Admissible rules and Łukasiewicz logic

Emil Jeřábek

jerabek@math.cas.cz http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

on-line slides assembled from bits used in talks at:

Logic Colloquium, Sofia, July 2009 Algebraic Semantics for Uncertainty and Vagueness, Salerno, May 2011 Workshop on Admissible Rules and Unification, Utrecht, May 2011

Admissible rules

Basic concepts

Logical system *L*: specifies a consequence relation $\Gamma \vdash_L \varphi$ "formula φ follows from a set Γ of formulas"

Theorems of *L*: φ such that $\varnothing \vdash_L \varphi$

(Inference) rule: a relation between sets of formulas Γ and formulas φ

A rule ρ is derivable in $L \Leftrightarrow \Gamma \vdash_L \varphi$ for every $\langle \Gamma, \varphi \rangle \in \rho$

A rule ρ is admissible in $L \Leftrightarrow$ the set of theorems of L is closed under ρ

Propositional logic *L*:

Language: formulas $Form_L$ built freely from variables $\{p_n : n \in \omega\}$ using a fixed set of connectives of finite arity

Consequence relation \vdash_L : finitary structural Tarski-style consequence operator

I.e.: a relation $\Gamma \vdash_L \varphi$ between finite sets of formulas and formulas such that

- $\, \bullet \, \varphi \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ implies $\Gamma, \Gamma' \vdash_L \varphi$
- $\Gamma \vdash_L \varphi$ and $\Gamma, \varphi \vdash_L \psi$ imply $\Gamma \vdash_L \psi$
- $\Gamma \vdash_L \varphi$ implies $\sigma(\Gamma) \vdash_L \sigma(\varphi)$ for every substitution σ

Propositional admissible rules

We consider rules of the form

 $\frac{\varphi_1, \dots, \varphi_n}{\psi} := \{ \langle \{ \sigma(\varphi_1), \dots, \sigma(\varphi_n) \}, \sigma(\psi) \rangle : \sigma \text{ substitution} \}$

This rule is

- derivable (valid) in L iff $\varphi_1, \ldots, \varphi_n \vdash_L \psi$
- admissible in *L* (written as $\varphi_1, \ldots, \varphi_n \succ_L \psi$) iff for all substitutions σ : if $\vdash_L \sigma(\varphi_i)$ for every *i*, then $\vdash_L \sigma(\psi)$

 \sim_L is the largest consequence relation with the same theorems as \vdash_L

L is structurally complete if $\vdash_L = \vdash_L$

Examples

- Classical logic (CPC) is structurally complete: a 0–1 assignment witnessing $\Gamma \nvDash_{CPC} \varphi$ \Rightarrow a ground substitution σ such that $\vdash \bigwedge \sigma(\Gamma), \nvDash \sigma(\varphi)$
- All normal modal logics L admit

 $\Diamond q \land \Diamond \neg q \ / \ p$

L is valid in a 1-element frame *F* (Makinson's theorem) $\Diamond q \land \Diamond \neg q$ is not satisfiable in *F*

- More generally: Γ is unifiable $\Leftrightarrow \Gamma \not\succ_L p$, where $p \notin Var(\Gamma)$
- All superintuitionistic logics admit the Kreisel–Putnam rule [Prucnal]:

$$\neg p \to q \lor r \mathrel{/} (\neg p \to q) \lor (\neg p \to r)$$

Multiple-conclusion consequence relations

A (finitary structural) multiple-conclusion consequence: a relation $\Gamma \vdash \Delta$ between finite sets of formulas such that

- $\, \bullet \, \varphi \vdash \varphi$
- $\Gamma \vdash \Delta$ implies $\Gamma, \Gamma' \vdash \Delta, \Delta'$
- $\Gamma \vdash \varphi, \Delta \text{ and } \Gamma, \varphi \vdash \Delta \text{ imply } \Gamma \vdash \Delta$
- $\Gamma \vdash \Delta$ implies $\sigma(\Gamma) \vdash \sigma(\Delta)$ for every substitution σ

Multiple-conclusion rules

Multiple-conclusion rule: Γ / Δ , where Γ and Δ finite sets of formulas

- derivable in L ($\Gamma \vdash_L \Delta$) iff $\Gamma \vdash_L \psi$ for some $\psi \in \Delta$
- admissible in L ($\Gamma \vdash_L \Delta$) iff for all substitutions σ : if $\vdash \sigma(\varphi)$ for every $\varphi \in \Gamma$, then $\vdash \sigma(\psi)$ for some $\psi \in \Delta$

