Approximate counting in bounded arithmetic

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

29èmes Journées sur les Arithmétiques Faibles Warszawa 22–24 June 2010

Work in a theory of arithmetic.

Problem: Given a finite (= bounded) definable set X, determine its cardinality |X|.

Applications:

- proofs using counting arguments or probabilistic reasoning
- formalization of randomized algorithms

Example 1: the pigeonhole principle

Theorem: If a < b, there is no surjection $f: [0, a) \rightarrow [0, b)$. **Proof:** By induction on $k \le b$, show that

$$|\{x < a \mid f(x) < k\}| \ge k.$$

Since the LHS is at most a, we obtain a contradiction for k = b > a.

Notation: a = [0, a), e.g., $f : a \rightarrow b$

A

Example 2: Ramsey's theorem

Theorem: An undirected graph $G = \langle V, E \rangle$ on *n* vertices contains a clique or independent set of size $\geq \frac{1}{2} \log n$.

Proof: For $u \neq v \in V$, define $c(u, v) \in \{0, 1\}$ by

$$c(u,v) = 1 \Leftrightarrow \{u,v\} \in E.$$

By induction on $k \leq \lceil \log n \rceil$, show that there exist $c_0, \ldots, c_{k-1} < 2$ and distinct vertices u_0, \ldots, u_{k-1} such that

$$\forall i < j < k \ c(u_i, u_j) = c_i,$$
$$|\{v \in V \mid \forall i < k \ c(u_i, v) = c_i\}| \ge \frac{n+1}{2^k} - 1.$$

Denote the set on the LHS by $S(u_0, \ldots, u_{k-1}; c_0, \ldots, c_{k-1})$.

Example 2: Ramsey's theorem (cont'd)

The induction step: pick $u_k \in S(\vec{u}; \vec{c})$. Since

 $S(\vec{u}; \vec{c}) = \{u_k\} \cup S(\vec{u}, u_k; \vec{c}, 0) \cup S(\vec{u}, u_k; \vec{c}, 1),$

we can choose $c_k < 2$ so that

$$|S(\vec{u}, u_k; \vec{c}, c_k)| \ge \frac{|S(\vec{u}; \vec{c})| - 1}{2} \ge \frac{n+1}{2^{k+1}} - 1.$$

Let $k = \lceil \log n \rceil$. If c < 2 is the more populous colour among c_0, \ldots, c_{k-1} , then $H = \{u_i \mid c_i = c\}$ is a homogeneous set of size $\geq k/2$. QED

Example 3: the tournament principle

- A tournament is a directed graph where any two vertices are joined by exactly one edge.
- IOW: tournament = choice of orientation of edges of K_n .
- If there is an edge $a \rightarrow b$, player a beats player b.
- A dominating set is a set D of players such that any other player is beaten by some member of D.

Example 3: the tournament principle (cont'd)

Theorem: A tournament *G* with *n* players has a dominating set of size $\leq \log(n+1)$.

Proof: By induction on *n*. There are n(n-1)/2 matches in total, hence there exists a player *v* who wins $\ge (n-1)/2$ matches. By the induction hypothesis, the subtournament consisting of the $\le (n-1)/2$ players who beat *v* has a dominating set *D* of size $\le \log((n-1)/2+1) = \log(n+1)-1$, thus $D \cup \{v\}$ is a dominating set in the original tournament of size $\le \log(n+1)$.

Example 4: the "probabilistic method"

Theorem: For any n > 2, there exists a graph *G* on *n* vertices with no clique or independent set of size $\ge 2 \log n$.

Proof: Consider a random *G*. If $X \subseteq V$ has size *k*, then *X* is a homogeneous set for *G* with probability $2^{1-\binom{k}{2}}$, hence *G* contains a homogeneous set of size *k* with probability at most

$$\binom{n}{k} 2^{1 - \binom{k}{2}} \le \frac{n^k}{k!} 2^{1 - \binom{k}{2}} \le \left(\frac{ne}{k2^{(k-1)/2}}\right)^k < \left(\frac{n}{2^{k/2}}\right)^k \le 1$$

as long as $k \ge 2\log n$, $k > e\sqrt{2}$.

QED

Bounded arithmetic

Language: 0, S, +, \cdot , \leq , |x|, #, $\lfloor x/2^y \rfloor$

Intended meaning $|x| = \lceil \log(x+1) \rceil$, $x \# y = 2^{|x| \cdot |y|}$

Sharply bounded quantifiers: $\exists x \leq |t| \varphi$, $\forall x \leq |t| \varphi$

 $\hat{\Sigma}_{i}^{b}$ -formulas: *i* blocks of bounded quantifiers, starting with existential, followed by a sharply bounded kernel

 Σ_i^b -formulas: ignore sharply bounded quantifiers anywhere $\hat{\Pi}_i^b$, Π_i^b : dually

 $i > 0 \Rightarrow \Sigma_i^b(\mathbb{N}) = \Sigma_i^P$, $\Pi_i^b(\mathbb{N}) = \Pi_i^P$

BASIC: finite list of open axioms, mostly recursive definitions of the function symbols

$$T_{2}^{i} = BASIC + \Sigma_{i}^{b} - IND = BASIC + \Pi_{i}^{b} - IND$$
$$(\varphi - IND) \qquad \qquad \varphi(0) \land \forall x (\varphi(x) \to \varphi(x+1)) \to \varphi(u)$$

