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Irena Rach̊unková∗ and Milan Tvrdý†
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Abstract. Existence principles for the BVP (φ(u′))′ = f(t, u, u′), u(ti+) = Ji(u(ti)), u′(ti+) =
Mi(u′(ti)), i = 1, 2, . . . , m, u(0) = u(T ), u′(0) = u′(T ) are presented. They are based on
the method of lower/upper functions which are well-ordered.
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1 . Formulation of the problem

Let m ∈ N, 0 = t0 < t1 < · · · < tm < tm+1 = T and D = {t1, t2, . . . , tm}. Define CD

(or C1
D) as the sets of functions u : [0, T ] 7→ R,

u(t) =





u[0](t) if t ∈ [0, t1],
u[1](t) if t ∈ (t1, t2],
. . . . . .
u[m](t) if t ∈ (tm, T ],

where u[i] is continuous on [ti, ti+1] (or continuously differentiable on [ti, ti+1]) for
i = 0, 1, . . . , m. We put ‖u‖D = ‖u‖∞ + ‖u′‖∞, where ‖u‖∞ = sup esst∈[0,T ] |u(t)|.
Then CD and C1

D respectively with the norms ‖.‖∞ and ‖.‖D become Banach spaces.
Further, ACD is the set of functions u ∈ CD which are absolutely continuous on
each subinterval (ti, ti+1), i = 0, 1, . . . , m. As usual, L1 denotes the Banach space of

Lebesgue integrable functions on [0, T ] with the norm ‖f‖1 =
∫ T

0
|f(t)| dt.
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We consider the problem

(φ(u′(t)))′ =f(t, u(t), u′(t)) a.e. on [0, T ],(1.1)

u(ti+) = Ji(u(ti)), u′(ti+) = Mi(u
′(ti)), i = 1, 2, . . . , m,(1.2)

u(0) = u(T ), u′(0) = u′(T ),(1.3)

where u′(ti) = u′(ti−) = limt→ti− u′(t) for i = 1, 2, . . . , m + 1, u′(0) = u′(0+) =
limt→0+ u′(t), and f is an L1-Carathéodory function on [0, T ] × R2 (i.e. for each
x ∈ R and y ∈ R the function f(., x, y) is measurable on [0, T ]; for almost every
t ∈ [0, T ] the function f(t, ., .) is continuous on R2; for each compact set K ⊂ R2

there is a function mK(t) ∈ L1 such that |f(t, x, y)| ≤ mK(t) holds for a.e. t ∈ [0, T ]
and all (x, y) ∈ K.) Further we assume that functions Ji, Mi are continuous on R
and φ is an increasing homeomorphism such that φ(0) = 0 and φ(R) = R. A typical
example of a proper function φ is the p-Laplacian φp(y) = |y|p−2 y, where p > 1.

Clearly, if Ji(x) = x, Mi(x) = x for all x ∈ R, i = 1, 2, . . . , m, we get the problem
(1.1), (1.3) (a periodic problem without impulses).

1.1. Definition. A solution of the problem (1.1)–(1.3) is a function u ∈ C1
D such

that φ(u′) ∈ ACD and (1.1)–(1.3) hold.

1.2. Definition. A function σ1 ∈ C1
D is called a lower function of the problem

(1.1)–(1.3) if φ(σ′1) ∈ ACD and

(φ(σ′1(t)))
′ ≥f(t, σ1(t), σ

′
1(t)) for a.e. t ∈ [0, T ],(1.4)

σ1(ti+) = Ji(σ1(ti)), σ′1(ti+) ≥ Mi(σ
′
1(ti)), i = 1, 2, . . . , m,(1.5)

σ1(0) = σ1(T ), σ′1(0) ≥ σ′1(T ).(1.6)

Similarly, a function σ2 ∈ C1
D is an upper function of the problem (1.1)–(1.3) if

φ(σ′2) ∈ ACD and

(φ(σ′2(t)))
′ ≤f(t, σ2(t), σ

′
2(t)) for a.e. t ∈ [0, T ],(1.7)

σ2(ti+) = Ji(σ2(ti)), σ′2(ti+) ≤ Mi(σ
′
2(ti)), i = 1, 2, . . . , m,(1.8)

σ2(0) = σ2(T ), σ′2(0) ≤ σ′2(T ).(1.9)

1.3. Remark. If Mi(0) = 0 for i = 1, 2, . . . , m and r1 ∈ R is such that Ji(r1) = r1

for i = 1, 2, . . . , m and

f(t, r1, 0) ≤ 0 for a.e. t ∈ [0, T ],

then σ1(t) ≡ r1 on [0, T ] is a lower function of the problem (1.1)–(1.3). Similarly, if
r2 ∈ R is such that Ji(r2) = r2 for all i = 1, 2, . . . , m and

f(t, r2, 0) ≥ 0 for a.e. t ∈ [0, T ],
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then σ2(t) ≡ r2 is an upper function of the problem (1.1)–(1.3).

The aim of this paper is to offer existence principles for problem (1.1)–(1.3)
in terms of lower/upper functions. Hence our basic assumption is the existence
of lower/upper functions. We will suppose that σ1/σ2 are well-ordered, i.e. that
the condition

σ1 and σ2 are respectively lower and upper functions of (1.1)–(1.3)(1.10)

such that σ1 ≤ σ2 on [0, T ]

is true.

