Approximate counting in bounded
arithmetic

Emil Jerabek

jerabek@math.cas.cz
http://math.cas.cz/ jerabek/

Institute of Mathematics of the Academy of Sciences, Prague




Work in a theory of arithmetic.

Problem: Given a finite (= bounded) definable set X,
determine its cardinality | X]|.

Applications:

s proofs using counting arguments or probabilistic
reasoning

» formalization of randomized algorithms




Theorem: |If a < b, there is no surjection f: [0,a) — [0,b).
Proof: By induction on k£ < b, show that

‘{CE<CL|f(£L‘)<k} > k.

Since the LHS Is at most a, we obtain a contradiction for
k=0b>a. QED

N

Notation: a=10,a),€.d., f:a—b




Theorem: An undirected graph G = (V, E) on n vertices
contains a clique or independent set of size > $logn.

Proof: Foru # v €V, define ¢(u,v) € {0,1} by
c(u,v) =1 {u,v} € E.

By induction on & < [logn|, show that there exist
co,...,cr—1 < 2 and distinct vertices uyg, ..., u;_1 such that

Vi < g <kc(ui,uj) = ¢,
n—l—l

{v eV |Vi<kc(u,v)=c}| > — 1.

Denote the set on the LHS by S(ug,...,ur_1;co,...,ct_1).



The induction step: pick u; € S(u;¢). Since
S(ﬁa E) — {uk} U S(ﬁv U 570> U S(ﬁv U 57 1)7
we can choose ¢, < 2 so that

|S(u;e)| — 1 - n+1

9 = 9k+1 — L.

Let & = [logn]. If ¢ < 2 Is the more populous colour among
o, ..., Cp—1, then H = {u; | ¢; = ¢} Is a homogeneous set of
size > k/2. QED




Example 3: the tournament principle

A tournament Is a directed graph where any two vertices are
joined by exactly one edge.

OW: tournament = choice of orientation of edges of K.

f there is an edge a — b, player a beats player b.

A dominating set is a set D of players such that any other
player is beaten by some member of D.
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Example 3: the tournament principle (cont’'d)

Theorem: A tournament G with n players has a dominating
set of size <log(n +1).

Proof: By induction on n. There are n(n — 1)/2 matches In
total, hence there exists a player v who wins > (n —1)/2
matches. By the induction hypothesis, the subtournament
consisting of the < (n — 1) /2 players who beat v has a
dominating set D of size <log((n —1)/2+ 1) =log(n+1) — 1,
thus D U {v} Is a dominating set in the original tournament of
size < log(n + 1). QED
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Example 4: the “probabilistic method”

Theorem: For any n > 2, there exists a graph G on n
vertices with no cligue or independent set of size > 2logn.

Proof: Consider a random G. If X C V has size k, then X Is

a homogeneous set for G with probability 2~ (), hence G
contains a homogeneous set of size & with probablllty at
most

<k>21 (5) < Z_kzl('é) < (kQ(/?i)/z)k < (#)k <1

as long as k > 2logn, k > eV2. QED
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Bounded arithmetic




Buss’ theories

Language: 0, S, +, -, <, |z|, #, [x/2Y]
Intended meaning |z| = [log(z + 1)], = # y = 2=l
Sharply bounded quantifiers: 3z < |t| o, Vo < [t]| ¢

»:2-formulas: i blocks of bounded quantifiers, starting with
existential, followed by a sharply bounded kernel

y-formulas: ignore sharply bounded quantifiers anywhere
112, T1%: dually
i > 0= YN) =3 T(N) =11"

BASIC' finite list of open axioms, mostly recursive definitions
of the function symbols
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Té = BASIC + ¥0-IND = BASIC + T1%-IND

(p-IND) p(0) AV (o(x) — p(r+1)) — o(u)

Fori > 0: T4 = BASIC + X2-MIN = BASIC + X-MAX
— BASIC +11°_,-MIN = BASIC +11°_,-MAX

(p-MIN) p(u) — Jz (p(x) ANVy <2 —90(y))

(p-MAX) p(0) — Jz < a(p(r) ANVy <a(ely) —y <))