For
$$i > 0$$
: $T_2^i = BASIC + \Sigma_i^b - MIN = BASIC + \Sigma_i^b - MAX$
= $BASIC + \Pi_{i-1}^b - MIN = BASIC + \Pi_{i-1}^b - MAX$

$$(\varphi - MIN) \qquad \qquad \varphi(u) \to \exists x \, (\varphi(x) \land \forall y < x \, \neg \varphi(y))$$

$$(\varphi - MAX) \qquad \varphi(0) \to \exists x \le a \, (\varphi(x) \land \forall y \le a \, (\varphi(y) \to y \le x))$$

Buss' theories: S_2^i

For
$$i > 0$$
: $S_2^i = BASIC +$ any of the following:
 $\Sigma_i^b - PIND, \Pi_i^b - PIND, \Sigma_i^b - LIND, \Pi_i^b - LIND,$
 $\Sigma_i^b - LMIN, \Pi_{i-1}^b - LMIN, \Sigma_i^b - LMAX, \Pi_{i-1}^b - LMAX,$
 $\Sigma_i^b - COMP, \Pi_i^b - COMP$

$$\begin{array}{ll} (\varphi \text{-}PIND) & \varphi(0) \land \forall x \left(\varphi(\lfloor x/2 \rfloor) \to \varphi(x)\right) \to \varphi(u) \\ (\varphi \text{-}LIND) & \varphi(0) \land \forall x \left(\varphi(x) \to \varphi(x+1)\right) \to \varphi(|u|) \\ (\varphi \text{-}LMIN) & \varphi(u) \to \exists x \left(\varphi(x) \land \forall y \left(\varphi(y) \to |x| \le |y|\right)\right) \\ (\varphi \text{-}LMAX) & \varphi(0) \to \exists x \le a \left(\varphi(x) \land \forall y \le a \left(\varphi(y) \to |y| \le |x|\right)\right) \\ (\varphi \text{-}COMP) & \exists x < a \# 1 \forall u < |a| \left(u \in x \leftrightarrow \varphi(u)\right) \\ \hline |x/2^u| = 2\lfloor x/2^{u+1} \rfloor + 1 \end{array}$$

Buss' theories: basic properties

- $T_2^0 \subseteq S_2^1 \subseteq T_2^1 \subseteq S_2^2 \subseteq \cdots \subseteq T_2^i \subseteq S_2^{i+1} \subseteq T_2^{i+1} \subseteq \cdots \subseteq T_2 = S_2$
- S_2^{i+1} is a $\forall \Sigma_{i+1}^b$ -conservative extension of T_2^i
- poly-time functions have well-behaved Σ_1^b -definitions in $T_2^0 \Rightarrow$ expansion by *PV*-functions
- T_2^i/S_2^i proves the relevant (P|L)IND, (L)MIN, ... schemata in the expanded language \Rightarrow we can use PV-functions freely
- more generally, T_2^i has Σ_{i+1}^b -definitions for $FP^{\Sigma_i^P}$ $\Rightarrow PV_{i+1}$ -functions
- Buss' witnessing theorem: if $S_2^{i+1} \vdash \exists y \varphi(\vec{x}, y), \varphi \in \Sigma_{i+1}^b$, then there exists $f \in PV_{i+1}$ s.t. $T_2^i \vdash \varphi(\vec{x}, f(\vec{x}))$

We can relativize the theories by adding an "oracle"

 $S_2^i(\alpha)$, $T_2^i(\alpha)$: include a new predicate $\alpha(x)$,* expand schemas to the new language, no other axioms about α

- in $\langle \mathbb{N}, A \rangle$: $\Sigma_i^b(\alpha)$ defines $(\Sigma_i^P)^A$, $PV(\alpha)$ defines FP^A
- unconditional independence and separation results
- if $T_2^i(\alpha)$ proves stuff about $\Sigma_j^b(\alpha)$ -formulas, then T_2^{i+k} proves the same about Σ_{j+k}^b -formulas for any k

We will work in the relativized theories, but will omit α to keep the notation compact

^{*}and the $x \mod 2^y$ (*LSP*) function in the case of Σ_0^b -schemas

Exact counting in formal arithmetic

We can count using sequence encoding:

$$|X| \le k \Leftrightarrow \exists w \,\forall x \,[x \in X \to \exists i < k \,(w)_i = x]$$
$$|X| \ge k \Leftrightarrow \exists w \,\forall i < k \,[(w)_i \in X \land \forall j < i \,(w)_j \neq (w)_i]$$

- $I\Sigma_i$ can count $\Sigma_0^0(\Sigma_i^0)$ -sets (i > 0)
- $I\Delta_0 + \exp \operatorname{can} \operatorname{count} \Delta_0^0(\exp)$ -sets
- S_2^i can count small Σ_i^b -sets (i > 0)
- T_2^0 can count sets given explicitly by a sequence

```
Small = of size \leq \log a for some a.
```

What about larger sets?

In bounded arithmetic, we need |X| to be definable by a bounded formula. This is impossible even for poly-time X:

#P = class of functions of the form $f(x) = |\{y \mid R(x, y)\}|$, where $R \in P$ and $R(x, y) \Rightarrow |y| \le |x|^c$

Theorem [Toda '89]: $PH \subseteq P^{\#P}$

Corollary: If $\#P \subseteq FP^{PH}$, then $PH = \Sigma_k^P$ for some k.

