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Abstract. We study the relationship between the existence of nonprincipal

ultrafilters over ω and the failure of the Bergman and Steinhaus properties for

infinite products of finite groups.

1. Introduction

In this paper, we will investigate the Bergman and Steinhaus properties for

various infinite products of finite groups, focusing especially on groups of the form∏
SL(2, pn), where ( pn | n ∈ ω ) is an increasing sequence of primes. This may

initially seem a strange choice, given that the results of Saxl-Shelah-Thomas [24]

and Thomas [29] already imply that the Bergman and Steinhaus properties always

fail for
∏
SL(2, pn). However, this is not the end of the story. The arguments

in both [24] and [29] make use of an ultraproduct
∏
U SL(2, pn), where U is a

nonprincipal ultrafilter over ω; and it is natural to ask whether the existence of

such an ultrafilter is either necessary or sufficient in order to establish the failure

of the Bergman and Steinhaus properties for
∏
SL(2, pn).

We will begin by reminding the reader of the definitions of the Bergman and

Steinhaus properties. Throughout this paper, a subset A of a group G is said to be

symmetric if A = A−1 is closed under taking inverses.

Definition 1.1 (Macpherson-Neumann [19], Bergman [2]). Suppose that G is a

non-finitely generated group.

(a) G has countable cofinality if G =
⋃

n∈ω Gn can be expressed as the union

of a countable increasing chain of proper subgroups. Otherwise, G has

uncountable cofinality .
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1



2 SIMON THOMAS AND JINDŘICH ZAPLETAL

(b) G is Cayley bounded if for every symmetric generating set S, there exists an

integer n ≥ 1 such that every element g ∈ G can be expressed as a product

g = s1 · · · sn, where each si ∈ S ∪ { 1 }.

(c) G has the Bergman property if G has uncountable cofinality and is Cayley

bounded.

By de Cornulier [6], a group G has the Bergman property if and only if whenever

G acts isometrically on a metric space, every G-orbit has a finite diameter. For this

reason, groups with the Bergman property are often said to be “strongly bounded”.

The class of groups with the Bergman property includes the symmetric groups

over infinite sets [2], automorphism groups of various infinite structures [9, 13] and

oligomorphic groups with ample generics [14] The following easy observation is

essentially contained in Bergman [2, Lemma 10].

Lemma 1.2. If G is a non-finitely generated group, then the following conditions

are equivalent.

(a) G has the Bergman property.

(b) If G =
⋃

n∈ω Un is the union of an increasing chain of symmetric subsets

such that UnUn ⊆ Un+1 for all n ∈ ω, then there exists an n ∈ ω such that

Un = G.

The Steinhaus property was introduced by Rosendal-Solecki [22] in the context of

the automatic continuity problem for homomorphisms between topological groups.

In the following definition, a subset W of a group G is said to be countably syndetic

if there exist elements gn ∈ G for n ∈ ω such that G =
⋃

n∈ω gnW .

Definition 1.3 (Rosendal-Solecki [22]). Let G be a topological group. Then G

has the Steinhaus property if there exists a fixed integer k ≥ 1 such that for every

symmetric countably syndetic subset W ⊆ G, the k-fold product W k contains an

open neighborhood of the identity element 1G.

Proposition 1.4 (Rosendal-Solecki [22]). If G is a topological group with the Stein-

haus property and ϕ : G → H is a homomorphism into a separable group H, then

ϕ is necessarily continuous.
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The class of groups with the Steinhaus property includes Polish groups with

ample generics [14], Aut(Q, <), Homeo(R) [22] and full groups of ergodic countable

Borel equivalence relations [15]. As we mentioned earlier, in this paper, we will

be studying the Bergman and Steinhaus properties for infinite products of finite

groups. There are currently very few such groups which are known to have either the

Bergman property or the Steinhaus property. In [6], improving an earlier result of

Koppelberg-Tits [16], de Cornulier proved that if G is a product of countably many

copies of a fixed finite perfect group, then G has the Bergman property; and in [23],

Rosendal pointed out that the arguments in Saxl-Shelah-Thomas [24] and Thomas

[29] can be modified to prove that
∏

Alt(2n) also has the Bergman property. No

infinite product of finite groups is currently known to have the Steinhaus property.

On the other hand, there are many such groups which are known to have neither

the Bergman nor the Steinhaus property. In particular, the following result holds.

Theorem 1.5. If ( pn | n ∈ ω ) is an increasing sequence of primes, then:

(a)
∏
SL(2, pn) has countable cofinality;

(b)
∏
SL(2, pn) is not Cayley bounded; and

(c)
∏
SL(2, pn) does not have the Steinhaus property.

Theorem (1.5)(a) is essentially contained in Saxl-Shelah-Thomas [24]. However,

since certain features of the argument provide the motivation for this paper, we

will quickly run through the very easy proof. (The other parts of Theorem 1.5

will be proved in Section 2.) Let U be a nonprincipal ultrafilter over ω and let

K =
∏
U Fpn

be the corresponding ultraproduct of the fields Fpn
of order pn. Then

K is an uncountable field and∏
U
SL(2, pn) ∼= SL(2,

∏
U

Fpn) = SL(2,K).

It follows that SL(2,K) is a homomorphic image of
∏
SL(2, pn) and hence Theorem

1.5(a) is an easy consequence of the following observation.

Proposition 1.6. If F is an uncountable field, then SL(2, F ) has countable cofi-

nality.

Proof. Let B be a transcendence basis of F over its prime subfield. Then B is

uncountable and hence we can express B =
⋃

n∈ω Bn as the union of a countable
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strictly increasing chain of proper subsets. For each n ∈ ω, let Fn be the algebraic

closure of Bn in F . Then the strictly increasing chain of proper subgroups

SL(2, F ) =
⋃
n∈ω

SL(2, Fn)

witnesses that SL(2, F ) has countable cofinality. �

The proofs of Theorems (1.5)(b) and (1.5)(c), which are given in Section 2, also

involve the use of an ultraproduct
∏
U SL(2, pn); and it is natural to ask whether

the existence of a nonprincipal ultrafilter U over ω is either necessary or sufficient

in order to prove the various parts of Theorem 1.5. Of course, when considering

this kind of question, we cannot work with the usual ZFC axioms of set theory

since these already imply the existence of nonprincipal ultrafilters over arbitrary

infinite sets. Instead we will work with the axiom system ZF +DC, where DC is

the following weak form of the Axiom of Choice.

Axiom of Dependent Choice (DC). Suppose that X is a nonempty set and

that R is a binary relation on X such that for all x ∈ X, there exists y ∈ X with

x R y. Then there exists a function f : ω → X such that f(n) R f(n + 1) for all

n ∈ ω.

