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Abstract

We investigate the computational complexity of deciding whether a given inference rule
is admissible for some modal and superintuitionistic logics. We state a broad condition
under which the admissibility problem is coNEXP -hard. We also show that admissibility
in several well-known systems (including GL, S4, and IPC ) is in coNE , thus obtaining a
sharp complexity estimate for admissibility in these systems.

Introduction

Computational complexity of derivability in modal and superintuitionistic logics is a well-
established subject. Kuznetsov [15] studied complexity of s.i. logics, and posed the problem
whether IPC is coNP -complete. Ladner [16] showed that the modal systems K, T , and S4
are PSPACE -complete, whereas S5 is in coNP . Statman [20] refuted Kuznetsov’s conjecture,
by showing PSPACE -completeness of IPC , and even of its implicational fragment. Since then
similar results were obtained for a variety of modal and s.i. logics, see e.g. Chagrov [3] and
Spaan [19]; the bottom line is that PSPACE is the “typical” complexity of modal and s.i.
logics with unbounded width and depth.

In contrast, the complexity of admissibility in non-classical logics is mostly unknown. An
inference rule

ϕ1, . . . , ϕk
ψ

is admissible in a logic L, if the set of theorems of L is closed under the rule. Friedman [7]
asked whether admissibility in intuitionistic logic is decidable. The problem was extensively
studied in the 80’s and 90’s in a series of papers by Rybakov, later summarized in the book
[18]. Among other deep results on properties of sets of admissible rules and their bases,
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Rybakov showed decidability of admissibility in many modal and s.i. logics (thus answering
positively Friedman’s question). Chagrov [4] constructed a decidable modal logic, which
has undecidable admissibility problem. The work of Ghilardi on unification in intuitionistic
and modal logics [8, 9] provided an important characterization of admissibility in terms of
projective formulas, and new decision procedures for admissibility in some modal and s.i.
systems. Ghilardi’s results were utilized by Iemhoff [11, 12, 13] to construct an explicit basis
of admissible rules for IPC and some other s.i. logics, and to develop Kripke semantics for
admissible rules. These results were extended to modal logics by Jeřábek [14].

The study of algorithmic aspects of admissibility thus so far concentrated on the question
of decidability. The complexity of some of the known decision procedures for admissibility is
indicated in the literature, and we may compute estimates for the other ones with little effort.
Namely, Rybakov (see [18]) gives a decision procedure for admissibility of reduced rules in
K4, GL, S4, S4Grz , and IPC , which is easily seen to be implementable in ΠP

2 . Admissibility
of non-reduced rules in these systems is thus decidable in ΠE

2 = coNENP . Ghilardi [10] found
a remarkably elegant algorithm for constructing projective approximations (and thus testing
admissibility) in IPC , which appears more useful in practice, but makes a worse bound for
theoretical purposes: exponential space. As we will see, these upper bounds turn out to
be mostly suboptimal. More importantly, as far as the author is aware, no nontrivial lower
bounds were known for the admissibility problem, except for Chagrov’s example.

Our aim is to fill this gap by showing that admissibility in “typical” normal extensions
of K4 and s.i. logics is coNEXP -complete (and in particular, strictly more complex than the
derivability problem, under reasonable complexity-theoretic assumptions). On one hand, we
modify our algorithm from [14] to obtain a coNEXP (in fact, coNE ) decision procedure for
admissibility in a class of logics including K4, GL, S4, S4Grz , and IPC . On the other hand,
we show that admissibility is coNEXP -hard in all s.i. logics L contained in BD3 (i.e., every
depth-3 tree is an L-frame), and in normal extensions of K4 meeting a similar requirement.

1 Preliminaries

We assume the reader is familiar with basics of the theory of modal and superintuitionistic
(s.i.) logics; we refer the reader to [5] or [1] for concepts unexplained here. We also assume
rudimentary complexity theory (definitions of complexity classes such as the polynomial hi-
erarchy, PSPACE , NE , and NEXP ; consult e.g. [17]). Our results (especially the upper
bounds) depend heavily on [11] and [14]; we summarize the relevant definitions and results
below.

All Kripke frames are assumed to be transitive. Usually we will denote the accessibility
relation by the ordering symbol <, in which case ≤ is its reflexivization: x ≤ y iff x = y or
x < y. (If the frame is already reflexive, we thus have < = ≤.) The symbols �nϕ, �ϕ, ♦ϕ,
and ·♦ϕ abbreviate � · · ·�︸ ︷︷ ︸

n

ϕ, ϕ ∧�ϕ, ¬�¬ϕ, and ¬�¬ϕ, respectively.

Some modal axioms, and their corresponding conditions on finite transitive Kripke frames,
are listed in table 1. We let K be the minimal normal modal logic, GL = K ⊕ (GL), and
S4 = K⊕ (4)⊕ (T ); names of other modal logics will be formed by concatenation of the name
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symbol axiom frame condition
(4) �ϕ→ ��ϕ (transitive)
(T ) �ϕ→ ϕ reflexive

(GL) �(�ϕ→ ϕ) → �ϕ irreflexive
(.1) �♦ϕ→ ·♦�ϕ ∀x∃y ≥ x∀z (y < z → y = z)

(Grz ) �(�(ϕ→ �ϕ) → ϕ) → �ϕ antisymmetric
(.3) �(�ϕ→ ψ) ∨�(�ψ → ϕ) trichotomic

Table 1: Modal axioms

of a base logic, and additional axioms: e.g., K4, S4.3, K4Grz .
Let L be a normal modal or superintuitionistic logic. A multiple-conclusion rule consists

of two finite sets of formulas
ϕ1, . . . , ϕk
ψ1, . . . , ψ`

.

Such a rule is L-admissible, which we write as ϕ1, . . . , ϕk |∼L ψ1, . . . , ψ`, if for every sub-
stitution ~χ: if `L ϕi(~χ) for each i, then `L ψj(~χ) for some j. The rule is L-derivable, if
ϕ1, . . . , ϕk `L ψj for some j. (In the modal case, derivation from a set of assumptions allows
the necessitation rule, thus ϕ `L �ϕ.)

A rule system over L is a set A of rules (written in a sequent form Γ B ∆, where Γ and
∆ are finite sets of formulas), which is closed under cut, and includes all L-derivable rules.
By abuse of language, we identify L with the minimal rule system over L. The set of all
L-admissible multiple-conclusion rules forms a rule system, which we denote AL.

