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FREDHOLM-STIELTJES INTEGRAL EQUATIONS
WITH LINEAR CONSTRAINTS:
DUALITY THEORY AND GREEN’S FUNCTION

MiLAN TVRDY, Praha*)
(Received February 16, 1977)

This note is devoted to the duality theory for the system of equations
M x(t) — x(0) — J.Ods[P(t, s) — P(0, s)] x(s) = f(t) — f(0) on [0,1],
(1) J A[KE] x(s) =
o

where an n-vector valued function x of bounded variation on [0, 1] is sought. Results
analogous to those of [4], [10], [11] and [14] are obtained under less restrictive
hypotheses and in a considerably simpler way. Boundary value problems for
Fredholm-Stieltjes integro-differential equations which are special cases of (I) have
been treated recently in [5], [12] and [13].

1. PRELIMINARIES

Given a real p x g-matrix A = (a,);-,,. ,, A* denotes its transpose and
i

q
|A| = max Y la,,|.
i=1,..,pj=1
R, denotes the space of real column n-vectors (n x 1-matrices), Ry is the space of
real row n-vectors (1 x n-matrices), R, = Rf = R. The space of real p x q-matrices
is denoted by L(R,, R,), L(R,, R,) = L(R,). Generally, vectors are assumed to be
column. Row vectors are written as transposes of column vectors. If a, be R, a < b,
then [a, b] denotes the closed interval a < t < b, (a, b) is its interior a <t < b
and [a, b), (a, b] are the corresponding half-open intervals.

*) Sponsored in part by the Italian Consiglio Nazionale delle Ricerche (G.N.A.F.A.)
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BY, stands for the Banach space of functions x : [0, 1] — R, of bounded variation
on [0,1] equipped with the norm |x| = |x(0)| + vars x. For P:[0,1] x
x [0,1] -» L(R,), v(P) denotes its Vitali two-dimensional variation on [0, 1] x
x [0, 1]. Recall that

o(P) = SuPii jg“’(tn 57) = P(ti—1, 85) = P(ti, s;-1) + P(tio1, 85-1)|

where the supremum is taken over all net-type subdivisions 0 = {0 = t, < t; <

W <t,=1,0=15,<s <..<s, =1} of the interval [0, 1] x [0, 1]. If o(P) +
+ varg P(+, a) + varg P(b, +) < oo for some fixed a, b € [0, 1], then there is M < o
such that o(P) + varg P(t, *) + varg P(+,s) + |P(t,s)] < M < oo for all t, s € [0, 1]
and P is called an SBV-kernel.

All integrals used are the Perron-Stieltjes integrals or equivalently (since all the
functions occurring are of bounded variation) the 6-Young-Stieltjes integrals (cf. [3]
and [7]). The list of properties of the Perron-Sticltjes integral may be found e.g. in
[10] or [14]. Let us recall here only (for the proof see [8]) that if P is an SBV-kernel
on [0, 1] x [0, 1], then for every x, y € BV, the functions

u(t) = JZd,[P(t, 7)] x(r) and v*(s) = ﬁ)d[y*(‘c)] P(z, s)

are of bounded variation on [0, 1]. Moreover,

u(t+) = Jt)d,[P(H—, 1)] x(r) and v*(s+) = Jtd[y*(r)] P(z,s+) for t,s5€[0,1)
and

u(t—) = ﬁd,[p(:_,r)]x(t) and v*(s-)=£d[y*(r)]9(f,s_) for t,5€(0,1].

Let X and Y be linear spaces over R. The set of all linear operators & with values
in Y and defined for all xe X (& : X — Y) is denoted by L(X, Y), L(X, X) = L(X).
The identity operator x e X - x e X is denoted by #. For a linear operator & €
€ (X, Y), R(&#) denotes the range of o/ and N(#) is the null space of o/. R(2/) and
N() are linear subspaces of Y and X, respectively. Let us denote of/) = dim N(=/)
and B(<) = dim i R(ayy Where [ Ry IS the corresponding quotient space. It is
known that if Yis a direct sum of R(+/) and Z < Y, then there is a one-to-one cor-
respondence between |y, and Z (cf. [2] 111.20) and, in particular, f(«/) = dim Z.
If o), B(#) are not both infinite, then we define the index ind & of & € L(X, Y)
by the relation ind o = B(f) — o?).