 \vdash_L and \vdash_L are multiple-conclusion consequence relations Example: disjunction property = $\frac{p \lor q}{p,q}$

Algebraization

L is finitely algebraizable wrt a class *K* of algebras if there is a finite set $\Delta(x, y)$ of formulas and a finite set E(p) of equations such that

- $\Gamma \vdash_L \varphi \Leftrightarrow E(\Gamma) \vDash_K^{\wedge} E(\varphi)$
- ${\scriptstyle \bullet } ~~ \Theta \vDash_K t \approx s \Leftrightarrow \Delta(\Theta) \vdash_L^{\wedge} \Delta(t,s)$
- $\quad p \dashv \vdash^{\wedge}_{L} \Delta(E(p))$
- $\ \, \bullet \ \, x\approx y \dashv \vDash^{\wedge}_{K} E(\Delta(x,y))$

where $\Gamma \vdash_L^{\wedge} \Delta$ means $\Gamma \vdash_L \psi$ for all $\psi \in \Delta$ We may assume *K* is a quasivariety I will write $x \leftrightarrow y$ for $\Delta(x, y)$

Admissibility and algebra

L finitely algebraizable, K its equivalent quasivariety

logic	algebra	
propositional formulas	terms	
single-conclusion rules	quasi-identities	
multiple-conclusion rules	clauses	
L-derivable	valid in all K-algebras	
L-admissible	valid in free K-algebras	

studying multiple-conclusion admissible rules = studying the universal theory of free algebras

Unification

Unifier of $\{t_i \approx s_i : i \in I\}$: a substitution σ such that $\vDash_K \sigma(t_i) \approx \sigma(s_i)$ for all i

Dealgebraization: a unifier of a set of formulas Γ is σ such that $\vdash_L \sigma(\varphi)$ for every $\varphi \in \Gamma$

- $\Gamma \vdash_L \Delta$ iff every unifier of Γ also unifies some $\psi \in \Delta$
- Γ is unifiable iff $\Gamma \not\models_L p$ ($p \notin Var(\Gamma)$) iff $\Gamma \not\models_L$

 σ is more general than τ ($\tau \preceq \sigma$) if there is v such that $\vdash_L \tau(\alpha) \leftrightarrow v(\sigma(\alpha))$ for every α

Properties of admissible rules

Typical questions about admissibility:

- structural completeness
- decidability
 - computational complexity
- semantic characterization
- description of a basis (= axiomatization of \vdash_L over \vdash_L)
 - finite basis? independent basis?
- inheritance of rules

Admissibly saturated approximation

- Γ is admissibly saturated if $\Gamma \vdash_L \Delta$ implies $\Gamma \vdash_L \Delta$ for any Δ
- Assume for simplicity that L has a well-behaved conjunction.
- Admissibly saturated approximation of Γ : a finite set Π_{Γ} such that
 - each $\pi \in \Pi_{\Gamma}$ is admissibly saturated
 - $\Gamma \vdash_L \Pi_{\Gamma}$
 - $\pi \vdash_L \varphi$ for each $\pi \in \Pi_{\Gamma}$ and $\varphi \in \Gamma$

Application of admissible saturation

Reduction of \vdash_L to \vdash_L :

$$\Gamma \mathrel{\hspace{0.3mm}\sim}_{L} \Delta \quad \text{iff} \quad \forall \pi \in \Pi_{\Gamma} \exists \psi \in \Delta \ \pi \mathrel{\vdash}_{L} \psi$$

Assuming every Γ has an a.s. approximation Π_{Γ} :

- if $\Gamma \mapsto \Pi_{\Gamma}$ is computable and \vdash_L is decidable, then \vdash_L is decidable
- if Γ / Π_{Γ} is derivable in $\vdash_L + a$ set of rules $R \subseteq \vdash_L$, then R is a basis of admissible rules
- if each $\pi \in \Pi_{\Gamma}$ has an mgu σ_{π} , then $\{\sigma_{\pi} : \pi \in \Pi_{\Gamma}\}$ is a complete set of unifiers for Γ

Projective formulas

 π is projective if it has a unifier σ such that $\pi \vdash_L \varphi \leftrightarrow \sigma(\varphi)$ for every φ (it's enough to check variables)

- σ is an mgu of π : if τ is a unifier of π , then $\tau \equiv \tau \circ \sigma$
- projective formula = presentation of a projective algebra
- projective formulas are admissibly saturated projective approximation := admissibly saturated approximation consisting of projective formulas

