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The counting problem

Work in a theory of arithmetic.

Problem: Given a finite (= bounded) definable set X,
determine its cardinality |X|.
Applications:

proofs using counting arguments or probabilistic
reasoning

formalization of randomized algorithms
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Example 1: the pigeonhole principle

Theorem: If a < b, there is no surjection f : [0, a) ։ [0, b).

Proof: By induction on k ≤ b, show that
∣

∣{x < a | f(x) < k}
∣

∣ ≥ k.

Since the LHS is at most a, we obtain a contradiction for
k = b > a. QED

Notation: a = [0, a), e.g., f : a→ b
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Example 2: Ramsey’s theorem

Theorem: An undirected graph G = 〈V,E〉 on n vertices
contains a clique or independent set of size ≥ 1

2 log n.

Proof: For u 6= v ∈ V , define c(u, v) ∈ {0, 1} by

c(u, v) = 1⇔ {u, v} ∈ E.

By induction on k ≤ ⌈log n⌉, show that there exist
c0, . . . , ck−1 < 2 and distinct vertices u0, . . . , uk−1 such that

∀i < j < k c(ui, uj) = ci,

∣

∣{v ∈ V | ∀i < k c(ui, v) = ci}
∣

∣ ≥ n + 1

2k
− 1.

Denote the set on the LHS by S(u0, . . . , uk−1; c0, . . . , ck−1).
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Example 2: Ramsey’s theorem (cont’d)

The induction step: pick uk ∈ S(~u;~c). Since

S(~u;~c) = {uk} ∪ S(~u, uk;~c, 0) ∪ S(~u, uk;~c, 1),

we can choose ck < 2 so that

|S(~u, uk;~c, ck)| ≥
|S(~u;~c)| − 1

2
≥ n + 1

2k+1
− 1.

Let k = ⌈log n⌉. If c < 2 is the more populous colour among
c0, . . . , ck−1, then H = {ui | ci = c} is a homogeneous set of
size ≥ k/2. QED

Emil Je řábek|Approximate counting in bounded arithmetic |JAF 29 Warszawa 4:57



Example 3: the tournament principle

A tournament is a directed graph where any two vertices are
joined by exactly one edge.

IOW: tournament = choice of orientation of edges of Kn.

If there is an edge a→ b, player a beats player b.

A dominating set is a set D of players such that any other
player is beaten by some member of D.
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Example 3: the tournament principle (cont’d)

Theorem: A tournament G with n players has a dominating
set of size ≤ log(n + 1).

Proof: By induction on n. There are n(n− 1)/2 matches in
total, hence there exists a player v who wins ≥ (n− 1)/2

matches. By the induction hypothesis, the subtournament
consisting of the ≤ (n− 1)/2 players who beat v has a
dominating set D of size ≤ log((n− 1)/2 + 1) = log(n + 1)− 1,
thus D ∪ {v} is a dominating set in the original tournament of
size ≤ log(n + 1). QED
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Example 4: the “probabilistic method”

Theorem: For any n > 2, there exists a graph G on n

vertices with no clique or independent set of size ≥ 2 log n.

Proof: Consider a random G. If X ⊆ V has size k, then X is
a homogeneous set for G with probability 21−(k

2), hence G

contains a homogeneous set of size k with probability at
most

(

n

k

)

21−(k

2) ≤ nk

k!
21−(k

2) ≤
( ne

k2(k−1)/2

)k
<

( n

2k/2

)k
≤ 1

as long as k ≥ 2 log n, k > e
√

2. QED
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Bounded arithmetic
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Buss’ theories

Language: 0, S, +, ·, ≤, |x|, #, ⌊x/2y⌋

Intended meaning |x| = ⌈log(x + 1)⌉, x # y = 2|x|·|y|

Sharply bounded quantifiers: ∃x ≤ |t|ϕ, ∀x ≤ |t|ϕ

Σ̂b
i -formulas: i blocks of bounded quantifiers, starting with

existential, followed by a sharply bounded kernel

Σb
i -formulas: ignore sharply bounded quantifiers anywhere

Π̂b
i , Πb

i : dually

i > 0⇒ Σb
i(N) = ΣP

i , Πb
i(N) = ΠP

i

BASIC : finite list of open axioms, mostly recursive definitions
of the function symbols
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Buss’ theories:T i
2