A quasi-normal modal logic is an extension of K closed under substitution and detach-
ment. Let L be a normal extension of K4. The characteristic formula of a rule Γ B ∆
is ∧

ϕ∈Γ

�ϕ→
∨
ψ∈∆

�ψ.

If A is a rule system over L, we let A� denote the quasi-normal extension of K4 axiomatized
by characteristic formulas of all rules from A. In this way, we embed rule systems in quasi-
normal logics; the following observation ensures the embedding is faithful.

Lemma 1.1 ([14]) A� is conservative over A, i.e., a sequent Γ B ∆ is provable in A if and
only if its characteristic formula is provable in A�.

In particular, the study of L-admissible rules is subsumed by the study of A�
L . Also notice

that the logic of the minimal rule system, L� = K4 + {�ϕ; `L ϕ}, is normal. It has the
following semantical characterization.

Lemma 1.2 ([14]) Let L be a Kripke complete normal extension of K4. Then L� is sound
and complete with respect to the class of transitive rooted frames 〈K,<, r〉 such that r is
irreflexive, and K r {r} is an L-frame. If L has the finite model property, then L� has FMP
as well.
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Let L be a normal extension of K4 with FMP. L is reflexive, if all L-frames are reflexive
(i.e., L ⊇ S4), and it is irreflexive if all L-frames are irreflexive (i.e., L ⊇ GL). L is linear if
all rooted L-frames are linear (i.e., L ⊇ K4.3). If Ki, i < n are frames, then

∑
i<nKi is their

disjoint sum. If K is a frame, then K◦ (K•) is the frame constructed from K by attaching a
new reflexive (irreflexive) root below K. L is extensible, if for every finite sequence of finite
L-frames Ki, i < n, we have

• (
∑

i<nKi)◦ is an L-frame, unless L is irreflexive,

• (
∑

i<nKi)• is an L-frame, unless L is reflexive.

L is linear extensible, if it is linear, and satisfies the extensibility condition above for n ≤ 1.
We introduce the following rule systems:

�ϕ→
∨
i<n

�ψi B {�ϕ→ ψi; i < n}(A•) ∧
j<m

(ϕj ≡ �ϕj) →
∨
i<n

�ψi B
{ ∧
j<m

�ϕj → ψi; i < n
}

(A◦)

where n,m ∈ ω. Let A◦,1 and A•,1 be the restrictions of A◦ and A• to n ≤ 1. The main
theorem of [14] was the following description of admissible rules of extensible and linearly
extensible modal logics.

Theorem 1.3 ([14]) If L is an extensible modal logic, then L-admissible multiple-conclusion
rules have a basis consisting of

• A•, unless L is reflexive,

• A◦, unless L is irreflexive.

The same holds for linear extensible logics, with A•,1 and A◦,1 in place of A• and A◦.

Let 〈K,<〉 be an L-frame. A point x is an irreflexive tight predecessor of a finite set of
points {yi; i < n}, if for every z ∈ K,

z > x iff ∃i z ≥ yi.

x is a reflexive tight predecessor of {yi; i < n}, if for every z ∈ K,

z > x iff z = x ∨ ∃i z ≥ yi.

An L-frame 〈K,<〉 is extensible (resp., linearly extensible), provided the generated submodels
Kx are finite for every x ∈ K, and every finite subset of K (resp., every subset of size at most
1) has a reflexive tight predecessor unless L is irreflexive, and an irreflexive tight predecessor
unless L is reflexive.

Notice that an irreflexive tight predecessor may actually be a reflexive point: specifically,
if y is reflexive, than y itself is both a reflexive t.p. and an irreflexive t.p. of {y}. We deviated
from the definition in [14] in this respect1.

1More precisely, from its intended meaning; the definition of tight predecessors as it stands in [14] is

erroneous.
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Let L be an extensible logic, and ϕ a formula. We define RLϕ as the conjunction of the
formulas of the form

�
( ∧
j<m

�ϕj →
∨
i<n

�ψi
)
→

∨
i<n

�
( ∧
j<m

�ϕj → ψi
)

if L is not reflexive, and

�
( ∧
j<m

(ϕj ≡ �ϕj) →
∨
i<n

�ψi
)
→

∨
i<n

�
( ∧
j<m

�ϕj → ψi
)

if L is not irreflexive, where �ϕj and �ψi are subformulas of ϕ.
Similarly, if L is a linear extensible logic, we let RLϕ be the conjunction of

♦
∧
j<m

�ϕj ,

�
( ∧
j<m

�ϕj →
∨
i<n

�ψi
)
→ �

( ∧
j<m

�ϕj →
∨
i<n

�ψi
)
,

for L not reflexive, and

♦
∧
j<m

(ϕj ≡ �ϕj),

�
( ∧
j<m

(ϕj ≡ �ϕj) →
∨
i<n

�ψi
)
→ �

( ∧
j<m

�ϕj →
∨
i<n

�ψi
)
,

for L not irreflexive, where �ϕj and �ψi are subformulas of ϕ. Notice that in both cases,
RLϕ is (a simple variant of) a conjunction of axioms of A�

L . We have the following semantical
characterization of A�

L (and thus, of L-admissibility).

Theorem 1.4 ([14]) If L is an extensible (linear extensible) modal logic, and ϕ a formula,
the following are equivalent.

(i) A�
L ` ϕ,

(ii) L� ` RLϕ → ϕ,

(iii) ϕ holds in the root of every L�-frame 〈K,<, r〉 such that K r {r} is extensible (resp.,
linearly extensible).

In particular, the formulas RLϕ hold in the root of every L�-frame K such that K r {r} is
(linearly) extensible.

Earlier, R. Iemhoff [11] characterized the admissible rules of IPC . The main results
(reformulated for multiple-conclusion rules) are as follows.

Theorem 1.5 ([11]) Visser’s rules∧
i<n

(ϕi → ψi) → ϕn ∨ ϕn+1 B
{∧
i<n

(ϕi → ψi) → ϕj ; j ≤ n+ 1
}

together with the rule ⊥ B form a basis of IPC-admissible rules.
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An intuitionistic frame K is extensible, if every finite subset of K has a reflexive tight prede-
cessor.

Theorem 1.6 ([11]) A rule Γ B ∆ is IPC-admissible if and only if every extensible model
which satisfies Γ also satisfies some formula ψ ∈ ∆.

