Influence of X-ray radiation on hot-star wind models

Jiří Krtička, Jiří Kubát

Total Solar Eclipse 2005

© 2005 Miloslav Druckmüller, Fred Espenak, ESA/NASA

X-ray radiation

Properties of X-ray radiation

- \Rightarrow frequency: $3 \cdot 10^{16} 3 \cdot 10^{19}$ Hz
- \Rightarrow wavelength: 0,01 10 nm
- \Rightarrow energy: 0,1 100 keV

X-ray radiation

Properties of X-ray radiation

- \Rightarrow frequency: $3 \cdot 10^{16} 3 \cdot 10^{19}$ Hz
- \Rightarrow wavelength: 0,01 10 nm
- \Rightarrow energy: 0,1 100 keV
- \Rightarrow black body temperature: $3 \cdot 10^5 3 \cdot 10^8$ K

X-ray radiation

Properties of X-ray radiation

- \Rightarrow frequency: $3 \cdot 10^{16} 3 \cdot 10^{19}$ Hz
- \Rightarrow wavelength: 0,01 10 nm
- \Rightarrow energy: 0,1 100 keV
- \Rightarrow black body temperature: $3 \cdot 10^5 3 \cdot 10^8$ K
- \Rightarrow thermal velocities of protons: $200 5000 \,\mathrm{km}\,\mathrm{s}^{-1}$

Flux from the spherically symmetric H-He model atmosphere $T_{\rm eff}=31\,400\,{\rm K},\,M=15\,{\rm M}_{\odot},\,R=4.9\,{\rm R}_{\odot}$ (au Sco, Kubát 2003)

Flux from the spherically symmetric H-He model atmosphere $T_{\rm eff}=31\,400\,{\rm K},\,M=15\,{\rm M}_{\odot},\,R=4.9\,{\rm R}_{\odot}$ (au Sco, Kubát 2003)

Flux from the spherically symmetric H-He model atmosphere $T_{\rm eff} = 31\,400$ K, M = 15 M $_{\odot}$, R = 4.9 R $_{\odot}$ (τ Sco, Kubát 2003)

- ⇒ X-ray flux emergent from the (static) hot star atmospheres negligible (with a possible exception of extremely hot white dwarfs)
- \Rightarrow hot stars should not emit any X-ray radiation

au Sco: $L_{\rm X}/L \approx 3 \cdot 10^{-7}$ (Berghöfer et al. 1996)

The simplest source of X-rays

▷ hot stars have stellar wind (accelerated due to the line transitions of heavier elements) with typical velocities $\approx 1000 \, \text{km s}^{-1}$

The simplest source of X-rays

The simplest source of X-rays

 $T=2\cdot 10^7\,{
m K}$

 influence of global (dipole) magnetic field (e.g., Babel & Montmerle 1997, ud-Doula & Owocki 2002)

postshock region emitting X–rays

 collisions of wind streams due to the binarity (e.g., Prilutskii & Usov 1976, Luo et al. 1990, Pittard 1998)

 \Rightarrow influence of the wind instabilities

 \Rightarrow influence of the wind instabilities

 \Rightarrow influence of the wind instabilities

> numerical simulations (Runacres & Owocki 2002)

X-ray spectrum of ζ Pup (Chandra)

X-ray spectrum of τ Sco (Chandra)

- dominated by lines of highly ionized elements
- originate in the shocks in the stellar wind (small part of wind material)
- ambient cool wind is optically thick in continuum, but optically thin in lines (!)

	realistic model	
hydro	2D/3D	
	$rac{\partial}{\partial t} eq 0$	
RTE	2D/3D	
	CMF	
state	NLTE	

- very complicated problem: NLTE + RTE influence the radiative force (due to the lines) → hydrodynamics
- hydrodynamics influences NLTE + RTE

- \Rightarrow hydro simulations (e.g., Feldmeier et al. 1997, Runacres & Owocki 2002, Votruba et al. 2007)
- ⇒ enable to predict wind structure (clumping), emergent X-ray emission
- ⇒ do not provide *ab initio* wind parameters (e.g., mass-loss rate)

- ⇒ radiative transfer solution in moving media (e.g., Hillier & Miller 1998, Korčáková & Kubát 2005)
- \Rightarrow enable to predict wind spectra
- ⇒ do not provide *ab initio* wind parameters (e.g., mass-loss rate)

	realistic model	
hydro	2D/3D	
	$rac{\partial}{\partial t} eq 0$	
RTE	2D/3D	
	CMF	
state	NLTE	