For i > 0: S, = BASIC + any of the following:
»0-PIND, I’-PIND, X0-LIND, T12-LIND,
»0-LMIN, I°_-LMIN, ¥°-LMAX, 11?_,-LMAX,
»2-COMP, T1°-COMP

(0-PIND) p(0) ANV (p([2/2]) — @(x)) — ¢(u)
(o-LIND) p(0) AVz (p(z) = p(z+1)) — @(|u])
(p-LMIN) p(u) — Jz (o(x) AVY (e(y) — |z| < y]))
(p-LMAX)  (0) = Fz < a(p(x) AVy < a(e(y) — [yl < |z]))
(p-COMP) dr < a# 1Vu < |a| (u €z o(u))

|2/2% | = 2|z /281 | 41



Buss’ theories: basic properties

s TVCSiCcTiCS2C...CcTiCcsSitcmttc...CTy=25
s Sitlisavx! -conservative extension of 7%

» poly-time functions have well-behaved x-definitions in
T9 = expansion by PV-functions

s T%/S% proves the relevant (P|L)IND, (L)MIN, ...
schemata in the expanded language = we can use
PV-functions freely

» more generally, T: has ZHl-definitions for FP¥
= PV;.1-functions

s Buss’ witnessing theorem: if Si*! - 3y o(,y), ¢ € 324,
then there exists f € PV;.1 s.t. TE = o(Z, f(Z))
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Buss’ theories: relativization

We can relativize the theories by adding an “oracle”

Si(a), Ti(a): include a new predicate o(z),* expand schemas
to the new language, no other axioms about o

s in (N, A): ¥0(a) defines (2)4, PV () defines FP4
s unconditional independence and separation results

s if T}(a) proves stuff about 3%(a)-formulas, then 75"

b
proves the same about %, -formulas for any

We will work in the relativized theories, but will omit « to
keep the notation compact

*and the x mod 2Y (LSP) function in the case of Zg-schemas
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We can count using sequence encoding:

X| <ke JuwVrjre X — i<k (w); =2
X| > ke JwVi<k|(w); e X ANV] <i(w); # (w)

s IY; can count X3 (X2Y)-sets (i > 0)
» IAg+ exp can count AQ(exp)-sets

» Sican count small Xt-sets (i > 0)

s TY can count sets given explicitly by a sequence

Small = of size < loga for some a.
What about larger sets?



Toda’s theorem

In bounded arithmetic, we need | X| to be definable by a
bounded formula. This is impossible even for poly-time X:

#P = class of functions of the form f(z) = |{y | R(z,y)
where R € P and R(x,y) = |y| < |z|°

Theorem [Toda '89]: PH C p#¥
Corollary: If P C FP"™ | then PH = £ for some k.

If exact counting of poly-time sets Is expressible by a
bounded formula, then the polynomial hierarchy collapses

= can use only approximate counting
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Weak pigeonhole principle




The multifunction (relation) pigeonhole principle:

mPHP®(R) =Yy < b3z < a R(y, )
—Jdy <y <bIr <a(R(y,z) ARy, x))

Weak pigeonhole principle: » “much” larger than «

Popular choices: mPHP® , mPHP2*. For us:

mWPHP(R) = mPHP! "™V (R)

Theorem [PWW '88, MPW '02]: T? - mWPHP(X%)



Special cases where R or R~ is a function:

surjective WPHP @ @
sPHPY(f) = 3y < b¥z < a f(x) #

Injective WPHP
z'PHPZ(g) =Vy <bgly)<a— Iy<y <bgly) =g

retraction-pair WPHP
TPHP[C)L(ng) =Vy<bgly) <a—Iy<bflgly) #y




sWPHP(PV)

NG
N

T2+ mWPHP(ZY) rWPHP(PV)

., /

iWPHP(PV)

S4 + sWPHP(PV) is ¥x!-conservative over T 4+ rWPHP(PV)

Wilkie's witnessing theorem: If S1 + sWPHP(PV) & 3y o(Z,y),
v € ¥, then there exists a randomized poly-time algorithm f
such that ¢(z, f(Z)) for every Z.

False for :WWPHP, if factoring is hard!
= our variant of choice is rWPHP or sWPHP



Applications of WPHP

WPHP can replace counting arguments in bounded
arithmetic.