If exact counting of poly-time sets is expressible by a bounded formula, then the polynomial hierarchy collapses

 \Rightarrow can use only approximate counting

Weak pigeonhole principle

Emil Jeřábek Approximate counting in bounded arithmetic JAF 29 Warszawa

Weak pigeonhole principle

The multifunction (relation) pigeonhole principle:

$$mPHP_a^b(R) = \forall y < b \,\exists x < a \, R(y, x)$$
$$\rightarrow \exists y < y' < b \,\exists x < a \, (R(y, x) \land R(y', x))$$

Weak pigeonhole principle: *b* "much" larger than *a* Popular choices: $mPHP_a^{a^2}$, $mPHP_a^{2a}$. For us:

$$mWPHP(R) = mPHP_{a|b|}^{a(|b|+1)}(R)$$

Theorem [PWW '88, MPW '02]: $T_2^2 \vdash mWPHP(\Sigma_1^b)$

Special cases where R or R^{-1} is a function:

surjective WPHP $sPHP_a^b(f) = \exists y < b \,\forall x < a \, f(x) \neq y$

injective WPHP

 $iPHP_a^b(g) = \forall y < b \ g(y) < a \to \exists y < y' < b \ g(y) = g(y')$

retraction-pair WPHP

 $rPHP_a^b(f,g) = \forall y < b \ g(y) < a \to \exists y < b \ f(g(y)) \neq y$

Variants of WPHP (cont'd)

 $S_2^1 + sWPHP(PV)$ is $\forall \Sigma_1^b$ -conservative over $T_2^0 + rWPHP(PV)$ Wilkie's witnessing theorem: If $S_2^1 + sWPHP(PV) \vdash \exists y \varphi(\vec{x}, y)$, $\varphi \in \Sigma_1^b$, then there exists a randomized poly-time algorithm f such that $\varphi(\vec{x}, f(\vec{x}))$ for every \vec{x} .

False for iWPHP, if factoring is hard! \Rightarrow our variant of choice is rWPHP or sWPHP WPHP can replace counting arguments in bounded arithmetic.

Already in the paper which introduced it:

Theorem [PWW '88]: $I\Delta_0 + \Omega_1 \vdash \forall x \exists p > x \ (p \text{ is prime}).$

Proof outline: Assume that there is no prime between *a* and a^{11} . By manipulating prime factorizations, stitch an injection from $9a \log a$ to $8a \log a$.

(In our setting: it goes through in $S_2^1 + rWPHP(\Gamma) \subseteq T_2^3$, where $\Gamma = FP^{NP[\text{wit}, \log n]}$ is the class of provably total Σ_2^b -definable functions of S_2^1 .)

Approximate counting with WPHP

Basic idea: witness that $|X| \le a$ by exhibiting a function f such that $f: a \rightarrow X$ (for sWPHP) or $f: X \hookrightarrow a$ (for iWPHP).

Trouble: Where do we get these functions from?

On the face of it, WPHP is a passive counting principle: it tells us that something is impossible, it does not supply any counting functions.

Example: Ramsey's theorem reloaded

Theorem [Pudlák '90]: $T_2(E)$ proves Ramsey's theorem: a graph $\langle V = n, E \rangle$ has a homogeneous set of size $\geq \frac{1}{2} \log n$. Proof: Recall: if $u_0, \ldots, u_{k-1} < n$ are pairwise distinct and $c_0, \ldots, c_{k-1} < 2$ are such that $\forall i < j \ c(u_i, u_j) = c_j$, we put

$$S(\vec{u}; \vec{c}) = \{ v < n \mid \forall i < k \, (u_i \neq v \land c(u_i, v) = c_i) \}.$$

We have

 $u \in S(\vec{u}; \vec{c}) \Rightarrow S(\vec{u}; \vec{c}) = \{u\} \cup S(\vec{u}, u; \vec{c}, 0) \cup S(\vec{u}, u; \vec{c}, 1).$

This translates into a straightforward manipulation of counting functions:

Example: Ramsey's theorem (cont'd)

If $f_c: \{0,1\}^{< r} \to S(\vec{u}, u; \vec{c}, c)$, c < 2, then $f: \{0,1\}^{< r+1} \to S(\vec{u}; \vec{c})$, where

(*)
$$f(\langle \rangle) = u,$$
$$f(w \frown \langle c \rangle) = f_c(w)$$

Assuming for contradiction $S(u_0, \ldots, u_{k-1}; c_0, \ldots, c_{k-1}) = \emptyset$ whenever $k = K := \lfloor \log n \rfloor - 1$, we have trivially an $f: \{0,1\}^{<0} \twoheadrightarrow S(\vec{u}; \vec{c})$, and iterating (*) we get

$$f_{\vec{u};\vec{c}}: \{0,1\}^{< K-k} \twoheadrightarrow S(u_0,\ldots,u_{k-1};c_0,\ldots,c_{k-1}).$$

We can likewise construct its coretraction

$$g_{\vec{u};\vec{c}} \colon S(\vec{u};\vec{c}) \hookrightarrow \{0,1\}^{< K-k}.$$

Example: Ramsey's theorem (still cont'd)