Note that problems with φ-Laplacians and impulses have not been studied yet.
As concerns problem (1.1), (1.3) (without impulses), there are various results about
its solvability. For example the papers [3] and [20] present some results about
the existence or multiplicity of periodic solutions of the equation

(φp(u
′))′ = f(t, u)

under non resonance conditions imposed on f . The paper [10] presents general ex-
istence principles for the vector problem (1.1), (1.3). Using this the authors provide
various existence theorems and illustrative examples. The vector case is also consid-
ered in [8], [11] and [13]. The existence of periodic solutions of the Liénard type equa-
tions with p-Laplacians has been proved in the resonance case under the Landesman-
Lazer conditions in [4] and [5]. Multiplicity results of the Ambrosetti-Prodi type for
this problem (with a real parameter) can be found in [7].

For the problem (1.1), (1.3), the lower/upper functions method with well-ordered
σ1/σ2 has been justified by the papers [1] and [2] which study the problem (1.1), (1.3)
under the Nagumo type two-sided growth conditions and in the paper [18] where
the second order equation with a φ-Laplacian is considered provided a functional
right-hand side of this equation fulfils one-sided growth conditions of the Nagumo
type. The significance of the lower/upper functions method is shown in the papers [6]
and [19] where this method is used in the investigation of singular periodic problems
with a φ-Laplacian.

We will impose the following assumptions on the impulse functions Ji, Mi:

σ1(ti) ≤ x ≤ σ2(ti) =⇒ Ji(σ1(ti)) ≤ Ji(x) ≤ Ji(σ2(ti)), i = 1, 2, . . . , m;(1.11)
{

y ≤ σ′1(ti) =⇒ Mi(y) ≤ Mi(σ
′
1(ti)),

y ≥ σ′2(ti) =⇒ Mi(y) ≥ Mi(σ
′
2(ti)),

i = 1, 2, . . . , m.(1.12)
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2 . A priori estimates

Consider a class of auxiliary Dirichlet problems:

(φ(u′))′ =f̃(t, u, u′),(2.1)

u(ti+) = J̃i(u(ti)), u′(ti+) = M̃i(u
′(ti)), i = 1, 2, . . . , m,(2.2)

u(0) =u(T ) = d,(2.3)

where d ∈ R, f̃ is an L1-Carathéodory function on [0, T ]×R2, J̃i, M̃i, i = 1, 2, . . . , m,
are continuous on R and such that

(2.4)





f̃(t, x, y) < f(t, σ1(t), σ
′
1(t)) for a.e. t ∈ [0, T ], all x ∈ (−∞, σ1(t))

and all y ∈ R such that |y − σ′1(t)| ≤
σ1(t)− x

σ1(t)− x + 1
,

f̃(t, x, y) > f(t, σ2(t), σ
′
2(t)) for a.e. t ∈ [0, T ], all x ∈ (σ2(t),∞)

and all y ∈ R such that |y − σ′2(t)| ≤
x− σ2(t)

x− σ2(t) + 1
,





J̃i(x) < Ji(σ1(ti)) if x < σ1(ti)

J̃i(x) = Ji(x) if x ∈ [σ1(ti), σ2(ti)]

J̃i(x) > Ji(σ2(ti)) if x > σ2(ti), i = 1, 2, . . . , m,

(2.5)

{
M̃i(y) ≤ Mi(σ

′
1(ti)) if y ≤ σ′1(ti)

M̃i(y) ≥ Mi(σ
′
2(ti)) if y ≥ σ′2(ti), i = 1, 2, . . . , m,

(2.6)

and

(2.7) σ1(0) ≤ d ≤ σ2(0).

Due to the assumption (1.10) and the properties of the lower and upper functions
associated with the given problem (1.1)–(1.3), we can derive uniform estimates for
the solutions of the class (2.1)–(2.3).

2.1. Lemma. Let (1.10), (1.11) and (2.4)–(2.7) hold. Then every solution u of
(2.1)–(2.3) satisfies

(2.8) σ1 ≤ u ≤ σ2 on [0, T ].
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Proof. Let u be a solution of (2.1)–(2.3). Put v(t) = u(t)−σ2(t) for t ∈ [0, T ]. Then,
by (2.7), we have

(2.9) v(0) = v(T ) ≤ 0.

So, it remains to prove that v ≤ 0 on (0, T ).

• Part (i). First, we show that v does not have a positive local maximum at any
point of (0, T ) \ D . Assume, on the contrary, that there is α ∈ (0, T ) \ D such that
v has a positive local maximum at α; i.e.,

(2.10) v(α) > 0 and v′(α) = 0.

This guarantees the existence of β such that [α, β] ⊂ (0, T ) \D and

(2.11) v(t) > 0 and |v′(t)| < v(t)

v(t) + 1
< 1

for t ∈ [α, β]. Using (1.7), (2.4) and (2.11), we get

(φ(u′(t)))′ − (φ(σ′2(t)))
′ = f̃(t, u(t), u′(t))− (φ(σ′2(t)))

′

> f(t, σ2(t), σ
′
2(t))− (φ(σ′2(t)))

′ ≥ 0

for a.e. t ∈ [α, β]. Hence, by (2.10),

0 <

∫ t

α

(φ(u′(s)))′ − (φ(σ′2(s)))
′ ds = φ(u′(t))− φ(σ′2(t))

for all t ∈ (α, β]. Therefore v′(t) = u′(t)−σ′2(t) > 0 for all t ∈ (α, β]. This contradicts
that v has a local maximum at α.