T i
2 = BASIC + Σb

i -IND = BASIC + Πb
i -IND

(ϕ-IND ) ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))→ ϕ(u)

T i
2 = BASIC + Σb

i -MIN = BASIC + Σb
i -MAXFor i > 0:

= BASIC + Πb
i−1-MIN = BASIC + Πb

i−1-MAX

(ϕ-MIN ) ϕ(u)→ ∃x (ϕ(x) ∧ ∀y < x¬ϕ(y))

(ϕ-MAX ) ϕ(0)→ ∃x ≤ a (ϕ(x) ∧ ∀y ≤ a (ϕ(y)→ y ≤ x))
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Buss’ theories:Si
2

For i > 0: Si
2 = BASIC + any of the following:

Σb
i -PIND , Πb

i -PIND , Σb
i -LIND , Πb

i -LIND ,
Σb

i -LMIN , Πb
i−1-LMIN , Σb

i -LMAX , Πb
i−1-LMAX ,

Σb
i -COMP , Πb

i -COMP

ϕ(0) ∧ ∀x (ϕ(⌊x/2⌋)→ ϕ(x))→ ϕ(u)(ϕ-PIND )

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))→ ϕ(|u|)(ϕ-LIND )

ϕ(u)→ ∃x (ϕ(x) ∧ ∀y (ϕ(y)→ |x| ≤ |y|))(ϕ-LMIN )

ϕ(0)→ ∃x ≤ a (ϕ(x) ∧ ∀y ≤ a (ϕ(y)→ |y| ≤ |x|))(ϕ-LMAX )

∃x < a # 1∀u < |a| (u ∈ x
z }| {

⌊x/2u⌋ = 2⌊x/2u+1⌋ + 1

↔ ϕ(u))(ϕ-COMP )
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Buss’ theories: basic properties

T 0
2 ⊆ S1

2 ⊆ T 1
2 ⊆ S2

2 ⊆ · · · ⊆ T i
2 ⊆ Si+1

2 ⊆ T i+1
2 ⊆ · · · ⊆ T2 = S2

Si+1
2 is a ∀Σb

i+1-conservative extension of T i
2

poly-time functions have well-behaved Σb
1-definitions in

T 0
2 ⇒ expansion by PV -functions

T i
2/S

i
2 proves the relevant (P |L)IND , (L)MIN , . . .

schemata in the expanded language ⇒ we can use
PV -functions freely

more generally, T i
2 has Σb

i+1-definitions for FPΣP

i

⇒ PVi+1-functions

Buss’ witnessing theorem: if Si+1
2 ⊢ ∃y ϕ(~x, y), ϕ ∈ Σb

i+1,
then there exists f ∈ PVi+1 s.t. T i

2 ⊢ ϕ(~x, f(~x))
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Buss’ theories: relativization

We can relativize the theories by adding an “oracle”

Si
2(α), T i

2(α): include a new predicate α(x),∗ expand schemas
to the new language, no other axioms about α

in 〈N, A〉: Σb
i(α) defines (ΣP

i )A, PV (α) defines FPA

unconditional independence and separation results

if T i
2(α) proves stuff about Σb

j(α)-formulas, then T i+k
2

proves the same about Σb
j+k-formulas for any k

We will work in the relativized theories, but will omit α to
keep the notation compact

∗and the x mod 2y (LSP ) function in the case of Σb
0-schemas
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Exact counting in formal arithmetic

We can count using sequence encoding:

|X| ≤ k ⇔ ∃w ∀x [x ∈ X → ∃i < k (w)i = x]

|X| ≥ k ⇔ ∃w ∀i < k [(w)i ∈ X ∧ ∀j < i (w)j 6= (w)i]

IΣi can count Σ0
0(Σ

0
i )-sets (i > 0)

I∆0 + exp can count ∆0
0(exp)-sets

Si
2 can count small Σb

i -sets (i > 0)

T 0
2 can count sets given explicitly by a sequence

Small = of size ≤ log a for some a.

