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Emil Je řábek|Admissible rules and Łukasiewicz logic



Basic concepts

Logical system L: specifies a consequence relation Γ ⊢L ϕ

“formula ϕ follows from a set Γ of formulas”

Theorems of L: ϕ such that ∅ ⊢L ϕ

(Inference) rule: a relation between sets of formulas Γ and
formulas ϕ

A rule ̺ is derivable in L ⇔ Γ ⊢L ϕ for every 〈Γ, ϕ〉 ∈ ̺

A rule ̺ is admissible in L ⇔ the set of theorems of L is
closed under ̺
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Propositional logics

Propositional logic L:

Language: formulas FormL built freely from variables
{pn : n ∈ ω} using a fixed set of connectives of finite arity

Consequence relation ⊢L: finitary structural Tarski-style
consequence operator
I.e.: a relation Γ ⊢L ϕ between finite sets of formulas and
formulas such that

ϕ ⊢L ϕ

Γ ⊢L ϕ implies Γ,Γ′ ⊢L ϕ

Γ ⊢L ϕ and Γ, ϕ ⊢L ψ imply Γ ⊢L ψ

Γ ⊢L ϕ implies σ(Γ) ⊢L σ(ϕ) for every substitution σ
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Propositional admissible rules

We consider rules of the form
ϕ1, . . . , ϕn

ψ
:= {〈{σ(ϕ1), . . . , σ(ϕn)}, σ(ψ)〉 : σ substitution}

This rule is

derivable (valid) in L iff ϕ1, . . . , ϕn ⊢L ψ

admissible in L (written as ϕ1, . . . , ϕn |∼L ψ) iff
for all substitutions σ: if ⊢L σ(ϕi) for every i, then ⊢L σ(ψ)

|∼L is the largest consequence relation with the same
theorems as ⊢L

L is structurally complete if ⊢L = |∼L
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Examples

Classical logic (CPC) is structurally complete:
a 0–1 assignment witnessing Γ 0CPC ϕ

⇒ a ground substitution σ such that ⊢
∧
σ(Γ), 0 σ(ϕ)

All normal modal logics L admit

3q ∧ 3¬q / p

L is valid in a 1-element frame F (Makinson’s theorem)
3q ∧ 3¬q is not satisfiable in F

More generally: Γ is unifiable ⇔ Γ |6∼L p, where p /∈ Var(Γ)

All superintuitionistic logics admit the Kreisel–Putnam
rule [Prucnal]:

¬p→ q ∨ r / (¬p→ q) ∨ (¬p→ r)
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Multiple-conclusion consequence relations

A (finitary structural) multiple-conclusion consequence:
a relation Γ ⊢ ∆ between finite sets of formulas such that

ϕ ⊢ ϕ

Γ ⊢ ∆ implies Γ,Γ′ ⊢ ∆,∆′

Γ ⊢ ϕ,∆ and Γ, ϕ ⊢ ∆ imply Γ ⊢ ∆

Γ ⊢ ∆ implies σ(Γ) ⊢ σ(∆) for every substitution σ
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Multiple-conclusion rules

Multiple-conclusion rule: Γ / ∆, where Γ and ∆ finite sets of
formulas

derivable in L (Γ ⊢L ∆) iff Γ ⊢L ψ for some ψ ∈ ∆

admissible in L (Γ |∼L ∆) iff for all substitutions σ:
if ⊢ σ(ϕ) for every ϕ ∈ Γ, then ⊢ σ(ψ) for some ψ ∈ ∆

⊢L and |∼L are multiple-conclusion consequence relations

Example: disjunction property =
p ∨ q

p, q

Emil Je řábek|Admissible rules and Łukasiewicz logic 6:40



Algebraization

L is finitely algebraizable wrt a class K of algebras if there is
a finite set ∆(x, y) of formulas and a finite set E(p) of
equations such that

Γ ⊢L ϕ⇔ E(Γ) �
∧

K E(ϕ)