• Part (ii). Now, assume that there is tj ∈ D such that

max
t∈(tj−1,tj ]

v(t) = v(tj) > 0.

Then v′(tj) ≥ 0. By (2.5) and (2.6), we get

J̃j(u(tj)) > Jj(σ2(tj)) and M̃j(u
′(tj)) ≥ Mj(σ

′
2(tj));

by (2.2) and (1.8), the relations

(2.12) v(tj+) > 0 and v′(tj+) ≥ 0

follow. If v′(tj+) > 0, then there is β ∈ (tj, tj+1) such that

(2.13) v′(t) > 0 on (tj, β].
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If v′(tj+) = 0, then we can find β such that (tj, β] ⊂ (0, T )\D and (2.11) is satisfied
on (tj, β]. Consequently, (2.13) is valid in this case, as well. In the both cases we
have

(2.14) v′(t) ≥ 0 on (tj, tj+1),

because v′ cannot change its sign on (tj, tj+1), due to Part (i). Now, by (2.12)–
(2.14) we get

max
t∈(tj ,tj+1]

v(t) = v(tj+1) > 0.

Continuing inductively we get v(T ) > 0, contrary to (2.9).

• Part (iii). Finally, assume that

(2.15) sup
t∈(tj ,tj+1]

v(t) = v(tj+) > 0

for some tj ∈ D . In view of (2.5), this is possible only if

(2.16) J̃j(u(tj)) > Jj(σ2(tj)).

If u(tj) ∈ [σ1(tj), σ2(tj)], then by (2.5) and (1.11) we have

J̃j(u(tj)) = Jj(u(tj)) ≤ Jj(σ2(tj)),

contrary to (2.16). If u(tj) < σ1(tj), then by (2.5), (1.10) and (1.11) we get

J̃j(u(tj)) < Jj(σ1(tj)) ≤ Jj(σ2(tj)),

which contradicts (2.16) again. Therefore u(tj) > σ2(tj), i.e. v(tj) > 0. Further,
(2.15) gives v′(tj+) ≤ 0. If v′(tj+) = 0, then, as in Part (ii), we get (2.13), which
contradicts (2.15). Therefore v′(tj+) < 0. This with (2.6) imply that v′(tj) < 0.
Thus, in view of Part (i), we deduce that v′ ≤ 0 on (tj−1, tj); i.e., supt∈(tj−1,tj ]

v(t) =
v(tj−1+) > 0. Continuing inductively we get v(0) > 0, contradicting (2.9).

To summarize: we have proved that v ≤ 0 on [0, T ] which means that u ≤ σ2 on
[0, T ].

If we put v = σ1 − u on [0, T ] and use the properties of σ1 instead of σ2, we can
prove σ1 ≤ u on [0, T ] by an analogous argument.

A priori estimates for derivatives of solutions are provided by the next lemma.
In its proof and in what follows, we will use the following notation:

(2.17)

{
if ψ ∈ C(R) is increasing on R and x ∈ R, then

{
x
}

ψ
= max{|ψ(−x)|, |ψ(x)|}.
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2.2. Lemma. Assume that r ∈ (0,∞) and that

h ∈ L1 is nonnegative a.e. on [0, T ],(2.18)

ω is continuous and positive on [0,∞) and

∫ ∞

0

ds

ω(s)
= ∞.(2.19)

Then there exists r∗ ∈ (1,∞) such that the estimate

(2.20) ‖u′‖∞ ≤ r∗

holds for each function u ∈ C1
D satisfying φ(u′) ∈ ACD, ‖u‖∞ ≤ r and

(2.21)

{ |(φ(u′(t)))′| ≤ ω(|φ(u′(t))|) (|u′(t)|+ h(t))

for a.e. t ∈ [0, T ] and for |u′(t)| ≥ 1.

Proof. Let u satisfy the assumptions of Lemma 2.2. The Mean Value Theorem
implies that there are ξi ∈ (ti, ti+1) such that

|u′(ξi)| < 2 r

∆
+ 1 for i = 0, 1, . . . ,m, where ∆ = min

i=0,1,...,m
(ti+1 − ti).

Put

c0 =
{2 r

∆
+ 1)

}
φ
, ρ = ‖φ(u′)‖∞

and assume that ρ > c0 and

ρ = sup
t∈(tj ,tj+1]

φ(u′(t)) for some j ∈ {0, 1, . . . , m}.

We have either

(2.22) ρ = φ(u′(α)) for some α ∈ (tj, tj+1]

or

(2.23) ρ = φ(u′(α+)) with α = tj.

