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Abstract

We investigate properties of the formula p → 2p in the basic modal logic K. We
show that K satisfies an infinitary weak variant of the rule of margins, which leads to a
description of a complete set of unifiers of p → 2p. Using this information, we establish
that K has nullary unification type. Moreover, we show that the formula p → 2p is
admissibly saturated, but not exact.

1 Introduction

Equational unification studies the problem of making terms equivalent modulo an equational
theory by means of a substitution. It has been thoroughly investigated for basic algebraic
theories, such as the theory of commutative semigroups, see Baader and Snyder [2] for an
overview. If L is a propositional logic algebraizable with respect to a class V of algebras,
unification modulo the equational theory of V can be stated purely in terms of propositional
logic: an L-unifier of a set Γ of formulas is a substitution which turns all formulas from Γ
into L-tautologies.

In the realm of modal logics, the seminal results of Ghilardi [5] show that unification is
at most finitary, decidable, and generally well-behaved for a representative class of transitive
modal logics, including e.g. K4, S4, GL, Grz . Unification was also studied for fragments of
description logics, which have industrial database applications; see Baader and Ghilardi [1].

Unification in propositional logics is closely connected to admissibility of inference rules: a
multiple-conclusion rule Γ / ∆ is L-admissible if every L-unifier of Γ also unifies some formula
from ∆. Rybakov [9] proved that admissibility is decidable for a class of transitive modal
logics (similar to the one mentioned above) and provided characterizations of their admissible
rules. Some of these results can be alternatively obtained using Ghilardi’s approach (cf. also
[7]). It is also possible to treat intuitionistic and intermediate logics in parallel with the
transitive modal case [9, 4, 6].
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In contrast to these results, not much is known about unification and admissibility in non-
transitive modal logics. In particular, one of the main open problems in the area is decidability
of unification or admissibility in the basic modal logic K. (Wolter and Zakharyaschev [13]
have shown that unifiability is undecidable in the bimodal extension of K with the universal
modality and in some description logics, but it is wide open whether one can extend these
results to K itself.)

In this note we present some negative properties of unification and admissibility in K. The
main result is that unification in K is nullary (i.e., of the worst possible type). We also show
that there exists a formula (namely, p→ 2p) which is admissibly saturated in the sense of [8],
but it is not exact (or projective, for that matter). (The results of Ghilardi [5] imply that in
well-behaved transitive modal logics such as K4, projective, exact, and admissibly saturated
formulas coincide, and indeed this is an important precondition which makes possible the
characterization of admissibility in terms of projective approximations.)

Our results are based on a classification of unifiers of the formula p → 2p. The main
ingredient is establishing that K admits a weaker version of the so-called rule of margins:

ϕ→ 2ϕ / ϕ,¬ϕ.

The rule of margins was investigated by Williamson [10, 11, 12] in the context of epistemic
logic. (The rule is supposed to express the ubiquity of vagueness. We read 2 as “clearly”.
Since all our learning processes have a certain margin of error, the only way we can know for
sure that ϕ is clearly true whenever it is true is that we know in fact whether ϕ is true or
false.) The rule of margins is admissible e.g. in the logics KD , KT , KDB , and KTB , but not
in K. However, we will show that K satisfies a variant of the rule whose conclusion is that
either ϕ holds, or it is almost contradictory in the sense of implying 2n⊥ for some n ∈ ω.

2 Preliminaries

We refer the reader to [3, 2] for background on modal logic and unification, respectively. We
review below the needed definitions to fix the notation, and some relevant basic facts.

