'Surprising' spectra of \mathcal{PT} -symmetric point interactions

Petr Siegl

Nuclear Physics Institute, Řež Faculty of Nuclear Sciences and Physical Engineering, Prague Laboratoire Astroparticules et Cosmologie, Université Paris 7, Paris

\mathcal{PT} -symmetry

Origins of \mathcal{PT} -symmetry

- Hamiltonian $-\frac{d^2}{dx^2} + ix^3$ has real, positive, discrete spectrum Bender, Boettcher 1998
- original hypothesis the reality of spectrum due to \mathcal{PT} -symmetry
 - $[\mathcal{PT}, H] = 0$
 - parity \mathcal{P} , $(\mathcal{P}\psi)(x) = \psi(-x)$
 - complex conjugation \mathcal{T} , $(\mathcal{T}\psi)(x) = \overline{\psi}(x)$
- \mathcal{PT} -symmetry is not sufficient for reality of the spectrum
- some \mathcal{PT} -symmetric operators are similar to the self-adjoint ones

$$h = \varrho^{-1} H \varrho = h^*$$

Antilinear symmetry

Definition

Let $A \in \mathscr{C}(\mathcal{H})$. We say that A possesses an antilinear symmetry if there exists an antilinear bijective operator C and the relation

$$AC\psi = CA\psi$$

holds for all $\psi \in \text{Dom}(A)$.

•
$$\lambda \in \sigma_{p,c,r}(A) \iff \overline{\lambda} \in \sigma_{p,c,r}(A)$$

• example: $\mathcal{C} = \mathcal{PT}, H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x), \overline{V(-x)} = V(x)$

Pseudo-Hermiticity

Definition

Let $A \in \mathscr{L}(\mathcal{H})$ be densely defined. A is called pseudo-Hermitian, if there exists an operator η with properties (i) $\eta, \eta^{-1} \in \mathscr{B}(\mathcal{H})$, (ii) $\eta = \eta^*$ (iii) $A = \eta^{-1}A^*\eta$.

•
$$\sigma_{p,c,r}(A) = \sigma_{p,c,r}(A^*)$$

• example:
$$\eta = \mathcal{P}, H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2} + V(x), \overline{V(-x)} = V(x)$$

• A is a self-adjoint operator in a Krein space $[\cdot, \cdot]_J = \langle J \cdot, \cdot \rangle$ fundamental symmetry $J = \eta |\eta|^{-1}$

Relations between the operator classes

- finite dimension: antilinear symmetry ⇔ pseudo-Hermiticity essential fact: C-symmetric operators
 C antilinear isometric involution,
 C² = I, ⟨Cx, Cy⟩ = ⟨y, x⟩, A = CA*C
- assumption of spectral decomposition (spectral operators of scalar and finite type): AS \Leftrightarrow P-H

2002 Scolarici, Solombrino, 2009 Siegl

• bounded operators AS is not equivalent to P-H !

2009 Siegl

Classes of operators

 \mathcal{PT} point interactions

Conclusions

Antilinear symmetry without pseudo-Hermiticity

Example

• $\{e_n\}_{n=1}^{\infty}$ standard orthonormal basis of $\mathcal{H} = l_2(\mathbb{N}), e_n(m) = \delta_{mn}$

•
$$Te_n := e_{n-1}, n \in \mathbb{N}, e_0 := 0$$

1 0 0

•
$$T^*e_n := e_{n+1}, n \in \mathbb{N}$$

10

$$T = \left(\begin{array}{ccccccc} 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \vdots & & \ddots & \ddots \end{array} \right)$$

- \bullet antilinear symmetry ${\cal T}$
- for $|\lambda| < 1$, $\lambda \in \sigma_p(T)$ but $\lambda \in \sigma_r(T^*)$

Classes of operators

 \mathcal{PT} point interactions

Conclusions

Pseudo-Hermiticity without antilinear symmetry

Example

• $\{e_i\}_{-\infty}^{\infty}$ orthonormal basis of $\mathcal{H} = l^2(\mathbb{Z}), e_n(m) = \delta_{mn}$

•
$$Te_i := \begin{cases} \lambda_0 e_i + e_{i+1}, & i \ge 1, \\ 0, & i = 0, \\ \overline{\lambda}_0 e_{-1}, & i = -1, \\ \overline{\lambda}_0 e_i + e_{i+1}, & i < -1, \end{cases}$$