If projective approximations exist:

- characterization of \vdash_L in terms of projective formulas
- finitary unification type

Exact formulas

 φ is exact if there exists σ such that

 $\vdash_L \sigma(\psi) \quad \text{iff} \quad \varphi \vdash_L \psi$

for all formulas ψ

- projective \Rightarrow exact \Rightarrow admissibly saturated
- in general: can't be reversed
- if projective approximations exist:
 projective = exact = admissibly saturated
- exact formulas do not need to have mgu

Known results

Admissibility well-understood for some superintuitionistic and transitive modal logics:

- Jogics with frame extension properties, e.g.:
 - K4, GL, D4, S4, Grz (\pm .1, \pm .2, \pm bounded branching)
 - IPC, KC
- logics of bounded depth
- Inearly (pre)ordered logics: K4.3, S4.3, S5; LC
- some temporal logics: LTL

Not much known for other nonclassical logics:

 structural (in)completeness of some substructural and fuzzy logics

Methods in modal logic

Analysis of admissibility in modal and si logics:

- building models from reduced rules [Rybakov]
- proof theory [Rozière]
- combinatorial manipulation of universal frames [Rybakov]
- projective formulas and model extension properties [Ghilardi]
- Zakharyaschev-style canonical rules [J.]

Projectivity in modal logics

Extension property: if *F* is an *L*-model with a single root *r* and $x \vDash \varphi$ for every $x \in F \smallsetminus \{r\}$, then we can change satisfaction of variables in *r* to make $r \vDash \varphi$

Theorem [Ghilardi]: If $L \supseteq K4$ has the finite model property, the following are equivalent:

- φ is projective
- φ has the extension property
- θ_{φ} is a unifier of φ

where θ_{φ} is an explicitly defined substitution

Extensible modal logics

 $L \supseteq \mathbf{K4}$ with FMP is extensible if a finite transitive frame F is an L-frame whenever

- F has a unique root r
- $F \setminus \{r\}$ is an *L*-frame
- r is (ir)reflexive and L admits a finite frame with an (ir)reflexive point

Theorem [Ghilardi]: If *L* is extensible, then any φ has a projective approximation Π_{φ} whose modal degree is bounded by $md(\varphi)$.

Admissibility in extensible logics

Let *L* be an extensible modal logic:

- if *L* is finitely axiomatizable, \vdash_L is decidable
- \succ_L is complete wrt *L*-frames where all finite subsets have appropriate tight predecessors
- it is possible to construct an explicit basis of admissible rules of L
 (L has an independent basis, but no finite basis)
- any logic inheriting admissible multiple-conclusion rules of L is itself extensible
- L has finitary unification type

Łukasiewicz logic

Admissibility in basic fuzzy logics

Fuzzy logics: multivalued logics using a linearly ordered algebra of truth values

The three fundamental continuous t-norm logics are:

- Gödel–Dummett logic (LC): superintuitionistic; structurally complete [Dzik & Wroński]
- Product logic (Π): also structurally complete [Cintula & Metcalfe]
- ▲ukasiewicz logic (Ł): structurally incomplete [Dzik]
 ⇒ nontrivial admissibility problem

Łukasiewicz logic

Connectives: \rightarrow , \neg , \cdot , \oplus , \wedge , \lor , \perp , \top (not all needed as basic) Semantics: $[0,1]_{\mathbf{L}} = \langle [0,1], \{1\}, \rightarrow, \neg, \cdot, \oplus, \min, \max, 0, 1 \rangle$, where

- $x \to y = \min\{1, 1 x + y\}$
- $\neg x = 1 x$
- $x \cdot y = \max\{0, x + y 1\}$
- $x \oplus y = \min\{1, x + y\}$

 $[0,1]_{\mathbb{Q}}$ suffices instead of [0,1]

Calculus: Modus Ponens + finitely many axiom schemata

Algebraization

- Ł is finitely algebraizable:
- K = the variety of *MV*-algebras

 \Rightarrow we are interested in the universal theory of free MV-algebras

Free *MV*-algebra F_n over *n* generators, *n* finite:

- The algebra of formulas in n variables modulo
 Ł-provable equivalence (Lindenbaum–Tarski algebra)
- Explicit description by McNaughton: the algebra of all continuous piecewise linear functions

 $f\colon [0,1]^n \to [0,1]$

with integer coefficients, with operations defined pointwise (i.e., as a subalgebra of $[0, 1]_{L}^{[0,1]^{n}}$)

k-tuples of elements of F_n : piecewise linear functions $f: [0,1]^n \rightarrow [0,1]^k$