We work with formulas in the propositional modal language using propositional variables
pn, n < ω (we will often write just p for p0), classical propositional connectives (including
the nullary connectives ⊥,>), and the unary modal connective 2. We will use lower-case
Greek letters to denote formulas, and upper-case Greek letters for finite sets of formulas. We
define 3ϕ, 2nϕ, 2<nϕ, 3nϕ as shorthands for ¬2¬ϕ, 2 . . .2︸ ︷︷ ︸

n times

ϕ,
∧n−1
i=0 2iϕ, and ¬2n¬ϕ,

respectively. (As a special case, 20ϕ = ϕ and 2<0ϕ = >.) The modal degree md(ϕ) of a
formula ϕ is defined so that md(pi) = 0, md(◦(ϕ0, . . . , ϕk−1)) = maxi<k md(ϕi) for a k-ary
propositional connective ◦, and md(2ϕ) = 1 + md(ϕ).

We use ` to denote the global consequence relation of K. That is, Γ ` ϕ iff there exists a
sequence of formulas ϕ0, . . . , ϕn such that ϕn = ϕ, and each ϕi is an element of Γ, a classical
propositional tautology, an instance of the axiom

2(α→ β) → (2α→ 2β),
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or it is derived from some of the formulas ϕj , j < i, by an instance of necessitation α / 2α

or modus ponens α, (α→ β) / β.
A Kripke model is a triple 〈F,R,�〉, where the accessibility relation R is a binary relation

on F , and the valuation � is a relation between elements of F and formulas, written as
F, x � ϕ, which commutes with propositional connectives and satisfies

F, x � 2ϕ iff ∀y ∈ F (x R y ⇒ F, y � ϕ).

If there is no danger of confusion, we will denote the model 〈F,R,�〉 just by F . We write
F � ϕ if F, x � ϕ for every x ∈ F , and F � Γ if F � ϕ for every ϕ ∈ Γ. The completeness
theorem for K states

Fact 2.1 Γ ` ϕ iff F � Γ implies F � ϕ for every model 〈F,R,�〉.

Let R(x) = {y : x R y}, let

Rn = {〈x0, xn〉 ∈ F 2 : ∃x1, . . . , xn−1 ∈ F ∀i < nxi R xi+1}

be the n-fold composition of R (where the case n = 0 is understood to mean R0 = {〈x, x〉 :
x ∈ F}), and R≤n =

⋃
i≤nR

i. We say that x is a root of F if F =
⋃
n∈ω R

n(x).

Fact 2.2 If 0 ϕ, then there exists a model 〈F,R,�〉 based on a finite irreflexive intransitive
tree with root x such that F, x 2 ϕ.

(That is, R is the edge relation of a directed tree in the sense of graph theory, with edges
oriented away from x and no self-loops.)

A model 〈F ′, R′,�′〉 is the restriction of 〈F,R,�〉 to F ′, denoted as 〈F,R,�〉�F ′, if F ′ ⊆ F ,
R′ = R ∩ F ′2, and F, x � pi iff F ′, x � pi for every x ∈ F ′ and i.

Fact 2.3 If n ≥ md(ϕ), x ∈ F ∩G, and 〈F,R,�〉�R≤n(x) = 〈G,S,�〉�S≤n(x), then F, x � ϕ
iff G, x � ϕ.

A p-morphism between models 〈F,R,�〉 and 〈G,S,�〉 is a function f : F → G such that

(i) x R y implies f(x) S f(y),

(ii) if f(x) S z, there exists y ∈ F such that x R y and f(y) = z,

(iii) F, x � pi iff G, f(x) � pi.

Fact 2.4 If f : F → G is a p-morphism, then F, x � ϕ iff G, f(x) � ϕ for every formula ϕ.

A substitution is a mapping from formulas to formulas which commutes with all connec-
tives. A unifier of Γ is a substitution σ such that ` σ(ϕ) for all ϕ ∈ Γ. Let U(Γ) be the set
of all unifiers of Γ. The composition of substitutions σ, τ is the substitution σ ◦ τ such that
(σ ◦ τ)(ϕ) = σ(τ(ϕ)). Let σ ≡ τ if ` σ(pi) ↔ τ(pi) for every i. A substitution τ is more
general than σ, written as σ � τ , if there exists a substitution υ such that σ ≡ υ ◦ τ . We
write σ ≈ τ if σ � τ and τ � σ, and σ ≺ τ if σ � τ but τ � σ. Note that � is a preorder,
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and ≈ is its kernel equivalence relation. A complete set of unifiers of Γ is a cofinal subset C
of 〈U(Γ),�〉 (i.e., a set of unifiers of Γ such that every unifier of Γ is less general than some
element of C). If {σ} is a complete set of unifiers of Γ, then σ is a most general unifier (mgu)
of Γ.