Θ �K t ≈ s⇔ ∆(Θ) ⊢∧

L ∆(t, s)

p ⊣⊢∧

L ∆(E(p))

x ≈ y ��
∧

K E(∆(x, y))

where Γ ⊢∧

L ∆ means Γ ⊢L ψ for all ψ ∈ ∆

We may assume K is a quasivariety

I will write x↔ y for ∆(x, y)
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Admissibility and algebra

L finitely algebraizable, K its equivalent quasivariety

logic algebra

propositional formulas terms
single-conclusion rules quasi-identities

multiple-conclusion rules clauses
L-derivable valid in all K-algebras
L-admissible valid in free K-algebras

studying multiple-conclusion admissible rules
= studying the universal theory of free algebras
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Unification

Unifier of {ti ≈ si : i ∈ I}: a substitution σ such that
�K σ(ti) ≈ σ(si) for all i

Dealgebraization: a unifier of a set of formulas Γ is σ such
that ⊢L σ(ϕ) for every ϕ ∈ Γ

Γ |∼L ∆ iff every unifier of Γ also unifies some ψ ∈ ∆

Γ is unifiable iff Γ |6∼L p (p /∈ Var(Γ)) iff Γ |6∼L

σ is more general than τ (τ � σ) if there is υ such that
⊢L τ(α) ↔ υ(σ(α)) for every α
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Properties of admissible rules

Typical questions about admissibility:

structural completeness

decidability
computational complexity

semantic characterization

description of a basis (= axiomatization of |∼L over ⊢L)
finite basis? independent basis?

inheritance of rules
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Admissibly saturated approximation

Γ is admissibly saturated if Γ |∼L ∆ implies Γ ⊢L ∆ for any ∆

Assume for simplicity that L has a well-behaved conjunction.

Admissibly saturated approximation of Γ:
a finite set ΠΓ such that

each π ∈ ΠΓ is admissibly saturated

Γ |∼L ΠΓ

π ⊢L ϕ for each π ∈ ΠΓ and ϕ ∈ Γ
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Application of admissible saturation

Reduction of |∼L to ⊢L:

Γ |∼L ∆ iff ∀π ∈ ΠΓ ∃ψ ∈ ∆ π ⊢L ψ

Assuming every Γ has an a.s. approximation ΠΓ:

if Γ 7→ ΠΓ is computable and ⊢L is decidable, then |∼L is
decidable

if Γ / ΠΓ is derivable in ⊢L + a set of rules R ⊆ |∼L, then R

is a basis of admissible rules

if each π ∈ ΠΓ has an mgu σπ, then {σπ : π ∈ ΠΓ} is a
complete set of unifiers for Γ
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Projective formulas

π is projective if it has a unifier σ such that π ⊢L ϕ↔ σ(ϕ) for
every ϕ (it’s enough to check variables)

σ is an mgu of π: if τ is a unifier of π, then τ ≡ τ ◦ σ

projective formula = presentation of a projective algebra

projective formulas are admissibly saturated
projective approximation := admissibly saturated
approximation consisting of projective formulas

If projective approximations exist:

characterization of |∼L in terms of projective formulas

finitary unification type
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Exact formulas

ϕ is exact if there exists σ such that

⊢L σ(ψ) iff ϕ ⊢L ψ

for all formulas ψ

projective ⇒ exact ⇒ admissibly saturated

in general: can’t be reversed

if projective approximations exist:
projective = exact = admissibly saturated

exact formulas do not need to have mgu
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Known results

Admissibility well-understood for some superintuitionistic
and transitive modal logics:

logics with frame extension properties, e.g.:
K4, GL, D4, S4, Grz (±.1, ±.2, ±bounded branching)
IPC, KC

logics of bounded depth

linearly (pre)ordered logics: K4.3, S4.3, S5; LC

some temporal logics: LTL

Not much known for other nonclassical logics:

structural (in)completeness of some substructural and
fuzzy logics
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Methods in modal logic