Let X and X* be linear spaces over R and let

xeX, xteX* »{(x,x*>eR

be a bilinear form on X x X*. We say that X, X* form a dual pair (with respect
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to the bilinear form -, *> if -

(x,x*y =0 forevery xeX implies x* =0eX"*
and

(x,x*> =0 forevery x*eX* implieS x=0eX.
In [2] VI.40 the following important statement is proved:
Theorem (Heuser). Let X, X* be a dual pair of linear spaces with respect to the

bilinear form (-, ) defined on X x X* and let the operators o € L(X) and
o+ e L(X*) be such that

(1,1) (X, x*y = (x, o x*) forevery xeX and x*eX?

and

1,2) ind o =ind &+ =0.

Then

(13) o(ot) = a(at*) = (st) = B(4*) < o0

and, moreover, for given ye X and y* e X*

ox =y hasa solution iff (y,x*) =0 forany x*eN(«*)
and

A x* =y* has a solution iff {x,y*> =0 forany xeN(s).

Let us notice that if o € L(X) is compact, then R(S — &) is closed in X,
oS — ) =P(J — ) < 0, ie. ind (F — &) = 0 (cf. [6] IV.3).

If X is a Banach space and X* its dual space, then obviously X, X* form a dual
pair. Let us give another example of a dual pair which is of importance for our pur-
poses.

In the following BV, denotes the set of all functions z* : [0, 1] — R, of bounded
variation on [0, 1], right-continuous on (0, 1) and such that z¥(1) = 0. For x € BY,
and z* € BV, let us put

(19 x5y = [ b 0.

Then BY,, BV,' is a dual pair with respect to -, * >y (For the proof of an analogous
assertion see [8] Lemma 5.1.) When endowed with the norm z* € BV," — ||z*||py+ =
= |2%(0)] + var} z*, the space BV," becomes a Banach space and (1,4) defines
a continuous bilinear form on BV, x BV,’.
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2. GENERALIZED FREDHOLM-STIELTJES INTEGRO-DIFF ERENTIAL OPERATOR
Let P: [0, 1] x [0,1] - L(R,) be an SBV-kernel. Then
1
(1) P :xeBV, > j d,[P(t, 5)] x(s)
0

defines a linear compact (or completely continuous) operator on BV, (cf. [8] Theorem
3.1).

2.1. Remark. Let R: [0, 1] x [0, 1] » L(R,) be such that R(:, s) is measurable
on [0, 1] for any s € [0, 1], varg R(t, *) < oo for a.e. t € [0, 1] and
e:tef0,1] » !R(t, 0)] + varg R(t, *)

is Lebesgue integrable on [0, 1]. Let g:[0, 1] - R, be Lebesgue integrable on
[0, 1]. Then integrating and making use of the Cameron-Martin formula for the
change of the integration order in Stieltjes integrals ([1]) we transfer the Fredholm-
Stieltjes integro-differential equation for an absolutely continuous function
x:[0,1] > R,

22) x(t) - f :ds[R(t, 9] x(s) = &) ae.on [0,1]

to the form (I), where
(23) P(t,5)= J‘t R(r,s)dr and f(t) = th g(t)dr for t,s€[0,1].
0 0

It is easy to check that P(t, s) given by (2,3) is an SBV-kernel (cf. [10]). Obviously
f € BV,. Thus the equation (2,2) may always be rewritten as an equation of the form
(I) with an SBV-kernel P(t, s) and fe BV,. Hence the operator 4 — 2 e L(BV,),
where

g 1
(24 2:xe BV, - x(0) + J. d,[P(t, s) — P(0, s5)] x(s) € BY,
0
may be called a generalized Fredholm-Stieltjes integro-differential operator.