The complete definition (* = "undefined"):

$$f_{\vec{u};\vec{c}}(w) = \begin{cases} * & \text{if } S(\vec{u};\vec{c}) = \emptyset \\ u & \text{if } w = \langle \rangle \\ f_{\vec{u},u;\vec{c},c}(w') & \text{if } w = w' \frown \langle c \rangle \end{cases}$$
$$g_{\vec{u};\vec{c}}(x) = \begin{cases} \langle \rangle & \text{if } x = u \\ g_{\vec{u},u;\vec{c},c}(x) \frown \langle c \rangle & \text{where } c = c(u,x) \end{cases}$$
$$\text{where } u = \min S(\vec{u};\vec{c})$$

 $f(\vec{u}, \vec{c}, w) = f_{\vec{u};\vec{c}}(w)$ and $g(\vec{u}, \vec{c}, x) = g_{\vec{u};\vec{c}}(x)$ are in FP^{NP}

Example: Ramsey's theorem (f'shed)

By induction on K - k, we prove

$$x \in S(\vec{u}; \vec{c}) \Rightarrow f_{\vec{u}; \vec{c}}(g_{\vec{u}; \vec{c}}(x)) = x.$$

For k = 0: a retraction pair from $\{0, 1\}^{K} \approx 2^{K} - 1$ onto $S(;) = n \ge 2^{K+1}$, contradicts *WPHP*.

Thus there exist c_0, \ldots, c_{K-1} , u_0, \ldots, u_K , from which we pick a homogeneous set of size $\ge 1 + \lceil K/2 \rceil \ge 1 + \lfloor \frac{1}{2} \log n \rfloor$. QED

We actually got

Theorem: Ramsey's theorem is provable in $T_2^1(E) + rWPHP(PV_2(E)) \subseteq T_2^3(E)$.

This worked. However:

- The definition of *f*, *g* is messy (even leading to miscalculation of its complexity)
 ⇒ want a general theory of counting so that we do not need to resort to *ad hoc* functions.
- We have an obvious way of combining witnesses for $|X| \le a$ and $|Y| \le b$ into a witness for $|X \cup Y| \le a + b$. What about the dual principle

$$|X \cup Y| < a + b \Rightarrow |X| < a \text{ or } |Y| < b?$$

Needed for the tournament principle, for example.

Rest of the talk: two general setups

Approximate probabilities:

- estimate the size of $X \subseteq 2^n$ within error $2^n/poly(m)$ = estimate $Pr_{x < a}(x \in X)$ within error 1/poly(m)
- P/poly sets can be counted in $T_2^0 + sWPHP(PV) \subseteq T_2^2$
- based on pseudorandom generators

Proper approximate counting:

- estimate the size of $X \subseteq 2^n$ within error |X|/poly(m)
- $\Sigma_1^b/poly$ sets can be counted in $T_2^1 + sWPHP(PV_2) \subseteq T_2^3$ (often rWPHP suffices)
- based on hashing

Approximate probabilities

Approximate probabilities: intro

Basic strategy:

- we can estimate $Pr_{x < a}(x \in X)$ with error ε by drawing $O(1/\varepsilon)$ independent random samples \Rightarrow randomized poly-time algorithm
- derandomize using the Nisan–Wigderson pseudorandom generator
- analysis of the generator can be carried out in T_2^0 , it provides explicit "counting functions" for X

Nisan–Wigderson generator

- intended for derandomization of poly-time algorithms (BPP)
- $NW_f: 2^{O(\log n)} \to 2^n$ fools poly-size circuits $C: 2^n \to 2$
- computable in time poly(n) (= exponential in the size of the input)
- needs access to the truth table of an exponentially hard Boolean function $f: 2^{O(\log n)} \to 2$

Hard Boolean functions

Hardness of a function $f: 2^k \to 2$: $H(f) \le s$ iff there exists a circuit C of size $\le s$ such that

$$\Pr_{x \in 2^k}(C(x) = f(x)) \ge \frac{1}{2} + \frac{1}{s}$$

f is (average-case) ε -hard if $H(f) \geq 2^{\varepsilon k}$

- by a simple counting argument, most Boolean functions are $(\frac{1}{3} o(1))$ -hard
- we can easily enumerate the easy functions $\Rightarrow T_2^0 + sWPHP(PV) \vdash (\frac{1}{3} - o(1))$ -hard functions exist
- (in fact: over S_2^1 , this is equivalent to sWPHP(PV))

Nisan–Wigderson generator (cont'd)

Theorem [NW '94]: For every $\varepsilon > 0$, there exist c, d > 0 and a setting of parameters of the Nisan–Wigderson generator so that $NW_f: 2^{c \log n} \rightarrow 2^n$ satisfies:

Whenever $f: 2^{d \log n} \to 2$ is ε -hard and $C: 2^n \to 2$ is a circuit of size at most n, we have

$$\left|\operatorname{Pr}_{x\in 2^n}(C(x)) - \operatorname{Pr}_{y\in 2^{c\log n}}(C(NW_f(y)))\right| \le \frac{1}{n}.$$

(If we need bigger |C| or smaller error, we can pad C with dummy variables.)

Idea: Estimate $Pr_{x \in 2^n}(C(x))$ by sampling it on the output of NW_f .

Problem: How does the theory know that the result is not just a meaningless number? Need some witness to ensure that the definition is well-behaved.

Solution: The NW generator can be analyzed in a very constructive way, ensuring the existence of suitable retraction pairs witnessing correctness of the computed size.

