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Abstract

We have compared various statistical methods to estimate the number of components that contribute to a set of spectra. The

methods are tested both on simulated and on experimental data. No assumptions are made about noise level, since this in most

experimental situations is unknown. For tests that formally require such information we have devised novel criteria for their

predictions. The criteria have been integrated with the NIPALS algorithm to create a routine that in an automated way predicts

the number of components. We ®nd that the methods almost always predict the correct number of components when the

quality of data is high. Also for multi-component samples and at high-noise levels most of these methods make satisfactory

predictions. Those that gave the overall best results were the factor indicator function (IND) and the imbedded error function

(IE). The F-test also worked well, but it has the disadvantage that a signi®cance level must be chosen rather arbitrarily. The

residual standard deviation (RSD), the root mean square (RMS), the �-squared and the residual percentage variance (RPV)

tests also gave satisfactory results. Less good were the eigenvalue (EV) and the reduced eigenvalue (REV). The ability of all

indicators to predict the number of components was signi®cantly improved when the degree of digitalization of the spectra

was increased. # 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Chemometric methods are today commonly used in

spectral analysis of test samples. In general, such an

analysis is made in two steps: ®rst, the number of

components is determined, and then the spectral

responses and concentrations of the components are

calculated. Several methods have been devised for the

second step, and they widely depend on auxiliary

information and experimental design [1±3]. The ®rst

step, determining the number of components, is per-

tinent to all forms of spectral analysis [4,5].

There are several approaches to determine the

number of components that contribute to a given set

of spectra. Here we only consider those based on pure

principal component analysis (PCA) and not those

combined with cross-validation [6±10]. All real data

contain experimental noise that may mask the true

dimensionality of a data set, which is the number r of

components that are present. Malinowski [11,12]

showed that the error associated with a data set can

be divided into imbedded error and extracted error.

Extracted error is the error contained within the minor
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PC dimensions (e.g. r�1, r�2, . . ., m) and can be

removed, or extracted, from the data by retaining only

the ®rst r PCs. Imbedded error is the error which mixes

into the factor scheme and is contained within the ®rst

r PCs. It can never be completely removed from a data

set [13].

Methods to identify the true dimensionality of a

data set can be classi®ed into two categories: precise

methods that are based on comparison with the experi-

mental error, and approximate methods that do not

require such information. Many of the latter methods

are empirical functions. During the last decade also

some methods based on formal statistical tests for

this estimation have been developed. Here we

extensively compare these methods on both simulated

and experimental data. For tests that formally require

knowledge about the experimental error associated

with the data set, we have devised novel criteria for

their predictions.

2. Theory

2.1. Principal components analysis

Most measurements are not selective for only the

constituents of interest; but the data also contain noise.

In principal component analysis (PCA) the measured

data are reduced to contain only the information that is

relevant to the system [14±18]. Its systematic varia-

tions are extracted and the information in the many

variables is concentrated into a few underlying (latent)

variables called principal components.

The ®rst step in PCA is to decompose the data

matrix A into an orthonormal basis set:

An;m � Tn;qP0q;m �
Xq

i�1

tip
0
i; (1)

where An,m contains the n recorded spectra as rows,

each digitized into m data points, Tn,q is the score

matrix which relates to sample composition, P0q;m,

where the prime `0' denotes transpose, is the loading

matrix which relates to spectra and q is the least of n

and m, which in spectroscopy usually is n. Eq. (1) is

exact. The complete set of score and loading vectors

accounts for both the systematic variations in the data

and the experimental noise.

The second step in PCA is to separate the eigen-

vectors that account for the systematic variations from

those corresponding to noise:

A � Tn;rP
0
r;m � En;m �

Xr

i�1

tip
0
i � En;m � Â� En;m;

(2)

where Â is the predicted data matrix, En,m is the

residual matrix, and r is the number of signi®cant

components. It corresponds to the number of com-

pounds that contribute signi®cantly to the measured

spectra.

2.2. Methods to estimate the number of significant

components (r)

Several methods have been proposed for the deter-

mination of the number of signi®cant factors in PC

decomposition. The most common ones are utilized in

the following indicators.

