50 0.39 0.06 0.68 1
NS 0.08 0.19 0.47 0.66

ETBR A 0.24 0.29 0.25 0.57 0.29 1
NS 0.13 0.04 0.15 0.47 0.28

Sox2 A 0.45 0.44 0.19 0.56 0.38 0.37 1
NS �0.03 0.28 0.06 0.20 0.10 �0.05

Nptx1 A �0.33 �0.43 – 0.43 0.60 0.310 0.60 1
NS 0.06 �0.01 – 0.35 0.15 0.05 0.45

Wnt3 A �0.11 �0.40 0.19 �0.28 �0.34 0.18 �0.67 – 1
NS �0.50 – – 0.05 0.30 – �0.20 –

Syn A 0.01 0.12 �0.22 �0.03 0.10 0.07 0.12 – – 1
NS �0.03 0.42 – �0.02 0.09 �0.01 �0.10 �0.11 –

Lif A 0.23 �0.10 �0.16 0.23 0.22 0.13 0.37 – – – 1
NS 0.03 0.38 – �0.39 0.17 �0.71 – – – –

All cells (328 single astrocytes and 83 dissociated neurosphere cells) were used for correlation calculations. Bold indicates �99% significance;
underscore indicates �95% significance. Correlation coefficients were not calculated for gene pairs with fewer than five data points. A, astrocytes;
NS, neurosphere cells.
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been reported in oligodendrocytes (37). GFAP has lower
cell type specificity than GS but is not expressed in mature
oligodendrocytes (28,34). Seventy nine percent of cells
in astrocyte cultures co-expressed GFAP and GS.
Furthermore, 69 of 70 ETBR-positive cells in astrocyte
cultures co-expressed GS. Thus, since endothelial cells
are ETBR-positive and GS-negative (54), our primary
astrocyte cultures were not contaminated with endothelial
cells. Only four cells in astrocyte cultures expressed Nptx1,
a marker for neuron and neural progenitor cells (32). Our
study shows that most cells in primary astrocyte cultures
co-express the astrocyte marker GS and two genes ex-
pressed by neural progenitor/stem cells, namely Nes and
Sox2. In summary, the primary astrocytes have expression
pattern similar to that of stem/progenitor cells and astro-
cytes in vivo. However, we cannot exclude the possibility
that other cell types exists in our cultures, but they should
be present only in small fractions.

Cell population data for the neurospheres showed that
these cells have less distinct expression pattern than the
primary astrocytes (Supplementary Figure S1). Markers
for endothelial cells (Angpt2) and neurons (Nptx1 and
Mtap2) were highly expressed in neurospheres, while
markers for astrocytes (Aldh1l1, GFAP and GS) were ex-
pressed to a lesser degree compared to primary astrocytes.
Interestingly, 78% of the neurosphere cells co-expressed
GFAP and GS at a single-cell level. Thirty seven percent
of the neurosphere cells expressed Nptx1. Similar to the
primary astrocytes, the majority of the neurosphere cells
co-expressed GS, Sox2 and Nes. In summary, the
neurosphere cells have some properties similar to primary
astrocytes. They also show characteristics of several cell
types, a finding consistent with the fact that they are a
heterogeneous cell population.

High correlation between the numbers of transcripts
per cell of GFAP, Vim, Nes, GS and ETBR suggests that

Figure 3. Gene interactions. (A) Three different types of interaction between two genes can be identified using partial correlations. Case 1 shows a
direct interaction between genes A and B. Case 2 represents a direct interaction that can be partly explained by a third gene, while case 3 represents
an indirect interaction that can be fully explained by a third gene. We used a decrease of 0.15 in correlation as a cut off for partially explained
interactions (Case 2) and a complete loss of significance for indirect correlation (Case 3). (B) A detailed interaction map for Vim. The interaction
between Vim and Nes/ETBR is direct (Case 1), while the interactions with GFAP, GS and Sox2 can be partially explained by other genes (GS and
Nes, Case 2). The interaction between Vim and GFAP� was indirect and can be fully explained by interactions through GFAP or ETBR.
See Supplementary Figure S3 for detailed interaction maps for other genes. (C) Nine of 20 observed correlations in Table 2 represented direct
interactions that could not be explained by the other genes.
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these genes have common regulatory elements and might
be transcribed in synchronized bursts (55). Indeed, they
are all known to be upregulated in activated astrocytes
(45–49). Surprisingly, the expression of a stem cell
marker, Sox2 (38), correlated positively with the

expression of intermediate filament proteins GFAP, Vim
and Nes, as well as with GS and ETBR in the primary
astrocytes. Thus, the activation of astrocytes may be
linked to a transition into a more immature or stem
cell-like state, as suggested by studies reporting that at
least some astrocytes acquire stem cell properties after
brain injury (56). Interestingly, all observed correlations
were directly dependent on either Vim or GFAP�, except
the negative correlation between Sox2 and Wnt3. These
data suggest that Vim and GFAP� may have important
role in cell fate determination in primary astrocytes
(Figure 3C).
The bimodal distribution of Vim expression was

