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We descrlk a program for analyzing correlated spectral data 
by Procrust08 rotatlon, whkh ehlnatO8 the nead for reference 
samples (Kubkta, Y. Chum. Info/. Lab. Syst. 1990 7,273). 
The experimental spectra are the only “Input” required by the 
DATa ANalyrk (DATAN) program, whkh calculates the 
number of components, their spectral profiles, their concen- 
trations, and the ratio of their responses to two spectroscopic 
mea&wemenla The DATAN program first calculates common 
score and loading vedon to the two data sets by the N I P h S  
algorithm, and the number of rp.ctrorcoplcaily independent 
components k determined by a x2 test. The score matrices 
for the two measurements are then related through Procru8t.r 
rotation, whkh gives the spectral protiles of the components, 
their concentratknr in the samples, and fhe ratios ktween 
thdr rmponses tolhe two measurements. We test extennlvdy 
the stability of the algorithm used by the DATAN program and 
we discuss its iknnationr. 

INTRODUCTION 

The problem of identifying the components in a sample is 
one of the oldest problems in chemistry, and because of its 
importance, it has attracted the attention of scientists for 
decades. When the components cannot be separated from 
each other, for example when in a chemical equilibrium that 
would be perturbed by the separation procedure or when the 
components are chemically too similar to become separated, 
the sample has to be analyzed as a whole and the components 
must be identified from the responses to measurements of 
the entire sample. Here various spectroscopic techniques 
are important, because they produce a spectral response from 
which the components may be identified through their 
characteristic profiies. 

Amajor difficulty in spectroscopic studies occurs when the 
component spectra overlap, and no calibration data are 
available. The case with two components was first discussed 
by Lawton and Sylvestre,’ who provided a way to limit the 
number of solutions to those where the calculated concen- 
trations and spectral profiles contain only nonnegative 
elements. Their approach was later extended to more 
~omponents,2-~3 though these treatments usually require 
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rather advanced programming. These methods, however, are 
not always applicable. Some spectra, such as dichroism and 
difference spectra, may contain negative elements, and also 
noise may provide a serious problem. Noise can always be 
negative, and if significant, it may be difficult to remove 
sufficiently without distorting the physical information in 
the experimental data. Imposing a nonnegative criterion in 
the analysis may then give incorrect results. Finally, we 
reemphasize, that even when these methods are applicable, 
they do not provide a unique solution but merely limit the 
number of solutions to those with nonnegative elements. 

Recently, we described how this classical problem of 
characterizing the components in unknown samples without 
a priori information can be solvekl by recording a second 
spectrum of each sample, that is suitably correlated to the 
fiist spectrum.14 The required correlation is that the con- 
tributions from the components to the two spectra have the 
same spectral intenaity distributions, but different magni- 
tudes, and the ratio between the magnitudes is a characteristic 
feature of each component. The spectral information is then 
sufficient to determine the number of independent compo- 
nents in the samples, their spectral profiles, their concen- 
trations, and the ratios between their responses to the two 
measurements. 

In this paper we describe the DATa ANalysis (DATAN) 
program we have developed to calculate the number of 
components, their spectral profiles, their concentrations, and 
the ratios between their responses to the two measurements 
using only the experimental data as input. We perform 
extensive tests of the stability of the analysis, and we discuss 
how the experimental design should be optimized for different 
situations. We also investigate hoW linear dependence in the 
experimental data affects the analysis and how such an 
influence can be realized from the calculated results. 

THEORY 

When the spectral responses of the pure components are 
known, their concentrations in a sample are easily quantified 
by deconvolution of the recorded spectrum into the individual 
spectral profiles. 

where a(X) is the spectrum of the sample recorded as a function 
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of wavelength, digitized into m data points (A = 1, m), and ci 
and vi(A) are the concentrations and spectral profiles of the 
r (i = 1, r )  components. If the vi(A)’s are known, the c{s can 
be determined by standard least squares methods. However, 
if the vi(A)’s are unknown and no calibration spectra are 
available, there is no way to determine the c{s. 