2.2.1. Eigenvalues

Eigenvalues (EV or g) are conventionally used as a

measure of the size of a PC [19]. The sum of squared

elements of the data matrix A is equal to the sum of the

eigenvalues of A0A. Each eigenvalue is proportional to

the variance in the data that the corresponding princi-

pal component accounts for. For principal components

that span only random noise, the corresponding eigen-

values should be small and roughly equal.

Eigenvalues can be calculated as the sum of squares

of the score vectors,

EVl � gl �
Xn

i�1

t2
li �l � 1; 2; . . . ; r; . . . ; q�: (3)

The ®rst set of r eigenvalues that contain useful

information are called signi®cant eigenvalues or pri-

mary eigenvalues. These have contributions from the

real components and should be considerably larger

than those containing only noise. The second set of

(qÿr) eigenvalues are referred to as non-signi®cant

eigenvalues or secondary eigenvalues.

2.2.2. Reduced eigenvalues

Reduced eigenvalues (REVs) are normalized eigen-

values. An REV is de®ned as the eigenvalue divided by

the degree of freedom employed in its extraction [20]:
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REVl � gl=��nÿ l� 1��mÿ l� 1��: (4)

2.2.3. Residual standard deviation

The residual standard deviation (RSD) is a measure

of the lack of ®t of a PC model to a data set [12]. It is

de®ned as

RSD�l� �
������������������������Pq

j�l�1 gj

n�qÿ 1�

" #vuut ; (5)

where gj is the eigenvalue as de®ned above, and q is

the least of n and m.

2.2.4. Root mean square error

The root mean square (RMS) error of a data matrix

is de®ned as

RMS�l� �
�����������������������������������������������Pn

i�1

Pm
j�1�xij ÿ x̂�l�ij�2

nm

s
; (6)

where

x̂�l�ij �
Xl

k�1

tikp0kj: (7)

The term within parentheses on the right-hand side in

Eq. (6) represents the difference between the experi-

mental data and the reproduced data from the l most

signi®cant PCs [12].

2.2.5. c-Square

For data sets where the standard deviation varies

from one data point to another Bartlett proposed the

�-square criterion [21]:

�2�l� �
Xn

i�1

Xm

j�1

�xij ÿ x̂�l�ij�2
�2

ij

; (8)

where �ij is the standard deviation associated with

measurement xij. The method is particularly useful

when such information is available. Here we assume

constant variance throughout the data, which allows us

to factorize �2. We also normalize �2 to obtain the

reduced �-square �2
r �l�:

�2
r �l� �

Xn

i�1

Xm

j�1

�xij ÿ x̂�l�ij�2
�2�nÿ l��mÿ l� : (9)

The �2
r formula is similar to the square of the RMS

indicator. It differs only in the normalization.

2.2.6. Scree test

The scree test was proposed by Cattell [22], and is

based on the observation that the residual variance

levels off before the dimensions containing random

error are included. The residual variance expressed as

percentage, associated with a reproduced data matrix,

is de®ned as

RPV�l� � 100

Pn
i�1

Pm
j�1�xij ÿ x̂�l�ij�2Pn

i�1

Pm
j�1 x2

ij

" #
: (10)

The residual percentage variance (RPV) can also be

expressed in eigenvalues,

RPV�l� � 100

Pq
j�l�1 gjPq

j�1 gj

" #
: (11)

2.2.7. Imbedded error

The imbedded error (IE) function is an empirical

function of the non-signi®cant eigenvalues [11,12]:

IE�l� �

��������������������������������
l
Pq

j�l�1 gj

� �
nm�qÿ l�

24 35
vuuut ; (12)

which is equivalent to
��������
l=m

p
RSD (l).

2.2.8. Factor indicator function

The factor indicator (IND) function is an empirical

function that has been claimed to be more sensitive

than the IE function [11,12]:

IND�l� �

���������������������������Pq

j�l�1
gj

� �
n�qÿl�

24 35
vuuut
�qÿ l�2 : (13)

It is equivalent to RSD (l)/(qÿl)2.

2.2.9. F-test

A statistically more rigorous procedure to estimate r

of a data matrix is based on the Fisher variance ratio

test (F-test) [23,24]. By considering the statistical

distribution of the non-signi®cant reduced eigenvalues

(REV), it is possible to determine whether a given

REV is signi®cantly larger than the mean of all
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subsequent (higher rank) REVs. The calculated F-

ratio can then be compared to the expected value for a

particular signi®cance level.