If 〈P,≤〉 is a nonempty poset, let M be the set of its maximal elements (i.e., x ∈ P such
that x < y for no y ∈ P ). If every element of P is below an element of M , we say that 〈P,≤〉
is of

• type 1 (unitary), if |M | = 1,

• type ω (finitary), if M is finite and |M | > 1,

• type ∞ (infinitary), if M is infinite.

Otherwise, it is of type 0 (nullary).
The unification type of Γ is the type of the quotient poset 〈U(Γ),�〉/≈. Note that Γ is

of unitary type iff it has an mgu. The unification type of a logic (that is, for us, of K) is the
maximal type of a unifiable finite set of formulas Γ, where we order the unification types as
1 < ω <∞ < 0.

A multiple-conclusion rule is an expression Γ / ∆, where Γ,∆ are finite sets of formulas. A
rule Γ / ∆ is derivable if Γ ` ψ for some ψ ∈ ∆. A rule Γ / ∆ is admissible, written as Γ |∼ ∆,
if every unifier of Γ also unifies some ψ ∈ ∆. Note that all derivable rules are admissible, but
not vice versa. A set of formulas Γ is admissibly saturated [8], if every admissible rule of the
form Γ / ∆ is derivable. Γ is exact if there exists a substitution σ such that

Γ ` ψ iff ` σ(ψ)

for every formula ψ. Γ is projective if it has a unifier σ such that

Γ ` pi ↔ σ(pi)

for every i. Note that σ is then an mgu of Γ: if τ ∈ U(Γ), then τ ≡ τ ◦ σ.

Fact 2.5

(i) If Γ is projective, it is exact.

(ii) If Γ is exact, it is admissibly saturated.

A projective approximation of Γ is a finite set ΠΓ of projective formulas such that Γ |∼ ΠΓ,
and π ` ϕ for every π ∈ ΠΓ and ϕ ∈ Γ. More generally, an admissibly saturated approximation
is a set with properties as above, except that its elements are only required to be admissibly
saturated instead of projective. If ΠΓ is an admissibly saturated approximation, it is easy to
see that

Γ |∼ ∆ iff ∀π ∈ ΠΓ ∃ψ ∈ ∆π ` ψ.

Since any admissibly saturated approximation of an admissibly saturated Γ has to include a
formula deductively equivalent to

∧
Γ, we have:
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Fact 2.6 The following are equivalent for any modal logic:

(i) Every Γ has a projective approximation.

(ii) Every Γ has an admissibly saturated approximation, and every admissibly saturated
formula is projective.

In K4, S4, GL, and other transitive logics satisfying the assumptions of Ghilardi [5], every
formula has a projective approximation, hence admissibly saturated, exact, and projective
formulas coincide.

3 Results

As all of our results concern properties of the formula p → 2p, our first task is to describe
a complete set of unifiers of this formula. Without further ado, this set will consist of the
following substitutions.

Definition 3.1 For any n ∈ ω, we introduce the substitutions

σn(p) = 2<np ∧2n⊥,
σ>(p) = >,

where σα(q) = q for every variable q 6= p and α ∈ ω+ := ω ∪ {>}.

Lemma 3.2 σα is a unifier of p→ 2p for every α ∈ ω+.

Proof: We have
` 2<np ∧2n⊥ → 2≤np→ 22<np

and
` 2n⊥ → 2n+1⊥,

the rest is clear. 2

We start with simple criteria for recognizing that a given unifier of p→ 2p is below σα.