2.2. Remark. Evidently, the operator 2 € L(BV,) given by (2,4) is compact (2x = -
= u + 2x, where

‘ 1
u= x0) - [ a[PO.9 ) <R
(1]
Moreover, if we put

_{P(t,5) — P(0, s) for t,se[0,1], s>0,
29) Q. 5) = {P(t, 0) — P(0,0) — 1 for t,se[0,1], s=0,
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then Q(¢, 5) is also an SBV-kernel and
1
(2,6) 2:xeBV,— f d,[Q(, 5)] x(s) € BV, .
0
2.3. Theorem. If P :[0,1] x [0, 1] —» L(R,) is an SBV-kernel and the operator
2¢€ L(BV,) is given by (2,4), then
(2,7) n<dimNS - 2) < o,
while diim N(# — 2) = n iff the equation (I) has a solution x € BV, for any f € BV,
Proof. Since 2 is compact, «(# ~ 2) = B(# — 2) < 0. Obviously

R(# — 2) = Z = {feBV,:f(0)=0}.
Hence
oS — 2)=pF — 2)2dim™|, =n.

Furthermore, «(f — 2) = n iff

ﬂ(j - .@) = dim BV"'R(_,_Q) = dim BVn z

and the proof follows by means of the following lemma.

2.4. Lemma. Given a linear space X and its linear subspaces M, N such that
M < N, then dim *|,, = dim *|y < oo holds iff M = N.

Proof. Let dim *|;, = dim*|y = k < oo and let xe N\ M. Let &, = ({9 + N
(j=1,2,..., k) be a basis in XIN and let

K
ax + 3 AV eM
j=1

for some real numbers «, 4; ( ji=12,..., k). Since ax € N, this may happen only
if 28D 4+ ,E® + .+ [ EVeN,ie. Ay =2, =... = = 0. Thus axe M and
a = 0 since x ¢ M. This means that the classes x + M, {9 + M (j =1,2,...,k)
are linearly independent in x| » and dim x| u=k+1>dim XIN. This being con-
tradictory to the assumption proves that M = N.

2.5. Remark. By 2.3 there exists an n x k-matrix valued function X
(k = dim N(# — 2)) of bounded variation on [0, 1] such that x e BV, satisfies
x — 9x = 0 iff x(f) = X(t)c on [0,1] for some ce R,. Unfortunately, even if
k = n, it need not be det X(¢) + 0 on [0, 1] as shown by the integro-differential
equation

(1) — 4£x(s) ds =0,

for which X(t) = I(1 — 4t).
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3. DUALITY THEORY
Throughouy the section the following assumptions are kept:

3.1. Assumptions. (i) P:[0,1] x [0,1] - L(R,) is an SBV-kernel, fe BV,
K :[0,1] - L(R,, R,,) is of bounded variation on [0, 1] and r € R,,.

(ii) P(t, *) is right-continuous on (0, 1) and P(t, 1) = 0 for any t € [0, 1], P(0, 5) =
= 0 for any s€[0, 1], K is right-continuous on (0, 1) and K(1) = 0.

- 3.2, Remark. For the investigation of the system (I), (II) the assumptions 3.1 (ii)
do not cause any loss of generality. Any system (I), (II) fulfilling 3.1 (i) is equivalent
to a system fulfilling also 3.1 (ii).

Let Q:[0,1] x [0,1] - L(R,) and 2e L(BV,) be defined by (2,5) and (2,4),
respectively. Furthermore, let us denote

3.1) A i xeBV, - I d[K(s)] X(5) € R
0
¥ :f e BV, > f(t) — f(0) € BY,
and
(3.2) | .7':(:>GBV,,><R,,,—><J_:@}X>GBV,,xR,,,.

3.3. Proposition. If x € BV, is a solution to (1), (II), then & = (:) is a solution to
&
(3.9) (F -V = ( rf)

for any de R,,. If x € BV, and there exists d € R,, such that & = ( ) verifies (3,3)
then x is a solution to (1), (II).

3.4. Proposition. Under the ‘assumptions 3.1(i) the operator 7 e L(BV, x R,)
defined by (2,4), (3,1) and (3,2) is compact.

Proof. Obviously, & e L(BY,, R,,) is. bounded. As dim R(X") < m < oo, this
implies that ¢ is even compact. Since 2 € L(BV,) is also compact (cf. 2.2), it is easy
to see that J is compact.