A frame 〈K ′, <′〉 is a subframe of a Kripke frame 〈K,<〉, if K ′ is a subset of K, and <′ is
the restriction of < to K ′. K ′ is a cofinal subframe if additionally

x ∈ K ′ ∧ x < y ⇒ ∃z ∈ K ′ y ≤ z

holds for every x, y ∈ K. A normal extension of K4 is a subframe (SF ) logic, if it is complete
with respect to a class of Kripke frames closed under subframes, and it is a cofinal subframe
(CSF ) logic, if it is complete with respect to a class of Kripke2 frames closed under cofinal
subframes. All cofinal subframe logics have the finite model property (Zakharyaschev [21], cf.
[5]). CSF includes the vast majority of transitive logics used in practice: for example, logics
axiomatized by combinations of the axioms listed in table 1 are CSF (in fact, SF, with the
exception of (.1)).

If K is a frame, the depth d(x) of a point x ∈ K is the maximal natural number n such
that there exists a sequence x = x1 < x2 < · · · < xn in K such that xi+1 6< xi. If the
maximum does not exist, d(x) = ∞. The depth of a frame K is sup{d(x); x ∈ K}. The s.i.
logic BDn is defined as the set of formulas valid in all Kripke frames of depth at most n.

2 Upper bounds

In this section we aim to show that admissibility in some of the best-known transitive logics
is decidable in coNEXP . We will use a modification of an exponential-space algorithm for
admissibility described in Jeřábek [14]. The main idea is to show that the formulas RLϕ → ϕ

have a kind of exponential model property. Notice that this is nontrivial: in our logics
a formula may have only models of exponential size, and the length of RLϕ → ϕ is itself
exponential in the length of ϕ, thus a priori it could require models of doubly exponential
size.

We stress that we are only concerned about the theoretical complexity of admissibility.
For practical purposes, our algorithm is no better than the earlier exponential-space and
doubly-exponential time algorithms, as non-deterministic Turing machines do not exist in the
real world. In particular, the algorithm of Ghilardi [10] is likely far more efficient in practice.

Definition 2.1 Let 〈K,<,
〉 be a finite model, K ′ its submodel, and S a set of formulas.
The submodel K ′ is S-faithful, if

K,u 
 ψ ⇔ K ′, u 
 ψ

for every ψ ∈ S and u ∈ K ′.
2The usual definition of (cofinal) subframe logics is more complicated, and in particular, Kripke complete-

ness of (C)SF logics is a nontrivial theorem rather than part of the definition. We ignore such subtleties.
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Lemma 2.2 Let L be an extensible cofinal subframe logic. If A�
L 0 ϕ, there exists a rooted

L�-model 〈K,<, r,
〉 of size 2O(n) such that r 
 RLϕ ∧ ¬ϕ, where n is the length of ϕ.

Proof: As CSF logics have the finite model property, there exists a finite rooted L�-model
〈K,<, r,
〉 such that r 
 RLϕ ∧ ¬ϕ. Let S be the set of subformulas of ϕ, and B the set of
formulas β such that �β is a subformula of RLϕ. For any β ∈ B such that r 1 �β, we pick
xβ ∈ K such that xβ 1 β. By the proof of theorem 4.3 in Zakharyaschev [21], there exists
an S-faithful submodel Kβ ⊆ K of size 2O(n) such that xβ ∈ Kβ. Let K ′ be the union of
all Kβ and {r}. As |B| = 2O(n), we have |K ′| = 2O(n). The model K ′ is S-faithful, and as
all formulas from B are Boolean combinations of formulas from S, it is also B-faithful. It
follows that K and K ′ agree on satisfaction of boxed subformulas of RLϕ (and ϕ) in r, thus
〈K ′, r〉 
 RLϕ ∧ ¬ϕ.

If L is a subframe logic, thenK ′ is an L�-frame, asK ′r{r} is a subframe ofKr{r}. If L is
only CSF, we have to modify K ′ further. For any cluster C, let v(C) = {ψ; �ψ ∈ S, x 1 �ψ},
where x ∈ C (the definition is independent on the choice of x). Let X be the set of all final
clusters C ⊆ K such that C ∩K ′ = ∅. We consider the following equivalence relation on X:
C ∼ D iff v(C) = v(D), and either both C and D are reflexive, or both are irreflexive. Notice
that ∼ has at most 2n equivalence classes. Let Y be a selector for ∼, and for every C ∈ Y , we
pick a subset C ′ ⊆ C of size at most n such that for every ψ ∈ v(C), there exists an x ∈ C ′

such that x 1 ψ. We put K ′′ = K ′ ∪
⋃
C∈Y C

′, and

x ≺ y ⇔ x < y ∨ ∃C ∈ X∃D ∈ Y (x < C ∧ C ∼ D ∧ y ∈ D′).

It is easy to see that satisfaction of subformulas of ϕ is still preserved in 〈K ′′,≺, r,
〉, thus
r 
 RLϕ ∧ ¬ϕ in K ′′ by the same argument as above. The size of K ′′ is 2O(n), and K ′′ is an
L�-frame, as 〈K ′′ r {r},≺〉 is a p-morphic image of a cofinal subframe of 〈K r {r}, <〉. �

Theorem 2.3 If L is an extensible finitely axiomatizable CSF logic, then A�
L (and thus L-

admissibility of multiple-conclusion rules) is decidable in coNE. The same holds for admis-
sibility in IPC .

Proof: Notice that it is decidable in polynomial time (in fact, in uniform AC0) whether a
finite Kripke frame is an L-frame, because CSF logics are elementary on finite frames [21].
To check that A�

L 0 ϕ, guess an exponential-size rooted model 〈K,<, r,
〉 together with
valuation of all subformulas of ϕ, and verify that the valuation satisfies the usual inductive
definition, r 
 RLϕ ∧ ¬ϕ, and 〈K r {r}, <〉 is an L-frame.

Gödel’s translation of any s.i. logic in its largest modal companion is faithful wrt admissible
rules (Rybakov, see [18]). (Alternatively, in the case of IPC , it also follows from theorems
1.6 and 1.4.) �

Example 2.4 Admissibility in K4, GL, S4, K4Grz , S4Grz , K4.1, or S4.1 is in coNE .

As noted in [14], admissibility in normal extensions of GL.3 or S4.3 is coNP -complete. We
expand this result to some other linear modal logics, including K4.3, K4Grz .3, and K4.1.3.
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Lemma 2.5 Let L be a CSF linear extensible logic, which does not contain S4 or GL. If
A�
L 0 ϕ, there exists a polynomial-size rooted L�-model 〈K,<, r,
〉 such that r 
 RLϕ ∧ ¬ϕ.

