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CORRECTION AND ADDITION TO MY PAPER
“THE NORMAL FORM AND THE STABILITY OF SOLUTIONS
OF A SYSTEM OF DIFFERENTIAL EQUATIONS
IN THE COMPLEX DOMAIN”

MILAN TVvRDY, Praha

(Received April 29, 1971)

1. Correction. The correct form of the condition (Q,) in Theorem 3,4 of [1] (pp.
53—159) is the following.

Given an arbitrary p € 2(4), there exists such a complex number o, that

(3.16) gy = 0ok (k=1,2,...1).

Notation 3,4 is now unnecessary and the proof of the theorem is to be modified
in an obvious manner: v = 0 and hence 2, (1) = 24(4), ¥, (4) =E[pe P(4):

z0]=21)=204) (k=12..1), #,=0, #(i)=0 and p(y) =0.
Instead of (3,20) we have

9o (P 2) — 4] + {Yi)p =

n 1
= {(X(9)}, + ;zej(l’j + D {ap — +>: p(jlefﬂj) Ol Ot —
J= oto= =

webls
oeé(l)
- 3| (w + DigeipYle) for ped,, k=1,1,...1,
ote=p J:
0 cefl,

%}, = {Xu9)}, for ped,, k=1+11+2..n

Under the original assumption (Q,) the implication (3,20) = (3,21) is false. (The
author is indebted to A. D. BRyuNO who discovered this error.) Even by Theorem 2
of A. D. Brjuno from [2] divergence can occur in the case.

Theorem 3,4 is now a special case of Theorem 1 from [2]. (The remark at the begin-
ning of sec. 3,4 in [1] concerns only [3], not [2].) Corollary (p. 59) is no more a direct
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consequence of Theorem 3,4, but it can be proved in a quite similar way as Theorem
3,4. (Under assumptions of this Corollary the relation (3,19") holds also for j =
=1,2,..., 1 and the implication (3,20) = (3,21) in the original form is true.)

Finally let us note that the proofs of all results of A. D. Brjuno will be given in [4]
and [5].

2. Addition. The following simple generalization of the well-known Cartan’s
Uniqueness Theorem is in a close connection with Theorem 4,2 A from [1] (pp.
66—67). The proof of Theorem 4,2 A could be based on it and on the method of
L. ReicH from [6] and [7].

In the following we make use of notations and conventions from [8], in particular
of those introduced in chapters I —1III.

Proposition. Let D be a bounded domain in the space C, of n complex variables
and let ¢4, 0,, ..., 0, be such complex numbers that

L=lo)| = |oa| = .- = |ow| > |oms+1] = ... = |os| > 0.
Then the mapping T
(1) x; = 0;x; 4 [higher powers] (j =1,2,...,n)
is formally similar to the mapping
2 Vi =e; (G=12..m),
y; = 0;y; + [higher powers] (j=m+ L,m+2,...,n),

whenever T maps D into D.

Proof. By [6] any mapping (1) is formally similar to a mapping of the form
©) Yi=20;¥; +l IZZ{VJ}.:J’” =0;¥; + ZZZ"VJ‘J(J’) (=12..n),
plz rs

where p = (1, Pasoos D) [P] = Py + P2+ oo 4 P Y7 = YPVR 0 75 (9)
is a polynomial consisting of all terms in (3) of the order r and {V;}, = 0 whenever
1 <j < mand @” * g;. (Certainly if 1 <j<mand |pysy| + |Pmsa| + - + |Pa|>
> 0, then {V;}, = 0.)

Let us order the coefficients {V;}, (|p| = 2, j = 1,2, ..., m) in the usual way.
({V;}, < {Vi}, iff the first nonzero number in the set {|g| — Ipl, kK — j. g1 — p1, -
4, — Pa} Is positive.) Let {);}, be the first unvanishing coefficient. Then there is
a polynomial transformation U (z} = z; + Ufz),j = 1,2, ..., n, where U are finite
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polynomials) such that ¥ = U~'TU has the form

Vi = 0;¥; + [powers of degree higher than |q|] (j Lk —1),
Ve = 0k + Vi}o V" + Wi () + [higher powers],

y; = 0;¥; + [ powers of degree higher than |q| — 1]  (j

k+1L,k+2,...,m),
y; = 0;¥; + [higher powers] (j=m+1L,m+2,..,n).

(#k 4(¥) is a polynomial of the variables y,, y,, ..., y,, which contains terms of
degree |g| and not preceding {};}, in the given ordering.)
Let s be an arbitrary natural number and let the mapping 7° be given by

(‘) Z {Ts}py (j=12..n)
(T*() = T(T(»)), T*(») = T (T 1)

Let T(D) < D. Then given an arbitrary p with [p| = 1, there exists a real number C,,
such that
Tl =Cp ((=12.uns=12..),

ie. {T°} (s = 1,2,...) is weakly bounded. By [8] (I, §3, p. 12) {¥V*} = {U'T*U}
(s = 1,2,...) is weakly bounded, too. But in V>

WP = oly; + [powers of degree higher than |q|]] (j =1,2,...k — 1),
Y2 = iy + alVida ¥ + oW ig(¥) + (Vida €7 + Wi g(01V 15 - Cu¥m) +
+ [higher powers] = o;y + 20, {Vi},»* + W,(‘Z‘;(y) + [higher powers],
where #°{?) contains only terms of degree |¢| and not preceding {V;},. Generally in V’*
¥ = o + 56 VgV + 67 d0) + @7 W a1y s s V) F o
A+ W0 Yis o @5 Ym) + [higher powers] =
= 0iye + sai '{Vi}g¥* + #y(v) + [higher powers],

where #{, contains only terms of degree |¢| and not preceding {W;},. It is clear that
the set {sgf, "Wila) (s = 1,2,...) is bounded iff {11}, = 0.
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