Already In the paper which introduced It:
Theorem [PWW '88]: IAg+ Qi FVzdp >z (pls prime).

Proof outline: Assume that there is no prime between « and
a''. By manipulating prime factorizations, stitch an injection
from 9alog a t0 8alog a. QED

(In our setting: it goes through in Si + rWPHP(T) C T,
where I' = ppNPlvitloen] ig the class of provably total
;% -definable functions of S;.)
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Approximate counting with WPHP

Basic idea: witness that |.X| < a by exhibiting a function f
such that f: a — X (for sWPHP) or f: X — a (for i;WPHP).

Trouble: Where do we get these functions from?

On the face of it, WPHP Is a passive counting principle: it
tells us that something is impossible, it does not supply any
counting functions.
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Example: Ramsey’s theorem reloaded

Theorem [Pudlak '90]: T»(FE) proves Ramsey’s theorem: a
graph (V = n, F) has a homogeneous set of size > 4 logn.

Proof: Recall: if ug,...,up_1 < n are pairwise distinct and
co, ..., Cp—1 < 2 are such that vi < j c¢(u;, u;) = ¢;, we put

S(u;¢) ={v<n|Vi<k(u #vAclu;,v) =c¢)}
We have
u € S(u;¢) = S(u;¢) ={u} US(u,u;c0)US(u,u;c,1).

This translates into a straightforward manipulation of
counting functions:
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If f.: {0,1}<" — S(&,u; ¢ c), c <2, then f: {0,1}<" - S(@; ),
where

(*)

Assuming for contradiction S(ug, ..., up_1;¢o,...,Ch_1) = &
whenever k = K := |logn]| — 1, we have trivially an
f:4{0,1}<Y — S(w; &), and iterating (x) we get

fﬁ;gt {O, 1}<K_k — S(’LLQ, ey UE—15C0y - - - 7Cl~c—1)-
We can likewise construct its coretraction
gz S(i; @) — {0, 1}<H7F,



The complete definition (x = “undefined”):

* If S(u;¢) =@
fadw) = qu If w = ()
fauwee(w') Hw=w"~(c)
() If x =u
gﬁ;é’(x> — {
Jiuce(r) ~ () where ¢ = c(u, )

where u = min S(i; ¢)

f(i, ¢, w) = fzz(w) and g(4, ¢, z) = gzs(x) are in PP




By induction on K — k, we prove

r € S(U;0) = faelgua(r)) = .

For k£ = 0: a retraction pair from {0,1}<% ~ 2% —1 onto
S(;) =n > 28+ contradicts WPHP.

Thus there exist cg, ..., cx_1, uo, ..., ur, from which we pick a
homogeneous set of size > 1+ [K/2] > 1+ |slogn|. QED

We actually got

Theorem: Ramsey’s theorem is provable in
T)(E) + rWPHP(PVy(E)) C TS (E).



Morals to draw

This worked. However:

s The definition of f, g IS messy
(even leading to miscalculation of its complexity)
= want a general theory of counting so that we do not
need to resort to ad hoc functions.

» We have an obvious way of combining witnesses for
| X| <aand|Y| <binto awitness for | X UY| <a+b.
What about the dual principle

XUY|<a+b=|X|<aoOr|Y|<b?

Needed for the tournament principle, for example.
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General theory of counting

Rest of the talk: two general setups
Approximate probabilities:

s estimate the size of X C 2™ within error 2" /poly(m)
= estimate Pr,,(z € X) within error 1/poly(m)

s P/poly sets can be counted in TY + sWPHP(PV) C T3
» based on pseudorandom generators

Proper approximate counting:
s estimate the size of X C 2™ within error | X|/poly(m)

» XY /poly sets can be counted in T} + sWPHP(PV,) C T

_ (often rWPHP suffices)
s based on hashing
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Approximate probabillities




Approximate probabilities: intro

Basic strategy:

s Wwe can estimate Pr,.,(x € X) with error ¢ by drawing
O(1/¢) Independent random samples
= randomized poly-time algorithm

s derandomize using the Nisan—-Wigderson
pseudorandom generator

» analysis of the generator can be carried out in 77, it
provides explicit “counting functions” for X
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s Intended for derandomization of poly-time algorithms
(BPP)

s NW;: 20Ueen) _ 9n fools poly-size circuits C': 2 — 2

s computable in time poly(n) (= exponential in the size of
the input)