A somewhat better situation is when one has a number of 
samples that all contain the same r components, but at 
different concentrations. 

r 

aj(A) = C c i j v i ( ~ )  or A = CV’ 
1 = 1  

a,(X) is the spectrum of thejth sample (I’ = 1, n), and Cij is the 
concentration of component i in sample j. In matrix notation 
A is an n X m matrix, of which the columns correspond to 
the different measurement variables and the rows correspond 
to different samples. C is an n X r matrix containing the 
component concentrations as columns, and V‘ is an r X m 
matrix containing the component spectra as rows. The 
information in A is, however, not sufficient to obtain a unique 
solution for C and V‘, not even when r is known. 

Matrix A can be factorized into a product of two mat- 
rices: 

A = TP‘ (3) 

which have the same dimensions as C and V‘, respectively. 
The factorization is, however, not unique, and the matrices 
P and T’ must not be identical to the matrices C and V’. This 
is analogous to the fact that a scalar, a, cannot be factorized 
into two unique scalars, c and u, without placing additional 
constrains on the nature of c and u. 

Such a constraint can be a second spectrum recorded on 
each sample, that is correlated to the first, such that the 
spectral responses of the components have the same profiles, 
but different magnitudes. The equations describing the two 
experiments are 

A = CV’ (4) 

B = CDV’ (5) 

where A is a matrix containing the recorded spectra of the 
first kind, a,(A), as rows, B is a matrix containing the recorded 
spectra of the second kind, bj(A), as rows, C and V are as 
defined above, and D is an r X r diagonal matrix with the 
elements dii = di. These elements, as we shall see, must all 
be different. 

The number of components and the matrices C, D, and V’ 
are calculated from the data matrices A and B by the DATAN 
program in two steps: NIPALS and ROTATION. 
NIPALS. The NIPALS part calculates common loading 

(P) and score matrices (T, and Tb) for the input data matrices 
A and B by sequentially calculating the most significant pairs 
of loading and score vectors. The matrices A and B are 
laminated to form a 2n X m (A/B) matrix. The NIPALS 
algorithm15J6 is as follows: 

Step 1: Choose the column in the matrix (A/B) with the 
largest variance as a starting value for t (the catenated vector 
taltb). 
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Step 2: Calculate the corresponding loading vector as 

Step 3: Normalize p to unit length by multiplying with c: 

1 c = -  
G 

Step 4: Calculate a new value for the score vector as 

t = -  (k)p 
P’P 

Step 6 Check for convergence. If convergence has been 

Step 6 Form the residual matrix 
achieved go on with step 6; otherwise repeat from step 2. 

E = ( ~ ) - T P ’  A 

Use E as a new (A/B) matrix and calculate the next pair of 
score and loading vectors by repeating the procedure. 
Continue until the residual matrix E contains only noise. 

x2 Test. The number of independent spectral components 
in the samples is determined by a x2 test. The algorithm for 
the x2 test is as follows:” 

Step 1: Input the average noise u, and Ub in the experi- 
mental data. If not known, set Qa to 1 and Ub to the estimated 
noise level in data set B relative to data set A. The x2 test 
will still predict the correct number of independent compo- 
nents, though the reduced x2  value will be arbitrary. 

Step 2 Set 1 to 1. 
Step 3: Calculate x2 for the matrices A and B using the 

1 most significant score vectors in T and the 1 most significant 
loading vectors in P. 

Step 4 Calculate the number of degrees of freedom v: 

v = 2nm-  (ml+ 2nl+ 1) 
Step 5: Calculate the reduced x2: 

Step 6: Increase 1 by 1 and calculate a new reduced x2. 

The number of independent spectral components, r, will be 
the value of 1 for which the reduced x2 is minimum. If u, and 
Ub were known, the reduced x2  at minimum should be around 
1. 

ROTATION. The ROTATION program uses the r main 
loading and score vectors generated by the NIPALS program 
to calculate the spectra of the components, vi(X), their 
concentrations, ci,, and the ratios between their responses to 
the two measurements, di. The detailed algorithm has been 
described elsewhere,14 and the approach is only briefly 
summarized here. 