Proof: Let S be the set of subformulas of ϕ, and we call a point x ϕ-reflexive if x 
 �ψ
implies x 
 ψ for every �ψ ∈ S. We take a linearly extensible L�-model 〈K,<, r,
〉 such
that r 1 ϕ.

First we find a polynomial-size submodel X0 ⊆ K− = K r {r} such that X0 contains
a dead end and a simple reflexive final cluster (i.e., t.p.’s of the empty set), X0 ∪ {r} is an
S-faithful submodel of K, and X0 hits every final cluster which is above a point of X0. We
can construct X0 as follows. We pick a dead end x• ∈ K−, and a simple reflexive final point
x◦ ∈ K−. For each formula ψ such that �ψ ∈ S, and r 1 �ψ, we pick xψ > r such that
xψ 1 ψ, and yψ ≥ xψ which belongs to a final cluster of K− (there is only one final cluster
above xψ, by linearity). For each �χ ∈ S such that xψ 1 �χ, we find zψ,χ > xψ such that
zψ,χ 1 χ, and χ holds in all points strictly above the cluster of zψ,χ. We define X0 as the set
of all xψ, yψ, and zψ,χ, together with x◦ and x•. Clearly |X0| = O(n2), where n = |ϕ|. If
�ω ∈ S and zψ,χ 1 �ω, then zψ,χ < zψ,ω 1 ω by linearity and the choice of zψ,ω. This implies
that X0 ⊆ K− is S-faithful, and the other properties of X0 are obvious.

We define a sequence X1, X2, . . . , Xn of subsets of K− as follows: for any x ∈ Xi

which is not ϕ-reflexive, we pick a reflexive and an irreflexive t.p. of {x} in K−, and put
them in Xi+1. Notice that |Xi+2| ≤ |Xi+1| as reflexive points are ϕ-reflexive, therefore
|Xi| ≤ |X1| ≤ 2|X0| = O(n2). We claim that Xn = ∅. If not, then by the construction
there exists a chain xn < xn−1 < · · · < x1 < x0 such that xi ∈ Xi, and xi+1 is an irreflexive
t.p. of xi. A formula of the form �ψ → ψ can fail in at most one point of a chain. As
|{ψ; �ψ ∈ S}| < n, the pigeonhole principle implies that xi is ϕ-reflexive for some i < n,
contradicting the definition of Xi+1.

We put K ′ = {r} ∪
⋃
i<nXi. We have |K ′| = O(n3), and K ′ is an L�-model, as K ′ r {r}

is a cofinal submodel of K−. It is easy to see that K ′ is an S-faithful submodel of K, in
particular r 1 ϕ in K ′. We claim that r 
 RLϕ in K ′. Consider for instance the formula

�
( ∧
j<m

�ϕj →
∨
i<n

�ψi
)
→ �

( ∧
j<m

�ϕj →
∨
i<n

�ψi
)
,

where �ϕj and �ψi are subformulas of ϕ. Assume that r 1 �(
∧
j<m �ϕj →

∨
i<n �ψi),

and fix x > r such that x 

∧
j<m �ϕj ∧

∧
i<n ¬�ψi. If x is not ϕ-reflexive, there exists an

irreflexive t.p. y > r of {x} by the construction, and clearly y 

∧
j<m �ϕj ∧

∧
i<n ¬�ψi. If

x is ϕ-reflexive, then trivially x 

∧
j<m �ϕj , and by ϕ-reflexivity x 


∧
i<n ¬�ψi. In both

cases r 1 �(
∧
j<m �ϕj →

∨
i<n �ψi). The other conjuncts of RLϕ can be verified in a similar

way. �

Theorem 2.6 For any finitely axiomatizable linear extensible CSF logic L, admissibility and
A�
L are coNP-complete.

Proof: We may assume that L does not contain S4 or GL. We proceed similarly to the
proof of theorem 2.3. If we guess a polynomial-size model of ¬ϕ and verify it satisfies RLϕ, we
only get a ΠP

2 -algorithm, as checking the exponential-size formula RLϕ consumes a quantifier.
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However, the proof of lemma 2.5 shows that we can assume the model to satisfy a stronger
condition: every x > r which is not ϕ-reflexive has a reflexive and an irreflexive t.p. This
condition is checkable in polynomial time. �

The usefulness of the next example will become clear later.

Proposition 2.7 For L = GL+ �2⊥, A�
L is in ΠP

3 .

Proof: If A�
L 0 ϕ, there is an A�

L -model K of ¬ϕ with O(n2) leaves: take an arbitrary
countermodel for ϕ, extract its polynomial-size submodel faithful wrt subformulas of ϕ, and
augment it with all the missing tight predecessors (which will all have depth 2).

Existence of such a model is checkable in ΣP
3 as follows. Find (first quantifier, ∃) a

polynomial-size model 〈K, r〉 of depth 3 such that r 1 ϕ. For any nonempty set X of leaves
of K (second quantifier, ∀), guess (third quantifier, ∃) a valuation of atoms in an imaginary
tight predecessor x of X, and verify the choice does not mess up satisfaction of subformulas
of ϕ in r (i.e., for every boxed subformula �ψ of ϕ, if r 
 �ψ in K, then x 
 ψ). �

3 Lower bounds

We are going to show that admissibility in a rich class of s.i. and modal logics is coNEXP -hard.
We start by isolating a convenient coNEXP -complete problem, which we will then reduce to
admissibility.

Lemma 3.1 The following problem is NEXP-complete. Given a number n in unary, and
a sentence Φ, determine whether Φ holds in the n-element structure (with no predicates or
functions), where Φ is a Σ2

1-formula of the form

∃X ∀a1 . . .∀ak ϕ(X,~a,~i),

X is a monadic third-order variable, aj are monadic second-order variables, ij are (first-
order) constants from the structure, and ϕ is open.

Proof: Let L be an NEXP -language. Identify a binary string w with the structure 〈n,<,W 〉,
where n = |w|, and W is the unary predicate such that W (j) iff wj = 1. Standard encoding
of Turing machine computations à la Fagin’s theorem [6] gives a Σ2

1-formula Φ such that

w ∈ L iff w � Φ

for every w. By usual quantifier switching tricks, any Σ2
1-formula is equivalent to a formula

of the form
∃ ~X ∀~aϕ,

where ~X, ~a, and ϕ are third, second, and first order, respectively. By padding with unused
places, we may also assume all ~X and ~a to have the same arity.