Fl�1; qÿ l� �
Pq

j�l�1�nÿ j� 1��mÿ j� 1�
�nÿ l� 1��mÿ l� 1�

� REVlPq
j�l�1 REVj

: (14)

The degrees of freedom have been suggested to be

n1�1 and n2�qÿl, which is equal to the expressions in

the numerator and denominator, respectively [23].

3. Materials and methods

3.1. Simulation of data

The indicator functions were tested on several

simulated data sets. The spectra were generated with

Gaussian shapes and represented by m data points

each.

vjk � Akeÿ�jÿck�2=w2
k

� j � 1; 2; . . . ; m and k � 1; 2; . . . ; r�; (15)

where Ak is the maximum intensity of the spectrum of

component k and is found at wavelength ck. wk is

proportional to the width of the spectrum. The para-

meters used in the simulations are listed in Table 1.

The component concentrations were generated by the

MATLAB random number generator, RAND(`uni-

form'), from a uniform distribution in the interval

0±1. Random noise was added to the spectra by

generating random numbers with a Gaussian distribu-

tion with mean 0 and standard deviations of 0.5, 0.8

and 1.2, respectively. These correspond to signal to

noise (S/N) ratios of about 22, 14 and 10 (de®ned as

the ratio between maximum signal and maximum

noise).

3.2. Experimental data

3.2.1. Absorption spectra

Data sets A and B were collected on mixtures of

thiazole orange (TO) and calf thymus DNA. Since

only TO absorbed light in the studied wavelength

interval, the contributing components were free TO

and TO bound to calf thymus DNA. In set A spectra

were collected in the wavelength interval 400±600 nm

(m�1001), and the amount of bound TO was varied by

changing the salt concentration in the interval 0.01±

0.5 M NaCl (n�15). In set B the amount of bound TO

was varied by changing the temperature in the interval

10±608C (n�10), and spectra were collected in the

wavelength interval 375±500 nm (m�626). Data set C

was collected on a sample containing only TO under

conditions where TO forms dimers. Spectra were

collected in the interval 260±600 nm (m�1701),

and the amount of dimer was varied by changing

the temperature (15±708C, n�23).

Data set D was absorption spectra measured on

¯uorescein samples in the pH range 1±9. In this range

four protolytic forms are present (r�4), each with a

characteristic response [25]. Twenty-four samples

(n�24) containing 14 mM ¯uorescein (purchased from

Sigma) in 1 M NaCl and 50 mM buffer (phosphate

buffer at pH>5 and citrate buffer at pH<5) were

prepared and data were collected between 250 and

550 nm (m�1501).

3.2.2. Fluorescence spectra

Data set E were 15 (n�15) ¯uorescence emission

spectra collected on the protein �OBP in the presence

of single stranded DNA (dT65) at different mixing

ratios. Only the protein, which was present in free and

bound state, had ¯uorescence (r�2). Spectra were

recorded in the interval 300±450 nm (m�301).

Data sets F±I were ¯uorescence spectra measured

on solutions containing 1,4-bis[5-Phenyl-2-oxazolyl]-

benzene-2,20-p-Phenylene-bis[5-phenyloxazole]

(POPOP), anthracene and 9,10-diphenyl anthracene

(purchased from Sigma) in n-hexane (r�3). Two of the

sets (F and G) contained emission spectra collected

between 380 and 500 nm (m�601) at 21 excitation

Table 1

Parameters used to generate component spectra for the simulations

k ck wk

1 0.25 0.60

2 0.45 0.30

3 0.60 0.45

4 0.75 0.70

5 0.80 0.15

The parameters are normalized in the interval 0±1. For a data set of

size m the parameters should be multiplied by m.

146 A. Elbergali et al. / Analytica Chimica Acta 379 (1999) 143±158



wavelengths (n�21) ranging from 270 to 370 nm, and

two sets (H and I) contained excitation spectra mea-

sured between 270±370 nm (m�501) at 25 emission

wavelengths (n�25) ranging from 380 to 500 nm.

