
Simulating non-prenex cuts in quantified propositional calculus

Emil Jeřábek∗ Phuong Nguyen†

May 2, 2011

Abstract

We show that the quantified propositional proof systems Gi are polynomially equiva-
lent to their restricted versions that require all cut formulas to be prenex Σq

i (or prenex
Πq

i). Previously this was known only for the treelike systems G∗
i .

1 Introduction

The quantified propositional sequent calculusG and its subsystemsGi andG∗
i were introduced

in [4, 5, 3]. The systems Gi and G∗
i were slightly redefined in [1] so that they can prove all

quantified propositional tautologies. Under the new definition some subtle but interesting
issues arise when we look at Gi-proofs of tautologies that are not in Σq

i ∪ Πq
i . For example,

can the target formulas be restricted to be the constants ⊥,> without increasing the size of
the proofs by more than a polynomial factor? Another question is whether the cut formulas
can be restricted to be prenex formulas. More precisely, Gi is defined so that it allows cuts on
Σq

i ∪Πq
i -formulas, where these classes have a fairly permissive definition (e.g., they are closed

under ∧ and ∨). Morioka [6] (cf. [2, Thm. VII.4.7]) has shown that in the case of the treelike
fragments G∗

i , we can restrict cut formulas to prenex Σq
i , up to polynomial simulation. The

purpose of this note is to generalize this result to daglike Gi and thus answer the second
question above, see Theorem 2.3 below.

Morioka proves his result essentially by transforming the given G∗
i -proof so that all cut

formulas and their ancestors become prenex. More precisely, quantifiers inside each cut
formula are successively moved outward by standard prenexation rules, and these changes
are propagated to its ancestors up to the point where the quantifier is introduced. For this
transformation the assumption that the proof is treelike is crucial. In particular, it is not
directly applicable to the case of daglike proofs, because here a sequent may be used in

∗Institute of Mathematics of the Academy of Sciences, Žitná 25, 115 67 Praha 1, Czech Republic, email:

jerabek@math.cas.cz, URL: http://math.cas.cz/~jerabek. Supported by Institutional Research Plan

AV0Z10190503, grant IAA100190902 of GA AV ČR, project 1M0545 of MŠMT ČR, and a grant from the

John Templeton Foundation.
†School of Computer Science, McGill University, 3480 University Street, Montreal, Quebec, Canada

H3A 2A7, email: pnguyen@cs.toronto.edu, URL: http://www.cs.toronto.edu/~pnguyen. Supported by

an NSERC Postdoctoral Fellowship.

1

several different inferences, and so modifying a formula of a sequent S that is used as a cut
formula may invalidate other inferences that involve S.

In order to make it work for daglike proofs, we perform instead a uniform global transfor-
mation of the whole proof: we modify every sequent in π by replacing each Σq

i ∪ Πq
i formula

ψ by a prenex Σq
i formula ψ′, which is a prenex form of either ψ or ¬ψ (depending on ψ and

where it appears – antecedent or succedent.) Note that we do not modify Σq
i ∪Πq

i subformulas
of other formulas in π. The main task now is to show that the transformed sequents can be
augmented to a valid proof of ϕ, which boils down essentially to providing short G∗

i -proofs
of the equivalence of a Σq

i (or Πq
i) formula to its prenex forms. This turns out to be rather

technically involved, and it is the main contribution of this paper.

2 Definitions

We refer to [3, 2] for basic definitions of quantified propositional formulas (or just formulas)
and the sequent calculus G. In short, a G-proof of a sequent S is a sequence of sequents

S1,S2, . . . ,Sm

where Sm = S, and each Sk follows from some of the sequents Sk′ , k′ < k, by an inference
rule. The proof is said to be treelike if every Sl is used exactly once to derive another Sk

(where k > l). (Generally proofs are daglike.) The rules of G are listed below:

initial rule:

i
ϕ −→ ϕ

weakening rules:

Γ −→ ∆
w-l

ϕ,Γ −→ ∆
Γ −→ ∆

w-r
Γ −→ ∆, ϕ

exchange rules:

Γ1, ϕ, ψ,Γ2 −→ ∆
x-l Γ1, ψ, ϕ,Γ2 −→ ∆

Γ −→ ∆1, ϕ, ψ,∆2
x-r

Γ −→ ∆1, ψ, ϕ,∆2

contraction rules:

Γ, ϕ, ϕ −→ ∆
c-l Γ, ϕ −→ ∆

Γ −→ ∆, ϕ, ϕ
c-r

Γ −→ ∆, ϕ

constant introduction rules:

⊥-l ⊥ −→ >-r −→ >

2

¬-introduction rules:

Γ −→ ∆, ϕ
¬-l ¬ϕ,Γ −→ ∆

ϕ,Γ −→ ∆¬-r
Γ −→ ∆,¬ϕ

∧-introduction rules:

ϕ,ψ,Γ −→ ∆
∧-l (ϕ ∧ ψ),Γ −→ ∆

Γ −→ ∆, ϕ Γ −→ ∆, ψ
∧-r

Γ −→ ∆, (ϕ ∧ ψ)

∨-introduction rules:

ϕ,Γ −→ ∆ ψ,Γ −→ ∆
∨-l (ϕ ∨ ψ),Γ −→ ∆

Γ −→ ∆, ϕ, ψ
∨-r

Γ −→ ∆, (ϕ ∨ ψ)

∀-introduction rules:

ϕ(x/ψ),Γ −→ ∆
∀-l ∀xϕ,Γ −→ ∆

Γ −→ ∆, ϕ(x/p)
∀-r Γ −→ ∆,∀xϕ

∃-introduction rules:

ϕ(x/p),Γ −→ ∆
∃-l ∃xϕ,Γ −→ ∆

Γ −→ ∆, ϕ(x/ψ)
∃-r Γ −→ ∆,∃xϕ

cut rule:

Γ −→ ∆, ϕ ϕ,Γ −→ ∆
cut

Γ −→ ∆

For the rules ∀-l and ∃-r, ϕ(x/ψ) is the result of substituting ψ for all free occurrences of x
in ϕ. The formula ψ is called the target formula and may be any quantifier-free formula (i.e.,
with no bound variables; also called open below) that is free for substitution for x in ϕ (i.e.,
no free occurrence of x in ϕ is within the scope of a quantifier Qy such that y occurs in ψ).
The variable p in the rules ∀-r and ∃-l must not occur free in the bottom sequent and is called
an eigenvariable.

The size of a formula ϕ, |ϕ|, is the total number of symbols appearing in it. The size of
a proof is the total size of all formulas in the proof. We say that a (quantified) propositional
proof system P1 p-simulates another system P2, in notation P2 ≤p P1, if there is a polytime
function F so that for every P2-proof π of a sequent S, F (π) is a P1-proof of S. We say that
P1 and P2 are p-equivalent, denoted by P1 ≡p P2, if both P1 ≤p P2 and P2 ≤p P1.

The subsystems of G are defined by restricting the set of cut formulas.

Definition 2.1 Σq
0 = Πq

0 = Σ̂q
0 = Π̂q

0 is the set of quantifier-free propositional formulas.
For i > 0, Σq

i , Πq
i , Σ̂q

i , and Π̂q
i are defined inductively as the smallest sets of quantified

propositional formulas such that for all formulas ϕ,ψ and variables x:

(i) Σq
i−1 ∪Πq

i−1 ⊆ Σq
i ∩Πq

i ,

3

(ii) if ϕ,ψ ∈ Σq
i , then ϕ ∧ ψ,ϕ ∨ ψ,∃xϕ ∈ Σq

i and ¬ϕ ∈ Πq
i ,

(iii) if ϕ,ψ ∈ Πq
i , then ϕ ∧ ψ,ϕ ∨ ψ,∀xϕ ∈ Πq

i and ¬ϕ ∈ Σq
i ,

(iv) Σ̂q
i−1 ∪ Π̂q

i−1 ⊆ Σ̂q
i ∩ Π̂q

i ,

(v) if ϕ ∈ Σ̂q
i then ∃xϕ ∈ Σ̂q

i ,

(vi) if ϕ ∈ Π̂q
i then ∀xϕ ∈ Π̂q

i .