What about larger sets?
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Toda’s theorem

In bounded arithmetic, we need |X| to be definable by a
bounded formula. This is impossible even for poly-time X:

#P = class of functions of the form f(x) =
∣

∣{y | R(x, y)}
∣

∣,
where R ∈ P and R(x, y)⇒ |y| ≤ |x|c

Theorem [Toda ’89]: PH ⊆ P#P

Corollary: If #P ⊆ FPPH , then PH = ΣP
k for some k.

If exact counting of poly-time sets is expressible by a
bounded formula, then the polynomial hierarchy collapses

⇒ can use only approximate counting
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Weak pigeonhole principle
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Weak pigeonhole principle

The multifunction (relation) pigeonhole principle:

mPHP b
a(R) = ∀y < b∃x < a R(y, x)

→ ∃y < y′ < b∃x < a (R(y, x) ∧ R(y′, x))

Weak pigeonhole principle: b “much” larger than a

Popular choices: mPHPa2

a , mPHP2a
a . For us:

mWPHP(R) = mPHP
a(|b|+1)
a |b|

(R)

Theorem [PWW ’88, MPW ’02]: T 2
2 ⊢ mWPHP(Σb

1)
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Variants of WPHP

Special cases where R or R−1 is a function:

surjective WPHP

a
b

f

g

sPHP b
a(f) = ∃y < b∀x < a f(x) 6= y

injective WPHP

iPHP b
a(g) = ∀y < b g(y) < a→ ∃y < y′ < b g(y) = g(y′)

retraction-pair WPHP

rPHP b
a(f, g) = ∀y < b g(y) < a→ ∃y < b f(g(y)) 6= y
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Variants of WPHP (cont’d)

T 2

2
- mWPHP(Σb

1
)

R

�
sWPHP(PV )

iWPHP(PV )

�

R
rWPHP(PV )

I Σb
1

2

S1
2 + sWPHP(PV ) is ∀Σb

1-conservative over T 0
2 + rWPHP(PV )

Wilkie’s witnessing theorem: If S1
2 + sWPHP(PV ) ⊢ ∃y ϕ(~x, y),

ϕ ∈ Σb
1, then there exists a randomized poly-time algorithm f

such that ϕ(~x, f(~x)) for every ~x.

False for iWPHP , if factoring is hard!
⇒ our variant of choice is rWPHP or sWPHP
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Applications of WPHP

WPHP can replace counting arguments in bounded
arithmetic.

Already in the paper which introduced it:

Theorem [PWW ’88]: I∆0 + Ω1 ⊢ ∀x∃p > x (p is prime).

Proof outline: Assume that there is no prime between a and
a11. By manipulating prime factorizations, stitch an injection
from 9a log a to 8a log a. QED

(In our setting: it goes through in S1
2 + rWPHP(Γ) ⊆ T 3

2 ,
where Γ = FPNP [wit,log n] is the class of provably total
Σb

2-definable functions of S1
2 .)
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Approximate counting with WPHP

Basic idea: witness that |X| ≤ a by exhibiting a function f

such that f : a ։ X (for sWPHP) or f : X →֒ a (for iWPHP).

Trouble: Where do we get these functions from?

On the face of it, WPHP is a passive counting principle: it
tells us that something is impossible, it does not supply any
counting functions.
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Example: Ramsey’s theorem reloaded

Theorem [Pudlák ’90]: T2(E) proves Ramsey’s theorem: a
graph 〈V = n,E〉 has a homogeneous set of size ≥ 1

2 log n.

Proof: Recall: if u0, . . . , uk−1 < n are pairwise distinct and
c0, . . . , ck−1 < 2 are such that ∀i < j c(ui, uj) = cj, we put

S(~u;~c) = {v < n | ∀i < k (ui 6= v ∧ c(ui, v) = ci)}.