Our wish is to establish the duality theory for the system (I) (I1). Since BV, and
BY,' form a dual pair with respect to the bilinear form (1,4), BV, x R,, and BV," x
X R,’:‘, form a dual pair with respect to the bilinear form

(3.4 (:) €BV, x R,,, (z* A*)eBV;}" x R* -

R <(:) (2", ;.*)> - J :d[z*(t)] x(i) + P*deR.
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(Let us recall that the elements of BV, are row n-vector valued functions of bounded
variation on [0, 1], right-continuous on (0. 1) and vanishing at 1.)

Let us put

(22) (5 =ﬁd[z*(t)] Q) for zeBY, and se[0,1].

By virtue of the assumptions 3.1 on P(t, s) and the definition (2,5) of Q(z, s) we can
easily verify that Q is an SBV-kernel, Q(1, +) is right-continuous on (0, 1) and Q(t, 1) =
= 0 for every t € [0, 1]. Consequently (cf. [8] Lemma 3.1)

(3.5) 2'ze BV," forany zeBY,.

Moreover, by Lemma 2.2 of [8] we have
69 [axo1 [ alet 0 x0) = [ o [a@1ew 9|

for every ze BV," and x € BV,

Let us put
(3,7) Tt :(z*, A*)e BY,” x Ry —
1
- (j d[z*(1)] Q(t, s) — 4* K(s), ).*) .
0
Since

T4 () = (29 6) - # K, ) on [0.1],
for each z € BV, and 4 € R,,, it follows from 3.1 and (3,5) that
(3.8 T *(z*, A¥) e BVt forall (z*, A*)eBV,” x R.
Besides, we have by (3,2), (3,4) and (3,6)

(3.9) <( S —7) (:) , (2%, ;_*)> -
= [[a[20 - [[ae@100.9 + 2k 2 + 42 - )4 -

=<(:),(f—9’+)(z*,l*)> forall xeBV,, deR,, zeBV, and AeR,

As mentioned above, Q(#, s) is an SBV-kernel and hence using Theorem 3.2 of [8]
it is easy to show that I+ e L(BV," x R}) is compact. The operator J being
compact by 3.4, we have

(3.10) _ind(F - F)=ind(F -~ T*)=0

and we may apply Heuser’s Theorem.
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3.5. Theorem. If the assumptions 3.1 are satisfied, then the system (I), (II) has
a solution x € BV, iff

G1) . ‘[ [z (5)] £(5) + A*r = 0
for any z* € BV," and A* € R}, fulfilling '
(3,12) z*(s) — .[Id[z*(t)] P(t,s) + A*K(s) =0 on [0,1], z*(0)=0.

Proof. By (3,8)—(3,10) the operators # — J and # — 7 * fulfil the assumptions
of Heuser’s Theorem. Consequently the system (I), (IT) has a solution in BV, iff

otz - f0) + 220 =0
holds for any z* € BV," and A* € R}, fulfilling the equation
(3,19) 24(s) - ﬂd[z*(t)] Qt,s) + #K(s) =0 on [0,1],
ie. (5 — 7%)(z* 4*) = 0. Given z* € BV, it is
, 1 oD} — 20) i 5=
019 [[at0100.9 = [ar@nee - £O 5O =0l
Setting (3,14) into (3,13) we obtain

(3.15) 24(s) - .f AL (] P(5) + #KE) =0 on (0.1],
- I :d[z*(t)] P(1,0) + 1* K(0) = 0.
Since we assume P(0, s) = 0 on [0, 1], the value of each of the integrals
'f :d[i*(z)] P(,5), sel0,1],
does not depend on the value z*(O). The same holds obviously also for the integral
[}t () - 1.

Consequently (z*, A*) € BV} x R} is a solution to (3,12) iff (z}, 4*) with z¥(s) =
= z*(s) on (0, 1] and z5(0) = 0 is also its solution. Since

. .
[Latsz0nf@ - 0
for all such zj and all f € BV,, the proof is complete.
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3.6. Remark. P(t, ) and K being by 3.1 (ii) right-continuous on (0, 1) for any
te[0,1], z is also right-continuous on (0, 1) for any couple (z, )€ BV, x R,
fulfilling (3,12). ‘

The following assertion is also a consequence of (3,8)—(3,10) and of Heuser’s
Theorem.