That is, Σ̂q
i and Π̂q

i consist of prenex formulas in Σq
i and Πq

i , respectively.

Definition 2.2 Let i ≥ 0. Gi, Ĝi, and Ĝ′
i denote the fragments of the quantified propositional

sequent calculus that only allow cuts on Σq
i ∪ Πq

i -formulas, Σ̂q
i -formulas, and Π̂q

i -formulas,
respectively. For any fragment P of the sequent calculus, P ∗ denotes its treelike version.

The main result of this paper is:

Theorem 2.3 For any i, Gi ≡p Ĝi ≡p Ĝ
′
i and G∗

i ≡p Ĝ
∗
i ≡p Ĝ

′∗
i .

As mentioned in the introduction, the statement about treelike proof systems is Morioka’s
theorem. However our proof here applies to both treelike and daglike systems.

3 The proof

First we fix our procedure for putting a formula in prenex form. We use the following auxiliary
operations. Given a formula, the result of our prenexation procedure will be defined in
Definition 3.4.

Definition 3.1 Fix an infinite set X of variables. For any prenex formulas ϕ, ψ, we define
prenex formulas ϕ ∧©∃ ψ, ϕ ∧©∀ ψ, ϕ ∨©∃ ψ, ϕ ∨©∀ ψ, and ¬©ϕ as follows:

(i) ¬©ϕ = ¬ϕ and ϕ ◦©Q ψ = ϕ ◦ ψ if ϕ,ψ are open,

(ii) ¬©Qxϕ = Qx ¬©ϕ,

(iii) (Qxϕ) ◦©Q ψ = Qy (ϕ(x/y) ◦©Q ψ),

(iv) ψ ◦©Q (Qxϕ) = Qy (ψ ◦©Q ϕ(x/y)) if ψ does not start with Q,

(v) ϕ ◦©Q ψ = ϕ ◦©Q ψ if neither ϕ nor ψ start with Q,

where ◦ ∈ {∧,∨}, Q ∈ {∃,∀}, Q denotes the dual quantifier to Q, and y is the first variable
from X with no free occurrences in ψ such that either x = y or y does not appear (free or
bound) in ϕ.

4

The ∧©Q, ∨©Q, and ¬© operators perform one prenexing step, namely they provide a
prenex form of ϕ ∧ ψ, ϕ ∨ ψ, or ¬ϕ (resp.) if ϕ and ψ are already prenex. The superscript
Q indicates what kind of quantifiers we prefer to pull to the prefix first: for example, if
ϕ and ψ are quantifier-free, then (up to renaming of variables) (∃xϕ(x)) ∧©∃ (∀y ψ(y)) =
∃x∀y (ϕ(x) ∧ ψ(y)), and (∃xϕ(x)) ∧©∀ (∀y ψ(y)) = ∀y ∃x (ϕ(x) ∧ ψ(y)). This is needed to
ensure that we do not introduce too many quantifier alternations in the prenex formula.

Lemma 3.2 Let ϕ,ψ be prenex formulas, Q ∈ {∃,∀}, and ◦ ∈ {∧,∨}.

(i) | ¬©ϕ| = 1 + |ϕ|, |ϕ ◦©Q ψ| = 1 + |ϕ|+ |ψ|.

(ii) ¬©ϕ and ϕ ◦©Q ψ are polynomial-time computable given ϕ,ψ.

(iii) If ϕ,ψ ∈ Σ̂q
i , then ϕ ◦©∃ ψ ∈ Σ̂q

i and ¬©ϕ ∈ Π̂q
i .

(iv) If ϕ,ψ ∈ Π̂q
i , then ϕ ◦©∀ ψ ∈ Π̂q

i and ¬©ϕ ∈ Σ̂q
i .

(v) ϕ ◦©Q ψ is equivalent to ϕ ◦ ψ, and ¬©ϕ is equivalent to ¬ϕ.