We have

u ∈ S(~u;~c)⇒ S(~u;~c) = {u} ∪ S(~u, u;~c, 0) ∪ S(~u, u;~c, 1).

This translates into a straightforward manipulation of
counting functions:
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Example: Ramsey’s theorem (cont’d)

If fc : {0, 1}<r ։ S(~u, u;~c, c), c < 2, then f : {0, 1}<r+1 ։ S(~u;~c),
where

f(〈〉) = u,

f(w a 〈c〉) = fc(w).
(∗)

Assuming for contradiction S(u0, . . . , uk−1; c0, . . . , ck−1) = ∅

whenever k = K := ⌊log n⌋ − 1, we have trivially an
f : {0, 1}<0 ։ S(~u;~c), and iterating (∗) we get

f~u;~c : {0, 1}<K−k ։ S(u0, . . . , uk−1; c0, . . . , ck−1).

We can likewise construct its coretraction

g~u;~c : S(~u;~c) →֒ {0, 1}<K−k.
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Example: Ramsey’s theorem (still cont’d)

The complete definition (∗ = “undefined”):

f~u;~c(w) =











∗ if S(~u;~c) = ∅

u if w = 〈〉
f~u,u;~c,c(w

′) if w = w′ a 〈c〉

g~u;~c(x) =

{

〈〉 if x = u

g~u,u;~c,c(x) a 〈c〉 where c = c(u, x)

where u = min S(~u;~c)

f(~u,~c, w) = f~u;~c(w) and g(~u,~c, x) = g~u;~c(x) are in FPNP

Emil Je řábek|Approximate counting in bounded arithmetic |JAF 29 Warszawa 24:57



Example: Ramsey’s theorem (f’shed)

By induction on K − k, we prove

x ∈ S(~u;~c)⇒ f~u;~c(g~u;~c(x)) = x.

For k = 0: a retraction pair from {0, 1}<K ≈ 2K − 1 onto
S(; ) = n ≥ 2K+1, contradicts WPHP .

Thus there exist c0, . . . , cK−1, u0, . . . , uK , from which we pick a
homogeneous set of size ≥ 1 + ⌈K/2⌉ ≥ 1 + ⌊12 log n⌋. QED

We actually got

Theorem: Ramsey’s theorem is provable in
T 1

2 (E) + rWPHP(PV2(E)) ⊆ T 3
2 (E).
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Morals to draw

This worked. However:

The definition of f, g is messy
(even leading to miscalculation of its complexity)
⇒ want a general theory of counting so that we do not
need to resort to ad hoc functions.

We have an obvious way of combining witnesses for
|X| ≤ a and |Y | ≤ b into a witness for |X ∪ Y | ≤ a + b.
What about the dual principle

|X ∪̇ Y | < a + b⇒ |X| < a or |Y | < b ?

Needed for the tournament principle, for example.
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General theory of counting

Rest of the talk: two general setups

Approximate probabilities:

estimate the size of X ⊆ 2n within error 2n/poly(m)

= estimate Prx<a(x ∈ X) within error 1/poly(m)

P/poly sets can be counted in T 0
2 + sWPHP(PV ) ⊆ T 2

2

based on pseudorandom generators

Proper approximate counting:

estimate the size of X ⊆ 2n within error |X|/poly(m)

Σb
1/poly sets can be counted in T 1

2 + sWPHP(PV2) ⊆ T 3
2

(often rWPHP suffices)
based on hashing
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Approximate probabilities
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Approximate probabilities: intro

Basic strategy:

we can estimate Prx<a(x ∈ X) with error ε by drawing
O(1/ε) independent random samples
⇒ randomized poly-time algorithm

derandomize using the Nisan–Wigderson
pseudorandom generator

analysis of the generator can be carried out in T 0
2 , it

provides explicit “counting functions” for X
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Nisan–Wigderson generator

intended for derandomization of poly-time algorithms
(BPP)

NWf : 2O(log n) → 2n fools poly-size circuits C : 2n → 2

computable in time poly(n) (= exponential in the size of
the input)

needs access to the truth table of an exponentially hard
Boolean function f : 2O(log n) → 2
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Hard Boolean functions