NW in bounded arithmetic (cont'd)

Theorem: $T_2^0 + sWPHP(PV)$ proves: Let $X \subseteq 2^n$ be defined by a circuit C, and $\varepsilon^{-1} \in \text{Log.}$ There exist $s \leq 2^n$, $0 < v \leq poly(n\varepsilon^{-1}|C|)$, and functions

$$v(s+\varepsilon 2^n) \xrightarrow{f_0} v \times X \qquad \qquad v \times (X \stackrel{i}{\cup} \varepsilon 2^n) \xrightarrow{f_1} vs$$

defined by circuits of size $poly(n\varepsilon^{-1}|C|)$ such that $f_i \circ g_i = id$. Notation:

• $n \in \text{Log} \Leftrightarrow \exists a \ n = |a|$

• ε rational: $\varepsilon^{-1} \in \text{Log} \Leftrightarrow \varepsilon > 0 \land \exists a \ \varepsilon^{-1} \le |a|$

Size comparison with error

Definition: $X, Y \subseteq 2^n$ definable sets, $\varepsilon \ge 0$, n = |a|:

• $X \preceq_{\epsilon} Y$ iff there exist v > 0 and a circuit

 $C \colon v \times (Y \dot{\cup} \varepsilon 2^n) \twoheadrightarrow v \times X$

• $X \approx_{\varepsilon} Y$ iff $X \preceq_{\varepsilon} Y \land Y \preceq_{\varepsilon} X$

• $\Pr_{x < a}(x \in X) \preceq_{\varepsilon} p$ iff $X \cap a \preceq_{\varepsilon} pa$, and similarly for \succeq, \approx

Corollary: $T_2^0 + sWPHP(PV)$ proves: If X is defined by a circuit and $\varepsilon^{-1} \in \text{Log}$, there exists s such that $X \approx_{\varepsilon} s$.
Complexity of \leq_{ε}

- As it stands: $X \preceq_{\varepsilon} Y$ is an unbounded $\exists \Pi_2^b$ -formula
- If ε⁻¹ ∈ Log and X, Y are defined by circuits, it is (essentially) Σ₂^b by the Theorem
- In fact, it is P/poly: given $\varepsilon^{-1} \in \text{Log}$ and a family $\{X_u \mid u < a\}$ of subsets of 2^n defined by a circuit $C(u, x) : a \times 2^n \to 2$, there is a circuit s such that $X_u \approx_{\varepsilon} s(u)$, and circuits giving similarly the witnessing functions f_i , g_i
 - \Rightarrow can appear in induction formulas even in T_2^0

 $T_2^0 + sWPHP(PV)$ proves (for sets defined by circuits and Greeks in inverse Log):

- $X \preceq_{\varepsilon} Y \preceq_{\delta} Z \Rightarrow X \preceq_{\varepsilon+\delta} Z$
- $X \preceq_{\varepsilon} X', Y \preceq_{\delta} Y' \Rightarrow X \times Y \preceq_{\varepsilon + \delta + \varepsilon \delta} X' \times Y'$
- $X \preceq_{\varepsilon} X', Y \preceq_{\delta} Y', X' \cap Y' = \emptyset \Rightarrow X \cup Y \preceq_{\varepsilon+\delta} X' \cup Y'$
- $s \preceq_{\varepsilon} X \preceq_{\delta} t \Rightarrow s \leq t + (\varepsilon + \delta + \eta)2^n$
- $X \preceq_{\varepsilon} Y$ or $Y \preceq_{\varepsilon} X$

_ ...

- $X \preceq_{\varepsilon} Y \Rightarrow 2^n \smallsetminus Y \preceq_{\varepsilon+\eta} 2^n \smallsetminus X$
- $X \approx_{\varepsilon} s, Y \approx_{\delta} t, X \cap Y \approx_{\eta} u \Rightarrow X \cup Y \approx_{\varepsilon + \delta + \eta + \xi} s + t u$

Averaging

Theorem: $T_2^0 + sWPHP(PV)$ proves: if $X \subseteq 2^m$ and $Y \subseteq X \times 2^n$ are definable by circuits, $X \preceq_{\delta} t$, and $Y_x := \{y \mid \langle x, y \rangle \in Y\} \preceq_{\varepsilon} s$ for every $x \in X$, then $Y \preceq_{\varepsilon + \delta + \varepsilon \delta + \xi} st$ for any $\xi^{-1} \in \text{Log}$.

Read contrapositively, this gives a formalization of the averaging principle: if $|X| \le t$ and $|\bigcup_{x \in X} Y_x| > u$, then there exists $x \in X$ such that $|Y_x| > u/t$.

Chernoff–Hoeffding inequality

Theorem: $T_2^0 + sWPHP(PV)$ proves: if $X \subseteq a$ is defined by a circuit, $m \in \text{Log}$, $p, \varepsilon, \delta \in [0, 1]$, and $\Pr_{x < a}(x \in X) \succeq_{\delta} p$, then

 $\Pr_{w \in a^m} \left(|\{i < m \mid (w)_i \in X\}| \le m(p - \varepsilon) \right) \preceq_0 c 4^{m(c\delta - \varepsilon^2)}$

for some standard constant c.