3.7. Proposition. Let 3.1 hold and let h* € BV,". Then there exist z* € BV, and
J* € R} such that

(3,16) 2%(s) — j :d[z*(t)] Q(t, ) + ¥ K(s) = h*(s) on [0, 1]
(5 = 77) @ 4 = (4,0)) inf

j :d[h*(t)] x(i) = 0

for every x € N(&) where

X — 9x

(3.17) .%’:xeBV,,—»( x

(cf. (2,4) and (3,1)).

)eBV,, x R,,

3.8. Theorem. Assume 3.1. Then k =dim N(&) < o for the operator
% € L(BY,, BV, x R,,) given by (3,17). Furthermore, the system (3,12) has exactly
k* = k + m — n linearly independent solutions in BV, x R,,.

Proof. By 2.3 we have k = dim N(#) < 0. Obviouslydim N(# — ) = k + m.
Since (3,10), it is by Heuser’s Theorem dim N(# — 7 *) =dimN(S — 7) =
= k + m. The set N* of all solutions to (3,12) consists of all (z*, A*) e N(# — 7 ")
for which z*(0) = 0. Hence k* = dimN* =dimN(f - F*)—n=k + m — n.
Recall that for (z*, 4*) e N(# — J*) the value z*(0) may be arbitrary.

4. GREEN’S FUNCTION

We continue the investigation of the system (I), (II). In addition to 3.1 we shall
suppose that it possesses a unique solution in BV, for every fe BV, and reR,,.
Obviously, this is possible only if the corresponding homogeneous equation

Zx=0eBV, xR,
(cf. (3,17)) possesses only the trivial solution, i.e. dim N(S,”) = 0. On the other hand,
i)e BV, x R, iff
the system (3,12) possesses in BV," x R,, only the trivial solution. The following
assertion is now a direct consequence of 3.8.

by 3.5 the system (I), (II) has a solution in BV, for any couple
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4.1. Proposition. Provided 3.1 holds, the system (1), (II) has a unique solution
in BV, for every f € BV, and r e R,, iff

4.1) - m=n and dimN(Z)=0.

Let us suppose that (4,1) holds and let us try to express the solutions x € BV, of
the systems (I), (II) in the form

4.2) x())=H@)r + ﬂd,[G(t, s)] (F(s) — F(0)), te[0,1],
where H : [0, 1] » L(R,) and G : [0, 1] x [0, 1] - L(R,) are such that

(4,3) for every t € [0, 1], the functions G(¢, +) and H are of bounded variation on
. [0, 1], right-continuous on (0, 1) and G(z, 1) = 0, H(1) = 0.

Clearly, the function (4,2) is for any fe BV, and r e R,, a solution of (I), (II) iff

o) = ) oK) 009 + [ al6(e.9] (o6) - [ 0106 2] o(0)

for every ¢ € BV, and t€ [0, 1], i.e. iff

@9 [afse9- [ atse 0w + HOKG) - 46.9]o) = 0

foreach ¢eBV, and te[0,1],

where
4.5) [—1 for 0<t<1 and O<s<t,
0 for 0<t<l1 and t <551,
—1 for 0=1¢ and 0=s
A(t,s)=« 0 for 0=t and 0<s<1,
—1I - for t=1 and 0<s<1,
0 for t=1 and s=1.

Provided (4,3) holds, (4,4) holds iff

(4.6) G(t,5) — ﬁd,[G(t, 0)] Q(o, s) + H(t) K(s) = 4(t,s) on [0,1] x [0,1].

Our wish now is to find functions G(t, s) and H(¢) fulfilling (4,3) and (4,6).
Let us put

(4,7 &£* :(z*, A*)e BV, x R} - (z*(-s) - J:d[z*(t)] Q(t, s) +
4 A*K(s), z*(0) e BV x R*.
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Since dim N(&) = 0, 3.7 implies that the equation (3.16) has a solution in
BV} x R} for any h* e BV,". Under our assumptions the expressions

1
24(s) - f d[z4(1)] Q(t, s) + 4* K(s) (* € BV, 1* € R?)
0
do not depend on the values z*(0) (cf. the proof of 3.5). This means that the system

2(s) - ﬂd[z*(t)] Qt, 5) + 4* K(s) = h*(s), se[0,1],

z*(O) = &%
has a solution (z*, *) e BV," x R} for every (h* 6*)e BV, x R}, ie.
(4.8) R(%*) =BV, x Ry.

