
On monotone sequent calculus
Emil Jeřábek
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Monotone sequent calculus

MLK : sequents Γ ⊢ ∆, where Γ, ∆ finite sets of monotone
(∧, ∨) propositional formulas

i
Γ, ϕ ⊢ ϕ,∆

Γ ⊢ ϕ,∆ Γ, ϕ ⊢ ∆
cut

Γ ⊢ ∆

Γ, ϕ, ψ ⊢ ∆
∧-l

Γ, ϕ ∧ ψ ⊢ ∆

Γ ⊢ ϕ,∆ Γ ⊢ ψ,∆∧-r
Γ ⊢ ϕ ∧ ψ,∆

Γ, ϕ ⊢ ∆ Γ, ψ ⊢ ∆
∨-l

Γ, ϕ ∨ ψ ⊢ ∆

Γ ⊢ ϕ,ψ,∆∨-r
Γ ⊢ ϕ ∨ ψ,∆
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Main problem

Problem (“Think Positively Conjecture”):
Does MLK p-simulate LK -proofs of monotone sequents?

Note: there exist monotone Boolean functions computable
by poly-size circuits which require exponential size
monotone circuits (Razborov ’85; Alon, Boppana ’87)

Theorem (Atserias, Galesi, Pudlák ’02):
MLK quasipolynomially simulates LK .

A monotone sequent Γ ⊢ ∆ in n variables with an LK -proof
of size s has an MLK -proof with sO(1) lines and size
sO(1)nO(log n).
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Threshold functions

θn
m(x0, . . . , xn−1) = 1 ⇔ |{i < n | xi = 1}| ≥ m

The simulation by AGP uses nO(log n)-size monotone
formulas for θn

m. Better formulas give a better result:

Theorem (AGP ’02): Assume that there are monotone
formulas Tn

m(p0, . . . , pn−1) such that the formulas

Tn
0 (p0, . . . , pn−1) (1)

¬Tn
n+1(p0, . . . , pn−1) (2)

Tn
m(p0, . . . , pk/⊥, . . . , pn−1) → Tn

m+1(p0, . . . , pk/⊤, . . . , pn−1) (3)

have poly-time constructible LK -proofs. Then MLK

p-simulates LK on monotone sequents.

Barriers in Computational Complexity, Princeton – p.4/16



Formulas for threshold functions

Threshold functions have uniform poly-size formulas as
TC

0 ⊆ NC
1. However, we need monotone formulas.

Known constructions of monotone formulas for threshold
functions:

Ajtai, Komlós, Szemerédi ’83: Log-depth sorting
network.

Valiant ’84: Simple probabilistic argument.
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Valiant’s construction

Formula F :

the complete binary tree of depth c log n with alternating
layers of ∧ and ∨
each leaf: a randomly chosen variable pi, i < n

If c is a large enough constant, F will whp compute θn
αn,

where α = (3 −
√

5)/2. A simple modification will yield any
desired θn

m.

Unfortunately: Probabilistic construction ⇒ no explicit
formulas ⇒ no hope for short LK -proofs of (1)–(3)
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Sorting networks

A comparator network is a circuit with n inputs and n outputs

using comparator gates -

-

-

-x

y

max{x,y}

min{x,y}

such that any input or

output of any gate is used exactly once.

It can be evaluated on a sequence of n elements of any
linearly ordered set, its output is a permutation of the input.

A comparator network is a sorting network if the output is
always ordered wrt the given linear order.
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Optimal sorting networks

Theorem (Ajtai, Komlós, Szemerédi ’83):
It is possible to construct sorting networks of depth O(log n).

Sorting a 0-1 input 〈x0, . . . , xn−1〉 amounts to computing
〈θn

n, θ
n
n−1, . . . , θ

n
1 〉. A comparator on a 0-1 input can be

simulated by
-

-

�
���@
@@Rr-

r-∨

∧

Corollary: We can construct monotone circuits of depth
O(log n) (hence poly-size formulas) for the threshold
functions.
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The strategy

One way to prove the Think Positively Conjecture:

Formalize the AKS sorting network in a suitable theory
of bounded arithmetic.

Use the correspondence of bounded arithmetic to
propositional proof systems to get poly-time Frege
( = LK ) proofs of (1)–(3).

Some issues:

Which theory to use? It should be roughly an
NC

1-theory, but the exact choice is a bit delicate.

The AKS network relies on explicit expanders, we thus
need to formalize an expander construction in bounded
arithmetic. We leave this for future work.
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VNC 1

VNC
1: An extension of the second-order arithmetic V 0,

corresponds to (UE-)uniform NC
1 = ALOGTIME .

Unfortunately, it is too weak for our purposes:

We need to evaluate the AKS network on 0-1 inputs, i.e.,
a log-depth monotone circuit.

In fully uniform NC
1, we can only evaluate log-depth

circuits given by their extended connection language
(ecl) of Ruzzo.

There does not seem to be any way of computing the ecl
of the AKS network, it looks like a pretty general
log-depth monotone circuit.
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Second try

An obvious choice: take V 0 + “log-depth circuits can be
evaluated on any input”.

It does not work either, it is too strong:

Our theory must correspond to a subclass of nonuniform
NC

1, so that we can translate it to poly-size Frege proofs.

Somewhat counterintuitively, the evaluator function for
log-depth circuits is (apparently) not in nonuniform NC

1.
It is mutually NC

1-Turing-reducible with log-bounded
reachability in directed graphs of constant out-degree.
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Solution

We develop a new theoryVNC
1
∗:

Roughly, V 0 + “log-depth circuits described by
∆B

1 -formulas without second-order parameters can be
evaluated on any input”.

ContainsVNC
1. Can evaluate sufficiently uniform

families of log-depth circuits, such as the AKS network.

Corresponds to a subclass of L-uniform NC
1. Translates

to L-constructible Frege proofs.
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Formalization

Paterson’s variant of the AKS network (sans expanders) can
be defined and analyzed inVNC

1
∗:

Theorem: IfVNC
1
∗ proves the existence of suitable expander

graphs, it also proves the existence of log-depth sorting
networks.

Corollary: Assume thatVNC
1
∗ proves the existence of

suitable expander graphs. Then MLK p-simulates LK on
monotone sequents.
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Open problems

Problem: Formalize expanders inVNC
1
∗.

Some work on combinatorial analysis of zig-zag-based
expander constructions has been done by Koucký,
Kabanets and Kolokolova.

Question: What about tree-like MLK?

The inductive argument by AGP ’02 which allows us to
make do with LK -proofs of (1)–(3) results in heavily
non-tree-like proofs.

The usual simulation of dag-like Frege proofs by tree-like
proofs needs →.
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Thank you for attention!
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