• $\lambda_0 \in \mathbb{C}, \text{ Im } \lambda_0 > \frac{1}{2}$

Introduction	Classes of operators				\mathcal{PT} point interactions	Conclusio
Pseudo-Hermiticity without antilinear symmetry						
Example						
• T =	$\left(\begin{array}{ccc} \ddots & & \\ \ddots & \overline{\lambda_0} \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{array}\right)$	$egin{array}{ccc} 0 & 0 \ \overline{\lambda_0} & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \end{array}$	$egin{array}{c} 0 \ 0 \ 0 \ \lambda_0 \ 1 \end{array}$	$egin{array}{c} 0 \ 0 \ 0 \ \lambda_0 \ \cdot \ \cdot \ . \end{array}$	·)	

- pseudo-Hermiticity $\eta = \mathcal{P}, \ \mathcal{P}e_i = e_{-i}$
- $\lambda_0 \in \sigma_r(T)$ but $\overline{\lambda_0} \in \sigma_p(T)$
- $|\lambda \lambda_0| < 1 \subset \sigma_p(T^*)$

Counterexamples

Counterexamples - properties

- both examples not spectral uncountable point spectrum
- AS+P-H \Rightarrow C-symmetric operator $\Rightarrow \sigma_r = \emptyset$

Related questions

- ? what are equivalent subclasses (AS, P-H)
- ? is AS+P-H related to existence of spectral decomposition?
 - ? at least for special classes of operators?
 - ? point interactions?

Classes of operators

 \mathcal{PT} point interactions

Conclusions

\mathcal{PT} -symmetric point interactions

Definitions of operators

• line $L^2(\mathbb{R})$ or finite interval (circle) $L^2(a, b)$

•
$$H = -\frac{\mathrm{d}^2}{\mathrm{d}x^2}$$

• $Dom(H) = AC^1 + boundary conditions at x = 0 or$

at x = a, b

Classes of operators

 \mathcal{PT} point interactions

Conclusions

\mathcal{PT} -symmetric point interactions

 $\mathcal{PT} ext{-symmetric boundary conditions 2002 Albeverio, Fei, Kurasov}$

$$\begin{pmatrix} \psi(0+) \\ \psi'(0+) \end{pmatrix} = B \begin{pmatrix} \psi(0-) \\ \psi'(0-) \end{pmatrix}$$
$$B = \begin{pmatrix} \sqrt{1+bc}e^{i\phi} & b \\ c & \sqrt{1+bc}e^{-i\phi} \end{pmatrix}, \quad b \ge 0, c \ge -1/b \\ \phi \in (-\pi, \pi]$$

System on a line - interaction at x = 0

Symmetries

- \mathcal{PT} -symmetry: $\mathcal{PT}H\psi = H\mathcal{PT}\psi, \forall \psi \in \text{Dom}(H)$
- \mathcal{P} -pseudo-Hermiticity: $H^* = \mathcal{P}H\mathcal{P}$
- \mathcal{T} -self-adjointness: $H^* = \mathcal{T}H\mathcal{T}$
- \mathcal{T} -complex conjugation, \mathcal{P} -parity

Spectrum

- residual part is empty $\sigma_r(H) = \emptyset$ 2008 Borisov, Krejčiřík
- continuous spectrum $\sigma_c(H) = [0, \infty)$
- $b \neq 0, c \neq 0$ point spectrum at most two eigenvalues real if $bc \sin^2 \phi \leq \cos^2 \phi$ or $bc \sin^2 \phi \geq \cos^2$ and $\cos \phi \geq 0$

2002 Albeverio, Fei, Kurasov

Special case b = 0, c = 0

Boundary conditions

$$\begin{split} \psi(0+) &= e^{\mathrm{i}\phi}\psi(0-)\\ \psi'(0+) &= e^{-\mathrm{i}\phi}\psi'(0-) \end{split}$$

Special cases

- $\phi = 0$ self-adjoint operator, no interaction $\psi(0+) = \psi(0-), \ \psi'(0+) = \psi'(0-)$
- $\phi \neq \pm \pi/2$ continuous spectrum $[0, \infty)$, no eigenvalues, quasi-Hermitian

•
$$\phi = \pm \pi/2$$
 - 'surprising' case
 $\psi(0+) = \pm i\psi(0-),$
 $\psi'(0+) = \mp i\psi'(0-)$

Special case $b = 0, c = 0, \phi \neq \pm \pi/2$

Quasi-Hermiticity

• H_{ϕ} is quasi-Hermitian:

$$\Theta H_{\phi}^{*}=H_{\phi}\Theta, \ \Theta, \Theta^{-1}\in \mathscr{B}(\mathcal{H}), \ \Theta>0$$

•
$$\Theta = I - i \sin \phi P_{\text{sign}} \mathcal{P}$$

 $(P_{\text{sign}} f)(x) = \text{sign} x f(x), \mathcal{P}\text{-parity}$

• similarity to s-a operator

$$\varrho = \sqrt{\Theta} = \cos \frac{\phi}{2}I - \frac{i \sin \phi}{2 \cos \frac{\phi}{2}}P_{\text{sign}}\mathcal{P}$$

Metric operator Θ

- spectrum only two eigenvalues $1-\sin\phi,\,1+\sin\phi$
- $\Theta > 0, \, \Theta^{-1} \in \mathscr{B}(\mathcal{H})$
- $\Theta H_{\phi}^* = H_{\phi} \Theta$ is valid
- Θ is not invertible if $\phi = \pm \pi/2$!