The axiom system ZF + DC is sufficient to develop most of real analysis and

descriptive set, but is insufficient to prove the existence of pathologies such as non-

measurable sets. (For example, see Moschovakis [21].) In particular, since nonprin-

cipal ultrafilters over ω are nonmeasurable subsets of 2N, it follows that ZF +DC

does not prove the existence of such ultrafilters. The following result, which will

be proved in Section 3, shows that the existence of a nonprincipal ultrafilter over ω

is indeed necessary in order to prove either Theorem (1.5)(a) or Theorem (1.5)(b).

It is currently not known whether Theorem (1.5)(c) implies the existence of a non-

principal ultrafilter over ω. However, in Section 3, we will show that the failure of

a weak form of the Steinhaus property does imply the existence of such ultrafilters.

Theorem 1.7 (ZF +DC). Let ( pn | n ∈ ω ) be an increasing sequence of primes.

If
∏
SL(2, pn) does not have the Bergman property, then there exists a nonprincipal

ultrafilter over ω.
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On the other hand, we will also show that the existence of a nonprincipal ultra-

filter over ω is not sufficient to prove any of the parts of Theorem 1.5. In order to

explain this result, it will be necessary in the remainder of this section to assume

the existence of suitable large cardinals. We will not specify the precise large cardi-

nal hypothesis that we need until it becomes necessary to do so in Section 6. (This

paper has been written so that the first five sections can be read by mathematicians

with no knowledge of advanced set theory, such as forcing, large cardinals, etc. It is

only in the final section that some knowledge of advanced set theory is needed and

this section can be omitted by mathematicians without the necessary background.)

Following the usual convention [31], we will indicate the use of a large cardinal

hypothesis by writing (LC) before the statement of the relevant theorem.

Recall that an inner model of ZF is a transitive class which contains all the

ordinals and satisfies the ZF axioms. (For example, it is well-known that the

constructible universe L is the smallest inner model of ZF .) Let L(R) be the

smallest inner model which contains all of the reals. Then L(R) is a model of

ZF + DC; and, assuming the existence of suitable large cardinals, L(R) satisfies

the Axiom of Determinacy, which rules out the existence of pathologies such as

nonmeasurable set of reals, etc. In particular, it follows that L(R) does not contain

any nonprincipal ultrafilters over ω. Let L(R)[U ] be the generic extension of L(R)

obtained by forcing with P(ω)/Fin to adjoin the nonprincipal ultrafilter U over ω.

Then Di Prisco-Todorcevic [7] have shown that many of the regularity properties

of L(R) also hold in L(R)[U ]. For example, in L(R)[U ], every uncountable set of

reals has a perfect subset. Thus it seems natural to regard L(R)[U ] as a canonical

model of ZF + DC in which a minimal number of the pathological consequences

of the Axiom of Choice hold, modulo the existence of a nonprincipal ultrafilter U

over ω. The following result, which we will prove in Section 4, provides yet more

evidence for this point of view.

Theorem 1.8 (LC). If ( pn | n ∈ ω ) is any increasing sequence of primes, then∏
SL(2, pn) has the Bergman property in L(R)[U ].

It is currently not known whether the analogous result holds for the Steinhaus

property. However, in Section 4 we will prove the following result; and we will also
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prove that if ( pn | n ∈ ω ) is any increasing sequence of primes, then
∏
SL(2, pn)

satisfies a weak form of the Steinhaus property.

Theorem 1.9 (LC). If ( pn | n ∈ ω ) is a sufficiently fast growing sequence of

primes, then
∏
SL(2, pn) has the Steinhaus property in L(R)[U ].

Examining the above proof of Theorem (1.5)(a), we see that it relies upon the

following three consequences of the Axiom of Choice:

(i) the existence of a nonprincipal ultrafilter U over ω;

(ii) the existence of a transcendence basis B of the field
∏
U Fpn

; and

(iii) the existence of an expression of B as the union of a countable strictly

increasing chain of proper subsets.

Clearly L(R)[U ] satisfies (i); and since DC implies that every infinite set has a

denumerably infinite subset, it follows easily that every infinite set can be expressed

as the union of a countable strictly increasing chain of proper subsets in L(R)[U ].

Consequently, assuming LC, if ( pn | n ∈ ω ) is any increasing sequence of primes,

then (ii) must fail in L(R)[U ].

Corollary 1.10 (LC). If ( pn | n ∈ ω ) is any increasing sequence of primes, then

the field
∏
U Fpn

does not have a transcendence basis in L(R)[U ].

This paper is organized as follows. Let ( pn | n ∈ ω ) be an increasing sequence

of primes. In Section 2, we will prove that
∏
SL(2, pn) is not Cayley bounded and

does not have the Steinhaus property. In Section 3, working with the axiom system

ZF +DC, we will prove that if
∏
SL(2, pn) does not have the Bergman property,

then there exists a nonprincipal ultrafilter over ω; and we will show that the failure

of a weak form of the Steinhaus property also implies the existence of such an

ultrafilter. In Section 4, we will present a partition property PP for products of

finite sets with measures; and we will show that ZF + DC + PP implies that if

( pn | n ∈ ω ) is a sufficiently fast growing sequence of primes, then
∏
SL(2, pn)

has both the Bergman property and the Steinhaus property. In Section 5, we will

briefly discuss the questions of which infinite products of nonabelian finite simple

groups have either the Bergman property or the Steinhaus property in the actual

set-theoretic universe V . Finally, in Section 6, assuming the existence of suitable

large cardinals, we will prove that L(R)[U ] satisfies PP .
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Notation 1.11. Let (Hn | n ∈ ω ) be a sequence of finite groups and let H =
∏
Hn.

Suppose that A ⊆ ω.

(i)
∏

n∈AHn denotes the subgroup ofH consisting of those elements (hn ) ∈ H

such that hn = 1 for all n ∈ ω rA.

(ii) If h = (hn ) ∈ H, then h � A denotes the element ( gn) ∈
∏

n∈AHn such

that gn = hn for all n ∈ A.

Recall that a subgroup G 6 H is open if and only if there exists a cofinite subset

A ⊆ ω such that
∏

n∈AHn 6 G.

2. On the failure of the Bergman and Steinhaus properties

In this section, we will prove Theorems (1.5)(b) and (1.5)(c). Once again, let

U be a nonprincipal ultrafilter over ω and let K =
∏
U Fpn

be the corresponding

ultraproduct of the fields Fpn
of order pn. The arguments in this section depend

upon the existence of a suitable valuation υ : K → Q ∪ {∞}.

Definition 2.1. Let F be a field and let t be an indeterminate over F . Then F ((t))

denotes the corresponding field of formal power series; and

P(F ) =
⋃
n≥1

F ((t1/n))

denotes the corresponding field of Puiseux expansions. Let υF : P(F ) → Q∪ {∞}

be the valuation which is defined as follows. If

0 6= a =
∞∑

k≥M

akt
k/n ∈ P(F )

where ak ∈ F , aM 6= 0, k, M ∈ Z and n ≥ 1, then υF (a) = M/n. (As usual, we set

υF (0) = ∞.)