Inclusion-exclusion principle

Theorem: $T_2^0 + sWPHP(PV)$ proves: let $X_i \subseteq 2^n$ (i < m) be defined by a sequence of circuits. Let $k \leq m$, $(2m/k)^k \in \text{Log}$. Assume $\bigcap_{i \in I} X_i \approx_{\varepsilon_I} s_I$ for every $I \subseteq m$ of size at most k, and put

$$s = \sum_{I \subseteq m} (-1)^{|I|+1} s_I, \qquad \varepsilon = \sum_{I \subseteq m} \varepsilon_I.$$
$$0 < |I| \le k \qquad 0 < |I| \le k$$

Then for any $\xi^{-1} \in Log$,

$$\bigcup_{i < m} X_i \succeq_{\varepsilon + \xi} s \quad \text{or} \quad \bigcup_{i < m} X_i \preceq_{\varepsilon + \xi} s$$

if k is even or odd, respectively.

Main application: formalization of classes of randomized algorithms (*TFRP*, *BPP*, *APP*, *MA*, *AM*, ...)

- straightforward to define using approximate probabilities
- can't expect all of them to be "provably total": mostly semantic classes, no known complete problems
- instead, show that the definition is "well-behaved":
 - amplification of probability of success
 - closure properties (e.g., composition)
 - trading randomness for nonuniformity
 - inclusions between the randomized classes and levels of *PH*

Approximate counting

Approximate counting: intro

Proper approximate counting: error relative to size of X, not size of the ambient universe

- witness that $|X| \le s$ using linear hash functions (Sipser's coding lemma)
- again, equivalent to existence of suitable surjective "counting functions"
- asymmetric: no witness for $|X| \ge s$
- can meaningfully count "sparse" sets
 ⇒ useful for inductive counting arguments: Ramsey's theorem, tournament principle

Linear hashing: basic idea

Let $X \subseteq 2^n = F^n$, F = GF(2), |X| = s. If $x \neq y \in F^n$ and $a \in F^n$ is a random vector, $\Pr_a(a^{\mathsf{T}}x = a^{\mathsf{T}}y) = \Pr_a(a^{\mathsf{T}}(x - y) = 0) = \frac{1}{2}.$ Thus, if $A \in F^{t \times n}$ is a random matrix, $\Pr_A(Ax = Ay) = 2^{-t},$ $\mathbf{E}_A \left| \{ \langle x, y \rangle \mid x, y \in X, x < y, Ax = Ay \} \right| = 2^{-t} {s \choose 2}.$

If $2^t > {s \choose 2}$, there exists an injective linear function $A: X \hookrightarrow 2^t \Rightarrow$ we can distinguish sets of size $\leq s$ and roughly $\geq s^2!$

Sipser's coding lemma

- $A \in F^{t \times n}$ separates x from $X \subseteq F^n$ if $Ax \neq Ay$ for every $y \in X \setminus \{x\}$
- *A_i* | *i* < *k*} isolates *X* if every *x* ∈ *X* is separated from *X* by some *A_i*

Take $k = \lceil \log s \rceil$, t = k + 1. We have

 $\Pr_{A}(A \text{ does not separate } x \text{ from } X) < \frac{s}{2^{t}} \leq \frac{1}{2},$ $\Pr_{A_{0},...,A_{k-1}}(\text{no } A_{i} \text{ separates } x \text{ from } X) < \frac{1}{2^{k}},$ $\Pr_{A_{0},...,A_{k-1}}(X \text{ not isolated by } A_{0},...,A_{k-1}) < \frac{s}{2^{k}} \leq 1.$

Sipser's coding lemma (cont'd)

Theorem [Sipser '83]: Let $X \subseteq 2^n$, $|X| \le s$, $k = \lceil \log s \rceil$, t = k + 1. Then there exists $\{A_i \mid i < k\}$, $A_i \in F^{t \times n}$, which isolates X.

OTOH: If such a sequence exists, each A_i can only separate 2^t points, hence $|X| \le 2^t k \le 4s(\log s + 1)$

 \Rightarrow we can distinguish sets of size s and about $4s \log s$

We want: distinguish s from $s(1 + \varepsilon)$ for polynomially small ε

Apply to X^c: distinguish $|X^c| \le s^c$ from $4s^c \log s^c = 4s^c c \log s$ \Rightarrow distinguish $|X| \le s$ from $s(4c \log s)^{1/c} \le s(1 + \varepsilon)$ for suitably chosen $c = poly(\varepsilon^{-1}, \log \log s)$

Formalized approximate counting

Definition: Let $X \subseteq 2^n$ be a definable set and $\varepsilon^{-1} \in \text{Log}$.

- if s > 0: $X \preceq_{\varepsilon} s$ iff there exists $0 < s' \leq s$ and a sequence $\{A_i \mid i < t\}, A_i \in F^{t \times n}$, which isolates X^c , where $c = 12|s'|\lceil \varepsilon^{-1} \rceil^2$ and $t = |s'^c| + 1$
- $X \preceq_{\varepsilon} 0$ iff X is empty
- $X \preceq s$ iff $X \preceq_{\varepsilon} s$ for all $\varepsilon^{-1} \in \text{Log}$

Basic properties:

- $\ensuremath{\,{\rm \bullet}}$ the definition is monotone and independent of n
- if $X \in \Sigma_1^b$, then \preceq_{ε} is Σ_2^b ; we can make it $\Pi_1^b/poly$

Reformulation with surjections

Theorem: $T_2^1 + sWPHP(PV_2)$ proves: let $X \in \Sigma_1^b$, $f \in PV_2$, $r, d > 0, d \in \text{Log}$, and assume $f : rs^d \twoheadrightarrow^* r \times X^d$. Then $X \preceq s$. Moreover,

 $\Pr(\{A_i \mid i < t\} \text{ does not isolate } X^c) \preceq_0^{\Sigma_1^b} 2/3,$

where c, t are as in the definition.