apparent already from inspection of raw data, but this
was not the case for the other genes (Figure 2). Only
after cells were classified into two subpopulations did
bimodal expression profiles become evident for ETBR,
GS, GFAP, GFAP�, Nes and Sox2 (Figure 4C). The dis-
tribution of gene expression levels among individual
cells in the respective subpopulations was almost per-
fectly lognormal. Conventional cell type characterizations
are generally based on presence or absence of well-
established markers. This was not possible here, since
no such marker is known. Instead, we applied multi-
variate methods to divide samples into groups. Using
SOM and PCA analyses we were able to show that the
primary astrocyte cultures are a mixture of two defined
subpopulations with unique expression profiles. The
most distinct single classifier, Vim, is expressed in both
subpopulations, although to partially different levels.
Based on Vim transcript levels alone, 95% of the
primary astrocytes could be correctly classified. A
drawback of using Vim alone as a classifier is that the
threshold value is variable between different cell popula-
tions: 6300 and 2500 Vim transcripts, respectively were
used in the two independent data sets. We do not know
the underlying reason for the different thresholds. We
conclude that for subpopulation classification, the use of
multivariate SOM analysis is more accurate and robust
than the use of Vim expression alone.
The two subpopulations of cells in primary astrocyte

cultures may represent different cell states or different
cell types, which may be reversible. From our data, we
cannot discriminate between these alternatives. However,
classification of astrocytes into three groups showed cells
with an intermediate expression profile. It is conceivable
that these astrocytes are in a transition state between
the original two subpopulations. This would support
the hypothesis of reversible cell states. Such subpopulations
may also exist in the brain or be the result of in vitro
culture conditions. In vivo studies have revealed different
subpopulations of astrocytes (57,58)—none similar to
those described here—classified by the expression or
lack of expression of specific markers identified by
immunostaining or in some cases by electrophysiological
properties (58,59). We identified subpopulations of
primary astrocytes not by the presence of specific markers
but rather by expression levels of shared markers.
Conceivably, the subpopulation of astrocytes with high
transcript levels correspond to activated astrocytes
in vivo, which are characterized by upregulation of

Figure 4. Astrocyte subpopulations show distinct gene expression
profiles. (A) Clustering of astrocyte subpopulations using Kohonen
SOMs. Expression levels of all genes were autoscaled. Each dot
represents one cell. (B) Principal component analysis confirmed the
existence of two subpopulations with coloring according to the
Kohonen SOMs classification. (C) Histograms of gene expression
profiles (log10 scale) of the two astrocyte subpopulations. Descriptive
statistics for the two astrocyte populations are shown in Table 3. PC,
principal component.

Nucleic Acids Research, 2010 9

 by guest on D
ecem

ber 2, 2010
nar.oxfordjournals.org

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


GFAP, Nes, ETBR and Syn (48,60). The gene expression
profile of astrocytes changes during brain development
(Supplementary Figure S1) (28,61). We found that ETBR,
GS, GFAP, GFAP�, Nes, Sox2, Vim were co-regulated at

single-cell level in vitro, whereas GS, GFAP and GFAP�
were upregulated and ETBR, Nes, Sox2 and Vim were
downregulated in developing brains (Supplementary
Figure S1) (61). Thus, the two subpopulations of cultured
astrocytes are unlikely to reflect different stages of
maturation.

In summary, we introduce how single-cell gene expres-
sion profiling can be applied as a novel research tool to
identify and characterize distinct subpopulations of cells
and how gene correlations can be applied to determine
detailed gene interaction networks using this tool. We
found that the majority of cells in primary astrocyte
cultures and cells from dissociated neurospheres express
mRNAs encoding markers characteristic of astrocytes as
well as markers characteristic of neural stem/progenitor
cells. The transcription of genes encoding proteins
associated with astrocyte activation seems to be regulated
by a common mechanism where Vim and GFAP� have key
functions. The population with high expression of Vim,
GFAP, GFAP�, Nes, ETBR and Sox2, has the gene expres-
sion profile of activated astrocytes, while the population
with low expression has a profile similar to neurosphere
cells.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 3. Statistical profile of subpopulations in primary astrocytes

Gene Statisticsa Low
expressing
cellsb

High
expressing
cellsb

Ratioc

Vim N 89 72 4.3

Geometric mean 2600 11 000
GS N 81 72 2.9

Geometric mean 210 600
GFAP N 70 69 5.0

Geometric mean 500 2500
GFAP� n 13 50 2.4

Geometric mean 35 86
Nes n 55 69 3.5

Geometric mean 140 510
ETBR n 13 57 2.3

Geometric mean 150 330
Sox2 n 53 69 2.4

Geometric mean 73 180
Wnt3 n 4 8 0.81

Geometric mean 220 180
Syn n 3 19 1.3

Geometric mean 74 96
Lif n 12 9 1.1

Geometric mean 89 100

an, Number of cells expressing a given gene in the subpopulation
defined by the two groups. Nptx1 was excluded because it was ex-
pressed by only four cells. Bold numbers indicate that the total
number of cells among the cells with high expression of Vim, GFAP,
GFAP�, Nes, ETBR and Sox2 was increased compared to the cells with
low expression. (P< 0.01, Fisher’s exact test with Bonferroni
correction).
bSubpopulations defined by low/high expression of Vim, GFAP,
GFAP�, Nes, ETBR and Sox2.
cRatio of expression between cells with high and low expression of Vim,
GFAP, GFAP�, Nes, ETBR for a given gene in astrocytes. Bold
numbers are statistically significant (P< 0.01, t-test with Bonferroni
correction).
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