1-reducibility

Theorem [J.]: $\Gamma \vdash_{\mathbf{k}} \Delta$ iff $F_1 \models \Gamma / \Delta$

IOW: all free MV-algebras except F_0 have the same universal theory

Proof idea:

Finitely many points in $[0,1]^n_{\mathbb{Q}}$ can be connected by a suitable McNaughton curve

Recall: valuation to *m* variables in F_1 = continuous piecewise linear $f: [0,1] \rightarrow [0,1]^m$ with integer coefficients

Validity of a formula under f only depends on rng(f) \Rightarrow Question: which piecewise linear curves can be reparametrized to have integer coefficients?

Observation: Let

$$f(t) = a + tb, \quad t \in [t_i, t_{i+1}],$$

where $a, b \in \mathbb{Z}^m$. Then the lattice point *a* lies on the line connecting the points $f(t_i)$, $f(t_{i+1})$. This is independent of parametrization.

If $X \subseteq \mathbb{R}^m$, let A(X) be its affine hull and C(X) its convex hull X is anchored if $A(X) \cap \mathbb{Z}^m \neq \emptyset$

Using Hermite normal form, we obtain:

• $X \subseteq \mathbb{Q}^m$ is anchored iff

 $\forall u \in \mathbb{Z}^m \, \forall a \in \mathbb{Q} \left[\forall x \in X \, (u^\mathsf{T} x = a) \Rightarrow a \in \mathbb{Z} \right]$

(Whenever X is contained in a hyperplane defined by an affine function with integral linear coefficients, its constant coefficients must be integral, too.)

• Given $x_0, \ldots, x_k \in \mathbb{Q}^m$, it is decidable in polynomial time whether $\{x_0, \ldots, x_k\}$ is anchored

Reparametrization (cont'd)

Lemma [J.]: If $x_0, \ldots, x_k \in \mathbb{Q}^m$, TFAE:

- there exist rationals $t_0 < \cdots < t_k$ such that $L(t_0, x_0; \ldots; t_k, x_k)$ has integer coefficients
- $\{x_i, x_{i+1}\}$ is anchored for each i < k

Simplification of counterexamples

Goal: Given a counterexample $L(t_0, x_0; ...; t_k, x_k)$ for Γ / Δ in F_1 , simplify it so that its parameters (e.g., k) are bounded

 $\{x \in [0,1]^m : \Gamma(x) = 1\}$ is a finite union $\bigcup_{u < r} C_u$ of polytopes ldea: If $\operatorname{rng}(L(t_i, x_i; \ldots; t_j, x_j)) \subseteq C_u$, replace $L(t_i, x_i; t_{i+1}, x_{i+1}; \ldots; t_j, x_j)$ with $L(t_i, x_i; t_j, x_j)$

Trouble: $\{x_i, x_j\}$ needn't be anchored: $L(t_i, \frac{1}{2}; t_{i+1}, 0; t_{i+2}, \frac{1}{2})$

Simplification of counterexamples (cont'd)

What cannot be done in one step can be done in two steps: Lemma [J.]: If $X \subseteq \mathbb{Q}^m$ is anchored and $x, y \in \mathbb{Q}^m$, there exists $w \in C(X)$ such that $\{x, w\}$ and $\{w, y\}$ are anchored.

Characterization of admissibility in Ł

Theorem [J.]: Write $t(\Gamma) = \{x \in [0,1]^m : \forall \varphi \in \Gamma \ \varphi(x) = 1\}$ as a union of rational polytopes $\bigcup_{j < r} C_j$.

Then $\Gamma \not\sim_{\mathbf{L}} \Delta$ iff $\exists a \in \{0,1\}^m \ \forall \psi \in \Delta \ \exists j_0, \dots, j_k < r \text{ such that}$

- $a \in C_{j_0}$
- each C_{j_i} is anchored
- $C_{j_i} \cap C_{j_{i+1}} \neq \emptyset$
- $\psi(x) < 1$ for some $x \in C_{j_k}$