Four additional data sets (J±M) were collected accord-

ingly on samples containing also dimethyl POPOP

(r�4).

3.2.3. HPLC chromatogram

Data set N was a chromatogram of degraded chloro-

phyll into four major components (r�4) [26,27]. The

mixture was analyzed by HPLC using a Waters 990-

diode array equipped with a 600E multi-solvent deliv-

ery system and a C18 reversed phase column. The ¯ow

rate was 1 ml minÿ1 and the chromatogram was

recorded between 0 and 50 min after injection. The

peaks of interest eluted between 39.3 and 42.3 min,

and were sampled every 2 s (n�76). Absorption was

measured at every ®fth wavelength between 350 and

800 nm (m�91).

4. Results

The number of components can be predicted from

the indicator values by comparing them with the

experimental error, i.e. using the noise level as a

threshold. This is the common criterion to determine

r [12]. However, in most experimental situations

suf®cient information about the noise is not available

and such comparison cannot be made. We therefore

propose to determine the point where l�r from the

dependence of the indicators on the number of prin-

cipal components (l) used to calculate them. Fig. 1

shows the indicators as a function of the number of

PCs (l) for one of the simulated data sets with r�5,

Fig. 1. Logarithm of the indicators as a function of the number of PCs (l) for a simulation with r�5; n�20; m�100.
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n�20, m�100 and S/N�12, and Fig. 2 shows the same

indicator functions for one of the absorption data sets

(r�4, set D). Due to the large variations in the

indicator values they are plotted on a logarithmic

scale. We note that the indicators fall into two cate-

gories. The gl and REVl are functions of the lth PC,

and should change substantially when l�1�r, while

the other indicators re¯ect the cumulated effect of the

®rst l PCs and should change when l�r. In these plots a

change in slope can be seen around l�r (r�5 for the

simulated data and r�4 for the experimental data) for

the RMS, RSD, RPV, �-square, IE and IND indicators,

and at l�r�1 for g and REV.

It is not trivial to identify where l�r in the plots.

Some indicators that are appropriately normalized

may exhibit a minimum at this point [28,29]. This

has previously been suggested to be used as criterion

[11,28]. These indicators decrease as more primary

eigenvectors are used in the data reproduction, and

when the correct number of factors (r) is exhausted,

and secondary eigenvectors are included, they start to

increase. In our study we ®nd that only the IE and IND

indicators frequently exhibit a minimum at l�r. How-

ever, this seems to be the case only for simulated data,

where the error is random and uniform throughout the

entire data set. For experimental data, the indicators

frequently exhibited minimum at a too high l resulting

in an overestimation of the number of components. We

therefore tested some other criteria to see if they

worked better on experimental data. In general, they

are all based on ®nding the point where the slope of the

indicator function changes.

4.1. The second derivative criterion

The most obvious way to identify the point where

the slope changes is to calculate the second derivative

(SD) of the indicator function (INF). At this point SD

Fig. 2. Logarithm of the indicators as a function of the number of PCs (l) for the experimental absorption data set D.
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should have a maximum. Our simulations showed that

the SD criterion made best predictions when using

logarithmic scale, since the break in the slope was

more easily detected when all indicators were of about

the same magnitude. The SD was calculated as

SD�l� � log�INF�l� 1�� ÿ 2� log�INF�l��
� log�INF�lÿ 1��; (16)

l�r should be at the ®rst maximum of the SD (l)

function. This criterion proved to be very accurate for

simulated data. For experimental data, however, we

found that the SD (l) function occasionally had about

the same magnitude for two successive points around

l�r. To determine which one was correct we found the

following test reliable. The ®rst maximum of the SD

(l) function is calculated. The SD (l) function is then

also evaluated at two successive points. If SD (lmax�1)

is closer to SD (lmax) than to SD (lmax�2), r�lmax�1 is

considered correct, while if SD (lmax�1) is closer in

magnitude to SD (lmax�2), r�lmax is assumed. The

approach is illustrated in Fig. 3(a). The SD (l)IE has a

maximum at l�4. Since (SD (4)IEÿSD (5)IE)>

(SD(5)IEÿSD(6)IE), r should be 4.