Proof: By induction on the length of ϕ,ψ. �

Lemma 3.3 Given prenex formulas ϕ,ψ and Q ∈ {∃,∀}, there are polynomial-time con-
structible treelike cut-free proofs of the sequents

ϕ,ψ −→ ϕ ∧©Q ψ ¬©(ϕ ∧©Q ψ) −→ ¬©ϕ, ¬©ψ

ϕ ∧©Q ψ −→ ϕ ¬©ϕ −→ ¬©(ϕ ∧©Q ψ)

ϕ ∧©Q ψ −→ ψ ¬©ψ −→ ¬©(ϕ ∧©Q ψ)

ϕ ∨©Q ψ −→ ϕ,ψ ¬©ϕ, ¬©ψ −→ ¬©(ϕ ∨©Q ψ)

ϕ −→ ϕ ∨©Q ψ ¬©(ϕ ∨©Q ψ) −→ ¬©ϕ

ψ −→ ϕ ∨©Q ψ ¬©(ϕ ∨©Q ψ) −→ ¬©ψ

ϕ, ¬©ϕ −→ −→ ϕ, ¬©ϕ

ϕ −→ ¬©¬©ϕ ¬©¬©ϕ −→ ϕ

Proof: By induction on the complexity of ϕ,ψ. For example, we will treat the sequents
involving ¬©(ϕ ∧©Q ψ). Assume that ϕ = Qxϕ′(x), and let y be as in Definition 3.1. We have
¬©ϕ = Qx ¬©ϕ′(x) and ¬©(ϕ ∧©Q ψ) = Qy ¬©(ϕ′(y) ∧©Q ψ). By the induction hypothesis, we
can construct proofs of the sequents

¬©(ϕ′(y) ∧©Q ψ) −→ ¬©ϕ′(y), ¬©ψ,

¬©ϕ′(y) −→ ¬©(ϕ′(y) ∧©Q ψ),

¬©ψ −→ ¬©(ϕ′(y) ∧©Q ψ).

We derive ¬©(ϕ ∧©Q ψ) −→ ¬©ϕ, ¬©ψ using one of the proofs

¬©(ϕ′(y) ∧©∃ ψ) −→ ¬©ϕ′(y), ¬©ψ
∀-l

∀y ¬©(ϕ′(y) ∧©∃ ψ) −→ ¬©ϕ′(y), ¬©ψ
∀-r

∀y ¬©(ϕ′(y) ∧©∃ ψ) −→ ∀x ¬©ϕ′(x), ¬©ψ

¬©(ϕ′(y) ∧©∀ ψ) −→ ¬©ϕ′(y), ¬©ψ
∃-r

¬©(ϕ′(y) ∧©∀ ψ) −→ ∃x ¬©ϕ′(x), ¬©ψ
∃-l

∃y ¬©(ϕ′(y) ∧©∀ ψ) −→ ∃x ¬©ϕ′(x), ¬©ψ

5

depending on Q. Similarly, we derive

¬©ϕ′(y) −→ ¬©(ϕ′(y) ∧©Q ψ)
Q-l,Q-r ,

Qx ¬©ϕ′(x) −→ Qy ¬©(ϕ′(y) ∧©Q ψ)

¬©ψ −→ ¬©(ϕ′(y) ∧©Q ψ)
Q-r .

¬©ψ −→ Qy ¬©(ϕ′(y) ∧©Q ψ)

The other cases are similar. �

We can now define the prenexation of any formula. As above, we will define two prenex
forms to each formula, depending on the preference for what kind of quantifiers to pull out first.
This is necessary, as for some formulas there does not exist a single prenex form preserving
the complexity classification of the formula. For example, the formula χ = ∃xϕ(x)∧∀y ψ(y),
where ϕ and ψ are open, is Σq

2 ∩Πq
2, and it is equivalent to a Σ̂q

2-formula χ∃ = ∃x∀y (ϕ(x) ∧
ψ(y)) and to a Π̂q

2-formula χ∀ = ∀y ∃x (ϕ(x)∧ψ(y)), but it is not in general equivalent to any
prenex formula that would be both Σ̂q

2 and Π̂q
2 (in fact, Σ̂q

2 ∩ Π̂q
2 = Σ̂q

1 ∪ Π̂q
1).