In both cases, there is β ∈ (tj, tj+1), β 6= α, such that φ(u′(β)) = c0 and φ(u′(t)) ≥
c0 for all t lying between α and β. Assume that (2.22) occurs. There are two
possibilities: tj < β < α ≤ tj+1 or tj < α < β < tj+1. If tj < β < α ≤ tj+1, then,
since u′(t) > 1 on [β, α], (2.21) gives

(φ(u′(t)))′ ≤ ω(φ(u′(t))) (u′(t) + h(t)) for a.e. t ∈ [β, α].
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Consequently,
∫ ρ

c0

ds

ω(s)
=

∫ α

β

(φ(u′(t)))′

ω(φ(u′(t)))
dt ≤

∫ α

β

u′(t) dt + ‖h‖1 ≤ 2 r + ‖h‖1,

i.e.

(2.24)

∫ ρ

c0

ds

ω(s)
≤ 2 r + ‖h‖1.

Similarly, if tj < α < β < tj+1, then, using (2.21), we get

−(φ(u′(t)))′ ≤ ω(φ(u′(t))) (u′(t) + h(t)) for a.e. t ∈ [α, β],

wherefrom the inequality (2.24) again follows. On the other hand, by (2.19), there
is r0 > c0 such that

(2.25)

∫ r0

c0

ds

ω(s)
> 2 r + ‖h‖1,

which together with (2.24) may occur only if ρ < r0. Therefore, (2.20) holds for
r∗ = φ−1(r0).

If (2.23) or ρ = supt∈(tj ,tj+1]
(−φ(u′(t))) for some j ∈ {0, 1, . . . , m} are true, then

similar arguments apply and yield (2.20), as well.

2.3. Remark. Notice, that the condition
∫ ∞

0

ds

ω(s)
= ∞

in (2.19) can be weakened. In particular, the estimate (2.20) holds whenever r∗ ∈
(0,∞) is such that ∫ r∗

c0

ds

ω(s)
> 2 r + ‖h‖1.

3 . A fixed point operator

We will transform the problem (1.1)–(1.3) into a fixed point problem in C1
D. As

usual χM will denote the characteristic functions of the set M ⊂ R. First, we will
consider the following auxiliary Dirichlet problem

(φ(u′(t)))′ = h(t) a.e. on [0, T ],(3.1)

u(ti+)− u(ti) = di, φ(u′(ti+))− φ(u′(ti)) = ei, i = 1, 2, . . . , m,(3.2)

u(0) = u(T ) = 0,(3.3)

where h ∈ L1, di, ei ∈ R, i = 1, . . . , m.
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3.1. Lemma. A function u ∈ C1
D is a solution of (3.1)–(3.3) if and only if u

satisfies conditions

(3.4)

{
u(t) =

∫ t

0
φ−1

(
φ(u′(0)) + H(s) +

∑m
j=1 ej χ(tj ,T ](s)

)
ds

+
∑m

j=1 dj χ(tj ,T ](t) on [0, T ]

and

(3.5)
m∑

j=1

dj +

∫ T

0

φ−1
(
φ(u′(0)) + H(s) +

m∑
j=1

ejχ(tj ,T ](s)
)
ds = 0,

where H(s) =
∫ s

0
h(τ) dτ .

Proof. (i) Let u be a solution (3.1)–(3.3). We will integrate (3.1) from 0 to t. In
view of the second condition in (3.2) we obtain

(3.6) φ(u′(t)) = φ(u′(0)) + H(t) +
m∑

j=1

ejχ(tj ,T ](t) on [0, T ].

Hence

(3.7) u′(t) = φ−1
(
φ(u′(0)) + H(t) +

m∑
j=1

ejχ(tj ,T ](t)
)

on [0, T ].

Integrating (3.7) and using the first condition in (3.2) we get (3.4). By (3.3) we see
that for t = T the equation (3.4) has the form (3.5).

(ii) Let u ∈ C1
D satisfy (3.4) and (3.5). Then, by (3.4),

u(ti+)− u(ti) =
m∑

j=1

dj(χ(tj ,T ](ti+)− χ(tj ,T ])(ti)) = di, i = 1, . . . ,m

and u(0) = 0. Moreover, according to (3.5), u(T ) = 0. Further, (3.4) implies that
(3.7) and consequently (3.6) hold. Therefore φ(u′) ∈ ACD and

φ(u′(ti+))− φ(u′(ti)) =
m∑

j=1

ej(χ(tj ,T ](ti+)− χ(tj ,T ])(ti)) = ei, i = 1, . . . ,m.

Now, we borrow some ideas from [10] to get the following two lemmas.
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3.2. Lemma. For each ` ∈ CD and d ∈ R, the function

Ψ`,d : R 7→ R, Ψ`,d(a) = d +

∫ T

0

φ−1
(
a + `(t)

)
dt

has exactly one zero point a(`, d) in R.

Proof. Choose ` ∈ CD and d ∈ R. Since Ψ`,d is continuous, increasing on R and
Ψ`,d(R) = R, there is a unique real number a(`, d) such that

(3.8) Ψ`,d(a(`, d)) = 0.

