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Abstract

For every Polish space and a coanalytic set of its countable subsets, if
there is a homogeneous set of outer measure one then there is a perfect
homogeneous set. In the generic extension by a large measure algebra,
if there is a homogeneous set of size continuum then there is a a perfect
homogeneous set.

Introduction

In a recent paper, Tamas Matrai showed

Fact 1.1. [/] Let X be a Polish space and A C [X]|X° be coanalytic.

Here, I call a set A C [X]|%° coanalytic if the set {# € X* : {#(n) : n € w} € A}
is a coanalytic subset of the space X“ equipped with the product topology. The

1. if there is a nonmeager set C C X such that [C]* C A, then there is a

perfect set P C X such that [P]N0 C A;

2. in the iterated Sacks model and the Cohen model, if there is a set C' C X
of size continuum such that [C]¥0 C A, then there is a perfect set P C X

such that [P]¥ C A.

sets C, P as in the statement of the fact are called homogeneous for A.

In this note, I will adjust Matrai’s argument to treat similar questions in the

context of Borel probability measures.

Theorem 1.2. Let X be a Polish space with a Borel probability measure and

A C [X]R be coanalytic.
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1. If there is a outer mass one set C C X such that [C]Y° C A, then there is
a perfect set P C X such that [P]X C A;

2. in the random model, if there is a set C C X of size continuum such that
[C]¥o C A, then there is a perfect set P C X such that [P]Y C A.

The notation in this paper follows the set theoretic standard of [2]. If ¢ is a
finite binary sequence then O; = {x € 2* : ¢ C z}; similar notation is used for
clopen subsets of the Baire space w*. The random model is a generic extension
of a model of the generalized continuum hypothesis by a measure algebra with
Kk generators where k is a regular cardinal larger than the continuum.

2 The iterated null ideal

Let X be a Polish space and p a Borel probability measure on it. Let I be the
o-ideal of set of u-mass zero. Consider the following ideals on the space X*:

e the ideal I*; the iterated Fubini power of I [6, Definition 5.1.1]. Here,
aset A C X¥ is in I¢ if Player I has a winning strategy in the game
G(A). In this game, Players I and II alternate for w many rounds, in each
Player I indicates a null set C,, C X and Player II responds with a point
xpn € X\ Cy. Player IT wins if (z(n) : n € w) € A.

o [¥ the ideal of all sets A C X* for which there are sets C,, : n € w such
that C,, C X™ is p"-null, where p™ is the product measure on X", and
Vie AInZ[neC,.

Both I¥ and I¥ are easily seen to be o-ideals. They are in general distinct;
however, in a suitable context, they contain the same analytic sets:

Proposition 2.1. Suppose that all A} sets are Lebesgue measurable. If A C X*
is analytic then A € I¥ — A € I¥.

I do not know if the Al measurability assumption is necessary. In order to
prove the main theorem without this assumption, I will have to pass to a generic
extension in which all A} sets are measurable, use the proposition there, and
use an absoluteness argument. Tamas Matrai found a mistake in the original
proof that did not consider this detour.

Proof. The left-to-right direction is easy and does not depend on the analyticity
of the set A. It is enough to show that for every number n € w and every set
C C X™ of p™mass zero, the set {¥ € X*¥ : & | n € C} belongs to the
ideal I*. Indeed, assume without loss of generality that the set C is Borel,
and consider the strategy o for Player I that commands him to play the set
{y e X : {Z € X"\ : (20, 21,...,Tm_2,y)"Z € C,} has positive mass} at
every round m € n. Use the Fubini theorem to argue by induction that the
above set is of null mass, and therefore this is a legal strategy for Player II.
Clearly, the strategy is winning and the left-to-right implication follows.



The right-to-left implication is more difficult. Suppose that A ¢ I¥ and o is
a strategy for Player I in the game G(A). I must produce a counterplay against
the strategy which gives a sequence in the set A.

Fix a continuous function f : w¥ — X“ such that A = rng(f). By induction
on n € w build points z,, € X and numbers m,, so that

e the points zg,...x,_1 form a legal finite counterplay against the strategy
g;

o the set A, = {7 € X\" : (x0,...2,1)"7 € T "Otme,..omm 1)} 18 e\
positive.

Suppose that the points x; : ¢ € n and numbers m; : ¢ € n have been
constructed. Given a number m € w consider the set C]" of all points y € X
such that the set (A™), C X«\"*! s I9\" positive, where Aam, = {7z €
XAt (o, xp g, y) 7 € J"Ome,...mn_1,my }- It may not be clear how to
argue at this point that these sets are measurable; I will only prove that one of
them is not null.