Definition 3.4 For any formula ϕ, we define prenex formulas ϕ∃ and ϕ∀ by induction on the
complexity of ϕ:

(i) ϕQ = ϕ if ϕ is open,

(ii) (Cxϕ)Q = CxϕC ,

(iii) (¬ϕ)Q = ¬©ϕQ,

(iv) (ϕ ◦ ψ)Q = ϕQ ◦©Q ψQ,

where Q,C ∈ {∃,∀} and ◦ ∈ {∧,∨}.

Lemma 3.5 Let ϕ be a formula, and Q ∈ {∃,∀}.

(i) |ϕQ| = |ϕ|, and ϕQ is polynomial-time computable given ϕ.

(ii) If ϕ ∈ Σq
i , then ϕ∃ ∈ Σ̂q

i . If ϕ ∈ Πq
i , then ϕ∀ ∈ Π̂q

i .

(iii) ϕQ is equivalent to ϕ.

Proof: By induction on the complexity of ϕ. �

Lemma 3.6 Let ϕ be a formula.

(i) If ϕ ∈ Σq
i , there are polynomial-time constructible Ĝ∗

i -proofs of the sequents

ϕ −→ ϕ∃; ϕ∃ −→ ϕ,

and Ĝ′∗
i -proofs of the sequents

ϕ, (¬ϕ)∀ −→ ; −→ ϕ, (¬ϕ)∀.

6

(ii) If ϕ ∈ Πq
i , there are polynomial-time constructible Ĝ′∗

i -proofs of the sequents

ϕ −→ ϕ∀; ϕ∀ −→ ϕ,

and Ĝ∗
i -proofs of the sequents

ϕ, (¬ϕ)∃ −→ ; −→ ϕ, (¬ϕ)∃.

Proof: We prove (i) and (ii) by simultaneous induction on the complexity of ϕ. The base
case of quantifier-free ϕ is straightforward.

The case ϕ = ∃xψ. Note that ϕ∃ = ϕ∀ = ∃xψ∃ and (¬ϕ)∃ = (¬ϕ)∀ = ∀x (¬ψ)∀. If
ϕ ∈ Σq

i , we construct the proofs

ψ −→ ψ∃
∃-r

ψ −→ ∃xψ∃
∃-l

∃xψ −→ ∃xψ∃

ψ∃ −→ ψ
∃-r

ψ∃ −→ ∃xψ
∃-l

∃xψ∃ −→ ∃xψ

ψ, (¬ψ)∀ −→
∀-l

ψ,∀x (¬ψ)∀ −→
∃-l

∃xψ, ∀x (¬ψ)∀ −→

−→ ψ, (¬ψ)∀
∃-r

−→ ∃xψ, (¬ψ)∀
∀-r

−→ ∃xψ, ∀x (¬ψ)∀

using the induction hypothesis. If ϕ ∈ Πq
i , then in fact ϕ ∈ Σq

i−1, hence the just constructed
proofs in Ĝ∗

i−1 and Ĝ′∗
i−1 are also valid in both Ĝ′∗

i and Ĝ∗
i .

The case ϕ = ∀xψ is dual.
The case ϕ = ¬ψ. Let ψ ∈ Πq

i , the other case is dual. We construct the proofs

ψ, (¬ψ)∃ −→¬-r
(¬ψ)∃ −→ ¬ψ

−→ ψ, (¬ψ)∃
¬-l

¬ψ −→ (¬ψ)∃

ψ −→ ψ∀ ψ∀ −→ ¬©¬©ψ∀
Π̂q

i -cut
ψ −→ (¬¬ψ)∀¬-r
−→ ¬ψ, (¬¬ψ)∀

¬©¬©ψ∀ −→ ψ∀ ψ∀ −→ ψ
Π̂q

i -cut
(¬¬ψ)∀ −→ ψ

¬-l
¬ψ, (¬¬ψ)∀ −→

using the induction hypothesis and Lemma 3.3.
The case ϕ = ψ ∧ χ. Let ψ, χ ∈ Σq

i , the other case is similar. Notice that (¬(ψ ∧ χ))∀ =
¬©(ψ∃ ∧©∃ χ∃). We construct the proofs