Hardness of a function f : 2k → 2:
H(f) ≤ s iff there exists a circuit C of size ≤ s such that

Prx∈2k(C(x) = f(x)) ≥ 1

2
+

1

s

f is (average-case) ε-hard if H(f) ≥ 2εk

by a simple counting argument, most Boolean functions
are (1

3 − o(1))-hard

we can easily enumerate the easy functions
⇒ T 0

2 + sWPHP(PV ) ⊢ (1
3 − o(1))-hard functions exist

(in fact: over S1
2 , this is equivalent to sWPHP(PV ))
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Nisan–Wigderson generator (cont’d)

Theorem [NW ’94]: For every ε > 0, there exist c, d > 0 and
a setting of parameters of the Nisan–Wigderson generator
so that NWf : 2c log n → 2n satisfies:

Whenever f : 2d log n → 2 is ε-hard and C : 2n → 2 is a circuit of
size at most n, we have

∣

∣Prx∈2n(C(x))− Pry∈2c log n(C(NWf (y)))
∣

∣ ≤ 1

n
.

(If we need bigger |C| or smaller error, we can pad C with
dummy variables.)
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NW in bounded arithmetic

Idea: Estimate Prx∈2n(C(x)) by sampling it on the output of
NWf .

Problem: How does the theory know that the result is not
just a meaningless number? Need some witness to ensure
that the definition is well-behaved.

Solution: The NW generator can be analyzed in a very
constructive way, ensuring the existence of suitable
retraction pairs witnessing correctness of the computed size.
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NW in bounded arithmetic (cont’d)

Theorem: T 0
2 + sWPHP(PV ) proves:

Let X ⊆ 2n be defined by a circuit C, and ε−1 ∈ Log. There
exist s ≤ 2n, 0 < v ≤ poly(nε−1|C|), and functions

v(s + ε2n)
f0−−−−−−։←−−−−−֓
g0

v ×X v × (X ∪̇ ε2n)
f1−−−−−−։←−−−−−֓
g1

vs

defined by circuits of size poly(nε−1|C|) such that fi ◦ gi = id.

Notation:

n ∈ Log⇔ ∃a n = |a|
ε rational: ε−1 ∈ Log⇔ ε > 0 ∧ ∃a ε−1 ≤ |a|
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Size comparison with error

Definition: X,Y ⊆ 2n definable sets, ε ≥ 0, n = |a|:
X �ε Y iff there exist v > 0 and a circuit

C : v × (Y ∪̇ ε2n) ։ v ×X

X ≈ε Y iff X �ε Y ∧ Y �ε X

Prx<a(x ∈ X) �ε p iff X ∩ a �ε pa, and similarly for �, ≈

Corollary: T 0
2 + sWPHP(PV ) proves: If X is defined by a

circuit and ε−1 ∈ Log, there exists s such that X ≈ε s.
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Complexity of �ε

As it stands: X �ε Y is an unbounded ∃Πb
2-formula

If ε−1 ∈ Log and X,Y are defined by circuits, it is
(essentially) Σb

2 by the Theorem

In fact, it is P/poly : given ε−1 ∈ Log and a family
{Xu | u < a} of subsets of 2n defined by a circuit
C(u, x) : a× 2n → 2, there is a circuit s such that
Xu ≈ε s(u), and circuits giving similarly the witnessing
functions fi, gi

⇒ can appear in induction formulas even in T 0
2
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Elementary properties of�ε

T 0
2 + sWPHP(PV ) proves (for sets defined by circuits and

Greeks in inverse Log):

X �ε Y �δ Z ⇒ X �ε+δ Z

X �ε X ′, Y �δ Y ′ ⇒ X × Y �ε+δ+εδ X ′ × Y ′

X �ε X ′, Y �δ Y ′, X ′ ∩ Y ′ = ∅⇒ X ∪ Y �ε+δ X ′ ∪ Y ′

s �ε X �δ t⇒ s ≤ t + (ε + δ + η)2n

X �ε Y or Y �ε X

X �ε Y ⇒ 2n
r Y �ε+η 2n

r X

X ≈ε s, Y ≈δ t,X ∩ Y ≈η u⇒ X ∪ Y ≈ε+δ+η+ξ s + t− u

. . .
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Averaging

Theorem: T 0
2 + sWPHP(PV ) proves: if X ⊆ 2m and

Y ⊆ X × 2n are definable by circuits, X �δ t, and
Yx := {y | 〈x, y〉 ∈ Y } �ε s for every x ∈ X, then Y �ε+δ+εδ+ξ st

for any ξ−1 ∈ Log.