4.2. The third derivative criterion

The abrupt change in the slope of the indicator

function also leads to changes in the third derivative

(TD). The TD value crosses zero and reaches a

negative minimum, which can be used as a criterion.

The TD is calculated as

TD�l� � log�INF�l� 2�� ÿ 3� log�INF�l� 1��
� 3� log�INF�l�� ÿ log�INF�lÿ 1��; (17)

r should be equal to l where TD (l) has its ®rst

minimum. As seen in Fig. 3(b) TD has a sharp mini-

mum at l�4.

4.3. The ratio of derivatives criterion

The change in slope can also be found by calculat-

ing the ratio of derivatives (ROD):

ROD�l� � INF�lÿ 1� ÿ INF�l�
INF�l� ÿ INF�l� 1� : (18)

Ideally ROD (l) should have a maximum at the point

where l�r. It may have additional maxima at higher l,

caused by ¯uctuations in the indicator values when

non-signi®cant PCs are being included, but these are

not relevant. Hence, the criterion is that the ®rst ROD

maximum determines r. As seen in the example in

Fig. 3(c), ROD has a maximum at l�4.

The ROD criterion for the IE and IND indicators

occasionally failed to predict r correctly. This hap-

pened when the indicator function itself exhibited a

minimum, which resulted in negative ROD values.

Combining the minimum and ROD criteria eliminated

this problem. In this combined test, (RODM), r�l

should be the point where either the indicator function

has a minimum or ROD has a maximum.

4.4. F-test

The F-test is used differently from the other indi-

cators. An F-value is calculated by Eq. (14) for a

certain number of PCs and is compared with tabulated

Fig. 3. The detection criteria for the IE function of data set D: (a)

the second derivative (SD); (b) the third derivative (TD); (c) the

ratio of derivatives (ROD).

A. Elbergali et al. / Analytica Chimica Acta 379 (1999) 143±158 149



values, which were generated using the MATLAB

routine fdis.m from `Numerical Recipes' [30]. The

degree of freedom for the numerator (n1) is taken as 1

and the degree of freedom for the denominator (n2) is

initially qÿ1 and is decreased by 1 for each REV [23].

One starts with the highest rank (q) and works down

assuming that the REV will become insigni®cant at a

particular signi®cance level �. As long as the calcu-

lated F-value is larger than the tabulated one, signi®-

cant components are included. Table 2 shows the

result of the F-test for the same data as analyzed by

the other indicators in Fig. 1. The calculated F-values

for 1�l�5 are much larger than the F-table values. For

l�6 the calculated F-value is lower than that from the

F-table. Hence, the F-test also predicts ®ve compo-

nents.

4.5. Comparison of the indicators on simulated data

The indicators were extensively tested on simulated

data. The number of components (r), the number of

samples (n), the S/N ratio, and the degree of digita-

lization (m) were varied. In initial tests we found ®ve

components to be suitable for rigorous comparison of

the indicators, and chose r�5 for extensive studies.

We also found n�20 to be a reasonable number of

samples. At these conditions we performed simula-

tions at different signal to noise ratios (S/N) using

either m�100 or m�1000. For S/N�22 and 14 all

indicators predicted correctly irrespective of criteria.

Decreasing S/N to 10 provided very noisy spectra

(Fig. 4(b)). As shown in Fig. 4(c), using m�1000

and S/N�10, all indicators predicted correctly in at

least 81% of the cases, with the exception of the F-test

which only predicted 64% of the cases correctly

(Table 3). Best results were obtained when using

the SD and TD criteria for the IE, IND, RSD,

RMS, RPV and �-square indicators which predicted

correctly in at least 91% of the cases. The EVand REV

were correct in less than 83%. When using the ROD

criterion all indicators predicted correctly between 81

and 86% of the cases. Decreasing m to 100, IE, IND,

RSD, RMS, RPVand �-square still predicted correctly

in over 70% of the cases, irrespectively of criterion, as

shown in Table 3.

For the F-test the user must specify a signi®cance

level. In the tests above a signi®cance level of 0.10 was

used, which is the upper limit of what has been

recommended [23]. This predicted correctly in 43%

and 63% for m�100 and m�1000, respectively

(Table 3). When we tested the effect of �, we found

100% success rate with ��0.30 (Fig. 5). However,

such a high signi®cance level can hardly be motivated

to use.