The Procrustes rotation, Q, of T, relative to Tb is 
calculated18-20 

Q = (TaTa)-’TaTb (6) 
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INPUT and diagonalized to give the d values: 

UQU-’ = D (7) 
The concentrations (cij) and spectral profiles, vi@),  are finally 
calculated from 

C = Tau-’ (8) 

V‘ = UP’ (9) 

Meaning of the Procrustes Rotation. The effect of 
Procrustes rotation and the diagonalization can be understood 
by defining c = CD. Equations 4 and 5 become 

A = CV’ (10) 

B = CV’ (11) 

These have identical V’ matrices, and the C matrices are 
related such that each column in C is the same as in but 
for a factor (the d value). From NIPALS we obtained 

A = T,P’ (12) 

B = TbP’ (13) 

The problem is to tranform T,, T b ,  and P’ to C, e, and V’. 
Since CV‘ = A = T,P‘ and CV‘ = B = T P ,  the relations 
between T, and C, T b  and e, and P’ and V’ are correlated: 

C = (14) 

V‘ = UP’ (16) 

where U is an r X r square matrix. It can be determined from 
the correlation beween C and e by calculating the matrix Q, 
which upon multiplication by T, becomes as much like Tb as 
possible, i.e. minllTb - T,Qll. This matrix is called “the 
Procrustes rotation of T, relative to Tb”,  after Procrustes, 
who in the Greek tale lodged travellers in his bed and during 
their sleep either cut their legs or elongated them to make 
them fit precisely into the bed. In analogy with Procrustes 
himself, the Procrustes rotation changes the elements of T, 
to become as close as possible to the corresponding elements 
in Tb .  Q is calculated by least squares criterion by eq 6. But 
since D in C = c D  is diagonal and Q is not, it must be 
diagonalized, which is done in eq 7. 

Normalization. The d values calculated by the ROTA- 
TION program have their correct values, but the concen- 
trations and spectral profiles must be normalized. The 
normalization is arbitrary, and one can choose among five 
alternative ways: 
1. Concentrations are calculated relative to those in sample 
1: 

Cil = 1 i = l , r  
2. Concentrations are calculated as fractions of the total 
concentrations of each component: 

3. Concentrations are calculated as fractions of the total 
concentration in each sample: 

ccij = 1 j = l , n  
r=l 

OUTPUT 

1 1 
LOADINGS.DAT CHI2 . DAT SCORES.DAT 

I - 
OUTPUT 

CONC.DAT SPECTRA.DAT D . DAT 

Figure 1. Flow chart of the DATAN program. 

4. The areas of the spectral responses are set equal to 1: 
m ... 

&(A) = 1 i = l , r  
X = l  

5. The lengths of the spectral vectors rue set equal to 1: 
m 

C V i ( A ) 2  = 1 i = 1,r 
X=l 

The normalization does not affect the accuracy of the analysis, 
and the data can always be renormalized, if desired. 

RESULTS 
Ten (n = 10) spectra of each kind are generated using three 

components (r = 31, each represented by 100 data points (rn 
= loo), and an artificial noise of 25% of the average signal 
intensity is added A = CV + 25% noise, B = CDV + 25% 
noise. The generated spectra are very similar and overlap 
extensively (Figure 2). Score and loading vectors are calcu- 
lated for the joint matrix (A/B) by NIPALS, and reduced x 2  
values are evaluated. The reduced x2 decreases steeply with 
increasing 1, reaching a minimum value at 1 = 3, whereafter 
it slowly increases (Figure 3). From the minimum we can 
conclude that the number of independent spectral components 
is three (r = 31, and only the three most significant score and 
loading vectors will be used by the ROTATION program. In 
our simulations and in analyses of real data, we have found 
that the x2  test very accurately predicts the correct value of 
r. Indeed, even in simulations with considerably more noise 
(>200% ), where calculated spectra and concentrations have 
lost most of their features, the x2  test predicts the correct 
number of spectral components. Although the x2 test can be 
used to automatically predict the number of independent 
spectral components, we have chosen to input r to the 
ROTATION program to allow complete analysis for any 
arbitrary number of components. The number of indepen- 
dent components predicted by the x2  test can often be 
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Flgure 2. Qenerated test spectra of type A (a, top) and of type B (b, 
bottom). There are 10 spectra of each kind (n = lo), each belng 
rearesented bv 100 data Doints Im = 100). A random noise of 25% r. - - -. _ _  - - , . . - - .- 
oj the average slgnal Intensity k s  been added to each spectrum. 