» nheeds access to the truth table of an exponentially hard
Boolean function f: 20Ucgn) _; 2




Hard Boolean functions

Hardness of a function f: 2 — 2:
H(f) < s Iff there exists a circuit C of size < s such that

1 1
Prycor(Clz) = f(2)) > 5T %
f is (average-case) e-hard if H(f) > 2%
s by a simple counting argument, most Boolean functions
are (+ — o(1))-hard

s we can easily enumerate the easy functions
= 19 + sWPHP(PV) I (3 — o(1))-hard functions exist

» (infact: over S, this is equivalent to sWPHP(PV))
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Nisan—Wigderson generator (cont’d)

Theorem [NW '94]. For every ¢ > 0, there exist ¢,d > 0 and
a setting of parameters of the Nisan—-Wigderson generator
so that NW,: 2¢loe™ — 27 satisfies:

Whenever f: 241967 _, 9 s ¢-hard and C': 2" — 2 is a circuit of
Size at most »n, we have

1
[Proes (C(x)) = Pryepnen (C(NW(y)))] <
(If we need bigger |C| or smaller error, we can pad C with
dummy variables.)
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NW in bounded arithmetic

ldea: Estimate Pr,co»(C(x)) by sampling it on the output of
NW;.
Problem: How does the theory know that the result is not

just a meaningless number? Need some witness to ensure
that the definition is well-behaved.

Solution: The NW generator can be analyzed in a very
constructive way, ensuring the existence of suitable
retraction pairs witnessing correctness of the computed size.
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Theorem: TY + sWPHP(PV) proves:
Let X C 2" be defined by a circuit C, and c~! € Log. There
exist s < 2", 0 < v < poly(ne~tC|), and functions

Jo | J1
v(s+e2") ; 2 v X X v X (X Ue2") ;
90 g1

defined by circuits of size poly(ne=1|C|) such that f; o g; = id.
Notation:

7 VS

o n € Log < dan = |a

s crational: e € Log < e >0A3act < g




Definition: X,Y C 2" definable sets, ¢ > 0, n = |al:
o X =<_Y Iff there exist v > 0 and a circuit

C:ox (YUe2") »ovxX

s X~ YIf X . YANY <X
® Pryooq(x e X) = piff X Na <. pa, and similarly for =, ~

Corollary: TV 4+ sWPHP(PV) proves: If X is defined by a
circuit and s~! € Log, there exists s such that X ~. s.




Complexity of <.

s As it stands: X <. Y is an unbounded 311}-formula

s Ife7! € Log and X, Y are defined by circuits, it is
(essentially) 5 by the Theorem

s Infact, itis P/poly: given ¢! € Log and a family
{X, | u < a} of subsets of 2" defined by a circuit
C(u,z): a x 2™ — 2, there Is a circuit s such that
X, ~: s(u), and circuits giving similarly the witnessing
functions f;, g;
= can appear in induction formulas even in 72
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79 + sWPHP(PV) proves (for sets defined by circuits and
Greeks in inverse Log):

2 XY =524=X=4s”2

8 X <. X'V <5V = X XY <ei5ics X' XY

s XX XYY . X'nYV=0=XUY <L ,s X UY’
2 s, X=st=s5<t+4+(e+d+n)2"

s XX, YorY <. X

2 X<, Y=2"\Y <., 2"\ X

» X s8Yrst, XNY mpu=XUY ~ _51pyes+t—u




Theorem: TV + sWPHP(PV) proves: if X C 2™ and

Y C X x 2™ are definable by circuits, X <; ¢, and

Yo ={y|(z,y) €Y} <. sforevery z € X,thenY <_ 5. .51¢ st
for any ¢~ € Log.

Read contrapositively, this gives a formalization of the
averaging principle: if | X| <t¢and ||, x Yz| > u, then there
exists x € X such that |Y,| > u/t.

Y




Theorem: TV + sWPHP(PV) proves: if X C a is defined by a
circuit, m € Log, p,e,6 € [0,1], and Pr,,(z € X) =4 p, then

PerGm(Hi <m | (w)z & X}| < m(p _ 5)) <0 C4m(05—52)

for some standard constant c.