Analysis of admissibility in modal and si logics:

building models from reduced rules [Rybakov]

proof theory [Rozière]

combinatorial manipulation of universal frames
[Rybakov]

projective formulas and model extension properties
[Ghilardi]

Zakharyaschev-style canonical rules [J.]
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Projectivity in modal logics

Extension property: if F is an L-model with a single root r
and x � ϕ for every x ∈ F r {r}, then we can change
satisfaction of variables in r to make r � ϕ

Theorem [Ghilardi]: If L ⊇ K4 has the finite model property,
the following are equivalent:

ϕ is projective

ϕ has the extension property

θϕ is a unifier of ϕ

where θϕ is an explicitly defined substitution
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Extensible modal logics

L ⊇ K4 with FMP is extensible if a finite transitive frame F is
an L-frame whenever

F has a unique root r

F r {r} is an L-frame

r is (ir)reflexive and L admits a finite frame with an
(ir)reflexive point

Theorem [Ghilardi]: If L is extensible, then any ϕ has a
projective approximation Πϕ whose modal degree is
bounded by md(ϕ).
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Admissibility in extensible logics

Let L be an extensible modal logic:

if L is finitely axiomatizable, |∼L is decidable

|∼L is complete wrt L-frames where all finite subsets
have appropriate tight predecessors

it is possible to construct an explicit basis of admissible
rules of L
(L has an independent basis, but no finite basis)

any logic inheriting admissible multiple-conclusion rules
of L is itself extensible

L has finitary unification type
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Łukasiewicz logic
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Admissibility in basic fuzzy logics

Fuzzy logics: multivalued logics using a linearly ordered
algebra of truth values

The three fundamental continuous t-norm logics are:

Gödel–Dummett logic (LC): superintuitionistic;
structurally complete [Dzik & Wroński]

Product logic (Π): also structurally complete [Cintula &
Metcalfe]

Łukasiewicz logic (Ł): structurally incomplete [Dzik]
⇒ nontrivial admissibility problem
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Łukasiewicz logic

Connectives: →, ¬, ·, ⊕, ∧, ∨, ⊥, ⊤ (not all needed as basic)

Semantics: [0, 1]Ł = 〈[0, 1], {1},→,¬, ·,⊕,min,max, 0, 1〉, where

x→ y = min{1, 1 − x+ y}

¬x = 1 − x

x · y = max{0, x+ y − 1}

x⊕ y = min{1, x+ y}

[0, 1]Q suffices instead of [0, 1]

Calculus: Modus Ponens + finitely many axiom schemata
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Algebraization

Ł is finitely algebraizable:

K = the variety of MV -algebras

⇒ we are interested in the universal theory of free
MV -algebras
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McNaughton functions

Free MV -algebra Fn over n generators, n finite:

The algebra of formulas in n variables modulo
Ł-provable equivalence (Lindenbaum–Tarski algebra)

Explicit description by McNaughton: the algebra of all
continuous piecewise linear functions

f : [0, 1]n → [0, 1]

with integer coefficients, with operations defined
pointwise (i.e., as a subalgebra of [0, 1]

[0,1]n

Ł )

k-tuples of elements of Fn: piecewise linear functions
f : [0, 1]n → [0, 1]k

Emil Je řábek|Admissible rules and Łukasiewicz logic 23:40



1-reducibility

Theorem [J.]: Γ |∼Ł ∆ iff F1 � Γ / ∆

IOW: all free MV -algebras except F0 have the same
universal theory

Proof idea:
Finitely many points in [0, 1]nQ can be connected by a suitable
McNaughton curve

0 1
0

1

x

x

1

2
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Reparametrization

Recall: valuation to m variables in F1 = continuous piecewise
linear f : [0, 1] → [0, 1]m with integer coefficients

Validity of a formula under f only depends on rng(f)

⇒ Question: which piecewise linear curves can be
reparametrized to have integer coefficients?