Theorem: $T_2^1 + rWPHP(PV_2)$ proves: if $X \in \Sigma_1^b$ and $X \preceq_{\varepsilon} s$, there exists a PV_2 -retraction pair $\lfloor s(1 + \varepsilon) \rfloor^c \rightrightarrows X^c$, where *c* is as in the definition.

^{*}I'm cheating a bit

Emil Jeřábek Approximate counting in bounded arithmetic JAF 29 Warszawa

Agreement with other counting setups

Theorem: $T_2^1 + rWPHP(PV_2)$ proves: if $X \in \Sigma_1^b$ and $s \leq \varepsilon^{-1} \in \text{Log}$, then $X \preceq_{\varepsilon} s$ iff there exists a sequence of length at most s which includes all elements of X.

Theorem: $T_2^1 + sWPHP(PV_2)$ proves: let $X, Y \in \Sigma_1^b$, $f \in PV_2$, $d, r > 0, d, \varepsilon^{-1} \in \text{Log.}$ If $f: r \times X^d \twoheadrightarrow r \times Y^d$ and $X \preceq_{\varepsilon} s$, then $Y \preceq \lfloor s(1 + \varepsilon) \rfloor$. In particular: if $Y \preceq_{\delta} X$ and $X \preceq_{\varepsilon} s$, then $Y \preceq s(1 + \varepsilon) + \delta 2^n$.

Unions and products

Theorem: $T_2^1 + rWPHP(PV_2)$ proves for $X, Y \in \Sigma_1^b$:

• if $X \preceq_{\varepsilon} s$ and $Y \preceq_{\varepsilon} t$, then $X \cup Y \preceq \lfloor (s+t)(1+2\varepsilon) \rfloor$

- if $X \preceq_{\varepsilon} s$ and $Y \preceq_{\varepsilon} t$, then $X \times Y \preceq \lfloor st(1+\varepsilon)^2 \rfloor$
- if $X \cup Y \preceq_{\varepsilon} s + t + 1$, then $X \preceq \lfloor s(1 + 2\varepsilon) \rfloor$ or $Y \preceq \lfloor t(1 + 2\varepsilon) \rfloor$
- if $X \times Y \preceq_{\varepsilon} st$, then $X \preceq \lfloor s(1+\varepsilon) \rfloor$ or $Y \preceq \lfloor t(1+\varepsilon) \rfloor$

Similar properties also hold for sums and products of logarithmically many sets rather than just two.

Averaging

Or: sums of many sets. Let $X, Y \in \Sigma_1^b$, $Y \subseteq X \times 2^n$, and denote $Y_x = \{y \mid \langle x, y \rangle \in Y\}$.

Theorem: $T_2^1 + sWPHP(PV_2)$ proves: if

Theorem: $T_2^1 + rWPHP(PV_2)$ proves: if $Y \preceq_{\varepsilon} st$, then

- $X \precsim s 1$ or
- there exists $x \in X$ such that $Y_x \preceq \lfloor t(1+2\varepsilon) \rfloor$.

Approximate enumeration

Theorem: $T_2^1 + rWPHP(PV_2)$ proves: let $X \in \Sigma_1^b$, and $\varepsilon^{-1} \in \text{Log.}$ There exist t, s such that $s \leq t \leq \lfloor s(1 + \varepsilon) \rfloor$, and non-decreasing PV_2 -retraction pairs

such that f, g are ≤ 2 -to-1, and

$$\left\lfloor \frac{s}{t}u \right\rfloor \le g(f(u)) \le \left\lceil \frac{s}{t}u \right\rceil$$

for every u < t.

Example: the tournament principle

Recall the proof from slide #6:

Theorem: A tournament *G* with *n* players has a dominating set of size $\leq \log(n+1)$.

Proof: By induction on *n*. There are n(n-1)/2 matches in total, hence there exists a player *v* who wins $\ge (n-1)/2$ matches. By the induction hypothesis, the subtournament consisting of the $\le (n-1)/2$ players who beat *v* has a dominating set *D* of size $\le \log((n-1)/2+1) = \log(n+1) - 1$, thus $D \cup \{v\}$ is a dominating set in the original tournament of size $\le \log(n+1)$. QED

Let's translate it to bounded arithmetic.

Example: the tournament principle (cont'd)

Theorem: $T_2^1(G) + rWPHP(PV_2(G)) \subseteq T_2^3(G)$ proves the tournament principle.

Proof: We can work in $S_2^2(G) + sWPHP(PV_2(G))$ by conservativity. Notation: if $\langle a_i | i < k \rangle$ is a sequence of players, let $G(\vec{a}) = \{x < n | \forall i < k \ x \rightarrow a_i\}$.

Fix $\varepsilon^{-1} \in \text{Log such that } (1 + \varepsilon)^{8(|n|+1)} < 2$. By Σ_2^b -*LIND* on $k \leq |n| + 1$, prove

(*)
$$\exists \langle a_i \mid i < k \rangle$$
 such that $G(\vec{a}) \preceq_{\varepsilon} \left\lfloor \frac{n}{2^k} (1 + \varepsilon)^{8k} \right\rfloor$.