confirmed by visual inspection of the main score and loading 
vectors. Only the r most significant ones should contain 
physical features, the remaining ones should contain only 
noise.'* 

The three main score and loading vectors are passed on to 
the ROTATION program, which calculates the Procrustes 
rotation and performs the diagonalization (eq 6 and 7). The 
diagonal elements are 1.96, 1.02, and 0.52, which should be 
compared to the d values used in the construction of the test 
data: 2,1, and 0.5. The accuracy in the determination of the 
d values is thus excellent, and the d values ate often useful 
in identifying the unknown componenta. The ROTATION 
program also calculates the spectral profiles of the components 
and their concentrations (eqs 8 and 9). The calculated spectra, 
vi(A), and concentrations, cij, normalized by alternative no. 
1, are compared to those used in construction of the test data 
in Figures 4 and 5. Despite the extensive overlap between 
the spectral profiles of the components, the calculated profiles 
and concentrations are in good agreement with those used in 
the construction. 

Effect of Noise. For reliable data analysis one must know 
how experimental noise affects the precision in the deter- 

400 I 

3M) - 
350 ! 

50 1 \ 
1 2  3 4 5 6 7 8 9 10 

Number of components (r) 
Flgure 3. Reduced x2 as a functlon of the number of prlnclpal 
components ( r )  used in the analysis. 
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Flgure 4. Calculated (-) and origlnal (- - -) spectral proflles. 

mination of the various parameters. We define the mean 
errors as 

error in V = 
m X r  

error in C = 
n X r  

error in D = 
r 
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Flgwe 5. Calculated (fllled symbols) and orlglnal (open symbols) 
concentration profiles. 

In all cases, the mean errors are calculated from at least five 
independent simulations. Simulations show that the mean 
errors in C, V, and D increase essentially in a linear fashion 
with increasing noise, as expected intuitively. 

Optimizing the Experimental Design-Effect of n and 
m. When designing the experiment, one can sample the 
spectra at different resolutions (collecting different number 
of data points, m, per spectrum) and one can often vary the 
number of samples (for example, in a titration experiment 
one can add the titrand in arbitrary amounts, thereby 
controlling the number of samples, n, to be analyzed). Since 
increasing the number of data points per spectrum and the 
number of samples is time consuming, it is important to know 
how this affects the precision in the determined parameters. 
The number of samples (n)  and the number of data points 
per sample (m)  affect different dimemions of the data matrices 
A and B (increasing n increases the number of rows, increasing 
m increases the number of columns), and they have different 
influences on the various calculated parameters. Figure 6 
shows the errors in C, V, and D as a function of the number 
of analyzed samples. The precision in the determinations of 
C and D improves only moderately, in an essentially linear 
fashion, with increasing number of samples, whereas the 
accuracy in the calculated spectral profiles (V) improves more 
substantially. This is a direct consequence of how n affects 
the dimensions of A and B, and thus of C and V. Increasing 
n increases the number of data points to be determined in 
C, whereas the number of data points in Vis unchanged. The 
dotted line in Figure 6, fitting rather well to the errors in V, 
is drawn according to 0.25(2n - 3)0,5/2n, suggesting that the 
error at large n decreases as n-0.5. This is the same improve- 
ment as when a single spectrum is recorded n times, and we 
conclude that instead of collecting each spectrum several 
times, to improve the signal to noise ratio, it is in this respect 
equivalent to increase the number of samples. 

The situation is reciprocal when m is increased: C is 
improved more than V. Here, however, there is usually a 
threshold value below which all results are bad, since when 
m is too small, the component spectra are hard to separate 
in the analysis. Of course, the threshold value depends on 
the degree of spectral overlap between the components and 
on the noise level. With the test data above, very bad resulta 
were obtained with m C 50. Because of the reciprocal effect 
of n and m on the dimensions of A and B, there should be 
a threshold value also for n. However, in most real situations 

0.08 i 
0.07 1 . , , *'. 

L l  

005 L 
a i  

0.01 1 

a ". ._. 
.. 