3.3. Lemma. The mapping a : CD × R 7→ R defined by (3.8) is continuous and
maps bounded sets into bounded sets. 1

Proof. (i) Assume that A ⊂ CD ×R and γ ∈ (0,∞) are such that ‖`‖∞ + |d| ≤ γ
for each (`, d) ∈ A and that there is a sequence {a(`n, dn)}∞n=1 ⊂ a(A) such
that limn→∞ a(`n, dn) = ∞ or limn→∞ a(`n, dn) = −∞. Let the former possibil-
ity occur. Then, by (3.8), we have 0 = limn→∞ Ψ`n,dn(a(`n, dn)) ≥ limn→∞(−γ +
Tφ−1

(
a(`n, dn) − γ)

)
= ∞, a contradiction. The latter possibility can be argued

similarly.
(ii) Let limn→∞(`n, dn) = (`0, d0) in CD × R. By (i) the sequence {a(`n, dn)}∞n=1

is bounded and hence we can choose a subsequence such that limn→∞ a(`kn , dkn) =
a0 ∈ R. By (3.8), we get

0 = Ψ`kn ,dkn
(a(`kn , dkn)) = dkn +

∫ T

0

φ−1
(
a(`kn , dkn) + `kn(t)

)
dt,

which, for n →∞, yields

0 = d0 +

∫ T

0

φ−1
(
a0 + `0(t)

)
dt.

Thus, with respect to Lemma 3.2, we have a0 = a(`0, d0) = limn→∞ a(`n, dn).

3.4. Lemma. The operator N : C1
D 7→ CD given by

(3.9) (N (x))(t)=

∫ t

0

f(s, x(s), x′(s)) ds+
m∑

i=1

[
φ
(
Mi(x

′(ti))
)−φ

(
x′(ti)

)]
χ(ti, T ](t)

is absolutely continuous.

1The norm of (`, d) ∈ CD × R is defined by ‖`‖∞ + |d|.
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Proof. The continuity of N follows from the continuity of all the mappings involved
in the right-hand side of (3.9). Furthermore, let H ⊂ C1

D be bounded. We need
to show that the closure cl(N (H)] of N (H) in CD is compact. To this aim, let
‖x‖D ≤ γ < ∞ for each x ∈ H. Then there are c ∈ (0,∞) and h ∈ L1 such that

m∑
i=1

[
φ
(
Mi(x

′(ti))
)− φ

(
x′(ti)

)] ≤ c and |f(t, x(t), x′(t))| ≤ h(t) a.e. on [0, T ]

for all x ∈ H. Therefore

(3.10) ‖N (x)‖∞ ≤ ‖h‖1 + c for each x ∈ H.

Put (N1(x))(t) =
∫ t

0
f(s, x(s), x′(s)) ds. Then, for t1, t2 ∈ [0, T ], we have

|(N1(x))(t2)− (N1(x))(t1)| ≤
∣∣
∫ t2

t1

h(s) ds
∣∣,

wherefrom, by (3.10), we deduce that the functions in N1(H) are uniformly bounded
and equicontinuous on [0, T ]. Hence, making use of the Arzelà-Ascoli Theorem in
the space of functions continuous on [0, T ] with the norm ‖.‖∞, we get that each
sequence in N1(H) contains a subsequence convergent with respect to the norm
‖.‖∞. This shows that cl(N1(H)) is compact in CD. We know that the operator N2 =
N−N1 is continuous. By (3.10), it maps bounded sets into bounded sets. Moreover,
its values are contained in an m-dimensional subspace of CD. Thus, cl(N2(H)) is
compact in CD.

3.5. Theorem. Let a : CD ×R 7→ R and N : C1
D 7→ CD be respectively defined by

(3.8) and (3.9). Furthermore define J : C1
D 7→ C1

D by

(J (x))(t) =
m∑

i=1

[
Ji(x(ti))− x(ti)

]
χ(ti, T ](t)(3.11)

and

(F(x))(t) =

∫ t

0

φ−1
(
a
(N (x), (J (x))(T )

)
+ (N (x))(s)

)
ds(3.12)

+ x(0) + x′(0)− x′(T ) + (J (x))(t).

Then F : C1
D 7→ C1

D is an absolutely continuous operator. Moreover, u is a solution
of the problem (1.1)–(1.3) if and only if F(u) = u.

Proof. For x ∈ C1
D and t ∈ [0, T ], we have

(3.13) (F(x))′(t) = φ−1
(
a(N (x), (J (x))(T )) + (N (x))(t)

)
.
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Since the mappings a, N and J included in (3.12) and (3.13) are continuous, it
follows that F is continuous in C1

D.
Choose an arbitrary bounded set H ⊂ C1

D. We will show that then the set
cl(F(H)) is compact in C1

D. Let a sequence {vn} ⊂ F(H) be given. It suffices
to show that it contains a subsequence convergent in C1

D. Let {xn} ⊂ H be such
that vn = F(xn) for n ∈ N. By Lemma 3.4, there is a subsequence {xkn} such that
{N (xkn)} is convergent in CD. According to (3.10) and (3.11), there exists γ ∈ (0,∞)
such that ‖N (x)‖∞ + |(J (x))(T )| ≤ γ for all x ∈ H. Hence, by Lemma 3.3, the se-
quence {a(N (xkn), (J (xkn))(T ))} ⊂ R is bounded and we can choose a subsequence
{x`n} ⊂ {xkn} such that {a(N (x`n), (J (x`n))(T )

)
+ N (x`n)} is convergent in CD.