It is well-known that if F is an algebraically closed field of characteristic 0,

then P(F ) is algebraically closed. (For example, see Chevalley [4].) In particular,

if Q is the field of algebraic numbers, then P(Q) is an algebraically closed field

of cardinality 2ω. Hence, since K =
∏
U Fpn is a field of characteristic 0 and

|K| = 2ω, we can suppose that K is a subfield of P(Q). Furthermore, since K

is uncountable and the automorphism group of P(Q) acts transitively on non-

algebraic elements, we can suppose that t ∈ K. From now on, we let υ = υQ � K
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denote the corresponding valuation of K and let R = { a ∈ K | υ(a) ≥ 0 } be the

corresponding valuation ring.

The fact that
∏
SL(2, pn) does not have the Steinhaus Property is an easy

consequence of the following result, which was proved in Thomas [29, Section 2].

Theorem 2.2. [SL(2,K) : SL(2, R) ] = ω.

Sketch proof. For each n ∈ ω, let Kn = K ∩Q((t1/n!)) and let Rn = R∩Kn. Then

υ � Kn is a nontrivial discrete valuation on Kn with countable residue field and

hence [SL(2,Kn) : SL(2, Rn) ] = ω. (For example, see Serre [26, Chapter II].)

Since K =
⋃

n∈ω Kn, it follows that [SL(2,K) : SL(2, R) ] = ω. �

Corollary 2.3.
∏
SL(2, pn) does not have the Steinhaus Property.

Proof. Let π :
∏
SL(2, pn) → SL(2,K) be the canonical surjective homomorphism

and let H = π−1[SL(2, R)]. Then [
∏
SL(2, pn) : H ] = ω and it follows that H is

a symmetric countably syndetic subset of
∏
SL(2, pn). Obviously Hk = H for all

k ≥ 1 and it is clear that H does not contain a neighborhood of the identity, since

this would include a subgroup of finite index. �

In the remainder of this section, we will prove that
∏
SL(2, pn) is not Cayley

bounded. By the following easy observation, it is enough to show that SL(2,K) is

not Cayley bounded.

Lemma 2.4. Suppose that G is a group and that N E G is a normal subgroup. If

G is Cayley bounded, then H = G/N is also Cayley bounded.

Proof. Suppose that the symmetric generating set S ⊆ H witnesses that H is not

Cayley bounded. Let π : G → H be the canonical surjective homomorphism and

let T = π−1(S). Then T witnesses that G is not Cayley bounded. �

Recall that after identifying K with its image under a suitable embedding into

the field P(Q) of Puiseux series in the indeterminate t, we are supposing that

t ∈ K =
∏
U Fpn

. Also note that υ(t) = 1 and that υ(t−1) = −1. For each

k ∈ K∗ = K r {0}, let

x(k) =

1 k

0 1

 y(k) =

1 0

k 1

 d(k) =

k 0

0 k−1


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Then it is well-known that T = {x(k) | k ∈ K∗ } ∪ { y(k) | k ∈ K∗ } generates

SL(2,K). (For example, see Lang [17, Lemma XIII.8.1].) Let

U = { d(t), d(t−1) } ∪ {x(k) | 0 ≤ υ(k) ≤ 2} ∪ { y(k) | 0 ≤ υ(k) ≤ 2}.

Since υ(−k) = υ(k) for all k ∈ K∗, it follows that U is a symmetric subset of

SL(2,K). We claim that U generates SL(2,K). To see this, note that

d(t)x(k)d(t)−1 = x(t2k) d(t)−1x(k)d(t) = x(t−2k)

and that

υ(t2k) = υ(t2) + υ(k) = υ(k) + 2 υ(t−2k) = υ(t−2) + υ(k) = υ(k)− 2.

Hence if k ∈ K∗, then there exists m ∈ Z such that d(t)mx(k)d(t)−m ∈ U ; and

similarly, there exists m ∈ Z such that d(t)my(k)d(t)−m ∈ U . It follows that

T ⊆ 〈U 〉 and hence 〈U 〉 = SL(2,K). Next for each matrix

A =

a1 a2

a3 a4

 ∈ SL(2,K),

we define

τ(A) = min{ υ(ai) | 1 ≤ i ≤ 4, ai 6= 0 }.

Notice that sincea1 a2

a3 a4

 b1 b2

b3 b4

 =

a1b1 + a2b3 a1b2 + a2b4

a3b1 + a4b3 a3b2 + a4b4


and since, for example,

υ(a1b1 + a2b3) ≥ min{ υ(a1b1), υ(a2b3) }

= min{ υ(a1) + υ(b1), υ(a2) + υ(b3) },

it follows that τ(AB) ≥ τ(A) + τ(B) for all A, B ∈ SL(2,K). Finally recall that

for each m ∈ N, we have that υ(t−m) = −m and so τ(d(tm)) = −m. It now follows

easily that for each n ∈ N, there exists m ∈ N such that d(tm) is not a product of

n elements of U ∪ { 1 }. Thus SL(2,K) is not Cayley bounded and it follows that∏
SL(2, pn) is not Cayley bounded.
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3. On the existence of nonprincipal ultrafilters

In this section, working with the axiom system ZF +DC, we will first prove that

if
∏
SL(2, pn) does not have the Bergman property, then there exists a nonprincipal

ultrafilter over ω. It is currently not known whether the failure of the Steinhaus

property also implies the existence of a nonprincipal ultrafilter over ω. However,

we will show that the failure of a weak form of the Steinhaus property does imply

the existence of such an ultrafilter. We will make repeated use of the following

algebraic result.

Proposition 3.1 (Ellers-Gordeev-Herzog [10]). If K is any field such that |K| > 5

and C is any noncentral conjugacy class of SL(2,K), then C8 = SL(2,K).

Proof of Theorem 1.7 (ZF +DC). Suppose that G =
∏
SL(2, pn) does not have

the Bergman property. Then we can express G =
⋃

k∈ω Uk as the union of a strictly

increasing chain of symmetric proper subsets such that UkUk ⊆ Uk+1 for all k ∈ ω.

Consider

I = {A ⊆ ω |
∏

n∈A
SL(2, pn) ⊆ Uk for some k ∈ ω }.

Then clearly I is an ideal which contains all the finite subsets of ω. Hence it is

enough to prove that there exists a set B /∈ I such that I ∩ P(B) is a prime ideal

over B.