Let w be given. We can tranform ϕ into a polynomial-size quantifier-free formula using
constants from n instead of the relations <, W . By switching from n to n′ = nd and
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adjusting the atomic subformulas of ϕ, we may assume that ~a are monadic. (Notice that
the quantifier prefix is still constant at this point.) Assume that the existential prefix consists
of d quantifiers ∃Xj of arity c. We can encode these d c-ary relations on subsets of n′ by a
single unary predicate on subsets of n′′ = cn′+|d| so that (in a sloppy notation) Xj(a1, . . . , ac)
iff X(〈a1, . . . , ak, j〉). We thus enlarge the structure once again from n′ to n′′, and replace
the existential prefix with a single monadic quantifier. We retain the old quantifiers ∀aj
(which now range over subsets of n′′, representing the old subsets of n′ by, say, the first n′

coordinates), and for each atomic formula of ϕ of the form Xj(~a), include a new quantifier
∀b in the formula. In ϕ, replace Xj(~a) with X(b), and include conditions (FO, rewritten as
polynomial-size open) ensuring that b is correctly formed from ~a and j. �

The next theorem is a special case of theorem 3.13. We nevertheless prefer to include
its proof separately, as it explains the intuition behind the construction used in the general
case, without the complications necessary to deal with reflexive models and weaker expressive
power of intuitionistic logic.

Theorem 3.2 Admissibility in GL+ �3⊥ and GL is coNEXP-hard.

Proof: Let L = GL+ �3⊥. Assume we are given n, and a formula

Φ = ∃X ∀a0 . . .∀ak−1 ϕ(. . . , aj ∈ X, . . . , i ∈ aj , . . .)

as in lemma 3.1, we will construct a formula Φ such that

n � Φ iff Φ is A�
L -consistent.

We define Φ as the conjunction of the following formulas in variables pi (i < n), qj (j < k),
and t:

�
(∧
i<i′

(pi → ¬pi′) ∧
∧
j<j′

(qj → ¬qj′) ∧
∧
i,j

(pi → ¬qj)
)

�
(
�⊥ ≡

∨
i

pi ∨
∨
j

qj
)

♦
(∧
i

♦pi ∧
∧
j

♦qj
)

�
(∧
i

(�(♦> → ♦pi) ∨�¬♦pi) → �(♦> → t) ∨�(♦> → ¬t)
)

�
(∧
i,j

(�(♦qj → ♦pi) ∨�(♦qj → ¬♦pi)) ∧
∧
j

♦♦qj → ϕ
)
,

where ϕ is the formula

ϕ(. . . ,♦(t ∧ ♦qj), . . . ,♦(♦pi ∧ ♦qj), . . .).

(Notice that ¬Φ is a characteristic formula of a single-conclusion inference rule, thus we indeed
reduce the problem to L-admissibility rather than full A�

L .) Recall from [14] that A�
L is sound
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and complete wrt rooted GL-models 〈K, r〉 of depth 4, such that every finite subset X ⊆ K

of depth at most 2 has a tight predecessor in K r {r}. (Caveat lector: definition of depth
used in [14] is off by one from the present one.)

The idea is as follows. At depth 1, we have names for each element of n, distinguished
by the variables pi. A subset a ⊆ n is represented by a depth-2 point, having the names for
the elements of a as its depth-1 successors. We use the variable t to indicate whether a ∈ X
or not; the fourth conjunct of Φ ensures that the answer does not depend on the choice of
the representant for a. The situation is however more complicated as ϕ involves a sequence
of sets a0, . . . , ak−1. To this end, we also have indices j < k at depth 1 using atoms qj , and
each a ⊆ n has several representants at depth 2, labelled by j < k. Then we can read off the
value of ϕ(X,~a) at a point which has as its successors the representants of a0, . . . , ak−1 with
the corresponding labels. (The premise of the last conjunct of Φ reads “for each j, I see a
unique set labelled by j”.) The important point is that existence of tight predecessors ensures
any set has a representant with any label, thus we do not miss any instances of the universal
quantifiers in Φ. We proceed with the formal details.

Assume that n 
 Φ, and fix a witness X ⊆ P(n) to the existential quantifier. We
construct a model 〈K, r〉 as follows. Take n + k points of depth 1, and attach all required
tight predecessors, and the root r. Define valuation of variables so that each pi or qj is satisfied
in one point of depth 1 and nowhere else, with distinct variables getting distinct points, and

u 
 t iff {i < n; u 
 ♦pi} ∈ X.

Clearly, the first three conjuncts of Φ are valid in r. The fourth one is also valid: if u 
∧
i(�(♦> → ♦pi) ∨ �¬♦pi), all v > u agree on satisfaction of the formulas ♦pi, thus by

definition, also agree on satisfaction of t.
Assume

u 

∧
i,j

(�(♦qj → ♦pi) ∨�(♦qj → ¬♦pi)) ∧
∧
j

♦♦qj ,

and put aj = {i < n; u 
 ♦(♦pi ∧ ♦qj)}. If u < v 
 ♦qj , we have

{i < n; v 
 ♦pi} = aj ,

as v 
 ♦pi implies i ∈ aj by definition, and v 1 ♦pi implies u 1 �(♦qj → ♦pi), thus
u 
 �(♦qj → ¬♦pi), and i /∈ aj .

Therefore u 
 ♦(t ∧ ♦qj) implies aj ∈ X, and u 
 ♦(¬t ∧ ♦qj) implies aj /∈ X; as
u 


∧
j ♦♦qj , we have

aj ∈ X iff u 
 ♦(t ∧ ♦qj).

By definition i ∈ aj iff u 
 ♦(♦pi ∧ ♦qj). As ϕ holds for ~a, we thus have u 
 ϕ, which
completes the verification of r 
 Φ.

For the converse, assume 〈K, r〉 is an A�
L -model of Φ, and define

X = {{i < n; u 
 ♦pi}; u 
 �2⊥ ∧ ♦> ∧ t}.

We claim
u 
 t iff a(u) := {i < n; u 
 ♦pi} ∈ X
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for any u of depth 2. Indeed, if u 
 t, then a(u) ∈ X by definition. If u 1 t and a(u) ∈ X,
choose u′ of depth 2 such that a(u′) = a(u), and u′ 
 t. Let v be a tight predecessor of the
set {u, u′}. Then v 
 �(♦> → ♦pi) if i ∈ a(u), and v 
 �(♦> → ¬♦pi) (thus v 
 �¬♦pi) if
i /∈ a(u). As v > r 
 Φ, we must have v 
 �(♦> → t) or v 
 �(♦> → ¬t), which contradicts
u 
 ¬t or u′ 
 t.