Read contrapositively, this gives a formalization of the
averaging principle: if |X| ≤ t and |

⋃

x∈X Yx| > u, then there
exists x ∈ X such that |Yx| > u/t.

X

Y

x

Yx
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Chernoff–Hoeffding inequality

Theorem: T 0
2 + sWPHP(PV ) proves: if X ⊆ a is defined by a

circuit, m ∈ Log, p, ε, δ ∈ [0, 1], and Prx<a(x ∈ X) �δ p, then

Prw∈am

(

|{i < m | (w)i ∈ X}| ≤ m(p− ε)
)

�0 c4m(cδ−ε2)

for some standard constant c.
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Inclusion-exclusion principle

Theorem: T 0
2 + sWPHP(PV ) proves: let Xi ⊆ 2n (i < m) be

defined by a sequence of circuits. Let k ≤ m, (2m/k)k ∈ Log.
Assume

⋂

i∈I Xi ≈εI
sI for every I ⊆ m of size at most k, and

put

s =
∑

I⊆m

0<|I|≤k

(−1)|I|+1sI , ε =
∑

I⊆m

0<|I|≤k

εI .

Then for any ξ−1 ∈ Log,
⋃

i<m

Xi �ε+ξ s or
⋃

i<m

Xi �ε+ξ s

if k is even or odd, respectively.
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Randomized algorithms

Main application: formalization of classes of randomized
algorithms (TFRP , BPP , APP , MA, AM , . . . )

straightforward to define using approximate probabilities

can’t expect all of them to be “provably total”:
mostly semantic classes, no known complete problems

instead, show that the definition is “well-behaved”:
amplification of probability of success
closure properties (e.g., composition)
trading randomness for nonuniformity
inclusions between the randomized classes and
levels of PH
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Approximate counting
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Approximate counting: intro

Proper approximate counting: error relative to size of X, not
size of the ambient universe

witness that |X| ≤ s using linear hash functions (Sipser’s
coding lemma)

again, equivalent to existence of suitable surjective
“counting functions”

asymmetric: no witness for |X| ≥ s

can meaningfully count “sparse” sets
⇒ useful for inductive counting arguments:
Ramsey’s theorem, tournament principle
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Linear hashing: basic idea

Let X ⊆ 2n = Fn, F = GF (2), |X| = s.

If x 6= y ∈ Fn and a ∈ Fn is a random vector,

Pra(a
Tx = aTy) = Pra(a

T(x− y) = 0) =
1

2
.

Thus, if A ∈ F t×n is a random matrix,

PrA(Ax = Ay) = 2−t,

EA

∣

∣{〈x, y〉 | x, y ∈ X,x < y,Ax = Ay}
∣

∣ = 2−t

(

s

2

)

.

If 2t >
(s
2

)

, there exists an injective linear function A : X →֒ 2t

⇒ we can distinguish sets of size ≤ s and roughly ≥ s2!
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Sipser’s coding lemma

A ∈ F t×n separates x from X ⊆ Fn if Ax 6= Ay for every
y ∈ X r {x}
{Ai | i < k} isolates X if every x ∈ X is separated from X

by some Ai

Take k = ⌈log s⌉, t = k + 1. We have

PrA(A does not separate x from X) <
s

2t
≤ 1

2
,

PrA0,...,Ak−1
(no Ai separates x from X) <

1

2k
,

PrA0,...,Ak−1
(X not isolated by A0, . . . , Ak−1) <

s

2k
≤ 1.
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Sipser’s coding lemma (cont’d)

Theorem [Sipser ’83]: Let X ⊆ 2n, |X| ≤ s, k = ⌈log s⌉,
t = k + 1. Then there exists {Ai | i < k}, Ai ∈ F t×n, which
isolates X.