Lemma 3.3 If σ is a unifier of p→ 2p and n ∈ ω, the following are equivalent:

(i) σ � σn,

(ii) σ ≡ σ ◦ σn,

(iii) ` σ(p) → 2n⊥.

Proof: (ii) → (i) follows from the definition of �.
(i) → (iii): if σ ≡ τ ◦ σn, then ` σn(p) → 2n⊥ implies ` τ(σn(p)) → τ(2n⊥), i.e.,

` σ(p) → 2n⊥.
(iii) → (ii): put ϕ = σ(p). Since σ is a unifier of p → 2p, we have ` ϕ → 2ϕ, hence

` ϕ → 2<nϕ by induction. Since we also assume ` ϕ → 2n⊥, we have ` σ(p) → σ(σn(p)).
The other implication is trivial. 2
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Definition 3.4 For any substitution σ, let σ � p be the substitution τ such that τ(p) = σ(p),
and τ(q) = q for every variable q 6= p.

Lemma 3.5 If σ is a substitution, the following are equivalent:

(i) σ � σ>,

(ii) σ ≡ σ ◦ σ>,

(iii) σ � p ≡ σ>,

(iv) ` σ(p).

Proof: Similar to Lemma 3.3. 2

The crucial element in the description of U(p→ 2p) is to show that one of the conditions in
Lemma 3.3 or 3.5 applies to every unifier. This amounts to a variant of the rule of margins,
as alluded to in the introduction.

Proposition 3.6 If ` ϕ→ 2ϕ, then ` ϕ or ` ϕ→ 2n⊥, where n = md(ϕ).

Proof: Assume 0 ϕ and 0 ϕ→ 2n⊥. By Fact 2.2, the latter implies that there exists a finite
irreflexive intransitive tree 〈F,R,�〉 with root x0 such that F, x0 � ϕ ∧ 3n>. This means
that there exists a sequence x0 R x1 R · · · R xn of elements of F , and as R is an intransitive
tree, xn /∈ R<n(x0). Since 0 ϕ, there exists a model 〈G,S,�〉 and a point xn+1 ∈ G such
that G, xn+1 2 ϕ. Let 〈H,T,�〉 be the disjoint union of F and G, where we additionally put
xn T xn+1. Since F � R≤n(x0) = H � T≤n(x0), we have H,x0 � ϕ by Fact 2.3. On the other
hand, H,xn+1 2 ϕ, hence there exists i ≤ n such that H,xi � ϕ and H,xi+1 2 ϕ. Then
H,xi 2 ϕ→ 2ϕ. 2

Ignoring the explicit dependence of n on ϕ, we can rephrase Proposition 3.6 by saying that
the infinitary multiple-conclusion rule

p→ 2p / {p→ 2n⊥ : n ∈ ω} ∪ {p}

is admissible in K.

Corollary 3.7 The substitutions {σα : α ∈ ω+} form a complete set of unifiers for the
formula p→ 2p.

Proof: By Lemmas 3.2, 3.3, and 3.5, and Proposition 3.6. 2

Corollary 3.8 Unification in K is nullary.

Proof: Since ` σn(p) → 2n+1⊥ and 0 σn+1(p) → 2n⊥, Lemma 3.3 shows that σn ≺ σn+1.
By a similar argument, σn and σ> are incomparable. Thus, none of the σn is majorized by a
maximal element in U(p→ 2p)/≈. 2
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Now we turn to the (non)equivalence of exact and admissibly saturated formulas. That
p→ 2p is inexact follows easily from Corollary 3.7:

Proposition 3.9 p→ 2p is not exact, and a fortiori not projective.