ψ∃, χ∃ −→ ψ∃ ∧©∃ χ∃ ψ −→ ψ∃
Σ̂q

i -cut
ψ, χ∃ −→ (ψ ∧ χ)∃ χ −→ χ∃

Σ̂q
i -cut

ψ, χ −→ (ψ ∧ χ)∃
∧-l

ψ ∧ χ −→ (ψ ∧ χ)∃

ψ∃ ∧©∃ χ∃ −→ ψ∃ ψ∃ −→ ψ
Σ̂q

i -cut
(ψ ∧ χ)∃ −→ ψ

ψ∃ ∧©∃ χ∃ −→ χ∃ χ∃ −→ χ
Σ̂q

i -cut
(ψ ∧ χ)∃ −→ χ

∧-r
(ψ ∧ χ)∃ −→ ψ ∧ χ

7

¬©(ψ∃ ∧©∃ χ∃) −→ ¬©ψ∃, ¬©χ∃ (¬ψ)∀, ψ −→
Π̂q

i -cut
ψ, (¬(ψ ∧ χ))∀ −→ (¬χ)∀ (¬χ)∀, χ −→

Π̂q
i -cut

ψ, χ, (¬(ψ ∧ χ))∀ −→
∧-l

ψ ∧ χ, (¬(ψ ∧ χ))∀ −→

¬©ψ∃ −→ ¬©(ψ∃ ∧©∃ χ∃) −→ ψ, (¬ψ)∀

−→ ψ, (¬(ψ ∧ χ))∀
¬©χ∃ −→ ¬©(ψ∃ ∧©∃ χ∃) −→ χ, (¬χ)∀

−→ χ, (¬(ψ ∧ χ))∀
∧-r

−→ ψ ∧ χ, (¬(ψ ∧ χ))∀

using the induction hypothesis and Lemma 3.3.
The case ϕ = ψ ∨ χ is dual to ψ ∧ χ. �

Lemma 3.7 Let ϕ ∈ Σq
i ∩Πq

i .

(i) There are polynomial-time constructible Ĝ∗
i -proofs of the sequents

ϕ∃, (¬ϕ)∃ −→ ; −→ ϕ∃, (¬ϕ)∃,

and Ĝ′∗
i -proofs of the sequents

ϕ∀, (¬ϕ)∀ −→ ; −→ ϕ∀, (¬ϕ)∀.

(ii) There are polynomial-time constructible Ĝ∗
i -proofs and Ĝ′∗

i -proofs of the sequents

ϕ∃ −→ ϕ∀; ϕ∀ −→ ϕ∃.

Proof: (i): By induction on the complexity of ϕ. The case of ϕ open is obvious, and the cases
ϕ = ∃xψ and ϕ = ∀xψ follow from Lemma 3.3, as (¬Cxψ)Q = ¬©(Cxψ)Q = ¬©(Cxψ)Q.

The case ϕ = ¬ψ: use cut on the induction hypothesis and the sequents ϕQ −→ ¬©¬©ϕQ

and ¬©¬©ϕQ −→ ϕQ from Lemma 3.3.
The case ϕ = ψ ∧ χ: note that (¬ϕ)∃ = ¬©(ψ∀ ∧©∀ χ∀). We prove

−→ ψ∃, (¬ψ)∃
−→ χ∃, (¬χ)∃ ψ∃, χ∃ −→ ψ∃ ∧©∃ χ∃

cut
ψ∃ −→ (¬χ)∃, (ψ ∧ χ)∃

cut
−→ (¬ψ)∃, (¬χ)∃, (ψ ∧ χ)∃

−→ (¬ψ)∃, (¬χ)∃, (ψ ∧ χ)∃ ¬©ψ∀ −→ ¬©(ψ∀ ∧©∀ χ∀)
cut

−→ ¬©(ψ∀ ∧©∀ χ∀), (¬χ)∃, (ψ ∧ χ)∃ ¬©χ∀ −→ ¬©(ψ∀ ∧©∀ χ∀)
cut

−→ (¬(ψ ∧ χ))∃, (ψ ∧ χ)∃

using the induction hypothesis and Lemma 3.3. The other cases are similar.
(ii): We use cut on (i) and Lemma 3.3:

ϕQ, (¬ϕ)Q −→ −→ ¬©ϕQ, ϕQ

ϕQ −→ ϕQ

−→ ϕQ, (¬ϕ)Q ¬©ϕQ, ϕQ −→
ϕQ −→ ϕQ

�

8

Lemma 3.8 Let α be an open formula with no occurrence of variables from X, x /∈ X, and
Q ∈ {∃,∀}.