Moreover, since the equations £ *(z*, A*) = 0e BV,” x Ry and (3,12) coincide,
we have

(4.9) dim N(£*) = 0.
Taking into account (4,8) and (4,9) we conclude from the Bounded Inverse Theorem
([6] 111.4.1) that the operator £ * possesses a bounded inverse (£*)~! e L(BV," x
x Ry). In particular, given a column Af(t, -)e BV,” (i = 1,2,...,n) of A(t, "),
there exists a unique couple (gf(t, *), hf(¢)) € BV," x R} such that

1

gi(ts) — f d,[g7(t, 0)] Q(o, 5) + hi(t) K(s) = 47(1,s) on [0,1] x [0,1],
0
gi(10)=0 on [0,1], i=12...,n.
Moreover, there is M < oo such that
(4,10) lgF (., sy + [BI(O)] < M|47(, )r = M
forany te[0,1] and i=1,2,...,n.

This completes the proof of the following

4.2. Theorem. If 3.1 and (4,1) hold, then there exist functions
G:[0,1] x [0,1] » L(R,), H:[0,1] - L(R,)
and a constant x < oo such that
166, e + MG S  on [0,1],

G(t, +) is for any t € [0, 1] right-continuous on (0, 1), G(t, 0) = G(t, 1) = 0 on [0, 1]
and (4,6) is satisfied.
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4.3. Theorem. Assume 3.1 and (4,1). Given f € BV, and r € R,, the unique solu-
tion x of the system (1), (IL) in BV, is given by (4,2) where G(t, 5) and H(t) are defined
by 4.2.

-

5. GENERALIZED LINEAR DIFFERENTIAL EQUATIONS

Of a special interest is the case

A(0) —A(t) for 0=s<t=1,
(5.1) P(t,s) = {A(s+) — A(f) for 0<s<t<1,
0 for 05t<s<1,

where A :[0,1] —» L(R,) is of bounded variation on [0, 1]. The integral equation
(I) then reduces to the generalized linear differential equation

(5.2) x(t) — x(0) — J;d[A(s)] x(s) = f(t) — f(0), te[0,1].

It is easy to verify that for any A :[0, 1] - L(R,) of bounded variation on [0, 1],
the function P : [0, 1] x [0, 1] > L(R,) defined by (5,1) fulfils all the corresponding
assumptions from 3.1. Moreover, for any z* € BV," with z*(0) = z*(1) = 0 we have

- J:d[z*(t)] A(Y) L if s—0-

Ld[z*(t)] P(t,s) = ~ 'rd[z*(t)] A(t) — z(s)A(s+), if 0<s<1,
0 , if s=1.

Thus the adjoint system (3.12) to (I), (II) reduces in the case (5,1) to the system for
(z*, A*) e BV," x R,

(5.3) z*(s) + de[z*(t)] A(t) + z%(s) A(s+) + 4*K(s) =0 on [0,1],

24(0) = z%(1) = 0.

Furthermore, in the previous section we have proved the existence of Green’s
function for the boundary value problem (5,2), (II) if m = n and dim N(&) =0
for the corresponding operator % : BV, - BV, x R,.

The equation (5,3) resembles the generalized linear differential equation (5,2).
However, in general its basic theory is not available directly from the basic theory
of equations of the form (5,2). In [9] the problems (5,2), (II) are dealt with in detail.
As a proper adjoint the system of equations for (z*, A*) e BV," x R,

(5.4) z.*(s) + de[z*(t)] A(?) + z*(s) A(s) + A*K(s)=0 on [0,1],
z*(0) = z*(1) = 0
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is derived provided det(! — A”A(t)) + 0 for te(0,1] and det(I + A*A(r)) + 0
for te [0, 1). Under these assumptions also usual basic results for the equation (5,4)
(as the existence and uniqueness of a solution, fundamental matrix, variation-of-
constants formula) have been derived. In the same paper it was shown that the systems
(5,3) and (5,4) are equivalent in a certain sense.
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