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PT-symmetry

o Hamiltonian —% + iz3 has real, positive, discrete spectrum
Bender, Boettcher 1998
@ original hypothesis - the reality of spectrum due to
PT-symmetry
o [PT,H]=0
o parity P, (P¢)(z) = ¢(-x)
o complex conjugation 7, (T¥)(z) = (x)
o PT-symmetry is not sufficient for reality of the spectrum
o some PT-symmetric operators are similar to the self-adjoint
ones
h=o0'Hp=h"
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Classes of operators

Antilinear symmetry

Let A € €(H). We say that A possesses an antilinear symmetry if

there exists an antilinear bijective operator C' and the relation
ACY = CAyY

holds for all ¢ € Dom(A).

o NE gy cr(A) = A€ Tpcr(A)
o example: C =PT, H= -, 4 V(z), V(—z) =V(x)

dz?
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Pseudo-Hermiticity

Let A € Z(H) be densely defined. A is called pseudo-Hermitian, if
there exists an operator n with properties

(i) myn~" € B(H),

(i) n=n"

(iii) A =n~1A*n.

© Oper(4) = 7pcr(A)
o example: 7 =P, H =~z +V(2), V(=2) = V()

o A is a self-adjoint operator in a Krein space [-,-]; = (J-, )

fundamental symmetry J = n|n|~*
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Relations between the operator classes

o finite dimension: antilinear symmetry < pseudo-Hermiticity
essential fact: C-symmetric operators
C antilinear isometric involution,
C? =1, (Cx,Cy) = (y,x), A=CA*C

e assumption of spectral decomposition (spectral operators of
scalar and finite type): AS < P-H

2002 Scolarici, Solombrino, 2009 Siegl

e bounded operators AS is not equivalent to P-H !

2009 Siegl
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Classes of operators
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Antilinear symmetry without pseudo-Hermiticity

o {e, 52, standard orthonormal basis of H = l3(N), e, (m) = dmn
o Tey,:=ep_1, NE€N, e:=0

o T™en :=e€nt1, NE€N
1 0

o O o O
e e a8

S O = O
_ o O O

0
1
0

o antilinear symmetry T

for |A| <1, A € 0p(T) but X € o,.(T™)

©
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Classes of operators
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Pseudo-Hermiticity without antilinear symmetry

o {e;}> orthonormal basis of H = I*(Z), ex(m) = 6mn
Ao +e€iy1, ©2>1,
0, i=0,
Xoe_l, 1= —1,
Xoe; + eir1, i< —1,

(] Tei =

) )\()G(D, Im)\0>%
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Classes of operators
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Pseudo-Hermiticity without antilinear symmetry

X 0 0 0 0
1 X% 0 0 0
o T = 0 0 0 0 0
0 0 0 X O
0 0 0 1 X

o pseudo-Hermiticity n =P, Pe; = e_;
o A\ € a,.(T) but g € 0,(T)
o [A—Xo| <1Co,(T%)
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Introduction Classes of operators
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Counterexamples

@ both examples - not spectral - uncountable point spectrum

o AS+P-H = C-symmetric operator = o, = ()

? what are equivalent subclasses (AS, P-H)
7 is AS+P-H related to existence of spectral decomposition?

7 at least for special classes of operators?

? point interactions?
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PT point interactions

PT-symmetric point interactions

o line L?(R) or finite interval (circle) L?(a, b)

e Dom(H) = AC' + boundary conditions at z = 0 or

at x =a,b
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PT point interactions

PT-symmetric point interactions

B V1 + beel® b b>0,c>-1/b
c V1 + bee ¢ ¢ € (—m,
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System on a line - interaction at x = 0

o PT-symmetry: PTHy = HPTy, Vi) € Dom(H)
o P-pseudo-Hermiticity: H* = PHP
o T-self-adjointness: H* = THT

e T-complex conjugation, P-parity

e continuous spectrum o.(H) = [0, 00)

@ b#0,c# 0 point spectrum - at most two eigenvalues
real if besin? ¢ < cos? ¢ or besin? ¢ > cos? and cos ¢ > 0

2002 Albeverio, Fei, Kurasov

Petr Siegl



PT point interactions

Special case b =0,c =0

$(0+) = e4(0-)
¥'(0+) = e~ ¥9’(0-)

o ¢ = 0 - self-adjoint operator, no interaction
P(0+) = 9(0-), ¥'(0+) = ¢'(0-)