Let a0, . . . , ak−1 be arbitrary subsets of n, we must show that ϕ holds for X and ~a. By
the first three conjuncts of Φ, we may fix pairwise distinct depth-1 points xi 
 pi and yj 
 qj .
For each j < k, let zj be a tight predecessor of the set {yj} ∪ {xi; i ∈ aj}, and let w be a
tight predecessor of {zj ; j < k}. For each j, w has exactly one successor satisfying ♦qj , viz.
zj . It follows easily

w 

∧
i,j

(�(♦qj → ♦pi) ∨�(♦qj → ¬♦pi)) ∧
∧
j

♦♦qj ,

thus w 
 ϕ. As we have w 
 ♦(♦pi ∧ ♦qj) iff zj 
 ♦pi iff i ∈ aj , and w 
 ♦(t ∧ ♦qj) iff zj 
 t

iff aj = {i; zj 
 ♦pi} ∈ X, this implies ϕ(X,~a). �

3.1 Superintuitionistic logics

The aim of the present subsection is to prove the following theorem.

Theorem 3.3 Admissibility in any s.i. logic L ⊆ BD3 is coNEXP-hard.

In fact, we will show a slightly stronger result:

Theorem 3.4 For any NEXP-language P , there is a polynomial-time function f(w) =
〈αw, δw〉 such that for every w,

• if w ∈ P , there is a substitution ~χ such that IPC ` αw(~χ) and BD2 0 δw(~χ),

• if w /∈ P , then for every ~χ such that BD3 ` αw(~χ), we have IPC ` δw(~χ).

Definition 3.5 For the rest of the subsection, we fix n and

Φ = ∃X ∀a0 . . .∀ak−1 ϕ(X,~a)

as in lemma 3.1.
We define the following formulas in variables pi (i < n), qj (j < k), t, s:

β+
i,j = t ∨ s→ (¬pi → t ∧ s) ∨ ¬qj ,

β−i,j = t ∨ s→ ¬pi ∨ ¬qj ,

γ =
∨
i

pi ∨
∨
j

qj ,

δ =
∨
i

¬pi ∨
∨
j

¬qj ,
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and let α be the conjunction of the formulas∧
i<i′

(pi → ¬pi′) ∧
∧
j<j′

(qj → ¬qj′) ∧
∧
i,j

(pi → ¬qj)

t ∧ s ≡ γ

t ∨ s ≡
∧
i

((¬pi → t ∧ s) ∨ ¬pi)∧
i,j

(β+
i,j ∨ β

−
i,j) → ϕ

where ϕ is constructed from ϕ as follows. Rewrite ϕ as an equivalent formula using only ∧,
∨, and literals, and replace

aj ∈ X with s→ ¬qj ∨ t,
aj /∈ X with t→ ¬qj ∨ s,
i ∈ aj with β+

i,j ,

i /∈ aj with β−i,j .

Lemma 3.6 If n � Φ, then IPC does not admit α |∼ δ.

Proof: We use the characterization from theorem 1.6. Let X be a witness for the existential
quantifier in Φ. We construct an extensible model K by taking n+k leaves, each forcing t, s,
and exactly one variable from the list ~p, ~q, we add all required tight predecessors (which are
bound not to satisfy any pi or qj , by persistence), and for any u which is not a leaf, we put

u 
 t iff ∃a ∈ X u 

∧
i∈a

(¬pi → γ) ∧
∧
i/∈a

¬pi,

u 
 s iff ∃a /∈ X u 

∧
i∈a

(¬pi → γ) ∧
∧
i/∈a

¬pi.

The first three conjuncts of α are easy to verify, and δ is not valid in the model. Assume
u 


∧
i,j(β

+
i,j ∨ β

−
i,j), we have to show u 
 ϕ. Define aj = {i; u 
 β+

i,j}.

Claim 1

(i) i ∈ aj ⇒ u 
 β+
i,j ,

(ii) i /∈ aj ⇒ u 
 β−i,j ,

(iii) aj ∈ X ⇒ u 
 s→ ¬qj ∨ t,

(iv) aj /∈ X ⇒ u 
 t→ ¬qj ∨ s.

Proof: (i) is clear. (ii) is also easy: by assumption u 
 β+
i,j or u 
 β−i,j , and u 1 β+

i,j by
definition of aj .

(iii): let u ≤ v 
 s. If v 
 t, we are done. Otherwise there is a /∈ X such that
v 


∧
i∈a(¬pi → t∧ s)∧

∧
i/∈a ¬pi. As aj ∈ X, we have a 6= aj . If i ∈ aj r a, we have v 
 ¬pi;

as u 
 β+
i,j , also v 
 (¬pi → t ∧ s) ∨ ¬qj , thus v 
 t ∨ ¬qj . The case i ∈ ar aj is similar.

(iv) is proved in the same way as (iii), switching t and s. � (Claim 1)
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By assumption, ϕ(X,~a) holds. As formulas constructed from ∧ and ∨ are monotone, and
evaluated in u as in the classical logic, the claim implies u 
 ϕ. �

Lemma 3.7 If BD3 ` α(~χ) and the image of each pi and qj under ~χ is CPC-consistent,
then

n � ∃X ∀~a 6= ∅ϕ(X,~a).

Proof: Let ψ̃ = ψ(~χ) for any ψ. Pick single-element models xi 
 p̃i and yj 
 q̃j , and
construct a depth-3 model K̃ by taking ~x and ~y as leaves, and attaching tight predecessors
to all subsets of depth at most 2. By assumption, K̃ 
 α̃. Let K be the model on the same
frame as K̃ such that K,u 
 ψ iff K̃, u 
 ψ̃.

We have K 
 α. Notice that t ∧ s is valid in the leaves of K, but nowhere else, as every
other point of K sees at least two leaves, and thus cannot force any pi or qj . Define

X = {{i; u 
 ¬pi → s}; u 
 t, d(u) = 2},
Y = {{i; u 
 ¬pi → t}; u 
 s, d(u) = 2}.

Claim 1 The sets X and Y are disjoint.