Suppose that no such set B exists. Then for each A /∈ I, there exists A′ ⊆ A

such that A′ /∈ I and A r A′ /∈ I; and hence we can inductively find pairwise

disjoint subsets {Ak | k ∈ ω } of ω such that Ak /∈ I and ω r
⋃

`≤k A` /∈ I for all

k ∈ ω.

Claim 3.2. There exists k ∈ ω such that for every h ∈
∏

n∈Ak
SL(2, pn), there

exists g ∈ Uk such that g � Ak = h.

Proof of Claim 3.2. If not, then there exists h ∈ G such that for all k ∈ ω and

g ∈ Uk, we have that g � Ak 6= h � Ak. But this means that h /∈
⋃

k∈ω Uk, which is

a contradiction. �

Fix some such k ∈ ω and let h = (hn ) ∈
∏

n∈Ak
SL(2, pn) be such that hn is a

noncentral element of SL(2, pn) for all n ∈ Ak. Let h ∈ U` and let m = max{ k, ` }.

Then it follows that the conjugacy class C of h in
∏

n∈Ak
SL(2, pn) is contained
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in U 3
m; and hence by Proposition 3.1,

∏
n∈Ak

SL(2, pn) is contained in U 24
m . But

this means that
∏

n∈Ak
SL(2, pn) ⊆ Um+5, which contradicts the fact that Ak /∈ I.

This completes the proof of Theorem 1.7. �

In the remainder of this section, we will consider the following weak form of the

Steinhaus property.

Definition 3.3. The Polish group G is said to have the weak Steinhaus property

if for every symmetric countably syndetic subset W ⊆ G, there exists an integer

k ≥ 1 such that W k contains an open neighborhood of the identity element 1G.

For example, if the Polish group G has a non-open subgroup of countable index,

then clearly G does not have the weak Steinhaus property. In particular, if we

work with ZFC, then Theorem 2.2 implies that
∏
SL(2, pn) does not have the

weak Steinhaus property. The rest of this section is devoted to the proof of the

following result.

Theorem 3.4 (ZF +DC). Let ( pn | n ∈ ω ) be an increasing sequence of primes.

If
∏
SL(2, pn) does not have the weak Steinhaus property, then there exists a non-

principal ultrafilter over ω.

Most of our effort will go into proving the following special case of Theorem 3.4.

Theorem 3.5 (ZF +DC). Let ( pn | n ∈ ω ) be an increasing sequence of primes.

If there exists a subgroup H 6
∏
SL(2, pn) such that [

∏
SL(2, pn) : H ] = ω, then

there exists a nonprincipal ultrafilter over ω.

The proof of Theorem 3.5 makes use of some of the basic properties of primitive

permutation groups. Recall that if Ω is any nonempty set and G 6 Sym(Ω), then

G is said to act primitively on Ω if:

(i) G acts transitively on Ω; and

(ii) there does not exist a nontrivial G-invariant equivalence relation on Ω.

It is well-known that ifG 6 Sym(Ω) is a transitive subgroup, thenG acts primitively

on Ω if and only if the stabilizer Gα = { g ∈ G | g(α) = α } is a maximal subgroup

of G for some (equivalently every) α ∈ Ω. Also if G acts primitively on Ω and

1 6= N E G is a nontrivial normal subgroup, then it follows that N must act

transitively on Ω. (For example, see Cameron [3, Theorem 1.7].)
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The proof of Theorem 3.5 also makes use of the following easy consequence of

Proposition 3.1.

Lemma 3.6 (ZF +DC). If ( pn | n ∈ ω ) is an increasing sequence of primes, then

every normal subgroup N of countable index in
∏
SL(2, pn) is open.

Proof. Let G =
∏
SL(2, pn) and let F = { gτ = ( gτ(n) ) | τ ∈ 2N } ⊆ G be a family

such that for each τ 6= σ ∈ 2N, there exists an integer n0 ≥ 0 such that

• gτ(n) = gσ(n) for all n < n0; and

• g−1
τ(n)gσ(n) is a noncentral element of SL(2, pn) for all n ≥ n0.

Since [G : N ] ≤ ω, there exist τ 6= σ ∈ 2N such that gτN = gσN and hence

g = g−1
τ(n)gσ(n) ∈ N . Since N is a normal subgroup, the conjugacy class C = gG

is contained in N . Applying Proposition 3.1, it follows easily that N contains the

open subgroup
∏

n≥n0
SL(2, pn) and hence N is open. �

Proof of Theorem 3.5. Let G =
∏
SL(2, pn) and let {Pj | j ∈ J } be the set of

open subgroups of G such that H 6 Pj . Since H 6
⋂

j∈J Pj and the intersection

of infinitely many open subgroups of G has index 2ω, it follows that J is finite. Let

G′ =
∏

n≥n0

SL(2, pn) 6
⋂
j∈J

Pj .

Then after replacing G by G′ and H by its projection H ′ into G′ if necessary, we

can suppose that H is not contained in any proper open subgroups of G.

LetG =
⊔

n∈ω gnH be the coset decomposition ofH inG. Then we can construct

a strictly increasing chain Hn of proper subgroups of G as follows.

• H0 = H.

• Suppose inductively thatHn has been defined and thatH 6 Hn < G. IfHn

is a maximal proper subgroup of G, then the construction terminates with

Hn. Otherwise, let kn be the least integer k such that Hn < 〈Hn, gk 〉 < G

and let Hn+1 = 〈Hn, gkn 〉.

If the construction does not terminate after finitely many steps, then G =
⋃

n∈ω Hn

has countable cofinality; and hence, by Theorem 1.7, there exists a nonprincipal

ultrafilter over ω. Thus we can suppose that there exists an integer n such that

Hn is a maximal proper subgroup of G. We claim that [G : Hn ] = ω. If not,

then [G : Hn ] < ω and hence N =
⋂

g∈G gHng
−1 is a normal subgroup of G such



ON THE BERGMAN AND STEINHAUS PROPERTIES 13

that N 6 Hn and [G : N ] < ω. Applying Lemma 3.6, we see that N is an open

subgroup of G and hence Hn is also an open subgroup of G. But this contradicts

the fact that H is not contained in any proper open subgroups of G.

In order to simplify notation, we will suppose that H is a maximal subgroup of

G. Hence, by considering the left translation action of G on the set { gnH | n ∈ N },

we obtain a homomorphism

ψ : G→ Sym(N)

such that ψ(G) acts primitively on N. It follows that if N E G is any normal

subgroup, then either ψ(N) = 1 or else ψ(N) acts transitively on N. Let

I = {A ⊆ ω | ψ(
∏

n∈A
SL(2, pn)) = 1 }.

Then I is clearly an ideal on ω. Furthermore, if F ⊆ ω is a finite subset, then

ψ(
∏

n∈F SL(2, pn)) cannot act transitively on N and so F ∈ I. We will show that

I is a prime ideal.