Theorem: TV + sWPHP(PV) proves: let X; C 2" (i < m) be
defined by a sequence of circuits. Let k < m, (2m/k)* € Log.
Assume (,.; Xi =, sy for every I C m of size at most k, and

put
S = Z (—1)|I|+1S], E = Z EJ.
ICm ICm
0<|I|<k 0<|I|<k

Then for any ¢! € Log,

U Xi Zeqe S or U Xi Seqe S

<m <m

If & Is even or odd, respectively.



Randomized algorithms

Main application: formalization of classes of randomized
algorithms (TFRP, BPP, APP, MA, AM, ...)

s straightforward to define using approximate probabilities

s can’t expect all of them to be “provably total”:

mostly semantic classes, no known complete problems
s Instead, show that the definition is “well-behaved”:

- amplification of probability of success

s closure properties (e.g., composition)

s trading randomness for nonuniformity

s Inclusions between the randomized classes and
levels of PH
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Approximate counting




Approximate counting: Intro

Proper approximate counting: error relative to size of X, not
size of the ambient universe

s witness that | X| < s using linear hash functions (Sipser’s
coding lemma)

s again, equivalent to existence of suitable surjective
“counting functions”

s asymmetric: no witness for | X| > s

s can meaningfully count “sparse” sets
= useful for inductive counting arguments:
Ramsey’s theorem, tournament principle
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Let X C2" = ", ' = GF(2), | X| = s.
If £y € F" and a« € F™ IS a random vector,

1
Pro(a'z = a'y) = Pry(a’ (z —y) = 0) = =

Thus, if A € F*™ is a random matrix,

Pr(Az = Ay) = 277,

EA‘{xy \xyEXx<y,Ax—Ay}‘—2 t(;)

If 2 > (5), there exists an injective linear function A: X — 2!
= we can distinguish sets of size < s and roughly > s?!



s Ac F™™" separates = from X C F" if Ax # Ay for every
y e X Az}

s {A;|i <k} Isolates X If every x € X Is separated from X
by some A4,

Take k = [logs|, t = k + 1. We have




Sipser’s coding lemma (cont’'d)

Theorem [Sipser '83]: Let X C 2", |X| < s, k = [log s],
t = k+ 1. Then there exists {4, | i < k}, A; € F*™, which
Isolates X.

OTOH: If such a sequence exists, each A; can only separate
2t points, hence | X| < 2'k < 4s(logs + 1)
= we can distinguish sets of size s and about 4slog s

We want: distinguish s from s(1 + ) for polynomially small ¢

Apply to X< distinguish | X¢| < s¢ from 4s¢log s¢ = 4s°clog s
= distinguish | X| < s from s(4clog s)V/¢ < s(1 + ¢) for suitably
chosen ¢ = poly (¢, loglog s)
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Definition: Let X C 2" be a definable set and ¢! € Log.

s If s > 0. X 2. s iff there exists 0 < s’ < s and a sequence
{A; |1 <t}, A; € F**™, which isolates X ¢, where
c=12|s'|[e71]?and t = || + 1

s X 3 01ff X 1s empty
s X Zsiff X 2, sforalle! € Log

Basic properties:
» the definition is monotone and independent of »
s if X € 3%, then =, is ©4; we can make it I1} /poly




Theorem: T} + sWPHP(PV;) proves: let X € X8, f € PV,

r,d > 0, d € Log, and assume f: rs¢ —* r x X%, Then X = s.
Moreover,

Pr({A; |« <t} does not isolate X°) jg? 2/3,
where c,t are as in the definition.
Theorem: T} + rWPHP(PVy) proves: if X ¢ X% and X =, s,

there exists a PV,-retraction pair |s(1 +¢)|¢ — X¢, where

c IS as in the definition.

*I'm cheating a bit



Theorem: T} + rWPHP(PVs) proves: if X € X% and
s < e ! e Log, then X =<, s iff there exists a sequence of
length at most s which includes all elements of X.

Theorem: T} + sWPHP(PV,) proves: let X,Y ¢ Xt f € PVx,
d,r>0,d et elog. If frrxX?—srxY?and X =<, s, then
Y 2 [s(1+¢)].