, 
0 '  I 

0 10 20 30 40 50 

Number of samples (n) 
Figure 6. Average errors in calculated C (m, D (A), and V (0, X10) 
as a function of the number of samples used In the analysis. The solid 
(-) and dashed (- - -) straight lines are fitted to the errors In C and 
D, respectively. The dotted llne (.-) Is drawn according to (noise) X 
(2n - 3)05/2n, where noise = 0.25 and n = 3. 

the overlap between the spectral profiles of the components 
is far greater than the overlap between their concentration 
profiles, the threshold value for n is usually very low, and 
reasonable results can be obtained when the number of 
samples is just a few more than the number of components. 
This is rarely the case for the number of data points per 
spectrum, which generally has to be considerably larger than 
the number of components. 

Effect of D. Some d values are similar. The d values are 
crucial to the analysis, since it is because of them being 
different for each component that we can solve equation 
system 4 and 5. When designing the experiment, one can 
usually affect the values of the di's. For example, when 
analyzing pairs of emission spectra, the d values are the ratios 
of the molar absorptivity coefficients at  the excitation 
wavelengths, di = ei(&xb)/ti(Xgxa), and thew can be chosen 
arbitrarily. Figure 7 shows the errors in C, D, and V as a 
function of the difference between the two most similar d 
values. The errors in C and V are proportional to the inverse 
of the difference, whereas the error in D is independent of 
the values of its elements. Closer inspection of the calculated 
concentration and the spectral profiles reveals that only those 
of the two components having similar d values are erroneous; 
the calculated concentration and spectral profiles of the third 
component, with a d value significantly different from the 
others, are correct. The similar d values of the two compo- 
nents result in a mixing of their contributions in the analysis: 
C124c = C1pigR-1 and V124c = RV12°rig, where the subscript 
denotes the submatrices containing the elements from the 
two Components with similar d values. Since the mixing of 
C and V is reciprocal, the correct concentration profiles can 
be calculated if the correct spectral profiles can be obtained 
(i.e., if the components can be identified). In general, the 
calculated concentration and spectral profiles are mixed in 
the analysis pairwise to a degree that is proportional to the 
inverse of the difference between their d values. Therefore, 
when designing the experiment, one should maximize the 
difference between the most similar d values. In special cases, 
when a component is more interesting than others, one can 
maximize the difference between ita d value and the most 
similar d value of the other components. 

One component does not contribute to one of the two sets 
of spectra. If one component has no contribution to the 



414 ANALYTICAL CHEMISTRY, VOL. 65, NO. 4, FEBRUARY 15, 1993 

0.3 

0.25 

0.2 L 

L 

& 0.15 

2 

e! 
I 

a 

a 0.1 

0.05 

0 

0 0 1  02 03 04 0 5  OS 0 7  O S  09 1 

d3-d2 
Flgurr 7. Average errors in Calculated C (.), D (A), and V (0, X10) 
as a function of the dlfference between 4 and 4. dl = 0.5; d2 = 1; 
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B-type spectra its d value is zero, whereas if it has no 
contribution to the A-type spectra its d value is infinite. The 
analysis works for d = 0, but it fails for d = =. When d = 
= some of the calculated d values are complex numbers having 
no meaning, and all other d values are erroneous. I t  is 
important that the diagonalization routine checks the imag- 
inary parta of the d values and gives a warning message if any 
is significant. 

Checking the validity of the analysis. The ratios of the 
responses of the components to the two types of spectra, the 
d values, are effectively calculated by a least squares approach 
inherent to the Procrustes rotation (eq 6). By postmultiplying 
Ta and Tb by U-l, one obtains the contributions of the 
components to the experimental spectra (eqs 14 and 15). 
(T*R),/ (TbR), is the ratio between the contributions to the 
A- and B-type spectra of component i in sample j .  For each 
one of the components these ratios should be the same for all 
samples, and they should equal the d values. If a ratio differs 
significantly from the corresponding d value, the calculated 
concentration of that component in the particular sample 
has probably a large error. This happens, for example, when 
a component is not present in a sample (zero concentration). 
Further, if there is a large spread among these ratios for a 
certain component, it probably does not fulfill the require- 
ments for the analysis, and the resulta should be interpreted 
with care. The (TaR),,/(TbR), ratios are calculated by the 
DIND routine in the DATAN program. 