Suppose for contradiction that these sets are all null and enclose their union
in a Borel null set C,,. Suppose for the simplicity of the notation that the
underlying space X is just the Cantor space 2*. Consider the following coding
of infinite sequences of Gy null sets (any reasonable coding will do). A code
is a sequence h of functions 7y : w x (2<¢)"\"+1 _ 2 k € w where the set
U{O5 : hi(i,1) = 1} C (29)% is of pF\"l-mass < 27%; the k-th G5 null set
Ok(ﬁ) coded is the intersection of all these open sets as ¢ varies over all natural
numbers. The set {(y,i_i) :y ¢ C, and for every m € w and every sequence
Z € (A7), there is a number k € w such that 2 [ (n,k) € Ci(h)} is coanalytic,
and by Novikov-Kondo’s uniformization theorem [3, Theorem 36.14] there is a
coanalytic uniformization F of it, with domain X\ C. For every k > n define the
set Oy = {y~ 7€ XF\" .y ¢ Cp, 7€ Cp(F(y)(k))}. This set is Ab: y~7 € Oy iff
y¢ Cpand 3h h=F(y) AZ € Cy(h), iff y ¢ C, and Vh h # F(y) V Z € Ci(h).
By the assumptions, the set Cj is measurable, and the Fubini theorem shows
that it is *\"-null. Now the definitions imply that for every i € A, there is
k > n such that Z [ k\ n € C,, contradicting the second induction assumption.

Fix a number m,, such that the set C}'~ is not null, and choose a point x,
in the set C;'» which does not belong to the null set the strategy ¢ commands
Player I to play at round n. The induction hypotheses continue to hold. In the
end, the sequence (z,, : n € w) belongs to the set A since it is the functional
value of f applied to (m, : n € w) € w*. The proposition follows.

O

3 The ZFC situation

Let X be a Polish space and u a Borel probability measure on it. Suppose that
A C [X]® is a coanalytic set and there is an outer mass one set C C X such



that [O]®0 C A. T must produce a perfect set P C X such that [P]* C A. By
the Borel isomorphism of measures theorem and the perfect set theorem it is
enough to deal with the case X = 2“ and p =the unique probability measure
on 2¢ invariant under coordinatewise addition. I will first show how to argue
with the additional assumption of Al measurability.

Proposition 3.1. The set B ={Z € X¥ : {#(n) : n € w} ¢ A} is in the ideal
Iv.

Proof. Suppose that the set B is I“-positive. It is analytic, and in such a case
by [6, Theorem 5.1.9] the game G(B) is determined, and moreover Player II has
an very simple winning strategy in the form of a Borel tree T C X“ such that
every node splits into I-positively many immediate successors, and [T] C B.
However, since the set C' has outer mass one, it is easy to find a branch of the
tree T' consisting solely of points in C. However, the definitions show that such
a branch cannot be an element of the set B. Contradiction!

O

Since B € I“ and B is analytic, it follows from the previous section that
B € I¥ and there are zero mass sets C), : n € w, each a subset of X" respectively,
such that for every sequence & € X%, if Vn & | n ¢ C,, then & ¢ B. Let M < Hy
be a countable elementary submodel of a large enough structure containing all
the sets C), : n € w. It will be enough to find a perfect set P C X of points
such that their finite one-to-one tuples are random generic for the model M,
since then their infinite one-to-one sequences cannot belong to the set B by the
previous sentence, and therefore countably infinite subsets of the set P must
all belong to the set A. Such a perfect set of mutually random reals can be
obtained from results of Mycielski [5].

To eliminate the Al measurability assumption, let C' be the outer measure
one homogeneous set, and pass to the random model V[G]. The set C retains
its properties there: it is still of outer measure one since the random forcing
preserves outer measure, and all of its countable subsets are still subsets of A.
To see the latter claim, if a C C' is a countable infinite set in the extension, it is
covered by a countable set b C C' in the ground model. The statement [b]*° C A
is coanalytic, true in the ground model, therefore true in the extension, and
a € A follows.

Now, the random extension satisfies A} measurability [1, Theorem 9.2.1]. By
the work we have just done, in the random extension there must be a perfect
homogeneous set P C X such that [P]® C A. This is a X} statement, true in
V[G], and therefore, by Shoenfield absoluteness, it is true in the ground model.
The theorem follows!

4 The random model

Suppose that A < x are regular cardinals larger than the continuum. Consider
the generic extension V[G] obtained by measure algebra on x many generators.



I will show that the following holds in V[G]. Whenever X is a Polish space and
A C [X]M is a coanalytic set such that there is a set C' C X of size A with
[C]®o C A, then there is a perfect set P C X such that [P]Y C A.

First, work in V. To get a particular representation of the random algebra,
consider the usual product Baire measure on the space 2% that assigns to every
set of the form {y € 2* : y(8) = 0} : B € k mass 1/2, and force with Baire
subsets of 2" of positive mass, ordered by inclusion. The forcing adds a generic
function Ygen, € 2. Let &, : & € A be names for distinct elements of the set C.
Use the c.c.c. to find for each o € k a countable set b, C k and a Borel function
f : 2« — X such that it is forced that &, = f(ygm [ by). Thinning out if
necessary, I may assume that the sets b, : @ € A\ form a A-system with root b.
By a standard homogeneity argument, I may assume that b = 0. Thinning out
further, I may assume that the sets b, have the same ordertype and that there
is a single Borel function g : 2¥ — X such that f = g o m, for every ordinal
a € )\, where 7, denotes the transitive collapse of the set 20«

Now, in the generic extension V[G], consider the set C' = {mq(Jgen | ba) :
a € A} C 27. A standard argument shows that this set has outer measure one.
Also, every countable subset C” C C’ has the property that g | C” is one-to-one
and g”"C" € A. By the results of the previous section applied in the model V]G],
there must be a perfect set P’ C 27 with the same properties. The set ¢"' P’ is
uncountable and analytic, and as such contains a perfect subset P C X. It is
not difficult to check that the set P has the requested properties.
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