In particular: if Y <; X and X =, s, thenY =< s(1 +¢) + 62",




Theorem: Ty + rWPHP(PVy) proves for X, Y € %%
s FTX Z.sandY 2. t,then X UY 2 [(s+16)(1 + 2¢)]
s ifX Z.sandY 2. t,then X xY =X [st(1 +¢)?]
2 FXUY 2.s+t+1,then X =3 |s(1+2e)] orY = |t(1+2¢)]
s FTX xY S.st,then X 2 [s(1+¢e)]ory 2 [t(1l+¢e)]

Similar properties also hold for sums and products of
logarithmically many sets rather than just two.




Or: sums of many sets. Let X,Y € ¢, Y C X x 27, and
denote Y, = {y | (x,y) € Y}.

Theorem: Ty + sWPHP(PV,) proves: if
s X 2. sand

s YV, 3 tforall z € X, v

then Y = |st(1 +4¢)].

G
Theorem: T} + rWPHP(PVs) proves: if Y =, st, then
s X 3s—1or
» there exists x € X such that Y, = [t(1+ 2¢)].




Theorem: T} + rWPHP(PV3) proves: let X € ©¢, and
=1 € Log. There exist t,s such that s <t < |s(1+¢)], and
non-decreasing PV,-retraction pairs

I g
t . ? g

f/ g/
such that f, ¢ are < 2-to-1, and

EuJ < g(f(u)) < Fﬂ

t

for every u < t.




Example: the tournament principle

Recall the proof from slide #6:

Theorem: A tournament G with n players has a dominating set of
size <log(n +1).

Proof: By induction on n. There are n(n — 1)/2 matches in total,
hence there exists a player v who wins > (n — 1)/2 matches. By
the induction hypothesis, the subtournament consisting of the

< (n — 1)/2 players who beat v has a dominating set D of size
<log((n—1)/2+1) =log(n+1)—1, thus D U {v} is a dominating
set in the original tournament of size < log(n + 1). QED

Let’s translate it to bounded arithmetic.
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Example: the tournament principle (cont’d)

Theorem: Ty (G)+ rWPHP(PV5(G)) C Ty (G) proves the
tournament principle.

Proof: We can work in S2(G) + sWPHP(PV,(G)) by
conservativity. Notation: If (a; | i < k) IS a sequence of
players, let G(a@) ={x <n |Vi<kx — a;}.

Fix <~! € Log such that (1 +¢)8(*+1) < 2, By ¥:5-LIND on
k < |n|+ 1, prove

(%) J(a; | i < k) such that G(a) <. bﬁk(l + e)SkJ |

For k = |n| + 1, we get G(d) = @, I.e., a IS a dominating set of
size < ]n| + 1. (We can remove the “+ 1" using shameless trickery.)
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Assume (x) for k. Find s < n27%(1+¢)% s.t. G(@) 2. |s(1 +¢)],
G(a) 2. s — 1. We have

{{r,y) € G@)° |z #y} Ze [5°(1+ )],
thus (omitting the “c G(@)*")

s s

() [y =) 2 | G0+ 2| or (o) |2 =y} 5 | S+

WLOG the former. Then there exists = € G(a) S.t.
S

Gla.) =y € 6@ |y — 2} 5. |30+ 2| < | o+ o]

QED
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Application: collapse of hierarchies

A variant of the tournament principle is used in the proof by

[KPT '91] that collapse of the T% hierarchy implies collapse of
the polynomial hierarchy.

Previously known: T3¢ = S iff T = Ty, and implies
s X C AL /poly, thus PH =X, =117, [KPT '91]

s T} proves X!, C I, /poly and £% = B(X!.,) [Buss "95,
Zambella '96]

Approximate counting gives:

s T} proves ¥, C Al /poly and X5, = B(XY, )

(using also [CK '07])
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s Intervals on models of 75 admit nontrivial totally ordered
approximate Euler characteristic (in the sense of
[Krajicek '04])

s T4 + rWPHP(PV,) proves Ramsey’s theorem (but we
should have already known that)

s T3 + rWPHP(PVy) proves S§ C zpp™*
s T4 + rWPHP(PV,) proves GI € coAM




Thank you for attention!
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