OTOH: If such a sequence exists, each Ai can only separate
2t points, hence |X| ≤ 2tk ≤ 4s(log s + 1)

⇒ we can distinguish sets of size s and about 4s log s

We want: distinguish s from s(1 + ε) for polynomially small ε

Apply to Xc: distinguish |Xc| ≤ sc from 4sc log sc = 4scc log s

⇒ distinguish |X| ≤ s from s(4c log s)1/c ≤ s(1 + ε) for suitably
chosen c = poly(ε−1, log log s)
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Formalized approximate counting

Definition: Let X ⊆ 2n be a definable set and ε−1 ∈ Log.

if s > 0: X -ε s iff there exists 0 < s′ ≤ s and a sequence
{Ai | i < t}, Ai ∈ F t×n, which isolates Xc, where
c = 12|s′|⌈ε−1⌉2 and t = |s′c|+ 1

X -ε 0 iff X is empty

X - s iff X -ε s for all ε−1 ∈ Log

Basic properties:

the definition is monotone and independent of n

if X ∈ Σb
1, then -ε is Σb

2; we can make it Πb
1/poly
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Reformulation with surjections

Theorem: T 1
2 + sWPHP(PV2) proves: let X ∈ Σb

1, f ∈ PV2,
r, d > 0, d ∈ Log, and assume f : rsd ։∗ r ×Xd. Then X - s.
Moreover,

Pr({Ai | i < t} does not isolate Xc) �Σb

1

0 2/3,

where c, t are as in the definition.

Theorem: T 1
2 + rWPHP(PV2) proves: if X ∈ Σb

1 and X -ε s,

there exists a PV2-retraction pair ⌊s(1 + ε)⌋c −−։←−−֓ Xc, where

c is as in the definition.

∗I’m cheating a bit
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Agreement with other counting setups

Theorem: T 1
2 + rWPHP(PV2) proves: if X ∈ Σb

1 and
s ≤ ε−1 ∈ Log, then X -ε s iff there exists a sequence of
length at most s which includes all elements of X.

Theorem: T 1
2 + sWPHP(PV2) proves: let X,Y ∈ Σb

1, f ∈ PV2,
d, r > 0, d, ε−1 ∈ Log. If f : r ×Xd ։ r × Y d and X -ε s, then
Y - ⌊s(1 + ε)⌋.
In particular: if Y �δ X and X -ε s, then Y - s(1 + ε) + δ2n.
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Unions and products

Theorem: T 1
2 + rWPHP(PV2) proves for X,Y ∈ Σb

1:

if X -ε s and Y -ε t, then X ∪ Y - ⌊(s + t)(1 + 2ε)⌋
if X -ε s and Y -ε t, then X × Y - ⌊st(1 + ε)2⌋
if X ∪̇ Y -ε s + t + 1, then X - ⌊s(1 + 2ε)⌋ or Y - ⌊t(1 + 2ε)⌋
if X × Y -ε st, then X - ⌊s(1 + ε)⌋ or Y - ⌊t(1 + ε)⌋

Similar properties also hold for sums and products of
logarithmically many sets rather than just two.
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Averaging

Or: sums of many sets. Let X,Y ∈ Σb
1, Y ⊆ X × 2n, and

denote Yx = {y | 〈x, y〉 ∈ Y }.
Theorem: T 1

2 + sWPHP(PV2) proves: if

X -ε s and

Yx -ε t for all x ∈ X,

then Y - ⌊st(1 + 4ε)⌋.
X

Y

x

Yx

Theorem: T 1
2 + rWPHP(PV2) proves: if Y -ε st, then

X - s− 1 or

there exists x ∈ X such that Yx - ⌊t(1 + 2ε)⌋.
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Approximate enumeration

Theorem: T 1
2 + rWPHP(PV2) proves: let X ∈ Σb

1, and
ε−1 ∈ Log. There exist t, s such that s ≤ t ≤ ⌊s(1 + ε)⌋, and
non-decreasing PV2-retraction pairs

t
f

−−−−−−։←−−−−−֓
f ′

X
g

−−−−−−։←−−−−−֓
g′

s

such that f, g are ≤ 2-to-1, and
⌊s

t
u
⌋

≤ g(f(u)) ≤
⌈s

t
u
⌉

for every u < t.
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Example: the tournament principle

Recall the proof from slide #6:

Theorem: A tournament G with n players has a dominating set of

size ≤ log(n + 1).