4.6. Analysis of experimental data

The indicators were used to analyze three types of

experimental data, using the SD, TD and ROD criter-

ion. For the IE and IND indicators also the minimum

criterion (M) was tested [11,28].

Table 2

F-test results for the simulated data shown in Fig. 2

F-value F-table

(��5%)

Degree of

freedom n2

Rank (l)

303.0251 4.38 19 1

17.7283 4.41 18 2

18.2197 4.45 17 3

21.9445 4.49 16 4

79.3660 4.54 15 5

0.9291 4.60 14 6

Table 3

Simulated data results

Criterion m Indicators

EV (%) REV (%) IE (%) IND (%) RMS (%) RSD (%) RPV (%) �2 (%) F-test (%)

ROD 100 79 78 82 85 71 77 76 77

1000 86 84 85 86 81 83 84 84

SD 100 74 77 91 92 87 88 87 86 43

1000 82 82 95 96 92 93 91 91 64

TD 100 75 75 92 93 88 89 88 87

1000 83 82 95 96 92 93 91 91

S/N�10; for the F-test ��0.10.
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4.6.1. Absorption spectra

Four sets of absorption spectra (A±D) of a rather

typical quality were analyzed. For the three data sets

with two components (A±C), all indicators but the F-

test estimated r correctly (Table 4). For set D, which

has four components (Fig. 6), the IE, IND, RSD,

Fig. 4. (a) Simulated spectra of five components; (b) generated test spectra with S/N�10; (c) predicted number of components, expressed in

percentage, by the nine indicators for 1000 simulations (m�1000, S/N�10 and SD criterion).
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RMS, RPV and �-square indicators predicted cor-

rectly with any criterion. The EV and REV indicators

predicted correctly when using the ROD criterion, but

overestimated with the SD and TD criteria. The F-test

overestimated in sets C and D with ��0.01, and

overestimated substantially when � was set to 0.30.

The minimum criterion worked only for the IND

indicator in set B.

4.6.2. Fluorescence measurements

Nine ¯uorescence data sets (E±M) with 2, 3 and 4

components were analyzed. For the 2 and 3 compo-

nent mixtures all indicators predicted the correct

number of components. Even the minimum criterion

worked for the 3 component mixtures with the

IE indicator but failed with IND. The F-test worked

with ��0.01 but failed with ��0.30. The data sets

with four components (Fig. 7) are not very typical for

¯uorescence analysis but rather represent a very

hard case. The EV and REV indicators did not predict

correctly. The RMS, RSD, RPV and �-square

indicators predicted correctly for three of the data

sets when using the SD and TD criteria and IE and

IND predicted correctly also with the ROD criterion.

For data set K, no indicator (except for the F-test)

predicted correctly. This data set, however, has two

components with very similar spectral shapes, out of

which one is minor, and questionably signi®cant. Only

Fig. 5. Percentage successful predictions by the F-test at various

significance levels for the simulated data with S/N�10.