Special case $b = 0, c = 0, \phi \neq \pm \pi/2$

Quasi-Hermiticity

• H_{ϕ} is quasi-Hermitian:

$$\Theta H_{\phi}^{*}=H_{\phi}\Theta, \ \Theta, \Theta^{-1}\in \mathscr{B}(\mathcal{H}), \ \Theta>0$$

•
$$\Theta = I - i \sin \phi P_{\text{sign}} \mathcal{P}$$

 $(P_{\text{sign}} f)(x) = \text{sign} x f(x), \mathcal{P}\text{-parity}$

• similarity to s-a operator

$$\varrho = \sqrt{\Theta} = \cos \frac{\phi}{2}I - \frac{i \sin \phi}{2 \cos \frac{\phi}{2}}P_{\text{sign}}\mathcal{P}$$

Metric operator Θ

- spectrum only two eigenvalues $1-\sin\phi,\,1+\sin\phi$
- $\Theta > 0, \, \Theta^{-1} \in \mathscr{B}(\mathcal{H})$
- $\Theta H_{\phi}^* = H_{\phi} \Theta$ is valid
- Θ is not invertible if $\phi = \pm \pi/2$!

Classes of operators

 \mathcal{PT} point interactions

Conclusions

'Surprising' case $b = 0, c = 0, \phi = \pi/2$

Properties of $H_{\pi/2}$

- $\psi(0+) = i\psi(0-), \ \psi'(0+) = -i\psi'(0-)$
- $H_{\pi/2}$ is \mathcal{PT} -symmetric, \mathcal{P} -pseudo-Hermitian, \mathcal{T} -self-adjoint
- $H_{\pi/2}^* = H_{-\pi/2}, H_{\pi/2}$ is closed
- $\Theta H^*_{\pi/2} = H_{\pi/2}\Theta$
- $\Theta = I iP_{sign}\mathcal{P}, \, \Theta \ge 0, \, \Theta$ is not invertible !

$\operatorname{Spectrum}$ 2005 Albeverio and Kuzhe

- residual spectrum is empty
- continuous spectrum $[0,\infty)$
- point spectrum $\mathbb{C} \setminus [0,\infty)$

Classes of operators

 \mathcal{PT} point interactions

Conclusions

'Surprising' case $b = 0, c = 0, \phi = \pi/2$

Properties of $H_{\pi/2}$

- $\psi(0+) = i\psi(0-), \ \psi'(0+) = -i\psi'(0-)$
- $H_{\pi/2}$ is \mathcal{PT} -symmetric, \mathcal{P} -pseudo-Hermitian, \mathcal{T} -self-adjoint
- $H_{\pi/2}^* = H_{-\pi/2}, H_{\pi/2}$ is closed

•
$$\Theta H^*_{\pi/2} = H_{\pi/2}\Theta$$

• $\Theta = I - iP_{sign}\mathcal{P}, \, \Theta \ge 0, \, \Theta$ is not invertible !

Spectrum 2005 Albeverio and Kuzhel

- residual spectrum is empty
- continuous spectrum $[0,\infty)$
- point spectrum $\mathbb{C} \setminus [0,\infty)$

Classes of operators

 \mathcal{PT} point interactions

Conclusions

'Surprising' case $b = 0, c = 0, \phi = \pi/2$

Eigenfunctions of $H_{\pi/2}$

$$\psi_k(x) = \begin{cases} e^{kx}, & x < 0, \\ ie^{-kx}, & x > 0, \end{cases} \quad \varphi_k(x) = \begin{cases} e^{-kx}, & x < 0, \\ ie^{kx}, & x > 0, \end{cases}$$
$$\zeta_k(x) = \begin{cases} e^{-ikx}, & x < 0, \\ ie^{ikx}, & x > 0. \end{cases}$$

 $\psi_k \in L^2(\mathbb{R})$ for $\operatorname{Re} k > 0$, $\varphi_k \in L^2(\mathbb{R})$ for $\operatorname{Re} k < 0$, $\zeta_k \in L^2(\mathbb{R})$ for $\operatorname{Re} k = 0$ and $\operatorname{Im} k > 0$

Classes of operators 000000 \mathcal{PT} point interactions

Conclusions

Models on finite interval

Models on a finite interval (-l, l)

- $L^2(-l,l), H = -\frac{d^2}{dx^2}$
- $\operatorname{Dom}(H) = AC^1(-l, l)$
- 2 interactions at x = 0 and $x = \pm l$ 2 BC
- at x = 0 \mathcal{PT} -symmetric interaction b = 0, c = 0
- at $x = \pm l$ general \mathcal{PT} -symmetric interactions

Classes of operators

 \mathcal{PT} point interactions

Conclusions

Compact resolvent guaranteed?