Consequently, {(F(x`n))′} and {F(x`n)} are convergent in CD, as well. So, we have
proved the F is absolutely continuous in C1

D.
To prove the last assertion of Theorem 3.5 we will write conditions (1.2),(1.3) in

the equivalent form

u(ti+)− u(ti) = Ji(u(ti))− u(ti),

φ(u′(ti+))− φ(u′(ti)) = φ(Mi(u
′(ti)))− φ(u′(ti)), i = 1 . . . , m,

u(0) = u(T ) = u(0) + u′(0)− u′(T ).

Denote
∫ s

0
f(τ, u(τ), u′(τ)) dτ = F (s). Then, by Lemma 3.1, we get that u is a so-

lution of (1.1)–(1.3) if and only if u satisfies

u(t) = u(0) + u′(0)− u′(T ) +
m∑

j=1

(Jj(u(tj))− u(tj))χ(tj ,T ](t)

+

∫ t

0

φ−1
(
φ(u′(0)) + F (s) +

m∑
j=1

[φ(Mj(u
′(tj)))− φ(u′(tj))] χ(tj ,T ](s)

)
ds

and

0 =
m∑

j=1

(Jj(u(tj))− u(tj))

+

∫ T

0

φ−1
(
φ(u′(0)) + F (s) +

m∑
j=1

[φ(Mj(u
′(tj)))− φ(u′(tj))] χ(tj ,T ](s)

)
ds.

These two conditions can be written by (3.9) and (3.11) in the form

u(t) = u(0) + u′(0)− u′(T ) + (J (u))(t) +

∫ t

0

φ−1
(
φ(u′(0)) + (N (u))(s)

)
ds

and

0 = (J (u))(T ) +

∫ T

0

φ−1
(
φ(u′(0)) + (N (u))(s)

)
ds.
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By virtue of Lemma 3.2, the last equality yields that φ(u′(0)) = a(N (u), (J (u)(T )),
which means that u = F(u).

4 . Main results

The main existence result for problem (1.1)–(1.3) is provided by the following theo-
rem. Its proof is based on the topological degree arguments. Let us recall that if Ω
is an open bounded subset of a Banach space X and an operator F : cl(Ω) 7→ X is
completely continuous and F(u) 6= u for all u ∈ ∂ Ω, then we can define the Leray-
Schauder topological degree deg(I−F , Ω). Here I is the identity operator on X and
cl(Ω) and ∂Ω denote the closure and the boundary of Ω, respectively. For a definition
and properties of the degree see e.g. [9] or [12].

4.1. Theorem. Assume that (1.10), (1.11) and (1.12) hold. Further, let

(4.1)

{ |f(t, x, y)| ≤ ω(|φ(y)|) (|y|+ h(t))

for a.e. t ∈ [0, T ] and all x ∈ [σ1(t), σ2(t)], |y| ≥ 1,

where h and ω fulfil (2.18) and (2.19). Then the problem (1.1)–(1.3) has a solution
u satisfying (2.8).

Before proving this theorem, we prove the next key proposition where we restrict
ourselves to the case that f is bounded by a Lebesgue integrable function.

4.2. Proposition. Assume that (1.10), (1.11) and (1.12) hold. Further, let m ∈ L1

be such that

(4.2) |f(t, x, y)| ≤ m(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R.

Then the problem (1.1)–(1.3) has a solution u fulfilling (2.8).

Proof.
•Step 1. We construct a proper auxiliary problem. Put r = ‖σ1‖∞ + ‖σ2‖∞ and

∆ = min{(ti+1 − ti) : i = 0, 1, . . . , m}, c0 =
{2r

∆
+ 1

}
φ
, c1 =

{
c0 + ‖m‖1}φ−1 ,

where we make use of the notation introduced in (2.17). Further, for t ∈ [0, T ] and
(x, y) ∈ R2, define

α(t, x) =





σ1(t) if x < σ1(t),

x if σ1(t) ≤ x ≤ σ2(t),

σ2(t) if x > σ2(t)

(4.3)

and
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β(y) =

{
y if |y| ≤ c,

c sgn y if |y| > c,
(4.4)

where

c = c1 + ‖σ′1‖∞ + ‖σ′2‖∞,(4.5)

Finally, for a.e. t ∈ [0, T ] and all (x, y) ∈ R2, ε ∈ [0, 1], put

ωk(t, ε) = sup
y∈[σ′k(t)−ε,σ′k(t)+ε]

|f(t, σk(t), σ
′
k(t))− f(t, σk(t), y)|, k = 1, 2

and

(4.6)

{
J̃i(x) = x + Ji(α(ti, x))− α(ti, x),

M̃i(y) = y + Mi(β(y))− β(y), i = 1, 2, . . . , m,

(4.7) f̃(t, x, y) =





f(t, σ1(t), y)− ω1(t,
σ1(t)− x

σ1(t)− x + 1
)− σ1(t)− x

σ1(t)− x + 1

if x < σ1(t),

f(t, x, y) if σ1(t) ≤ x ≤ σ2(t),

f(t, σ2(t), y) + ω2(t,
x− σ2(t)

x− σ2(t) + 1
) +

x− σ2(t)

x− σ2(t) + 1

if x > σ2(t).