Table 4

Experimental data results

Indicator Criteriona Absorption Fluorescence HPLC

A B C D E F G H I J K L M N

EV SD 2 2 2 5 2 3 3 3 3 5 3 5 3 4

ROD 2 2 2 4 2 3 3 3 3 3 3 4 3 4

REV SD 2 2 2 5 2 3 3 3 3 5 3 5 3 4

ROD 2 2 2 4 2 3 3 3 3 3 3 5 3 4

RMS SD 2 2 2 4 2 3 3 3 3 4 3 4 4 4

ROD 2 2 2 4 2 3 3 3 3 3 3 4 3 4

RSD SD 2 2 2 4 2 3 3 3 3 4 3 4 4 4

ROD 2 2 2 4 2 3 3 3 3 3 3 4 3 4

IEb SD 2 2 2 4 2 3 3 3 3 4 3 4 4 4

RODM 2 2 2 4 2 3 3 3 3 4 3 4 5 4

M 4 4 6 9 2 3 3 3 3 5 5 5 6 ±

INDb SD 2 2 2 4 2 3 3 3 3 4 3 4 4 4

RODM 2 2 2 4 2 3 3 3 3 4 3 4 4 4

M 4 2 5 8 2 4 4 4 4 5 5 5 5 19

RPV SD 2 2 2 4 2 3 3 3 3 4 3 4 4 4

ROD 2 2 2 4 2 3 3 3 3 3 3 4 3 4

� SD 2 2 2 4 2 3 3 3 3 4 3 4 4 4

ROD 2 2 2 4 2 3 3 3 3 3 3 4 3 4

f ��0.01 2 2 4 5 2 3 3 3 3 4 4 4 4 9

��0.30 5 4 9 11 4 9 9 35 36 8 8 14 15 49

aThe results using SD and TD criteria were identical for all experimental data sets.
bM is the minimum criterion and RODM is the combined ROD and M criterion.
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the F-test predicted correctly for all nine data sets

when using a 1% signi®cance level ��0.01). It,

however, over-estimated all data sets when using

��0.30.

4.6.3. HPLC measurements

For the HPLC diode array data (set N, Fig. 8) all

indicators but the F-test correctly predicted four com-

ponents. For the IND and IE indicators the minimum

criterion (M) did not work at all. IND displayed a

minimum at l�19 and IE did not have any minimum at

all (Table 4).

5. Discussion

Nine statistical indicators were tested for their

ability to predict the number of components in spectral

data. All are functions of the number of PCs (l) into

which the data are decomposed, and from their depen-

dence on l the number of components is determined.

The indicators decrease steeply with increasing num-

ber of PCs as long as the PCs are signi®cant. When

these are exhausted the indicators fall off, some of

them even display a minimum. At this point r�l for all

indicators except g and REV for which r�l�1. The

Fig. 6. (a) Absorption spectra of fluorescein at various pH (data set D); (b) absorption spectra of the four fluorescein species. The

experimental data are taken from [27].
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Fig. 7. Fluorescence spectra of samples containing anthracene, diphenyl-anthracene, POPOP and dimethyl-POPOP. (a), (c) and (e): Excitation

recorded at different emission wavelengths; (b), (d) and (f): emission spectra recorded at different excitation wavelengths; (e) and (f): spectra

of the pure components.
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indicator values at this point can be predicted from the

properties of the noise, which may be used as a

criterion to determine r [12]. However, detailed infor-

mation about noise is rarely available in experimental

data, which urged us to introduce novel criteria. We

tested the ratio of derivatives (ROD), the second

derivative (SD) and the third derivative (TD) criteria,

which all identify points where the indicator functions

change slope. The number of signi®cant components r

should be equal to l at the ®rst maximum of the ROD

(l) and SD (l) functions, and at the ®rst minimum of the

TD (l) function. For the IE and IND indicators, these

criteria were also compared with the minimum criter-

ion to determine r, which was used both as an inde-

pendent criterion and also in combination with the

ROD criterion.

The ROD criterion was most effective for the EV

and REV indicators that re¯ect the importance of the

individual PCs. For the IE, IND, RMS, RSD, RPV

and �-square indicators, which re¯ect the cumulative

effect of the ®rst l PCs, the SD and TD criteria worked

better. The testing occasionally turned out to be

complicated by the ®rst indicator value (at l�1)

being much larger than the second, resulting in two

components being predicted although the sample con-

tained more. In these cases there was a second extreme

Fig. 8. (a) Chromatogram of degraded chlorophyll recorded by DAD-HPLC (data set N); (b) resolved chromatograms of the four components

(normalized to the same peak height). The experimental data are taken from [25].

A. Elbergali et al. / Analytica Chimica Acta 379 (1999) 143±158 155



(minimum or maximum) point at l�r. These

cases were readily recognized by visual inspection

of either a plot of the indicator function or a plot of

some of the indicator test functions (ROD (l), SD (l) or

RD (l)). To avoid these rare mistakes we recommend

backing up any automatic indicator test by giving the

operator the option to plot and inspect the indicator

functions.

5.1. The IND and IE indicators are the most

reliable

Our extensive simulations and tests showed that

most of the indicators accurately predict the number of

components that contribute to a set of spectra. The

indicators were applied to four absorption data, nine

¯uorescence data sets, one HPLC data set and a large

number of simulated sets of data (Tables 3 and 4). For

the experimental data sets having 2 or 3 components

all indicators predicted correctly when using either of

the SD, TD or ROD criteria that we have introduced.