Theorem (Kato)

Let $T_1, T_2 \in \mathscr{C}(\mathcal{H})$ have non-empty resolvent sets. Let T_1, T_2 be extensions of a common operator T_0 , with order of extension for T_1 being finite. Then T_1 has compact resolvent if and only if T_2 has compact resolvent.

Classes of operators

 \mathcal{PT} point interactions

Conclusions

Two \mathcal{PT} -symmetric interactions

\mathcal{PT} -symmetric interactions

$$\begin{split} \psi(0+) &= e^{\mathrm{i}\phi_1}\psi(0-) \\ \psi'(0+) &= e^{-\mathrm{i}\phi_1}\psi'(0-) \end{split}$$

$$\begin{pmatrix} \psi(l) \\ \psi'(l) \end{pmatrix} = B \begin{pmatrix} \psi(-l) \\ \psi'(-l) \end{pmatrix}$$

$$B = \begin{pmatrix} \sqrt{1 + b_2 c_2} e^{i\phi_2} & b_2 \\ c_2 & \sqrt{1 + b_2 c_2} e^{-i\phi_2} \end{pmatrix}$$

Two \mathcal{PT} -symmetric interactions

Spectrum

• discrete $(\lambda = k^2)$ if

•
$$\phi_1 \neq \pm \pi/2, \phi_2 \neq \pm \pi/2$$

• $\phi_1 \neq \pm \pi/2, \phi_2 = \pm \pi/2$ and $b_2 \neq 0$ or $c_2 \neq 0$

$$\cos\phi_1\left(\left(b_2k^2 - c_2\right)\sin 2kl + 2k\sqrt{1 + b_2c_2}\cos\phi_2\cos 2kl\right) + 2k\left(\sqrt{1 + b_2c_2}\sin\phi_1\sin\phi_2 - 1\right) = 0.$$

- empty if $\phi_1 = \pm \pi/2$ and $\sqrt{1 + b_2 c_2} \sin \phi_2 1 \neq 0$
- entire \mathbb{C} if $\phi_1 = \pm \pi/2$ and $\sqrt{1 + b_2 c_2} \sin \phi_2 1 = 0$

•
$$b_2 = c_2 = 0$$

- empty if $\phi_1 = \pm \pi/2$ and $\phi_2 \neq \pm \pi/2$
- entire \mathbb{C} if $\phi_1 = \phi_2 = \pm \pi/2$

Conclusions

Conclusions

- Antilinear symmetry is not equivalent to pseudo-Hermiticity
- Equivalent subclases are not determined
- \mathcal{PT} -symmetry, pseudo-Hermiticity, *C*-self-adjointness do not guarantee non-empty spectrum, countable point spectrum, spectral decomposition
- Examples of \mathcal{PT} -symmetric point interactions
 - line \mathbb{R} $\sigma = \mathbb{C}$, $\sigma_c = [0, \infty)$, $\sigma_p = \mathbb{C} \setminus [0, \infty)$
 - finite interval (-l, l) $\sigma = \emptyset$ versus $\sigma = \sigma_p = \mathbb{C}$

References

- 2002 Albeverio, Fei, Kurasov, LMP, Point Interactions: PT-Hermiticity and Reality of the Spectrum
- 2002 Solombrino, Weak pseudo-Hermiticity and antilinear commutant, quant-ph/0203101
- 2002 Scolarici, Solombrino, On the pseudo-Hermitian nondiagonalizable Hamiltonians, quant-ph/0211161
- 2005 Albeverio, Kuzhel, LMP, One-dimensional Schrdinger operators with *P*-symmetric zero-range potentials
- 2008 Siegl, JPA, Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop
- 2009 Albeverio, Gunther, Kuzhel, JPA, J-self-adjoint operators with C-symmetries: an extension theory approach
- 2009 Siegl, PRAMANA, The non-equivalence of pseudo-Hermiticity and presence of antilinear symmetry
- 2009 Siegl, 'Surprising' spectra of PT-symmetric point interactions, arXiv:0906.0226v1
- 2009 Kuzhel, Shapovalova, Vavrykovych, On J-self-adjoint extensions of the Phillips symmetric operator, arXiv:0907.3280v1