Observation: Let

f(t) = a+ tb, t ∈ [ti, ti+1],

where a, b ∈ Zm. Then the lattice point a lies on the line
connecting the points f(ti), f(ti+1). This is independent of
parametrization.
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Anchoredness

If X ⊆ Rm, let A(X) be its affine hull and C(X) its convex hull

X is anchored if A(X) ∩ Zm 6= ∅

Using Hermite normal form, we obtain:

X ⊆ Qm is anchored iff

∀u ∈ Zm ∀a ∈ Q [∀x ∈ X (uTx = a) ⇒ a ∈ Z]

(Whenever X is contained in a hyperplane defined by an
affine function with integral linear coefficients, its
constant coefficients must be integral, too.)

Given x0, . . . , xk ∈ Qm, it is decidable in polynomial time
whether {x0, . . . , xk} is anchored
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Reparametrization (cont’d)

Notation: L(t0, x0; t1, x1; . . . ; tk, xk) =

t t t t

x

x

x

x

k

k

k

k

0

0

1

1

−1

−1

Lemma [J.]: If x0, . . . , xk ∈ Qm, TFAE:

there exist rationals t0 < · · · < tk such that
L(t0, x0; . . . ; tk, xk) has integer coefficients

{xi, xi+1} is anchored for each i < k
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Simplification of counterexamples

Goal: Given a counterexample L(t0, x0; . . . ; tk, xk) for Γ / ∆ in
F1, simplify it so that its parameters (e.g., k) are bounded

{x ∈ [0, 1]m : Γ(x) = 1} is a finite union
⋃

u<r Cu of polytopes

Idea: If rng(L(ti, xi; . . . ; tj , xj)) ⊆ Cu, replace
L(ti, xi; ti+1, xi+1; . . . ; tj , xj) with L(ti, xi; tj , xj)

C

x

x

i

j

u C

x

x

i

j

u

Trouble: {xi, xj} needn’t be anchored: L(ti,
1
2 ; ti+1, 0; ti+2,

1
2)
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Simplification of counterexamples (cont’d)

What cannot be done in one step can be done in two steps:

Lemma [J.]: If X ⊆ Qm is anchored and x, y ∈ Qm, there
exists w ∈ C(X) such that {x,w} and {w, y} are anchored.

C

x

x

i

j

u C

x

x

w
i

j

u
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Characterization of admissibility in Ł

Theorem [J.]: Write t(Γ) = {x ∈ [0, 1]m : ∀ϕ ∈ Γ ϕ(x) = 1} as a
union of rational polytopes

⋃
j<r Cj.

Then Γ |6∼Ł ∆ iff ∃a ∈ {0, 1}m ∀ψ ∈ ∆ ∃j0, . . . , jk < r such that

a ∈ Cj0

each Cji
is anchored

Cji
∩ Cji+1

6= ∅

ψ(x) < 1 for some x ∈ Cjk

Corollary: Admissibility in Ł is decidable
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Complexity

Theorem [J.]: If Γ / ∆ in m variables and length n is not
Ł-admissible, it has a counterexample

L(0, x0; t1, x1; . . . ; tk−1, xk−1; 1, xk) ∈ Fm
1

such that

k = O(n2n)

h(xi) = O(nm)

h(ti) = O(nmk)

where h(x), x ∈ Qm, denotes the logarithmic height
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Computational complexity

Γ |6∼Ł ∆ is reducible to reachability in an exponentially
large graph with poly-time edge relation:

vertices: anchored polytopes in t(Γ)

edges: C,C ′ connected iff C ∩ C ′ 6= ∅

⇒ |∼Ł ∈ PSPACE

|∼Ł trivially coNP-hard:

⊢CPC ϕ(p1, . . . , pm) ⇔ p1 ∨ ¬p1, . . . , pm ∨ ¬pm |∼Ł ϕ

(Aside: both Th(Ł) and ⊢Ł are coNP-complete [Mundici])

In fact: |∼Ł is PSPACE -complete (?)