So suppose that there exists a subset A ⊆ ω such that both A /∈ I and ωrA /∈ I.

Let P =
∏

n∈A SL(2, pn) and let Q =
∏

n∈ωrA SL(2, pn). Then both ψ(P ) and

ψ(Q) act transitively on N. Suppose that g ∈ P is such that ψ(g) fixes some integer

n ∈ N. If k ∈ N is arbitrary, then there exists h ∈ Q such that ψ(h)(n) = k; and

since g and h commute, it follows that

ψ(g)(k) = (ψ(g) ◦ ψ(h) )(n) = (ψ(h) ◦ ψ(g) )(n) = ψ(h)(n) = k.

Thus g ∈ kerψ. It follows that N = kerψ ∩P is a normal subgroup of P such that

[P : N ] = ω, which contradicts Lemma 3.6. �

Proof of Theorem 3.4. LetG =
∏
SL(2, pn) and suppose that the symmetric count-

ably syndetic subset W ⊆ G witnesses the failure of the weak Steinhaus property.

Let H = 〈W 〉 be the subgroup generated by W . Then clearly [G : H ] ≤ ω. If

[G : H ] = ω, then the result follows from Theorem 3.5 and so we can suppose that

[G : H ] < ω. Applying Lemma 3.6, it follows easily that H is an open subgroup

of G. Let

G′ =
∏

n≥n0

SL(2, pn) 6 H

and let π : G → G′ be the canonical projection. Consider the set W ′ = π(W ) of

generators of G′. If W ′ witnesses that G′ is not Cayley bounded, then the result
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follows from Theorem 1.7. Hence we can suppose that there exists an integer k ≥ 1

such that (W ′)k = G′. Let g = (gn) ∈ G′ be such that gn is a noncentral element of

SL(2, pn) for all n ≥ n0. Then g ∈W ` for some ` ≥ 1; and Proposition 3.1 implies

that

G′ ⊆W kW `W k · · ·W kW `W k︸ ︷︷ ︸
8 times

= W 16k+8`.

But this contradicts the assumption that W witnesses the failure of the weak Stein-

haus property. �

4. The Bergman and Steinhaus Properties in L(R)[U ]

In this section, assuming the existence of suitable large cardinals (LC), we will

prove that if ( pn | n ∈ ω ) is a sufficiently fast growing sequence of primes, then∏
SL(2, pn) has both the Bergman property and the Steinhaus property in L(R)[U ].

More precisely, we will present a partition property PP for products of finite sets

with measures; and we will show that ZF +DC + PP implies that if ( pn | n ∈ ω )

is a sufficiently fast growing sequence of primes, then
∏
SL(2, pn) has both the

Bergman property and the Steinhaus property. Then in Section 6, assuming the

existence of suitable large cardinals, we will prove that PP holds in L(R)[U ].

The Partition Property (PP ). If ( 〈an, µn〉 | n ∈ ω ) is a sufficiently fast growing

sequence of finite sets an with measures µn, then for every partition∏
an =

⊔
m∈ω

Xm,

there exists an integer m ∈ ω such that
∏
bn ⊆ Xm for some sequence of subsets

bn ⊆ an such that limn→∞ µn(bn) = ∞.

Here the words “sufficiently fast growing” should be interpreted in the sense that

there is a fixed function f that assigns a natural number to every finite sequence

of finite sets with measures ( 〈am, µm〉 | m < n ) and that an infinite sequence

( 〈an, µn〉 | n ∈ ω ) is sufficiently fast growing if

µn(an) > f( ( 〈am, µm〉 | m < n ) )

for all n ∈ ω. The exact formula for the function f is immaterial for the purposes

of this paper. We will only mention that it is primitive recursive with a growth

rate approximately that of a tower of exponentials of linear height.
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The partition property PP fails in ZFC, since the Axiom of Choice can be used

to construct highly irregular partitions. However, it does hold in ZFC if we restrict

our attention to partitions into Borel sets; and it also hold for arbitrary partitions

in many models of set theory in which the Axiom of Choice fails. In particular, we

will prove the following result in Section 6.

Theorem 4.1 (LC). L(R)[U ] satisfies PP .

We will also make use of the following recent result of Babai-Nikolov-Pyber [1]

in the newly flourishing area of “arithmetic combinatorics”.

Definition 4.2. If H is a finite group, then d(H) denotes the minimal dimension

of a nontrivial complex representation of H; i.e. the least d such that there exists

a nontrivial homomorphism θ : H → GL(d,C).

Theorem 4.3 (Babai-Nikolov-Pyber [1]). Let H be a nontrivial finite group and

let k be an integer such that 1 ≤ k3 ≤ d(H). If A ⊆ H is a subset such that

|A| ≥ |H|/k, then A3 = H.

Proof. Let d′(H) be the minimal dimension of a nontrivial real representation of

H. Then Babai-Nikolov-Pyber [1, Corollary 2.6] implies that if 1 ≤ k3 ≤ d′(H) and

A ⊆ H with |A| ≥ |H|/k, then A3 = H. Since d(H) ≤ d′(H), the result follows. �

Theorem 4.4 (ZF + DC + PP ). If (Hn | n ∈ ω ) is a sequence of finite groups

such that ( d(Hn) | n ∈ ω ) grows sufficiently fast, then
∏
Hn has both the Bergman

property and the Steinhaus property.

Proof. For each n ∈ ω, let kn = bd(Hn)1/3c and let µn be the measure on Hn

defined by µn(A) = kn ( |A|/|Hn| ). To see that G =
∏
Hn has the Steinhaus

property, suppose that W ⊆ G is a symmetric countably syndetic subset and let

G =
⋃

m∈ω gmW . Since µn(Hn) = kn grows sufficiently fast, PP implies that there

exists m ∈ ω such that
∏
An ⊆ gmW for some sequence of subsets An ⊆ Hn such

that limn→∞ µn(An) = ∞; and after replacing
∏
An by g−1

m

∏
An, we can suppose

that
∏
An ⊆ W . Let n0 ∈ ω be such that µn(An) ≥ 1 and hence |An| ≥ |Hn|/kn

for all n ≥ n0. Clearly we can suppose that An = { an } is a singleton for each

n < n0. Applying Theorem 4.3, it follows that W 3 ⊇ gG′, where
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• g = ( a3
0, · · · , a3

n0−1, 1, 1, · · · ) and

• G′ is the open subgroup { (hn ) ∈
∏
Hn | hn = 1 for all n < n0 }.

Since W is symmetric, it follows that W 6 ⊇ (gG′)−1gG′ = G′. This completes the

proof that
∏
Hn has the Steinhaus property.

To see that G =
∏
Hn has the Bergman property, suppose that we can express

G =
⋃

m∈ω Um as the union of an increasing chain of symmetric proper subsets

such that UmUm ⊆ Um+1 for all m ∈ ω. Arguing as above, it follows that there

exists m ∈ ω such that U6
m contains an open subgroup G′ and hence G′ ⊆ Um+3.

