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MLK: sequents I" - A, where T', A finite sets of monotone
(A, V) propositional formulas
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Main problem

Problem (“Think Positively Conjecture”):
Does MLK p-simulate LK-proofs of monotone sequents?

Note: there exist monotone Boolean functions computable
by poly-size circuits which require exponential size
monotone circuits (Razborov '85; Alon, Boppana '87)

Theorem (Atserias, Galesi, Pudlak '02):
MLK quasipolynomially simulates LK.

A monotone sequent I' - A In n variables with an LK -proof

of size s has an MLK-proof with s°(1) lines and size
s0(1),,0(logn)
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Threshold functions

0, (xg,...,xn—1) =1 {i<n|z;, =1} >m

The simulation by AGP uses »n°(°¢")-size monotone
formulas for 67 . Better formulas give a better result:

Theorem (AGP '02): Assume that there are monotone
formulas T (po, . . ., pn—1) Such that the formulas
15" (po, - - - s Pn—1) (1)
T3 1 (pos - - Pu—1) 2)
Tq?z(p()a T 7p/€/J—7 coe 7pn—1) — 7?1—|—1(p07 T 7pk/—|_7 s 7pn—1) (3)

have poly-time constructible LK -proofs. Then MLK
p-simulates LK on monotone sequents.
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Threshold functions have uniform poly-size formulas as
TC' C NCt. However, we need monotone formulas.

Known constructions of monotone formulas for threshold
functions:

s Ajtai, Komlos, Szemeredi '83: Log-depth sorting
network.

s Valiant '84: Simple probabilistic argument.




Valiant’s construction

Formula F:

» the complete binary tree of depth clogn with alternating
layers of A and v

s each leaf: a randomly chosen variable p;, i < n
If ¢ Is a large enough constant, F will whp compute 67

an’?

where a = (3 — v/5)/2. A simple modification will yield any
desired 0" .

Unfortunately: Probabilistic construction = no explicit
formulas = no hope for short LK-proofs of (1)—(3)
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Sorting networ ks

A comparator network Is a circuit with »n inputs and n outputs

x max{z,y}
—> SN

using comparator gates such that any input or

y L min{z,y}

output of any gate is used exactly once.

It can be evaluated on a sequence of n elements of any
linearly ordered set, its output is a permutation of the input.

A comparator network is a sorting network if the output is
always ordered wrt the given linear order.
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Theorem (Ajtai, Komlos, Szemereédi '83):
It Is possible to construct sorting networks of depth O(logn).

Sorting a 0-1 input (xg,...,z,_1) amounts to computing
@r.or . ..., 07). A comparator on a 0-1 input can be

V
simulated by g
N

Corollary: We can construct monotone circuits of depth

O(logn) (hence poly-size formulas) for the threshold
functions.




Thestrategy

One way to prove the Think Positively Conjecture:

s Formalize the AKS sorting network in a suitable theory
of bounded arithmetic.

s Use the correspondence of bounded arithmetic to
propositional proof systems to get poly-time Frege
(= LK) proofs of (1)—(3).
Some Issues:

s Which theory to use? It should be roughly an
NC!-theory, but the exact choice is a bit delicate.

s The AKS network relies on explicit expanders, we thus
need to formalize an expander construction in bounded
arithmetic. We leave this for future work.
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VNG

VNC': An extension of the second-order arithmetic V7,
corresponds to (Uz-)uniform NC' = ALOGTIME.

Unfortunately, it is too weak for our purposes:

» We need to evaluate the AKS network on 0-1 inputs, I.e.,
a log-depth monotone circuit.

s In fully uniform NC!, we can only evaluate log-depth
circuits given by their extended connection language
(ecl) of Ruzzo.

s There does not seem to be any way of computing the ecl
of the AKS network, it looks like a pretty general
log-depth monotone circulit.
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l Second try

An obvious choice: take V' + “log-depth circuits can be
evaluated on any input”.

It does not work either, it Is too strong:

s Our theory must correspond to a subclass of nonuniform
NC!, so that we can translate it to poly-size Frege proofs.

s Somewhat counterintuitively, the evaluator function for
log-depth circuits is (apparently) not in nonuniform NC*.

It is mutually NC!'-Turing-reducible with log-bounded
reachability in directed graphs of constant out-degree.
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We develop a new theory VNC':

» Roughly, V' + “log-depth circuits described by
A?P-formulas without second-order parameters can be
evaluated on any input”.

s Contains VNC'. Can evaluate sufficiently uniform
families of log-depth circuits, such as the AKS network.

» Corresponds to a subclass of L-uniform NC*. Translates
to L-constructible Frege proofs.




Formalization

Paterson’s variant of the AKS network (sans expanders) can
be defined and analyzed in VNC!:

Theorem: If VNC. proves the existence of suitable expander
graphs, it also proves the existence of log-depth sorting
networks.

Corollary: Assume that VNC! proves the existence of
suitable expander graphs. Then MLK p-simulates LK on

monotone sequents.
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‘Open problems

Problem: Formalize expanders in VNC..

s Some work on combinatorial analysis of zig-zag-based

expander constructions has been done by Koucky,
Kabanets and Kolokolova.

Question: What about tree-like MLK?

s The inductive argument by AGP 02 which allows us to

make do with LK-proofs of (1)—(3) results in heavily
non-tree-like proofs.

s The usual simulation of dag-like Frege proofs by tree-like
proofs needs —.
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Thank you for attention!
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