Proof: Assume for contradiction that a ∈ X ∩ Y , and let u, u′ be the witnessing points of
depth 2 such that u 
 t and u′ 
 s. Let v be the tight predecessor of {u, u′}. We have

i /∈ a⇒ v 
 ¬pi,

as u, u′ 
 ¬pi (because u, u′ 
 t ∨ s and u, u′ 1 ¬pi → t ∧ s), and v is a t.p. of {u, u′}. Also

i ∈ a⇒ v 
 ¬pi → t ∧ s.

Indeed, if v ≤ w 
 ¬pi, then either v = w, in which case u 
 t ∧ s, contradicting d(u) = 2, or
v < w, in which case u ≤ w or u′ ≤ w, thus w 
 t ∧ s by u, u′ 
 ¬pi → t ∧ s.

Thus, as v 
 α, we get v 
 t ∨ s. This implies u, u′ 
 t or u, u′ 
 s, thus u 
 t ∧ s or
u′ 
 t ∧ s, contradicting d(u) = d(u′) = 2. � (Claim 1)

Let a0, . . . , ak−1 be any nonempty sets, we have to show ϕ(X,~a). We have the leaves xi 
 pi
and yj 
 qj ; let zj be the tight predecessor of {yj} ∪ {xi; i ∈ aj}, and w a t.p. of {zj ; j < k}.

Claim 2

(i) i ∈ aj ⇒ w 
 β+
i,j and w 1 β−i,j ,

(ii) i /∈ aj ⇒ w 1 β+
i,j and w 
 β−i,j ,

(iii) aj ∈ X ⇒ w 1 t→ ¬qj ∨ s,

(iv) aj /∈ X ⇒ w 1 s→ ¬qj ∨ t.
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Proof: If i ∈ aj , then zj 
 ¬pi → t ∧ s (as zj 1 ¬pi, and everything strictly above zj has
depth 1). If i /∈ aj , then zj 
 ¬pi. By α we get zj 
 t∨s. Moreover d(zj) = 2, thus zj 1 t∧s,
and either zj 
 t and aj ∈ X, or zj 
 s and aj ∈ Y (thus aj /∈ X, by claim 1).

(i): as w ≤ zj , zj 
 t∨s, and zj 1 ¬pi∨¬qj , we have w 1 β−i,j . Consider any w ≤ x 
 t∨s.
We have x 
 ¬pi → t ∧ s or x 
 ¬pi. In the latter case, we cannot have x ≤ zj , thus either
zj′ ≤ x for some j 6= j′, in which case x 
 ¬qj , or zj < x, in which case x 
 t∧s and a fortiori
x 
 ¬pi → t ∧ s.

(iii): we have w ≤ zj 
 t, zj 1 ¬qj ∨ s.
(ii) and (iv) are proved similarly to (i) and (iii). � (Claim 2)

We have w 

∧
i,j(β

+
i,j∨β

−
i,j), thus w 
 ϕ by α. As formulas built from ∧ and ∨ are monotone,

claim 2 implies ϕ(X,~a). �

Proof (theorem 3.4): By lemma 3.1, there is a polynomial-time function which reduces P to
validity of n � Φ. WLOG we may further assume

n � Φ iff n � ∃X ∀~a 6= ∅ϕ(X,~a).

We let f(w) = 〈α, δ〉 as in definition 3.5.
If n � Φ, there is a substitution ~χ such that IPC ` α(~χ) and IPC 0 δ(~χ) by lemma

3.6. As δ is a disjunction of negated formulas, each disjunct has a classical (i.e., depth-1)
countermodel, and the whole disjunction has a depth-2 countermodel, thus BD2 0 δ(~χ).

If n 2 Φ and ~χ is such that BD3 ` α(~χ), one of the disjuncts of δ(~χ) is provable in CPC
by lemma 3.7. As the disjuncts are negative, we have IPC ` δ(~χ). �

Theorem 3.3 gives a simple class of logics for which our method works, but the lower bound
is applicable also to other systems. Most importantly, the condition L ⊆ BD3 excludes logics
whose frames have a single top point, such as KC. We note that admissibility in KC is
also coNEXP -hard, though we do not know how to generalize the result to, say, all logics
contained in KC +BD4.

Lemma 3.8 Let ϕ(q, ~p) and ψ(q, ~p) be ⊥-free formulas with all variables shown, and r a new
variable.

(i) IPC ` ϕ(⊥, ~p) iff IPC ` ϕ
(∧

i pi ∧ r, ~p
)
.

(ii) ϕ(⊥, ~p) |∼IPC ψ(⊥, ~p) iff ϕ
(∧

i pi ∧ r, ~p
)
|∼IPC ψ

(∧
i pi ∧ r, ~p

)
.

(iii) If ϕ(~p) 6|∼IPC ψ(~p), there exists a ⊥-free substitution ~χ such that IPC ` ϕ(~χ), and
IPC 0 ψ(~χ).

Proof: (i) is a special case of (ii).
(ii): the right-to-left implication follows from the substitution r 7→ ⊥. Let 〈K,≤,
〉 be

an extensible model which validates ϕ
(∧

i pi ∧ r, ~p
)
, and refutes ψ

(∧
i pi ∧ r, ~p

)
in x ∈ K.

Put K ′ = {u ∈ K; u 1
∧
i pi ∧ r}. K ′ is extensible: t.p.’s of nonempty sets exist as K ′

is downwards closed, and the empty set has a t.p. as K ′ 3 x is nonempty. Moreover, K ′

validates ϕ(⊥, ~p), and K ′, x 1 ψ(⊥, ~p).
(iii): take ⊥-free formulas ~χ such that IPC ` ϕ(~χ(⊥, ~q)) and IPC 0 ψ(~χ(⊥, ~q)). Then

IPC ` ϕ
(
~χ
(∧

i qi ∧ r, ~q
))

and IPC 0 ψ
(
~χ
(∧

i qi ∧ r, ~q
))

by (i). �
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Proposition 3.9 Admissibility in KC is coNEXP-hard.

Proof: Let f(ϕ(⊥, ~p) B ψ(⊥, ~p)) = ϕ
(∧

i pi ∧ r, ~p
)

B ψ
(∧

i pi ∧ r, ~p
)
, we claim that f is a

reduction of IPC -admissibility to KC-admissibility.
If ϕ(⊥, ~p) |∼IPC ψ(⊥, ~p), then ϕ

(∧
i pi ∧ r, ~p

)
|∼IPC ψ

(∧
i pi ∧ r, ~p

)
by lemma 3.8. As KC

admits (single-conclusion) Visser’s rules [12], this implies ϕ
(∧

i pi ∧ r, ~p
)
|∼KC ψ

(∧
i pi ∧ r, ~p

)
.