Since [G : G′ ] < ∞, this implies that there exists k ∈ ω such that G = Uk, as

required. �

It is perhaps worth pointing out that the proof of following corollary does not

make use of the classification of the finite simple groups.

Corollary 4.5 (LC). If (Sn | n ∈ ω ) is a sufficiently fast growing sequence of

nonabelian finite simple groups, then
∏
Sn has both the Bergman property and the

Steinhaus property in L(R)[U ].

Proof. By Jordan’s Theorem, there exists a function ϕ : N → N such that if H is a

finite subgroup of GL(n,C), then H contains an abelian normal subgroup N with

[H : N ] ≤ ϕ(n). (For example, see Curtis-Reiner [5, Theorem 36.13].) Hence if

|Sn| grows sufficiently fast, then d(Sn) also grows sufficiently fast. �

Corollary 4.6 (LC). If ( pn | n ∈ ω ) is a sufficiently fast growing sequence of

primes, then
∏
SL(2, pn) has both the Bergman property and the Steinhaus property

in L(R)[U ].

Proof. It is well-known that if p is an odd prime, then the minimal dimension of

a nontrivial complex representation of SL(2, p) is (p − 1)/2. (For example, see

Humphreys [12].) �

The growth condition on ( pn | n ∈ ω ) in the statement of Corollary 4.6 is almost

certainly not necessary.

Theorem 4.7 (LC). If ( pn | n ∈ ω ) is any increasing sequence of primes, then∏
SL(2, pn) has both the Bergman property and the weak Steinhaus property in

L(R)[U ].
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The proof of Theorem 4.7 makes use of the following two simple observations.

Lemma 4.8. If p1 < · · · < pt are odd primes and H = SL(2, p1)× · · · × SL(2, pt),

then d(H) = (p1 − 1)/2.

Proof. Clearly d(H) ≤ d(SL(2, p1) ) = (p1 − 1)/2. So suppose that d < (p1 − 1)/2

and that θ : H → GL(d,C) is a homomorphism. Then θ � SL(2, pi) is the trivial

homomorphism for each 1 ≤ i ≤ n and hence θ is trivial. �

Lemma 4.9. If ( pn | n ∈ ω ) is an increasing sequence of primes, then there exists

an increasing sequence of integers 0 = a0 < a1 < · · · < an < · · · such that if

Hn =
∏

a2n≤i<a2n+1

SL(2, pi) and Kn =
∏

a2n+1≤i<a2n+2

SL(2, pi),

then both ( d(Hn) | n ∈ ω ) and ( d(Kn) | n ∈ ω ) grow sufficiently fast.

Proof. First let a1 = 1. Now suppose that n ≥ 1 and that a` has been defined for all

` ≤ n. Suppose, for example, that n = 2m+1 is odd, so that the groupsH0, · · · ,Hm

have already been determined. Then we can choose a2m+2 so that (p2m+2 − 1)/2

is sufficiently large with respect to ( d(H0), · · · , d(Hm) ). Applying Lemma 4.8, it

follows that for any choice of a2m+3, we will have that d(Hm+1) = (p2m+2 − 1)/2

is sufficiently large with respect to ( d(H0), · · · , d(Hm) ). �

Proof of Theorem 4.7. Let ( pn | n ∈ ω ) be any increasing sequence of primes.

Working inside L(R)[U ], first suppose that
∏
SL(2, pn) does not have the Bergman

property and express G =
⋃

k∈ω Uk as the union of a strictly increasing chain of

symmetric proper subsets such that UkUk ⊆ Uk+1 for all k ∈ ω. Then

I = {A ⊆ ω |
∏

n∈A
SL(2, pn) ⊆ Uk for some k ∈ ω }.

is an ideal which contains all the finite subsets of ω; and the proof of Theorem 1.7

shows that there exists a set B /∈ I such that I ∩ P(B) is a prime ideal over B. In

order to simplify notation, suppose that B = ω and let D be the dual nonprincipal

ultrafilter over ω. Let ( an | n ∈ ω ) be the increasing sequence of natural numbers

given by Lemma 4.9. Then we can suppose that

A = { i | a2n ≤ i < a2n+1 for some n ∈ ω } ∈ D.
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Since ( d(Hn) | n ∈ ω ) grows sufficiently fast, it follows that∏
Hn =

∏
n∈A

SL(2, pn)

has the Bergman property. For each k ∈ ω, let

Wk = { g � A | g ∈ Uk } ⊆
∏

n∈A
SL(2, pn).

Then there exists k ∈ ω such that Wk =
∏

n∈A SL(2, pn). Arguing as in the proof of

Theorem 1.7, it follows that
∏

n∈A SL(2, pn) ⊆ U` for some ` ≥ k, which contradicts

the fact that A /∈ I. Thus
∏
SL(2, pn) has the Bergman property.

To show that
∏
SL(2, pn) has the weak Steinhaus property, we will first prove

that
∏
SL(2, pn) has no subgroups H such that [

∏
SL(2, pn) : H ] = ω. So suppose

that such a subgroup H exists. Then, arguing as in the proof of Theorem 3.5 and

using the fact that
∏
SL(2, pn) has the Bergman property, we can suppose that H

is a maximal proper subgroup. Hence, by considering the left translation action of∏
SL(2, pn) on the set of cosets of H in

∏
SL(2, pn) , we obtain a homomorphism

ψ :
∏

SL(2, pn) → Sym(N)

such that ψ(
∏
SL(2, pn)) acts primitively on N. In particular, it follows that if

N E
∏
SL(2, pn) is any normal subgroup, then either ψ(N) = 1 or else ψ(N) acts

transitively on N. Arguing as in the proof of Theorem 3.5, we see that

D = {A ⊆ ω | ψ(
∏

n∈A
SL(2, pn)) 6= 1 }.

is a nonprincipal ultrafilter over ω. Arguing as in the previous paragraph, it follows

that there exists a subset A ∈ D such that
∏

n∈A SL(2, pn) has the Steinhaus prop-

erty. But since ψ(
∏

n∈A SL(2, pn)) acts transitively on N, there exists a subgroup

K such that [
∏

n∈A SL(2, pn) : K ] = ω, which is a contradiction.

At this point, we know that
∏
SL(2, pn) has the Bergman property and that∏

SL(2, pn) has no subgroups H with [
∏
SL(2, pn) : H ] = ω. Arguing as in the

proof of Theorem 3.4, it follows easily that
∏
SL(2, pn) has the weak Steinhaus

property. �

We will conclude this section with a result which shows that it is necessary to

impose some condition on the growth rate of the sequence ( d(Hn) | n ∈ ω ) if we

wish to obtain the conclusion of Theorem 4.4.
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Theorem 4.10 (ZF + DC). Suppose that there exists a nonprincipal ultrafilter

over ω. Then whenever (Hn | n ∈ ω ) is a sequence of finite groups such that

lim inf d(Hn) <∞, then
∏
Hn does not have the Steinhaus property.