(i) If ϕ and ψ are prenex formulas, then ¬©ϕ(x/α) = (¬©ϕ)(x/α), and ϕ(x/α) ◦©Qψ(x/α) =
(ϕ ◦©Q ψ)(x/α), where ◦ ∈ {∧,∨}.

(ii) ϕ(x/α)Q = ϕQ(x/α).

Proof: By induction on complexity. �

Now we are ready to prove the main theorem.
Proof (of Theorem 2.3): We will show Gi ≤p Ĝi, the other cases are similar. Assume that
we are given a Gi-proof. Define the set X in Definition 3.1 as the set of propositional variables
not appearing in the proof. We apply the following transformation to each sequent in the
proof:

(i) We negate all (Πq
i r Σq

i)-formulas and move them to the other side of the sequent.

(ii) We replace each Σq
i -formula ϕ (including those resulting from the previous step) with

ϕ∃.

With each transformed sequent we include a short subproof which ensures that the sequent
is correctly derived from previous sequents. This subproof will depend on the rule by which
the sequent was derived in the original proof.

Initial sequents and structural rules translate to instances of the same rules. Instances of
(Σq

i ∪Πq
i)-cut translate to Σ̂q

i -cut.
Assume that a sequent was derived by an instance

Γ, ϕ −→ ∆
Γ −→ ¬ϕ,∆

of ¬-r. If ϕ /∈ Σq
i ∪Πq

i , it translates to a valid instance of ¬-r. If ϕ ∈ Πq
i r Σq

i , the assumption
and conclusion of the rule translate to the same sequent of the form Γ′ −→ (¬ϕ)∃,∆′. If
ϕ ∈ Σq

i , we replace the rule with one of the cut inferences

Γ′, ϕ∃ −→ ∆′ −→ ϕ∃, (¬ϕ)∃

Γ′ −→ (¬ϕ)∃,∆′
Γ′, ϕ∃ −→ ∆′ ¬©¬©ϕ∃ −→ ϕ∃

Γ′, (¬¬ϕ)∃ −→ ∆′

depending on whether ϕ is in Σq
i ∩ Πq

i or Σq
i r Πq

i . Here, the sequent ¬©¬©ϕ∃ −→ ϕ∃ comes
from Lemma 3.3, and −→ ϕ∃, (¬ϕ)∃ is from Lemma 3.7.

The ¬-l rule is similar.
Consider an instance

Γ −→ ϕ,∆ Γ −→ ψ,∆
Γ −→ ϕ ∧ ψ,∆

of ∧-r. If ϕ,ψ ∈ Σq
i , we simulate the rule by two cuts with the sequent ϕ∃, ψ∃ −→ ϕ∃ ∧©∃ ψ∃

from Lemma 3.3. If ϕ,ψ ∈ Πq
i r Σq

i , we use similarly a cut inference

9

Γ′, (¬ϕ)∃ −→ ∆′
Γ′, (¬ψ)∃ −→ ∆′ ¬©(ϕ∀ ∧©∀ ψ∀) −→ ¬©ϕ∀, ¬©ψ∀

Γ′, (¬(ϕ ∧ ψ))∃ −→ (¬ϕ)∃,∆′
.