- ⇒ formidable task, beyond the possibilities of present computers (?)
- ⇒ selfconsistent wind models without any free parameters
- ⇒ provide mass-loss rates, velocity profiles, correct wind line profiles, X-ray emission, ...

	realistic model	Krtička & Kubát (2004)
hydro	2D/3D	1D
	$rac{\partial}{\partial t} eq 0$	stationary
RTE	2D/3D	1D
	CMF	Sobolev
state	NLTE	NLTE

- ⇒ selfconsistent wind models without any free parameters
- ⇒ provide mass-loss rates, velocity profiles, but not the X-ray emission

	realistic model	Krtička & Kubát (2004)
hydro	2D/3D	1D
	$rac{\partial}{\partial t} eq 0$	stationary
RTE	2D/3D	1D
	CMF	Sobolev
state	NLTE	NLTE

- ⇒ selfconsistent wind models without any free parameters
- ⇒ provide mass-loss rates, velocity profiles, but not the X-ray emission
- ⇒ what is the influence of wind inhomogeneities (clumping) and X-rays on the NLTE wind models?

Mass-loss rate determination:

theoretical mass-loss rates: Pauldrach et al. (2001), Vink et al. (2001), Puls et al. (2003), Krtička & Kubát (2004) → enable ab initio prediction of mass-loss rates Mass-loss rate determination:

- theoretical mass-loss rates: Pauldrach et al. (2001), Vink et al. (2001), Puls et al. (2003), Krtička & Kubát (2004) → enable ab initio prediction of mass-loss rates
- mass-loss derived from observations: Bouret et al. (2003), Martins et al. (2005), Puls et al. (2006), Fullerton et al. (2006) → derived by analysis of observational data

Mass-loss rate determination:

- theoretical mass-loss rates: Pauldrach et al. (2001), Vink et al. (2001), Puls et al. (2003), Krtička & Kubát (2004) → enable ab initio prediction of mass-loss rates
- mass-loss derived from observations: Bouret et al. (2003), Martins et al. (2005), Puls et al. (2006), Fullerton et al. (2006) → derived by analysis of observational data
- \Rightarrow theoretical mass-loss rates may be 10× higher than the predicted ones!

Influence of X-ray radiation on the wind structure

- hot star wind emit X-ray radiation
- ⇒ X-ray radiation influences the wind ionization balance (MacFarlane et al. 1994, Pauldrach et al. 2001)
- ⇒ may the modified ionization balance influence wind parameters (wind mass-loss rate, terminal velocity)?

(Krtička & Kubát 2004)

- spherically symmetric stationary wind models
- radiative force calculated using the solution of the statistical equilibrium equations
- wind density, velocity and temperature structure derived from hydrodynamical equations
- = enable to predict \dot{M} , v_{∞} , but not L_{x}
radiative transfer equation

Continuum radiative transfer equation

$$\mu rac{\partial I(r,
u,\mu)}{\partial r} + rac{1-\mu^2}{r} rac{\partial I(r,
u,\mu)}{\partial \mu} = \eta - \chi I(r,
u,\mu),$$

- neglect of the wind movement
- $I(r,\nu,\mu)$ is the specific intensity
- $\mu = \cos \theta$, θ is the angle, ν is the frequency
- $\chi(r,\nu,\mu)$, $\eta(r,\nu,\mu)$ are absorption and emission coefficients
- solution using Feautrier method

Solution using the Sobolev approximation

$$ar{J}_{ij} = (1-eta)S_{ij} + eta_c I_c,$$

- $\bar{J}_{ij} = \int_0^\infty d\nu \int_{-1}^1 d\mu \phi_{ij}(\nu) I(r,\nu,\mu)$ is the mean intensity, $\phi_{ij}(\nu)$ is the line profile,
- $I_c \text{ is the stellar specific intensity,}$ $\beta = \frac{1}{2} \int_{-1}^1 \mathrm{d}\mu \frac{1-e^{-\tau\mu}}{\tau_{\mu}}, \beta_c = \frac{1}{2} \int_{\mu_*}^1 \mathrm{d}\mu \frac{1-e^{-\tau\mu}}{\tau_{\mu}},$ $\mu_* = \left(1 - R_*^2/r^2\right)^{1/2},$

source function $S_{ij} = \eta_{ij}/\chi_{ij}$.