Proof. Recall that every complex representation of a finite group is similar to a

unitary representation. (For example, see Curtis-Reiner [5, Exercise 10.6].) Hence

there exists an infinite subset I ⊆ ω and a fixed integer d ≥ 1 such that for each

n ∈ I, there exists a nontrivial homomorphism ϕn : Hn → U(d,C), where U(d,C)

denotes the compact group of d×d unitary matrices. In order to simplify notation,

we will suppose that I = ω.

For each gn ∈ Hn and 1 ≤ i, j ≤ d, let ϕn(gn)ij denote the ij entry of the matrix

ϕn(gn) ∈ U(d,C). Then if U is a nonprincipal ultrafilter over ω, we can define a

homomorphism

ψ :
∏

Hn → U(d,C)

( gn ) 7→ ( zij ),

where zij = limU ϕn(gn)ij . By Proposition 1.4, in order to prove that
∏
Hn does

not have the Steinhaus property, it is enough to show that ψ is not continuous. So

suppose that ψ is continuous and let W ⊆ U(d,C) be an open neighborhood of the

identity element which contains no nontrivial subgroups. (For the existence of such

a neighborhood, see Helgason [11, II.B.5].) Then there exists an open subgroup

H ⊆
∏
Hn such that ψ(H) ⊆ W and clearly this implies that H 6 kerψ. In

particular, there exists a cofinite subset K ⊆ ω such that
∏

k∈K Hk 6 kerψ. For

each k ∈ K, choose gk ∈ Hk such that ϕk(gk) /∈ W . Then, letting g = (gk) ∈∏
k∈K Hk, we have that ψ(g) /∈W , which is a contradiction. �

Remark 4.11. Recall that de Cornulier [6] has shown that if G is an infinite product

of countably many copies of a fixed finite perfect group H, then G has the Bergman

property. Thus the analogue of Theorem 4.10 is false for the Bergman property.

5. The Bergman and Steinhaus Properties in V

Suppose that (Sn | n ∈ ω ) is a sequence of nonabelian finite simple groups.

Then, applying Theorem 4.1 and Corollary 4.5, it follows that if (Sn | n ∈ ω )

is sufficiently fast growing, then
∏
Sn has both the Bergman property and the
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Steinhaus property in L(R)[U ]. In this section, we will briefly discuss the question

of when
∏
Sn has either the Bergman property or the Steinhaus property in the

actual set-theoretic universe V . In particular, throughout this section, we will work

with the usual ZFC axioms of set theory.

Recall that the classification of the finite simple groups says that if S is a non-

abelian finite simple group, then one of the following cases must hold.

(i) S is one of the 26 sporadic finite simple groups.

(ii) S is an alternating group Alt(n) for some n ≥ 5.

(iii) S is a group L(q) of (possibly twisted) Lie type L over a finite field Fq for

some prime power q.

The following condition is the key to understanding when the product
∏
Sn has

countable cofinality.

Definition 5.1. A sequence (Sn | n ∈ ω) of nonabelian finite simple groups satisfies

the Malcev condition if there exists an infinite subset I of ω such that the following

properties hold.

(a) There exists a fixed (possibly twisted) Lie type L such that for all n ∈ I,

Sn = L(qn) for some prime power qn.

(b) If n, m ∈ I and n < m, then qn < qm.

Arguing as in the proof of Theorem 1.5(a), it follows easily that if (Sn | n ∈ ω)

satisfies the Malcev condition, then
∏
Sn has countable cofinality. Conversely, by

Saxl-Shelah-Thomas [24, Theorem 1.9], if (Sn | n ∈ ω) does not satisfy the Malcev

condition, then
∏
Sn has uncountable cofinality. Furthermore, as we mentioned

earlier, Rosendal [23] has checked that the arguments in Saxl-Shelah-Thomas [24]

and Thomas [29] can be modified to prove that
∏

Alt(2n) has the Bergman property.

Thus it seems natural to make the following conjecture.

Conjecture 5.2. If (Sn | n ∈ ω ) is a sequence of nonabelian finite simple groups,

then the following are equivalent:

(a) (Sn | n ∈ ω ) does not satisfy the Malcev condition.

(b)
∏
Sn has the Bergman property.

The proof of Theorem 1.5(c) can be adapted to show that if (Sn | n ∈ ω) satisfies

the Malcev condition, then there exists a subgroup H 6
∏
Sn with [

∏
Sn : H ] = ω
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and hence
∏
Sn does not have the Steinhaus property. (See Thomas [29].) Also, it

is easily seen that if (Sn | n ∈ ω) satisfies the following condition, then
∏
Sn has a

non-open subgroup of finite index and so once again the Steinhaus property fails.

(For example, see Saxl-Wilson [25].)

Definition 5.3. A sequence (Sn | n ∈ ω) of nonabelian finite simple groups satisfies

the Saxl-Wilson condition if there exists an infinite subset I of ω and a fixed group

S such that Sn = S for all n ∈ I.

In Thomas [29], it was shown that
∏
Sn has a non-open subgroup H such that

[
∏
Sn : H ] < 2ω if and only if (Sn | n ∈ ω) satisfies neither the Malcev condition

nor the Saxl-Wilson condition. Consequently, it seems natural to make the following

conjecture.

Conjecture 5.4. If (Sn | n ∈ ω ) is a sequence of nonabelian finite simple groups,

then the following are equivalent:

(a) (Sn | n ∈ ω ) satisfies neither the Malcev condition nor the Saxl-Wilson

condition.

(b)
∏
Sn has the Steinhaus property.

6. The Partition Property (PP )

Theorem 6.1. Suppose that κ is an inaccessible cardinal and that G ⊆ Coll(ω,< κ)

is a V -generic filter. If V (R̄) is the corresponding Solovay model and the Ramsey

ultrafilter Ū is V (R̄)-generic for P(ω)/Fin, then V (R̄)[Ū ] satisfies PP .