All of this also applies to the universal theory of free
MV -algebras
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Complexity in context

Examples of known completeness results:

logic ⊢ |∼

CPC, LC, S5 coNP coNP

GL + 2
2⊥ coNP ΠP

3

Ł coNP PSPACE

BD3, GL + 2
3⊥ coNP coNEXP

IPC→,⊥ PSPACE PSPACE

IPC, K4, S4, GL PSPACE coNEXP

K4u PSPACE Π0
1

Ku EXP Π0
1
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Admissibly saturated formulas

The characterization of |∼Ł easily implies:

ϕ ∈ Fm is admissibly saturated in Ł iff t(ϕ)

is connected,
hits {0, 1}m, and
is piecewise anchored
(i.e., a finite union of anchored polytopes)

In Ł, every formula ϕ has an admissibly saturated
approximation Πϕ:

throw out nonanchored polytopes
throw out connected components with no lattice point
each remaining component gives π ∈ Πϕ
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Strong regularity

A rational polyhedron P is piecewise anchored ⇔ it has a
strongly regular triangulation ∆ (simplicial complex):

x ∈ Qm: x̃ = den(x)〈x, 1〉 ∈ Zm+1

simplex C(x0, . . . , xk) regular:
x̃0, . . . , x̃k included in a basis of Zm+1

∆ strongly regular: every maximal C(x0, . . . , xk) ∈ ∆ is
regular and gcd(den(x0), . . . , den(xk)) = 1

Theorem [Cabrer & Mundici]:
⇒ t(ϕ) collapsible, hits {0, 1}m, strongly regular
⇒ ϕ projective
⇒ t(ϕ) contractible, hits {0, 1}m, strongly regular
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Exact formulas

Theorem [Cabrer]: ϕ exact iff t(ϕ) connected, hits {0, 1}m,
strongly regular

Corollary: The following are equivalent:

ϕ is admissibly saturated

ϕ is exact

t(ϕ) is connected and ⊢Ł ϕ↔
∨

i πi for some projective πi

OTOH: some admissibly saturated formulas are not
projective
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Projective approximations

Ł has nullary unification type [Marra & Spada]
⇒ it can’t have projective approximations
i.e., some admissibly saturated formulas are not projective

Example: ϕ = p ∨ ¬p ∨ q ∨ ¬q

t(ϕ) = ∂[0, 1]2

ϕ is admissibly saturated

π projective
⇒ t(π) retract of [0, 1]n

⇒ contractible
⇒ simply connected 0 1

0

1
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Multiple-conclusion basis

The three steps in the construction of Πϕ can be simulated
by simple rules:

Theorem [J.]: {NAp : p is a prime} + CC 3 + WDP is an
independent basis of multiple-conclusion Ł-admissible rules

NAk =
p ∨ χk(q)

p

CC n =
¬(q ∨ ¬q)n

WDP =
p ∨ ¬p

p,¬p 0 1
0

1

1/

χ ( )

k
x

x
k
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Conservativity

⊢1 single-conclusion consequence relation:

Define

Π ⊢m Λ iff ∀Γ, ϕ, σ (∀ψ ∈ Λ Γ, σ(ψ) ⊢1 ϕ ⇒ Γ, σ(Π) ⊢1 ϕ)

Observation: ⊢m is the largest multiple-conclusion
consequence relation whose s.-c. fragment is ⊢1

Then one can show:
Lemma: If X is a set of s.-c. rules, TFAE:

Ł +X + WDP is conservative over Ł +X

Γ / ϕ ∈ X ⇒ Γ ∨ α,¬α ∨ α ⊢Ł+X ϕ ∨ α for any α
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Single-conclusion basis

Theorem [J.]: {NAp : p is a prime} + RCC 3 is an independent
basis of single-conclusion Ł-admissible rules

RCC n =
(q ∨ ¬q)n → p p ∨ ¬p

p
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Thank you for attention!
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