Assume ϕ(⊥, ~p) 6|∼IPC ψ(⊥, ~p). Then ϕ
(∧

i pi ∧ r, ~p
)
6|∼IPC ψ

(∧
i pi ∧ r, ~p

)
, thus there exist

⊥-free formulas ~χ and % such that IPC ` ϕ
(∧

i χi ∧ %, ~χ
)
, and IPC 0 ψ

(∧
i χi ∧ %, ~χ

)
. This

implies ϕ
(∧

i pi∧r, ~p
)
6|∼KC ψ

(∧
i pi∧r, ~p

)
, because KC has the same ⊥-free fragment as IPC

(see [5]). �

3.2 Modal logics

Definition 3.10 T is Gödel’s translation of IPC in modal logic, adjusted to nonreflexive
extensions of K4: T(p) = �p for atoms p, T(⊥) = ⊥, T(ϕ ◦ ψ) = T(ϕ) ◦ T(ψ) for ◦ ∈ {∧,∨},
and T(ϕ→ ψ) = �(T(ϕ) → T(ψ)).

If L is an extension of K4, %L is the s.i. logic {ϕ; L ` T(ϕ)}. For any transitive frame
K, its skeleton %K is the intuitionistic frame consisting of the clusters of K with the induced
ordering relation.

We will transfer the result of the previous subsection to the modal case rather easily, using
Gödel’s translation. However, we need to formulate the assumptions a bit more carefully; the
condition L ⊆ K4BD3 is too strong (it excludes e.g. S4 and GL), whereas %L ⊆ BD3 seems
too weak. The next definition says, roughly, that every depth-3 tree is a skeleton of an L-
frame, in which the final clusters are prescribed by the enemy along with the skeleton, but
we are free to chose the clusters at depths 2 and 3.

Definition 3.11 Let L be a consistent normal extension of K4. L has the weak depth-3
extension property, if for every finite tree T of depth 3 whose leaves are labeled by finite
disjoint clusters validating L, there is an L-frame K such that %K ' T , and the preimage of
any leaf of T under the % construction is its label.

Notice that we may wlog require all clusters in K of depth 2 and 3 to be singletons, and state
the property for arbitrary finite directed graphs of depth 3 instead of trees. Both observations
follow as the class of L-frames is closed under p-morphisms.

Lemma 3.12 Let L be a normal extension of K4. If �ϕ is L-consistent, it is satisfiable in
an L-frame which is a finite cluster.

Proof: If �ϕ is consistent with L⊕ (S5 ∩ (K ⊕�⊥)) = (L⊕ S5) ∩ (L⊕�⊥), we are done,
as all extensions of S5 (Bull [2]) or K ⊕�⊥ (trivial) have FMP. If not, there is ψ such that
L ` ψ and S5 ∩ (K ⊕�⊥) ` ψ → ·♦¬ϕ. We have

S5 ∩ (K ⊕�⊥) ` α⇒ K4 ` ·♦α

for any α: otherwise �¬α is satisfiable in a finite K4-model, thus in a final cluster, which is
a model of S5 ∩ (K ⊕�⊥).
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Therefore K4 ` ·♦(ψ → ·♦¬ϕ) and L ` ·♦¬ϕ, a contradiction. �

Theorem 3.13 If L is a normal extension of K4 with the weak depth-3 extension property,
then admissibility in L is coNEXP-hard.

Proof: Consider the reduction from theorem 3.4. We claim

w /∈ P iff T(αw) |∼L T(δw).

If w ∈ P , there is a substitution ~χ such that IPC ` α(~χ), and BD2 0 δ(~χ). Then
L ` T(α)(T(~χ)) and L 0 T(δ)(T(~χ)), as T commutes with substitution (up to K4-provable
equivalence), and %L ⊆ BD3 ⊆ BD2 by the weak depth-3 extension property.

Let ~χ be a substitution such that L ` T(α)(~χ) and L 0 T(δ)(~χ). Put ψ̃ = T(ψ)(~χ) for any
intuitionistic formula ψ. As δ̃ =

∨
i �¬p̃i ∨

∨
j �¬q̃j , the formulas p̃i and q̃j are L-consistent.

As these formulas have the form �(. . .), there are finite clusters Ci 
 p̃i andDj 
 q̃j validating
L, by lemma 3.12. By the weak depth-3 extension property, there is an L-model K of depth
3 which has ~C and ~D as its final clusters, and contains a tight predecessor (either reflexive or
irreflexive) for every subset of depth at most 2. By assumption, K 
 α̃. Define a valuation
on %K by [u] 
 ψ iff u 
 ψ̃. Then %K is a model of the form considered in the proof of lemma
3.7, thus by the same argument, n 
 Φ and w /∈ P .

The T translation is not in general polynomial-time: expanding each subformula �ϕ =
ϕ ∧ �ϕ doubles the size, thus the length of T(ϕ) is exponential in the implication-depth of
ϕ. However, our α and δ from definition 3.5 have constant depth (4), which takes care of
the problem. (In fact, it is easy to see that any rule can be transformed into a polynomially
longer rule involving only formulas of depth 2, while preserving its (non)admissibility.) �

Corollary 3.14 Admissibility in any extensible finitely axiomatizable cofinal subframe logic
is coNEXP-complete. �

Notice that the constant 3 in theorem 3.13 is tight: L = GL + �2⊥ has the depth-
2 extension property, yet by proposition 2.7, L-admissibility is not coNEXP -hard (unless
NEXP , including the polynomial-time hierarchy, collapses to ΣP

3 = ΠP
3 ). In fact, we have the

following characterization, which illustrates the dependence of complexity of admissibility on
depth. Notice that derivability in any of the logics GL+ �m⊥ is coNP -complete.

Proposition 3.15 Let m > 0. Admissibility in GL+ �m⊥ is

(i) coNP-complete for m = 1,

(ii) ΠP
3 -complete for m = 2,

(iii) coNEXP-complete for m > 2.

Proof: (i): GL+ �⊥ is an inessential variant of CPC .
(iii) follows from theorem 3.2.
(ii): A�

L ∈ ΠP
3 by proposition 2.7. We can reduce validity of Σq

3 quantified Boolean
formulas to L-nonadmissibility as in the proof of theorem 3.2, using tight predecessors to
simulate universal quantifiers. Details are left to the interested reader. �
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