Proof of Theorem 4.1 (LC). Let κ be the least inaccessible cardinal and let V (R̄)[Ū ]

be as in Theorem 6.1. Then the Ramsey ultrafilter Ū is also L(R̄)-generic for

P(ω)/Fin. Working inside L(R̄)[Ū ], suppose that ( 〈an, µn〉 | n ∈ ω ) is a suffi-

ciently fast growing sequence of finite sets an with measures µn and that∏
an =

⊔
m∈ω

Xm,

is any partition. Since V (R̄)[Ū ] satisfies PP , there exists an integer m ∈ ω and

a sequence of subsets ( bn ⊆ an | n ∈ ω ) ∈ V (R̄)[Ū ] such that
∏
bn ⊆ Xm and

limn→∞ µn(bn) = ∞. Since L(R̄)[Ū ] and V (R̄)[Ū ] have the same reals, it follows

that ( bn ⊆ an | n ∈ ω ) ∈ L(R̄)[Ū ]. Thus L(R̄)[Ū ] satisfies PP . Finally since the
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theory of L(R)[U ] is not altered by forcing with Coll(ω,< κ), it follows that L(R)[U ]

satisfies also PP . �

The remainder of this section will be devoted to the proof of Theorem 6.1. The

key element of the proof is the work of Shelah-Zapletal [28] showing that for every

sufficiently fast growing sequence (〈an, µn〉 | n ∈ ω) of finite sets an with measures

µn, there is a notion of forcing P such that:

(1) P adds a new element ẋ ∈
∏

n an;

(2) P is proper, ωω-bounding and adds no independent reals;

(3) P is defined in a way that quantifies over real numbers only;

(4) for every transitive modelM of set theory and every condition p ∈ PM there

are sets (bn | n ∈ ω) with bn ⊆ an and µn(bn) →∞ such that the product∏
n bn consists of M -generic points for the poset PM

p = { q ∈ PM | q ≤ p }.

Here an independent real is an infinite set a ⊆ ω in the generic extension such that

neither a nor ω \ a contains a ground model subset.

Let κ is an inaccessible cardinal and let G ⊆ Coll(ω,< κ) be a V -generic filter.

Suppose that V (R̄) is the corresponding Solovay model and that the Ramsey ultra-

filter Ū is V (R̄)-generic for P(ω)/Fin. Let (〈an, µn〉 | n ∈ ω) be a sufficiently fast

growing sequence of finite sets an with measures µn and let
∏

n an =
⊔

mBm be

a partition of the product into countably many pieces in the model V (R)[U ]. By

standard homogeneity arguments regarding the poset Coll(ω,< κ), we can assume

that the sequence is in the ground model V and that the partition is definable from

the elements of the ground model and the ultrafilter U .

Working inside the ground model V , consider the product of the forcing P with

Q = P(ω)/Fin. Then the poset Q adds a Ramsey ultrafilter u and P adds a point

x ∈
∏

n an. Since the definition of the forcing P only depends on the real numbers,

it follows that PV = PV [ u ]. Hence if u,x are mutually generic, then x will be

PV [ u ]-generic over the model V [ u ].

Lemma 6.2. In V [u][x], u still generates a Ramsey ultrafilter.

Proof. By Shelah [27, VI.5.1], since PV = PV [ u ] is proper and ωω-bounding in

V [ u ], it is enough to show that u still generates an ultrafilter in V [u][x]. First note

that since Q is σ-closed and P is proper, it follows that P(ω)∩V [u][x] = P(ω)∩V [x].
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(Since P is proper, each real r ∈ V [u][x] is obtained from a countable collection

C = {Cn | n ∈ ω } ∈ V [ u ] of countable subsets Cn ⊆ P such that each Cn is

predense below some condition p ∈ P; and since Q is σ-closed, it follows that C ∈ V

and hence r ∈ V [x].) Now suppose that p ∈ P, q ∈ Q are conditions and that

p 
 τ ⊆ ω. Since P does not add any independent reals, there exists a condition

p′ ≤ p and an infinite subset q′ ⊆ q such that either p′ 
 q′ ⊆ τ or p′ 
 τ ∩ q′ = ∅.

Hence either 〈q′, p′〉 
 τ ∈ u̇ or 〈q′, p′〉 
 ω r τ ∈ u̇. It follows that u still generates

an ultrafilter in V [u][x]. �

Let D ∈ V [ u] be the poset consisting of the conditions ( s, S ), where s ∈ [ω]<ω

and S ∈ u, partially ordered by

( s, S ) ≤ ( t, T ) ⇐⇒ s ⊇ t and sr t ⊆ T.

Then D adjoins an infinite subset ċ ⊆ ω which diagonalizes the Ramsey ultrafilter

u; i.e. a subset ċ such that |ċ r S| < ∞ for all S ∈ u. In fact, by Mathias [20],

every set diagonalizing u is V [ u]-generic for the poset D. By Lemma 6.2, if ū is

the upwards closure of u in the model V [ u][x], ū is a Ramsey ultrafilter in V [ u][x].

Hence if D̄ ∈ V [x, u] is the corresponding poset diagonalizing ū, then D is dense in

D̄ and every set diagonalizing u is V [ u][x]-generic for both D̄ and D.

Lemma 6.3. In V [ u][x], there is a natural number n ∈ ω such that

D 
 Coll(ω,< κ) 
 ċ 
 x̌ ∈ Ḃn.

Proof. Suppose for contradiction that there are distinct numbers m0,m1 and con-

ditions 〈r0, s0, ḋ0〉, 〈r1, s1, ḋ1 in the three step iteration below 〈1, 1, ċ〉 such that the

first one forces x̌ ∈ Ḃm0 and the other x̌ ∈ Ḃm1 . Choose mutually V [x, u]-generic

filters H0 ⊆ D, K0 ⊆ Coll(ω,< κ) meeting the conditions r0, s0 and note that

d = ḋ0/H0,K0 ⊆ ċ/H is a V [x, u]-generic set for the poset D. Thus, with a finite

adjustment of the set d if necessary, we can find a filter H1 ⊆ D meeting the con-

dition r1 such that d = ċ/H1. Standard homogeneity facts about the Levy collapse

then show that there is a V [x, u][H1]-generic filter K1 ⊆ Coll(ω,< κ) meeting the

condition s1 such that V [x, u][H0,K0] = V [x, u][H1,K1]. Now in this latter model,

in the forcing P(ω)/Fin, the forcing theorem on the 0 side says that d 
 x̌ ∈ Ḃm0 ,
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and the forcing theorem on the 1 side says that ḋ1/H1,K1 
 x̌ ∈ Ḃm1 . However,

ḋ1/H1,K1 ⊆ ċ/H1 = d, a contradiction. �

In the model V [ u], find a condition p ∈ P that identifies the number n from

the previous claim. In the model V (R), find sets (bn | n ∈ ω) such that bn ⊆ an

and the numbers φn(bn) tend to infinity, so that the product
∏

n bn consists solely

of points P-generic for the model V [ u] meeting the condition p. Let c ⊆ ω be an

infinite set diagonalizing the ultrafilter u. By the previous claim and the forcing

theorem, the condition c forces in the poset P(ω)/Fin x̌ ∈ Ḃn for every x ∈
∏

n bn.

This completes the proof of Theorem 6.1.
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