For k = |n| + 1, we get $G(\vec{a}) = \emptyset$, i.e., \vec{a} is a dominating set of SiZE $\leq |n| + 1$. (We can remove the "+1" using shameless trickery.)

Example: the tournament principle (cont'd)

Assume (*) for k. Find $s \leq n2^{-k}(1+\varepsilon)^{8k}$ s.t. $G(\vec{a}) \preccurlyeq \varepsilon \lfloor s(1+\varepsilon) \rfloor$, $G(\vec{a}) \not\preccurlyeq \varepsilon s - 1$. We have

$$\{\langle x, y \rangle \in G(\vec{a})^2 \mid x \neq y\} \precsim_{\varepsilon} \lfloor s^2(1+\varepsilon)^4 \rfloor,\$$

thus (omitting the " $\in G(\vec{a})^2$ ")

$$\{\langle x, y \rangle \mid y \to x\} \precsim_{\varepsilon} \left\lfloor \frac{s^2}{2} (1+\varepsilon)^6 \right\rfloor \text{ or } \{\langle x, y \rangle \mid x \to y\} \precsim_{\varepsilon} \left\lfloor \frac{s^2}{2} (1+\varepsilon)^6 \right\rfloor$$

WLOG the former. Then there exists $x \in G(\vec{a})$ s.t.

$$G(\vec{a}, x) = \{ y \in G(\vec{a}) \mid y \to x \} \precsim_{\varepsilon} \left\lfloor \frac{s}{2} (1 + \varepsilon)^8 \right\rfloor \le \left\lfloor \frac{N}{2^{k+1}} (1 + \varepsilon)^{8(k+1)} \right\rfloor.$$

QED

Application: collapse of hierarchies

A variant of the tournament principle is used in the proof by [KPT '91] that collapse of the T_2^i hierarchy implies collapse of the polynomial hierarchy.

Previously known: $T_2^i = S_2^{i+1}$ iff $T_2^i = T_2$, and implies

•
$$\Sigma_{i+1}^P \subseteq \Delta_{i+1}^P / poly$$
, thus $PH = \Sigma_{i+2}^P = \prod_{i+2}^P [KPT '91]$

• T_2^i proves $\Sigma_{i+1}^b \subseteq \prod_{i+1}^b / poly$ and $\Sigma_{\infty}^b = \mathcal{B}(\Sigma_{i+2}^b)$ [Buss '95, Zambella '96]

Approximate counting gives:

•
$$T_2^i$$
 proves $\Sigma_{i+1}^b \subseteq \Delta_{i+1}^b / poly$ and $\Sigma_{\infty}^b = \mathcal{B}(\Sigma_{i+1}^b)$

(using also [CK '07])

Other applications

- intervals on models of T₂ admit nontrivial totally ordered approximate Euler characteristic (in the sense of [Krajíček '04])
- $T_2^1 + rWPHP(PV_2)$ proves Ramsey's theorem (but we should have already known that)
- $T_2^1 + rWPHP(PV_2)$ proves $S_2^P \subseteq ZPP^{NP}$
- $T_2^1 + rWPHP(PV_2)$ proves $GI \in coAM$

Thank you for attention!

Emil Jeřábek Approximate counting in bounded arithmetic JAF 29 Warszawa

References

S. Buss, *Bounded arithmetic*, Bibliopolis, Naples, 1986.

_____, Relating the bounded arithmetic and polynomial time hierarchies, APAL 75 (1995), 67–77.

S. Cook, J. Krajíček, Consequences of the provability of $NP \subseteq P/poly$, JSL 72 (2007), 1353–1371.

E. Jeřábek, *Dual weak pigeonhole principle, Boolean complexity, and derandomization*, APAL 129 (2004), 1–37.

_____, *Approximate counting in bounded arithmetic*, JSL 72 (2007), 959–993.

_____, Approximate counting by hashing in bounded arithmetic, JSL 74 (2009), 829–860.

J. Krajíček, *Bounded arithmetic, propositional logic, and complexity theory*, Cambridge University Press, 1995.

_____, Approximate Euler characteristic, dimension, and weak pigeonhole principles, JSL 69 (2004), 201–214.

J. Krajíček, P. Pudlák, G. Takeuti, *Bounded arithmetic and the polynomial hierarchy*, APAL 52 (1991), 143–153.

A. Maciel, T. Pitassi, A. Woods, *A new proof of the weak pigeonhole principle*, JCSS 64 (2002), 843–872.

N. Nisan, A. Wigderson, *Hardness vs. randomness*, JCSS 49 (1994), 149–167.

J. Paris, A. Wilkie, A. Woods, *Provability of the pigeonhole principle and the existence of infinitely many primes*, JSL 53 (1988), 1235–1244. Emil Jeřábek Approximate counting in bounded arithmetic JAF 29 Warszawa P. Pudlák, *Ramsey's theorem in bounded arithmetic*, Proc. CSL '90, LNCS 533, Springer, 1991, 308–317.

M. Sipser, *A complexity theoretic approach to randomness*, Proc. 15th STOC, 1983, 330–335.

N. Thapen, *The weak pigeonhole principle in models of bounded arithmetic*, Ph.D. thesis, Oxford University, 2002.

S. Toda, On the computational power of PP and $\oplus P$, Proc. 30th FOCS, 1989, 514–519.

D. Zambella, *Notes on polynomially bounded arithmetic*, JSL 61 (1996), 942–966.