Corollary: Admissibility in Ł is decidable

Complexity

Theorem [J.]: If Γ / Δ in *m* variables and length *n* is not Ł-admissible, it has a counterexample

$$L(0, x_0; t_1, x_1; \dots; t_{k-1}, x_{k-1}; 1, x_k) \in F_1^m$$

such that

- $k = O(n2^n)$
- $h(x_i) = O(nm)$
- $h(t_i) = O(nmk)$

where h(x), $x \in \mathbb{Q}^m$, denotes the logarithmic height

Computational complexity

- $\Gamma \not\models_{\mathbf{L}} \Delta$ is reducible to reachability in an exponentially large graph with poly-time edge relation:
 - ${\scriptstyle {\rm {\scriptstyle \bullet}}}$ vertices: anchored polytopes in $t(\Gamma)$
 - edges: C, C' connected iff $C \cap C' \neq \emptyset$
 - $\Rightarrow \hspace{0.2em}\sim_{\textbf{L}} \in PSPACE$
- \vdash_{L} trivially *coNP*-hard:

 $\vdash_{\mathbf{CPC}} \varphi(p_1,\ldots,p_m) \Leftrightarrow p_1 \lor \neg p_1,\ldots,p_m \lor \neg p_m \mathrel{\sim}_{\mathbf{L}} \varphi$

(Aside: both $Th(\mathbf{k})$ and $\vdash_{\mathbf{k}}$ are *coNP*-complete [Mundici])

• In fact: \sim_{k} is *PSPACE*-complete (?)

All of this also applies to the universal theory of free MV-algebras

Complexity in context

Examples of known completeness results:

logic	F	\sim
CPC, LC, S5	coNP	coNP
$\mathbf{GL} + \Box^2 \bot$	coNP	Π_3^P
Ł	coNP	PSPACE
$\mathbf{BD_3}, \mathbf{GL} + \Box^3 \bot$	coNP	coNEXP
$\mathrm{IPC}_{ ightarrow,\perp}$	PSPACE	PSPACE
IPC, K4, S4, GL	PSPACE	coNEXP
$ m K4_u$	PSPACE	Π^0_1
$\mathbf{K}_{\mathbf{u}}$	EXP	Π^0_1

Admissibly saturated formulas

The characterization of $\sim_{\mathbf{k}}$ easily implies:

- $\varphi \in F_m$ is admissibly saturated in \Bbbk iff $t(\varphi)$
 - is connected,
 - hits $\{0,1\}^m$, and
 - is piecewise anchored
 - (i.e., a finite union of anchored polytopes)
- In Ł, every formula φ has an admissibly saturated approximation Π_{φ} :
 - throw out nonanchored polytopes
 - throw out connected components with no lattice point
 - each remaining component gives $\pi \in \Pi_{\varphi}$

Strong regularity

A rational polyhedron P is piecewise anchored \Leftrightarrow it has a strongly regular triangulation Δ (simplicial complex):

- $x \in \mathbb{Q}^m$: $\tilde{x} = \operatorname{den}(x) \langle x, 1 \rangle \in \mathbb{Z}^{m+1}$
- simplex $C(x_0, \ldots, x_k)$ regular: $\tilde{x}_0, \ldots, \tilde{x}_k$ included in a basis of \mathbb{Z}^{m+1}
- Δ strongly regular: every maximal $C(x_0, \ldots, x_k) \in \Delta$ is regular and $gcd(den(x_0), \ldots, den(x_k)) = 1$

Theorem [Cabrer & Mundici]: $t(\varphi)$ collapsible, hits $\{0,1\}^m$, strongly regular $\Rightarrow \varphi$ projective $\Rightarrow t(\varphi)$ contractible, hits $\{0,1\}^m$, strongly regular

Exact formulas

Theorem [Cabrer]: φ exact iff $t(\varphi)$ connected, hits $\{0,1\}^m$, strongly regular

Corollary: The following are equivalent:

- $\bullet \varphi$ is admissibly saturated
- φ is exact
- $t(\varphi)$ is connected and $\vdash_{\mathbf{k}} \varphi \leftrightarrow \bigvee_i \pi_i$ for some projective π_i

OTOH: some admissibly saturated formulas are not projective

Projective approximations

Ł has nullary unification type [Marra & Spada] ⇒ it can't have projective approximations i.e., some admissibly saturated formulas are not projective

Example: $\varphi = p \lor \neg p \lor q \lor \neg q$

•
$$t(\varphi) = \partial [0,1]^2$$

- $\bullet \varphi$ is admissibly saturated
- π projective
 - $\Rightarrow t(\pi)$ retract of $[0,1]^n$
 - \Rightarrow contractible
 - \Rightarrow simply connected

Multiple-conclusion basis

The three steps in the construction of Π_{φ} can be simulated by simple rules:

Theorem [J.]: { $NA_p : p$ is a prime} + $CC_3 + WDP$ is an independent basis of multiple-conclusion \pounds -admissible rules

⊢₁ single-conclusion consequence relation:
Define

 $\Pi \vdash_{m} \Lambda \quad \text{iff} \quad \forall \Gamma, \varphi, \sigma \; (\forall \psi \in \Lambda \; \Gamma, \sigma(\psi) \vdash_{1} \varphi \; \Rightarrow \; \Gamma, \sigma(\Pi) \vdash_{1} \varphi)$

Observation: \vdash_m is the largest multiple-conclusion consequence relation whose s.-c. fragment is \vdash_1

Then one can show: Lemma: If X is a set of s.-c. rules, TFAE:

- $\mathbf{L} + X + WDP$ is conservative over $\mathbf{L} + X$
- $\textbf{ } \ \ \Gamma \ / \ \varphi \in X \ \ \Rightarrow \ \ \Gamma \lor \alpha, \neg \alpha \lor \alpha \vdash_{\textbf{L} + X} \varphi \lor \alpha \ \text{for any} \ \alpha$

Single-conclusion basis

Theorem [J.]: { $NA_p : p$ is a prime} + RCC_3 is an independent basis of single-conclusion k-admissible rules

$$RCC_n = \frac{(q \lor \neg q)^n \to p \quad p \lor \neg p}{p}$$

Thank you for attention!

References

W. Blok, D. Pigozzi, Algebraizable logics, Mem. AMS 77 (1989), no. 396.

L. Cabrer, D. Mundici, *Rational polyhedra and projective lattice-ordered abelian groups with order unit*, 2009, to appear.

P. Cintula, G. Metcalfe, *Structural completeness in fuzzy logics*, Notre Dame J. Formal Log. 50 (2009), 153–182.

_____, Admissible rules in the implication-negation fragment of intuitionistic logic, Ann. Pure Appl. Log. 162 (2010), 162–171.

W. Dzik, *Unification of some substructural logics of* BL*-algebras and hoops*, Rep. Math. Log. 43 (2008), 73–83.

_____, A. Wroński, *Structural completeness of Gödel's and Dummett's propositional calculi*, Studia Logica 32 (1973), 69–73.

S. Ghilardi, Unification in intuitionistic logic, J. Symb. Log. 64 (1999), 859–880.

____, Best solving modal equations, Ann. Pure Appl. Log. 102 (2000), 183–198.

E. Jeřábek, Admissible rules of modal logics, J. Log. Comp. 15 (2005), 411–431.

_, *Complexity of admissible rules*, Arch. Math. Log. 46 (2007), 73–92.

References (cont'd)

E. Jeřábek, Independent bases of admissible rules, Log. J. IGPL 16 (2008), 249–267.

_, *Canonical rules*, J. Symb. Log. 74 (2009), 1171–1205.

, Admissible rules of Łukasiewicz logic, J. Log. Comp. 20 (2010), 425–447.

_____, Bases of admissible rules of Łukasiewicz logic, J. Log. Comp. 20 (2010), 1149–1163.

V. Marra, L. Spada, *Duality, projectivity, and unification in Łukasiewicz logic and MV-algebras*, preprint, 2011.

R. McNaughton, A theorem about infinite-valued sentential logic, J. Symb. Log. 16 (1951), 1–13.

D. Mundici, *Satisfiability in many-valued sentential logic is NP-complete*, Theoret. Comp. Sci. 52 (1987), 145–153.

J. Olson, J. Raftery, C. van Alten, *Structural completeness in substructural logics*, Log. J. IGPL 16 (2008), 453–495.

T. Prucnal, *Structural completeness of Medvedev's propositional calculus*, Rep. Math. Log. 6 (1976), 103–105.

P. Rozière, *Admissible and derivable rules in intuitionistic logic*, Math. Structures Comp. Sci. 3 (1993), 129–136.

References (cont'd)

V. Rybakov, Admissibility of logical inference rules, Elsevier, 1997.

_____, *Linear temporal logic with Until and Next, logical consecutions*, Ann. Pure Appl. Log. 155 (2008), 32–45.

D. Shoesmith, T. Smiley, *Multiple-conclusion logic*, Cambridge University Press, 1978.

P. Wojtylak, On structural completeness of many-valued logics, Studia Logica 37 (1978), 139–147.

F. Wolter, M. Zakharyaschev, Undecidability of the unification and admissibility problems for modal and description logics, ACM Trans. Comp. Log. 9 (2008), art. 25.