Number density of atoms (ions) N_i in the state i is given by

$$\sum_{j
eq i} N_j P_{ji} - N_i \sum_{j
eq i} P_{ij} = 0.$$

- P_{ij} are rates of transition from *i* to *j*
- P_{ij} is the sum of the radiative excitation and deexcitation rates, radiative ionization and recombination rates and corresponding collisional processes

H1-11	He I-III	CI-IV	N I-IV
0 I-IV	Ne I-IV	Na I-III	Mg II-I∨
Al I-V	Si II-V	SII-V	Ar III-IV
Ca II-IV	Fe II-V	Ni II-∨	

- model atoms are taken mostly from TLUSTY code (Hubeny & Lanz 1992, 1995)
- the original set is extended using data from Opacity Project and Iron Project

- hot stars emit X-ray radiation (e.g., Berghöfer et al. 1996)
- X-ray radiation is the result of the presence of the wind instabilities (Owocki et al. 1988, Feldmeier et al. 1997)

- hot stars emit X-ray radiation (e.g., Berghöfer et al. 1996)
- X-ray radiation is the result of the presence of the wind instabilities (Owocki et al. 1988, Feldmeier et al. 1997)
- approximate inclusion of the X-ray radiation (Pauldrach et al. 1994)

part of the stellar wind heated to a very high temperature T_x has the density

 $f_{\mathsf{X}}
ho$

(f_x is a fraction of hot material, ρ is the density of ambient wind)

part of the stellar wind heated to a very high temperature T_x has the density

 $f_{\mathsf{X}}
ho$

shock temperature T_x given by the Rankine-Hugoniot condition

part of the stellar wind heated to a very high temperature T_x has the density

 $f_{\mathsf{X}}
ho$

- shock temperature T_x given by the Rankine-Hugoniot condition
- the shock velocity difference is

 $u_{ extsf{x}} = u_{ extsf{rel}} v_r$

 v_r is the radial wind velocity

part of the stellar wind heated to a very high temperature T_x has the density

 $f_{\mathsf{X}}
ho$

- shock temperature T_x given by the Rankine-Hugoniot condition
- the shock velocity difference is

 $u_{ extsf{x}} = u_{ extsf{rel}} v_r$

• f_x and u_{rel} are free parameters

part of the stellar wind heated to a very high temperature T_x has the density

 $f_{\mathsf{X}}
ho$

- shock temperature T_x given by the Rankine-Hugoniot condition
- the shock velocity difference is

$$u_{\mathsf{X}} = u_{\mathsf{rel}} v_r$$

• the shock emissivity is $\eta_{X}(\nu) = n_{e,X}^2 \Lambda_{\nu}(T_X) / (4\pi)$ where $n_{e,X}$ is the electron number density, $\Lambda_{\nu}(T_X)$ calculated after Raymond & Smith (1977) presence of the X-ray radiation

- ⇒ Auger ionization may modify the ionization balance (Cassinelli & Olson 1979, Olson & Castor 1981, MacFarlane et al. 1994, Pauldrach et al. 1994)
- \Rightarrow inclusion of the Auger ionization into the models

Auger ionization

Auger ionization term in the statistical equilibrium equations

$$\sum_{j>i} N_i A_{ij}^{\mathsf{Auger}}$$

• Auger ionization rate A_{ij}^{Auger} is

$$A_{ij}^{\mathsf{Auger}} = a_{\mathsf{ion}(i)\mathsf{ion}(j)}A_{\mathsf{ion}(i)}^{\mathsf{Auger}}$$

 $a_{ion(i)ion(j)}$ is probability of a given process, $A_{ion(i)}$ is the inner shell ionization cross-section

Auger ionization term in the statistical equilibrium equations

$$\sum_{j>i} N_i A_{ij}^{\mathsf{Auger}}$$

 ionization cross-section are taken from Verner & Yakovlev (1995), probabilities are from Kaastra & Mewe (1993) continuity equation

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^{2}\rho v_{r}\right)=0 \Rightarrow \dot{M}=4\pi r^{2}\rho v_{r}=\mathrm{const.}$$