Different Signal to Noise Ratios in the Two Types of 
Spectra. The result of the analysis depends on which set of 
spectra is treated as A and which is treated as B. When the 
noise levels in the two sets are different, which is the usual 
case owing to their different natures, this choice is important. 
In general, it is better to treat the set with less noise as A. For 
example, with 5% noise in A and 50% noise in B, the errors 
in calculated C, D, and V are 0.03,0.03, and 0.006. If the sets 
are interchanged (50% noise in A and 5 %  noise in B), the 
errors are 0.48, 0.01, and 0.029. Although the interchange 
has no effect on the d values, the errors in the calculated 
spectral profiles become significantly larger, and the errors 
in the calculated concentration profiles become very large. 
Comparing with the errors when the noise levels in A and B 
are the same, the errors with 5 % noise in A and 50 9% noise 
in B correspond to an overall noise level of the average, 27 % , 
in A and B. On the other hand, with 50% noise in A and 5 5% 
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Flguro 8. (a, Top) two sets of spectral profiles used to generate A 
and 8, to whrch the components have somewhat different contrlbutbns. 
(b, Bottom) Calculated spectral profiles (-) compared those used to 
generate A (- - -). 
noise in B, the error in V corresponds to an overall noise level 
of about 110% in A and B, and the error in C corresponds 
to a noise level of about 325%! 

Variations in Spectral Profiles. The spectral profiles 
of the components are different in the two kinds of spectra. 
Although many kinds of spectra give identical profiles for 
each component,14 some spectra have different sensitivities 
to the underlying contributions to the spectral intensities 
and the profiles in set A and set B may be somewhat different. 
For example, all vibronic effects are positive in absorption 
spectra but some may give negative contributions to circular 
dichroism spectra. As a consequence, the spectral profiles of 
the components in the two sets of spectra will be slightly 
different. Unfortunately, the analysis is very sensitive to such 
effects. Figure 8a shows two slightly different sets of 
component spectral profiles used to generate new data 
matrices A and B. The calculated profiles are significantly 
different, and they are not averages of the pairs used in the 
construction (Figure 8b). Although their shapes bear some 
similarities with the original profiles, their magnitudes are 
clearly different and they are considerably shifted. The 
calculated concentration profiles and d values were even worse 
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Flguro 8. Fluorescence excitation spectra of mixtures containing 1,4- 
bls[(5-phenyloxazoC2-yl)] benzene (POPOP), dimethyl POPOP ( D M  
POPOP), and diphenylanthracene (DPA) In cyclohexane. Spectra were 
recorded with 410 (a, top)and 430 nm (b, bottom) emission. Excitation 
and emission spectral bandwidths were 1 nm, scannlng rate 50 nm/ 
mln, time constant 1 8. Spectra are quantum corrected and corrected 
forthe Inner-fliter effect. The data were kindly provided by Drs. Svante 
Erlksson and Bo Alblnsson. 

(data not shown). Interchanging the data matrices A and B 
has no effect on the result. This kind of problem can usually 
be realized from the x2 test: the reduced x2 value decreases 
steeply until 1 = 3 but does not attain a minimum value, and 
it is considerably larger than 1. It continues to decrease, 
reporting a larger number of components. 

Experimental drift results in small wavelength shifts. A 
similar situation arises if there is an experimental drift 
resulting in small wavelength shifts in the spectra. Also here 
the analysis predicts a too large number of components, and 
the result is erroneous. This problem can usually be avoided 
by decreasing the resolution of the measurements making 
the drift negligible. Because of the very high resolving power 
of the analysis, it is rarely necessary to push the resolution 
of the experiments to the limit. In contrast, a drift in intensity 
causes very little problem. The analysis provides the correct 
spectral profiles of the components, though there will be a 
small effect on the calculated C and d values. 
Similar Concentration Profiles. For the analysieto work 

properly, the concentration profiles of the components must 
all be different. If two components have the same concen- 
tration profiles, that is when the ratios between their 
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Flguro 10. (a, Top) calculated concentratlons of POPOP (O), DMPOPOP 
(A), and DPA g), compared with their correct concentrations (stralght 
lines), and (b, bottom) thek calculated spectral proflles (solid lines) 
compared with excitation spectra recorded on the free dyes (dashed 
lines). 