We see that ωk are L1-Carathéodory functions on [0, T ]×[0, 1] which are nonnegative
and nondecreasing in the second variable and ωk(0) = 0, k = 1, 2. Consequently,

f̃ is L1-Carathéodory on [0, T ] × R2. Furthermore, J̃i, M̃i are continuous on R,
i = 1, 2, . . . , m. Using (4.6) and (4.7), we get the auxiliary problem (2.1), (2.2), and

(4.8) u(0) = u(T ) = α(0, u(0) + u′(0)− u′(T )).

• Step 2. We prove that the problem (2.1), (2.2), (4.8) is solvable.

Let a : CD × R 7→ R be given by (3.8), an operator Ñ : C1
D 7→ CD by

(Ñ (x))(t)=

∫ t

0

f̃(s, x(s), x′(s)) ds+
m∑

i=1

[
φ
(
M̃i(x

′(ti))
)−φ

(
x′(ti)

)]
χ(ti, T ](t)

and an operator J̃ : C1
D 7→ C1

D by

(J̃ (x))(t) =
m∑

i=1

[
J̃i(x(ti))− x(ti)

]
χ(ti, T ](t).
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Finally, define an operator F̃ : C1
D 7→ C1

D by

(F̃(x))(t) =

∫ t

0

φ−1
(
a
(Ñ (x), (J̃ (x))(T )

)
+ (Ñ (x))(s)

)
ds(4.9)

+ α(0, x(0) + x′(0)− x′(T )) + (J̃ (x))(t).

As in the proof of Theorem 3.5 we get that F̃ is completely continuous and u is
a solution of (2.1), (2.2), (4.8) if and only if u is a fixed point of F̃ .

Denote by I the identity operator on C1
D and consider the parameter system of

operator equations

(4.10) (I− λ F̃)u = 0, λ ∈ [0, 1].

For R ∈ (0,∞), define B(R) = {u ∈ C1
D : ‖u‖D < R}. By (4.2) and (4.9), we can

find R0 ∈ (0,∞) such that u ∈ B(R0) for each λ ∈ [0, 1] and each solution u of (4.10).

So, for each R ≥ R0 the operator I − λ F̃ is a homotopy on cl(B(R)) × [0, 1] and

its Leray-Schauder degree deg(I− λ F̃ ,B(R)) has the same value for each λ ∈ [0, 1].
Since deg(I,B(R)) = 1, we conclude that

(4.11) deg(I− F̃ ,B(R)) = 1 for R ∈ [R0,∞).

By (4.11), there is at least one fixed point of F̃ in B(R). Hence there exists a solution
of the auxiliary problem (2.1), (2.2), (4.8).

• Step 3. We find estimates for solutions of the auxiliary problem.
Let u be a solution of (2.1), (2.2), (4.8). We derive an estimate for ‖u‖∞. By

(4.6), (4.7) and (1.12), we obtain that f̃ , J̃i, M̃i, i = 1, 2, . . . , m, satisfy (2.4)–(2.6).
Moreover, in view of (4.3) we have

σ1(0) ≤ α(0, u(0) + u′(0)− u′(T )) ≤ σ2(0).

Thus u satisfies (2.8) by Lemma 2.4.

We find an estimate for ‖u′‖∞. By the Mean Value Theorem and (2.8), there are
ξi ∈ (ti, ti+1) such that

|u′(ξi)| ≤ ‖σ1‖∞ + ‖σ2‖∞
∆

, i = 1, 2, . . . ,m.

Having in mind notation of Step 1, we get

(4.12) |φ(u′(ξ))| < c0.

Moreover, by (2.8) and (4.7), u satisfies (1.1) for a.e. t ∈ [0, T ]. Therefore, integrating
(1.1) and using (4.2), (4.5) and (4.12), we obtain

(4.13) ‖u′‖∞ < c1 < c.
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Hence, by (4.6) and (4.8), we see that u fulfils (1.2) and u(0) = u(T ) (i.e. the first
condition from (1.3) is satisfied).

• Step 4. We verify that u fulfils the second condition in (1.3).
We must prove that u′(0) = u′(T ). By (4.8), this is equivalent to

(4.14) σ1(0) ≤ u(0) + u′(0)− u′(T ) ≤ σ2(0).

Suppose, on the contrary, that (4.14) is not satisfied. Let, for example,

(4.15) u(0) + u′(0)− u′(T ) > σ2(0).

Then, by (4.3), we have α(0, u(0) + u′(0)− u′(T )) = σ2(0). By (1.9) and (4.8), this
yields

(4.16) u(0) = u(T ) = σ2(0) = σ2(T ).

Inserting (4.16) into (4.15) we get

(4.17) u′(0) > u′(T ).

On the other hand, (4.16) together with (2.8) and (4.17) implies that

σ′2(0) ≥ u′(0) > u′(T ) ≥ σ′2(T ),

a contradiction to (1.9).

If we assume that u(0)+u′(0)−u′(T ) < σ1(0), we can argue similarly and again
derive a contradiction to (1.9).

So, we have proved that (4.14) is valid which means that u′(0) = u′(T ). Conse-
quently, u is a solution of (1.1)–(1.3) satisfying (2.8).