Γ′, (¬(ϕ ∧ ψ))∃ −→ ∆′

If ϕ ∈ Σq
i ∩Πq

i and ψ ∈ Πq
i r Σq

i or vice versa, we use the same inference, but we first derive

Γ′ −→ ϕ∃,∆′ ϕ∃, (¬ϕ)∃ −→
Γ′, (¬ϕ)∃ −→ ∆′

using Lemma 3.7. In the remaining cases (i.e., either at least one of ϕ,ψ is not in Σq
i ∪Πq

i , or
one is in Σq

i r Πq
i and the other is in Πq

i r Σq
i) the formula ϕ ∧ ψ is not in Σq

i ∪ Πq
i . We use

an instance of the ∧-r rule

Γ′ −→ ϕ,∆′ Γ′ −→ ψ,∆′
,

Γ′ −→ ϕ ∧ ψ,∆′

but if ϕ is in Σq
i or Πq

i r Σq
i , we first include one of the derivations

Γ′ −→ ϕ∃,∆′ ϕ∃ −→ ϕ

Γ′ −→ ϕ,∆′
Γ′, (¬ϕ)∃ −→ ∆′ −→ ϕ, (¬ϕ)∃

Γ′ −→ ϕ,∆′

using Lemma 3.6, and similarly for ψ.
The other ∧ and ∨ rules are handled similarly.
Consider an instance

Γ, ϕ(x/α) −→ ∆
Γ,∀xϕ −→ ∆

of ∀-l, where α is an open formula free for substitution for x in ϕ. Note that ϕ(x/α)∀ =
ϕ∀(x/α) by Lemma 3.8. Assume first that ϕ ∈ Πq

i−1 and i > 1, so that ∀xϕ ∈ Σq
i . We can

derive

Γ′, (ϕ(α))∃ −→ ∆′ (ϕ(α))∀ −→ (ϕ(α))∃

Γ′, (ϕ(α))∀ −→ ∆′
∀-l

Γ′, (∀xϕ)∃ −→ ∆′

using Lemma 3.7. If ϕ ∈ Πq
i r (Πq

i−1 ∪ Σq
i), we can derive

Γ′ −→ (¬ϕ(α))∃,∆′
∃-r ,

Γ′ −→ ∃x (¬ϕ)∃,∆′

noting that (¬∀xϕ)∃ = ∃x (¬ϕ)∃. If ϕ ∈ Πq
i ∩ Σq

i , and ϕ /∈ Πq
i−1 or i = 1, we use the same

derivation, but we first infer

Γ′, ϕ(α)∃ −→ ∆′ −→ ϕ(α)∃, (¬ϕ(α))∃

Γ′ −→ (¬ϕ(α))∃,∆′

using Lemma 3.7. Otherwise ϕ /∈ Πq
i , which means ∀xϕ /∈ Σq

i ∪ Πq
i . If ϕ /∈ Σq

i ∪ Πq
i , we can

directly apply the ∀-l rule; if ϕ ∈ Σq
i , we first derive

10

Γ′, (ϕ(α))∃ −→ ∆′ ϕ(α) −→ (ϕ(α))∃

Γ′, ϕ(α) −→ ∆′

using Lemma 3.6.
The other quantifier rules are handled in a similar way.
In this way we obtain a Ĝi-proof of the translation of the end-sequent of the original

Gi-proof. We use cuts with sequents given by Lemma 3.6 to derive the original end-sequent.
�

References

[1] Stephen Cook and Tsuyoshi Morioka, Quantified propositional calculus and a second-order
theory for NC1, Archive for Mathematical Logic 44 (2005), no. 6, 711–749.

[2] Stephen Cook and Phuong Nguyen, Logical foundations of proof complexity, Cambridge
University Press, New York, 2010.

[3] Jan Kraj́ıček, Bounded arithmetic, propositional logic, and complexity theory, Cambridge
University Press, 1995.

[4] Jan Kraj́ıček and Pavel Pudlák, Quantified propositional calculi and fragments of bounded
arithmetic, Zeitschrift für mathematische Logik und Grundlagen der Mathematik 36
(1990), no. 1, 29–46.

[5] Jan Kraj́ıček and Gaisi Takeuti, On induction-free provability, Annals of Mathematics and
Artificial Intelligence 6 (1992), 107–125.

[6] Tsuyoshi Morioka, Logical approaches to the complexity of search problems: Proof com-
plexity, quantified propositional calculus, and bounded arithmetic, Ph.D. thesis, University
of Toronto, 2005.

11