® ¢ # +m/2 - continuous spectrum [0, 00), no
eigenvalues, quasi-Hermitian

o ¢ = +m/2 - ’surprising’ case
P(04) = +ip(0-),
P'(0+) = Fiy)'(0-)
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Special case b=0,c¢ =0, ¢ # +7/2

o H, is quasi-Hermitian:

OH; = Hy40, 6,07 € B(H), © >0
0 © =1 —isin@FsjgnP

(Psign f) (z) = signz f(x), P-parity
o similarity to s-a operator

0= \/@ = COS %I — iSin(%PSign,P

2 cos
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Special case b=0,c¢ =0, ¢ # +7/2

o H, is quasi-Hermitian:

OH; = Hy40, 6,07 € B(H), © >0
0 © =1 —isin@FsjgnP
(Psignf) (x) = signz f(z), P-parity
similarity to s-a operator
0= \/@ = COS %I - iSin(%Psign,P

(]

2 cos

(]

spectrum - only two eigenvalues 1 — sin ¢, 1 + sin ¢
00>0,0"te BH)

OH; = HyO is valid

O is not invertible if ¢ = £7/2 |

©

©
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PT point interactions

’Surprising’ case b =0,c =0, ¢ = 7/2

(4

P(0+) = ip(0-), ¥'(04) = —iy’(0-)
Hy /o is PT-symmetric, P-pseudo-Hermitian, 7-self-adjoint

(4

(]

H;’;/Q = H_; /2, Hy /o is closed

@H;/2 = Hy /20
0 ©=1—-iP;,P, © >0, O is not invertible !

(]
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’Surprising’ case b =0,c =0, ¢ = 7/2

(4

P(0+) = ip(0-), ¥'(04) = —iy’(0-)
Hy /o is PT-symmetric, P-pseudo-Hermitian, 7-self-adjoint

(4

(]

@H;:/2 = H; /20
0 ©=1—-iP;,P, © >0, O is not invertible !

H”‘/2 = H_; /2, Hy /o is closed

(]

(]

residual spectrum is empty

e continuous spectrum [0, o)

©

point spectrum C \ [0, c0)
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’Surprising’ case b =0,c =0, ¢ = 7/2

kx —kx
e™, =<0, e, x<0,
B) = (x) =
vile) { ie k2 >0, ex(@) { iek* x>0,

, <0,
G(a) = { ie** x> 0.

¢ € L*(R) for Rek > 0, ¢y, € L*(R) for Rek < 0,
¢k € L2(R) for Rek =0 and Imk > 0
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Models on finite interval

L3(-L1), H= -2,

Dom(H) = ACY(—1,1)
2 interactions - at £ = 0 and x = £[ - 2 BC

(]

(]

(]

©

at x = 0 - PT-symmetric interaction b = 0,¢ =0

©

at x = £l - general PT-symmetric interactions
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Compact resolvent guaranteed?

Let Th, Ty € €(H) have non-empty resolvent sets. Let Ty, Ty be
extensions of a common operator Ty, with order of extension for Ty

being finite. Then Ty has compact resolvent if and only if Ts has
compact resolvent.
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PT point interactions

Two PT-symmetric interactions

$(0+) = *11p(0-)
¥(0+) = e*19/(0-)

B— vV 1+ b262€i¢2 bg
Co v1+ b202€7i¢2
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PT point interactions

Two PT-symmetric interactions

(]

discrete (A = k?) if

o ¢1 # £m/2,¢2 # £7/2
o 1 # +mw/2, o =t7/2 and by Z 0 or c2 # 0

COS (1 ((b2k2 — 02) sin 2kl + 2k+/1 + bacs cos ¢ cos 2I<:l) +
+2k (\/1 + baco sin ¢1 sin o — 1) = 0.

empty if ¢; = £7/2 and /1 + bacasings — 1 # 0
entire C if ¢y = +7/2 and /1T + bacasingy — 1 =0
bo=c3=0

o empty if ¢1 = £7/2 and ¢2 # +7/2

o entire C if ¢p1 = ¢po = £7/2

(]

(]

©

Petr Siegl



Introduction PT

point interactions Conclusions

Conclusions

(]

Antilinear symmetry is not equivalent to pseudo-Hermiticity

©

Equivalent subclases are not determined

©

PT-symmetry, pseudo-Hermiticity, C-self-adjointness do not
guarantee non-empty spectrum, countable point spectrum,
spectral decomposition

o Examples of PT-symmetric point interactions

o lineR-0=C, o.=[0,00), 0p =C [0, 00)

o finite interval (—I,1) - 0 = 0 versus 0 = 0, = C
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Conclusion:
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