concentrations in all samples are the same, the results will be 
erroneous. This may occur, for example, when a species is 
invoked in a partition equilibrium.21 We simulated the case 
by calculating a new concentration profile of component 2, 
making it progressively more similar to the profile of 
component 1: 

CZYW - Cli + X(CZiold - CIi) 

When the degree of mixing is increased (decreasing x ) ,  the 
result becomes progressively worse. For x = 0 the concen- 
tration profiles of components 1 and 2 are identical, and some 
of the results were completelywrong. The calculated spectral 
profiles of the two components having the same concentration 
profiles were mixed, and their calculated d values were wrong. 
Their concentration profiles were calculated correctly, but 
they were scaled erroneously: 

clidc = const x cliorig 

cZdc = const' x c 2 y  
Still, the important conclusion, that the ratios between their 

(21) Chiesa, M.; Domini, 1.; Samori, B.; Eriksson, S.; Kubista, M.; 
Nordh, N. Guzz. Chin. Ztul. 1990,120,667-670. 
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concentrations in all samples are the same, can be made. The 
spectral profiie and the d value of the third component, having 
a unique concentration profile, are calculated correctly, but 
its calculated concentration profile is completely wrong. 

Example with Experimental Data. The Procrustes 
approach was used to analyze samples containing mixtures 
of 1,CbisE (5-phenyloxyazol-2-yl)lbemene (POPOP), dimethyl 
POPOP (DMPOPOP), and diphenylanthracene (DPA) in 
cyclohexane. Fluorescence excitation spectra were recorded 
on the samples using 410 (Figure 9a) and 430 nm (Figure 9b) 
emissions. The dyes obey the Kasha-Vavilov rule,22 having 
identical spectral profiles in the two measurements. The 
magnitudes of their responses are proportional to their 
concentrations, fluorescence quantum yields, and the fraction 
of the total emission observed at the emission wavelength of 
the experiments. The d values, being the ratios of their 
responses to the two measurements, are the ratios between 
the fractions of their total fluorescence at the two emission 
wavelengths: di = I(&m,&/I(&m,~)i. The spectra were digitized 
into 501 data points each and analyzed by the DATAN 
program. The x2 test correctly predicted three independent 
spectral components, and three loading and score vectors were 
used in the ROTATION. The calculated d values for the 
three dyes were 0.77, 0.43, and 0.62, and the calculated 
concentrations and spectral profiles are shown in Figure 10. 

DISCUSSION 

We have described the DATa ANalysis (DATAN) program 
to analyze correlated spectroscopic data. The program, which 
is based on the Procrustes rotation method,14 calculates the 
number of independent spectral components ( r ) ,  their spectral 
responses (V’) and concentrations (C), and the ratios between 
their responses to two spectroscopic measurements (D), using 
only the experimental spectra as input. From extensive tests 

(22) Turro, N. J. Modern Molecular Photochemistry; The Benjamin 
Cummings Publishing Co.: Menlo Park, CA, 1978. 

of the program, we conclude that the results are highly 
accurate and reliable when the spectral profiles, the concen- 
tration profiles, and the d values of all the components are 
different. The results can be summarized in a few points: 

*The number of independent spectral components is 
accurately predicted by the x 2  test. 

*The accuracy in the calculated parameters can be im- 
proved by either increasing the number of samples (n) or by 
increasing the number of data points per spectrum (m). 
Increasing n improves mainly the accuracy in V’; increasing 
m improves mainly the accuracy in C. 

*The d values are crucial to the analysis, and the experiment 
should be designed to make them as different from each other 
as possible. 

*The result depends on which data set is treated as A and 
which is treated as B. In general, the set with leas noise should 
be treated as A. 

*A d value may be zero, but not infinite. 
*If some calculated d values have significant imaginary 

parts, the analysis has gone wrong and the result is unreliable. 
*The analysis is very sensitive to changes in spectral profiies, 

and the experiments should be designed to minimize spectral 
shifts. 

The DATAN program is available from the authors (M.K.). 
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