Proof: By induction on n. There are n(n− 1)/2 matches in total,

hence there exists a player v who wins ≥ (n− 1)/2 matches. By

the induction hypothesis, the subtournament consisting of the

≤ (n− 1)/2 players who beat v has a dominating set D of size

≤ log((n− 1)/2 + 1) = log(n + 1)− 1, thus D ∪ {v} is a dominating

set in the original tournament of size ≤ log(n + 1). QED

Let’s translate it to bounded arithmetic.
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Example: the tournament principle (cont’d)

Theorem: T 1
2 (G) + rWPHP(PV2(G)) ⊆ T 3

2 (G) proves the
tournament principle.

Proof: We can work in S2
2(G) + sWPHP(PV2(G)) by

conservativity. Notation: if 〈ai | i < k〉 is a sequence of
players, let G(~a) = {x < n | ∀i < k x→ ai}.

Fix ε−1 ∈ Log such that (1 + ε)8(|n|+1) < 2. By Σb
2-LIND on

k ≤ |n|+ 1, prove

(∗) ∃〈ai | i < k〉 such that G(~a) -ε

⌊ n

2k
(1 + ε)8k

⌋

.

For k = |n|+ 1, we get G(~a) = ∅, i.e., ~a is a dominating set of
size ≤ |n|+ 1. (We can remove the “+ 1” using shameless trickery.)
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Example: the tournament principle (cont’d)

Assume (∗) for k. Find s ≤ n2−k(1 + ε)8k s.t. G(~a) -ε ⌊s(1 + ε)⌋,
G(~a) 6-ε s− 1. We have

{〈x, y〉 ∈ G(~a)2 | x 6= y} -ε ⌊s2(1 + ε)4⌋,

thus (omitting the “∈ G(~a)2 ”)

{〈x, y〉 | y → x} -ε

⌊

s2

2
(1 + ε)6

⌋

or {〈x, y〉 | x→ y} -ε

⌊

s2

2
(1 + ε)6

⌋

.

WLOG the former. Then there exists x ∈ G(~a) s.t.

G(~a, x) = {y ∈ G(~a) | y → x} -ε

⌊s

2
(1 + ε)8

⌋

≤
⌊

N

2k+1
(1 + ε)8(k+1)

⌋

.

QED
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Application: collapse of hierarchies

A variant of the tournament principle is used in the proof by
[KPT ’91] that collapse of the T i

2 hierarchy implies collapse of
the polynomial hierarchy.

Previously known: T i
2 = Si+1

2 iff T i
2 = T2, and implies

ΣP
i+1 ⊆ ∆P

i+1/poly, thus PH = ΣP
i+2 = ΠP

i+2 [KPT ’91]

T i
2 proves Σb

i+1 ⊆ Πb
i+1/poly and Σb

∞ = B(Σb
i+2) [Buss ’95,

Zambella ’96]

Approximate counting gives:

T i
2 proves Σb

i+1 ⊆ ∆b
i+1/poly and Σb

∞ = B(Σb
i+1)

(using also [CK ’07])
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Other applications

intervals on models of T2 admit nontrivial totally ordered
approximate Euler characteristic (in the sense of
[Krajíček ’04])

T 1
2 + rWPHP(PV2) proves Ramsey’s theorem (but we

should have already known that)

T 1
2 + rWPHP(PV2) proves SP

2 ⊆ ZPPNP

T 1
2 + rWPHP(PV2) proves GI ∈ coAM
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Thank you for attention!
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