Proof of Theorem 4.1. Put

c = r∗ + ‖σ′1‖∞ + ‖σ′2‖∞,

where r∗ ∈ (0,∞) is given by Lemma 2.2 for r = ‖σ1‖∞ + ‖σ2‖∞. For a.e. t ∈ [0, T ]
and all (x, y) ∈ R2 define a function

(4.18) g(t, x, y) =





f(t, x, y) if |y| ≤ c,

(2− |y|
c

) f(t, x, y) if c < |y| < 2 c,

0 if |y| ≥ 2 c.
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Then σ1 and σ2 are respectively lower and upper functions of the auxiliary problem
(1.2), (1.3), and

(4.19) (φ(u′))′ = g(t, u, u′).

There is a function m∗ ∈ L[0, T ] such that |f(t, x, y)| ≤ m∗(t) for a.e. t ∈ [0, T ] and
all (x, y) ∈ [σ1(t), σ2(t)]× [−2 c, 2 c]. Hence

|g(t, x, y)| ≤ m∗(t) for a.e. t ∈ [0, T ] and all (x, y) ∈ [σ1(t), σ2(t)]× R.

Since g is L1-Carathéodory on [0, T ]×R2, we can apply Proposition 4.2 on problem
(4.19), (1.2), (1.3) and get that this problem has a solution u fulfilling (2.8). Hence
‖u‖∞ ≤ r. Moreover, by (4.1), u satisfies (2.21). Therefore, by Lemma 2.2, ‖u′‖∞ ≤
r∗ ≤ c. This implies due to (4.18) that u is a solution of 1.1)–(1.3).

The next simple existence criterion follows from Theorem 4.1 and Remark 1.3.

4.3. Corollary. Assume that:

(i) Mi(0) = 0 and y Mi(y) ≥ 0 for y ∈ R and i = 1, 2, . . . , m;

(ii) there are r1, r2 ∈ R such that r1 < r2, f(t, r1, 0) ≤ 0 ≤ f(t, r2, 0) for a.e.
t ∈ [0, T ], Ji(r1) = r1, Ji(x) ∈ [r1, r2] if x ∈ [r1, r2], Ji(r2) = r2, i = 1, 2, . . . , m.

(iii) there are h and ω satisfying (2.18) and (2.19) with σ1(t) ≡ r1 and σ2(t) ≡ r2

and such that (4.1) holds.

Then the problem (1.1)–(1.3) has a solution u fulfilling r1≤u≤r2 on [0, T ].

Let r∗ be given by Lemma 2.2 for r = ‖σ1‖∞ + ‖σ2‖∞. Under the assumption

(4.20) σ1 < σ2 on [0, T ] and σ1(ti+) < σ2(ti+) for i = 1, 2, . . . , m

we can define an open set Ω by

Ω = {u ∈ C1
D : ‖u′‖∞ < r∗, σ1(t) < u(t) < σ2(t) for t ∈ [0, T ],(4.21)

σ1(ti+) < u(ti+) < σ2(ti+) for i = 1, 2, . . . , m}.

Next theorem gives the evaluation of the Leray-Schauder degree of the operator
I−F (corresponding to the problem (1.1)–(1.3)) on the set Ω.

4.4. Theorem. Let (4.20) and all the assumptions of Theorem 4.1 be satisfied.
Further assume that F and Ω are respectively defined by (3.12) and (4.21). If F(u) 6=
u for each u ∈ ∂Ω, then

deg(I−F , Ω) = 1.
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Proof. Consider c and g from the proof of Theorem 4.1 and define J̃i, M̃i, i =
1, 2, . . . ,m, and f̃ by (4.6) and (4.7), where we insert g instead of f. Suppose that

Fu 6= u for each u ∈ ∂Ω, define F̃ by (4.9) and put Ω1 = {u ∈ Ω : σ1(0) <
u(0) + u′(0)− u′(T ) < σ2(0)}. We have

F = F̃ on cl(Ω1)(4.22)

and (
Fu = u and u ∈ Ω

)
=⇒ u ∈ Ω1.(4.23)

By the proof of Proposition 4.2, each fixed point u of F̃ satisfies (1.3), (2.8) and,
consequently, ‖u‖∞ ≤ r. Hence, in view of (4.1), (4.7) and (4.18), we have

|(φ(u′(t)))′| = |g(t, u(t), u′(t))| ≤ ω(|φ(u′(t))|) (|u′(t)|+ h(t))

for a.e. t ∈ [0, T ] and for |u′(t)| ≥ 1. Therefore Lemma 2.2 implies that ‖u′‖∞ ≤ r∗.
So, u ∈ cl(Ω) and, due to (1.3), u ∈ Ω1. Now, choose R in (4.11) so that B(R) ⊃ Ω.
Then, by (4.22), (4.23) and by the excision property of the degree, we get

deg(I−F , Ω) = deg(I− F̃ , Ω1) = deg(I− F̃ , Ω1)) = deg(I− F̃ ,B(R)) = 1.

4.5. Remark. Following the ideas of [16], the evaluation of deg(I − F , Ω) enables
us to prove the existence of solutions to the problem (1.1)–(1.3) also for non-ordered
lower/upper functions. This will be included in our next preprint [17].
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Irena Rach̊unková, Department of Mathematics, Palacký University, 779 00 OLO-
MOUC, Tomkova 40, Czech Republic (e-mail: rachunko@inf.upol.cz)
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