With the traditional minimum criterion, r was fre-

quently overestimated. For the samples with four

components (except data set K) all indicators but

EV and REV predicted the correct number of compo-

nents when using the SD or TD criterion. The IE and

IND indicators predicted correctly also with the ROD

criterion.

For the simulated spectra all indicators predicted

highly accurate, all being absolutely correct for data

sets with S/N ratios of at least 14. For data with higher

noise the EVand REV indicators turned out least well.

The RMS, RSD, RPV and �-square indicators were

somewhat better, and the IE and IND predicted best.

The F-test predicted correctly for all sets of ¯uores-

cence data when using ��0.01. This, however, is a

completely different signi®cance level than what

worked best for the simulated data (��0.30). Since

there is no simple way to tell a priori what signi®cance

level will work best for a particular set of data, this is a

major problem. We therefore do not recommend the

F-test unless the experimentalist has a way to choose

optimum signi®cance level. Hence, out of the indica-

tors tested the IND and IE indicators make the most

reliable predictions particularly in combination with

the SD or TD criteria.

We note that from the IND and IE indicators the

error (noise) in the data matrix can be estimated by

calculating the residual standard deviation at the point

where l�r:

RSD � �qÿ r�2 IND�r� �
��������
m=r

p
IE�r�: (19)

5.2. Increasing the number of data points improves

the indicator's predictability

Our simulations show that a higher number of

data points collected in a given wavelength range

may considerably improve the ability of the indica-

tors to predict the number of contributing compo-

nents (Table 3). Since computers today run most

instruments, digitalization is rarely a problem.

One should therefore take it as a habit to digitize

the recorded spectra into the maximum feasible

number of data points. This is particularly important

for data sets with low S/N ratios and many

components.

5.3. Combining the indicator tests with the NIPALS

algorithm

There are several computational algorithms for

PCA [12,31,32]. In spectroscopy one often uses the

nonlinear iterative partial least squares (NIPALS),

which is designed to extract the principal components

(score vectors ti and loading vectors p0i) directly from

the data, in the order of decreasing signi®cance [32].

The predicted data matrix Â�l�, where l is the number

of PCs used to calculate Â, can be formed any time

during the decomposition, and the process can be

terminated when the desired accuracy is obtained.

This considerably reduces the analysis time compared

to non-iterative algorithms, and is particularly useful

when the number of components is substantially lower

than the number of samples (r�n). To know when to

terminate the NIPALS iterations, NIPALS must be

combined with the indicator test. This requires that the

test can be performed without knowing all the PCs.

From Eqs. (5), (11), (12) and (14) it follows that most

indicators require evaluation of the sum of the remain-

ing eigenvalues
Pq

j�l�1 gj.

SinceXq

j�1

gj �
Xn

i�1

Xm

j�1

x2
ij (20)
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it follows thatXq

j�l�1

gj �
Xn

i�1

Xm

j�1

x2
ij ÿ

Xl

j�1

gj: (21)

The right-hand side expression can be calculated from

the data matrix and the ®rst l eigenvalues. Fig. 9 is a

¯ow chart that shows how the indicator test, using the

TD criterion, can be combined with NIPALS. After

Fig. 9. Flow chart showing NIPALS combined with indicator test, using the third derivative criterion.
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each iteration, yielding a new pair of principal com-

ponents, the indicator value is calculated and the TD(l)

is evaluated. When the TD(l) function increases, it

re¯ects a local minimum and NIPALS is terminated.

The number of PCs that must be calculated for com-

plete analysis is r�3.

6. Conclusion

We conclude that statistical methods can be used to

accurately predict the number of components that

contribute to spectral data sets even when information

about experimental error is not available. The statis-

tical methods can furthermore be combined with the

NIPALS algorithm to constitute an automated predic-

tion routine. The most reliable indicators under a wide

range of conditions are the factor indicator function

(IND) and the imbedded error function (IE). The

number of components contributing to the spectral

data is most accurately extracted from the indicator

function as the ®rst minimum of its third derivative.

The degree of digitalization of the experimental data is

important for successful analysis, and should always

be as large as possible.
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