Proof: Assume for contradiction that σ is a substitution such that

p→ 2p ` ψ iff ` σ(ψ)

for every ψ. In particular, σ is a unifier of p → 2p, hence σ � σα for some α ∈ ω+

by Corollary 3.7. If α ∈ ω, we have ` σα(p → 2α⊥), hence ` σ(p → 2α⊥). However,
p → 2p 0 p → 2α⊥, a contradiction. If α = >, we obtain a contradiction similarly using
` σ(p). 2

We remark that σn and σ> are projective unifiers of the formulas p → 2p ∧ 2n⊥ and p,
respectively.

We complement Proposition 3.9 by showing that p → 2p is admissibly saturated. We
mention another pathological property of p→ 2p which will arise from the proof. Intuitively,
it is not so surprising that a formula ϕ with an infinite cofinal chain of unifiers like σn
can be admissibly saturated, as the unifiers high enough in the chain eventually become
“indistinguishable” when applied to any particular formula ψ. However, if a formula has two
incomparable maximal unifiers, say σ, σ′, we would expect it not to be admissibly saturated:
presumably, we can find formulas ψ,ψ′ unified by σ and σ′, respectively, but not vice versa.
Then ϕ |∼ ψ,ψ′, but not ϕ |∼ ψ or ϕ |∼ ψ′. By the same token, we would expect that a
formula like p→ 2p, whose set of unifiers consists of two incomparable parts (a chain and a
maximal unifier, in our case), is not admissibly saturated either.

What happens here is that when we apply the unifiers σn to a particular formula, they not
only become “indistinguishable” from each other for n large enough, but they also “cover”
the unifier σ>, despite that it is not comparable to any element of the chain. Returning to
our weak rule of margins, one can imagine that the margins of error about the approximate
falsities 2n⊥ gradually blend into the margin about the truth > as n goes to infinity.

Proposition 3.10 p→ 2p is admissibly saturated.

Proof: Let p→ 2p |∼ ∆, and pick n > max{md(ψ) : ψ ∈ ∆}. Since σn unifies p→ 2p, there
exists ψ ∈ ∆ such that ` σn(ψ). We claim

p→ 2p ` ψ.

If not, there exists a Kripke model 〈F,R,�〉 such that F � p → 2p and F, x0 2 ψ for some
x0 ∈ F . First, we unravel F to a tree: let 〈G,S,�〉 be the model where G consists of sequences
〈x0, . . . , xm〉 such that m ∈ ω, xi ∈ F , xi R xi+1; we put 〈x0, . . . , xm〉 S 〈x0, . . . , xm, xm+1〉;
and G, 〈x0, . . . , xm〉 � pj iff F, xm � pj for each variable pj . The mapping f : G → F given
by f(〈x0, . . . , xm〉) = xm is a p-morphism, hence it preserves the valuation of formulas by
Fact 2.4. In particular, G � p→ 2p and G, 〈x0〉 2 ψ.
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Let H be the submodel of G consisting of sequences 〈x0, . . . , xm〉 where m < n. We
still have H � p → 2p. Moreover, H � 2n⊥, hence H � p ↔ σn(p). On the other hand,
G ⊇ H ⊇ G � S≤md(ψ)(〈x0〉), hence H, 〈x0〉 2 ψ by Fact 2.3. Together, these properties imply
H, 〈x0〉 2 σn(ψ), contradicting ` σn(ψ). 2

We remark that unlike Proposition 3.6, we could not directly take a finite irreflexive intran-
sitive tree for F in the proof above, because K is not finitely strongly complete with respect
to such frames. (Every finite irreflexive tree is converse well-founded, and therefore validates
Löb’s rule 2p→ p / p, which is admissible but not derivable in K.)

To conclude the paper, we have provided examples confirming that unification and ad-
missibility in the basic modal logic K involves peculiar phenomena not encountered in the
familiar case of transitive modal logics with frame extension properties. This might be seen as
enhancing credence in the possibility that admissibility (or even unifiability) in K is undecid-
able. However, it might also mean that while admissibility in K could be decidable, showing
this will require methods more powerful than what we are used to from the transitive case.
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