• ρ is the wind density

• v_r is the radial velocity

equation of motion

$$v_r rac{\mathrm{d} v_r}{\mathrm{d} r} = g^{\mathsf{rad}} - g - rac{1}{
ho} rac{\mathrm{d}}{\mathrm{d} r} \left(a^2
ho
ight)$$

g is the gravity acceleration
a is the isothermal sound speed
g^{rad} = g^{rad}_{lines} + g^{rad}_{el} is the radiative acceleration
g^{rad}_{lines} = \frac{8\pi}{\rho c^2} \frac{v_r}{r} \sum_{lines} \nu H_c \int_{\mu_c}^1 d\mu \mu (1 + \sigma \mu^2) (1 - e^{-\tau_\mu})

energy equation

$$rac{3}{2}v_r
horac{\mathrm{d}a^2}{\mathrm{d}r}+rac{a^2
ho}{r^2}rac{\mathrm{d}}{\mathrm{d}r}\left(r^2v_r
ight)=Q^{\mathsf{rad}}$$

 Q^{rad} is the radiative heating/cooling calculated using the thermal balance of electrons method (Kubát et al. 1999)

Studied stars

hot O stars

parameters taken from Lamers et al. (1995), Repolust et al. (2004), Markova et al. (2004), Martins et al. (2005)

 X-ray flux measured by the satellites ROSAT (Berghöfer a kol. 1996), Einstein (Chlebowski & Garmany 1991), Chandra (Evans a kol. 2003)

Studied stars

Star	HD	Sp. type	$R_{*} \; [R_{\odot}]$	$M~[M_{\odot}]$	$T_{ m eff}~[{\sf K}]$
	93204	O5V	11.9	41	40 000
	54662	07111	11.9	38	38 600
λ Cep	210839	O6lab	19.6	51	38 200
	42088	O6.5V	9.6	31	38 000
15 Mon	47839	O7Ve	9.9	32	37 500
63 Oph	162978	O8III	16.0	40	37 100
λ Ori A	36861	O8 III	12.3	30	36 000
	152590	07.5V	6.4	22	36 000
ξ Per	24912	O7.5Ille	14.0	36	35 000
68 Cyg	203064	O8e	15.7	38	34 500
μ Col	38666	09.5V	6.6	19	33 000
	46202	O9V	8.4	21	33 000
19 Cep	209975	O9lb	22.9	47	32 000
ζ Oph	149757	O9V	8.9	21	32 000
ιOri	37043	09111	21.6	41	31 400
lpha Cam	30614	09.5la	27.6	43	30 900

ROSAT (Berghöfer et al. 1996)

selected stars:

- for most stars $f_{\rm X} \approx 10^{-3} 10^{-2}$, $u_{\rm rel} = 0.3$
- \Rightarrow X-ray emission can be expained by the wind instabilities

selected stars:

- for some stars $f_{\sf X}\gtrsim 0.1$
- \Rightarrow another processes (binarity, magnetic fields)?

star HD 210839, $T_{\rm eff} = 38\,200\,{\rm K}$

star HD 210839, $T_{\rm eff} = 38\,200\,{\rm K}$

 \Rightarrow enhanced N \lor ionization fraction just due to direct ionization

star HD 210839, $T_{\rm eff} = 38\,200\,{\rm K}$

star HD 30614, $T_{\rm eff} = 30\,900\,{\rm K}$

Infuence of X-rays on the ionization fractions for $v pprox v_{\infty}$

 \Rightarrow much better agreement between observations (Massa et al. 2003) and theory with inclusion of X-rays

Infuence of X-rays on the ionization fractions for $v pprox v_{\infty}$

 \Rightarrow much better agreement between observations (Massa et al. 2003) and theory with inclusion of X-rays

Infuence of X-rays on the ionization fractions for $v pprox v_{\infty}$

 \Rightarrow still significant discrepancy between observations (Massa et al. 2003, Fullerton 2006) and theory
Influence of X-rays emission on the wind mass-loss rate

 \Rightarrow X-rays influence the ionization state only in the outer wind regions \Rightarrow influence of X-rays on the mass-loss rate negligible

Influence of X-rays emission on the wind terminal velocity

 \Rightarrow X-rays may influence the terminal velocity, especially for cooler stars

Conclusions

- hot stars have X-ray emission due to wind instabilities
- X-rays influence the wind ionization state and the terminal velocity
- incluse of X-rays improve the agreement between the observations and theory, but some problems still remain