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We describe a chemometric method to determine equilibrium 
constants with high accuracy from spectroscopic titrations. 
Knowledge of component spectra Is not required for the 
analysis, and titrations can be analyzed even when the titration 
end points are not reached. I n  fact, the component spectra 
are determined in the analysis. The analysis is based on a 
decomposition of the recorded spectra into a product of target 
and projection matrices using NIPALS. The matrices are 
then rotated to give the correct concentrations and spectral 
profiles of the components utilizing the functional form of the 
equilibrium expression. The output of the analysis is the 
equilibrium constant and the component spectral profiles. The 
analysis is highly accurate and can be performed on a standard 
personal computer. As examples, we determine the protoiytic 
constant for the equilibrium between the anionic and dianionic 
forms of fluorescein in aqueous solution and the dimerization 
constant of benzoic acid in *heptane. 

INTRODUCTION 

Spectroscopic methods are in general highly sensitive and 
are as such suitable for studying chemical equilibria in 
solution. When the components involved in the chemical 
equilibrium have distinct spectral responses, their concen- 
trations can be measured directly, and the determination of 
the equilibrium constant is trivial. However, in many cases, 
the spectral responses of two and sometimes even more 
components overlap considerably and the analysis is no longer 
straightforward. The common approach has been single-point 
measurements at a wavelength where one component dom- 
inates the spectral response and the contributions from other 
components are neglected. The single-point measurements 
are usually made at the edge of an absorption band, where 
the spectral overlap is least. However, here the spectral 
response is much lower than at the absorption maximum, 
and the noise level may be considerable. 
Rg chemometric methods (see, for example, ref 1)  one can 

analyze whole spectra. thereby utilizing all spectral infor- 
mation, ‘The approach is superior to any single-point 
measurement since several hundreds of data points per 
spectrum can be treated simultaneously. A problem with 
chemometric methods, though, is that they primarily provide 
nonphysical results, which may be difficult and sometimes 
Impossible to transform into something physically meaningful. 
The special case with two overlapping spectral components 
wa5 discussed by Lawton and Sylvestre,2 who provided a 
graphical method to limit the solutions to those where spectra 
and concentrations are all positive. Their approach has been 
extended to more components, which, however, requires 
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rather advanced programming. A problem with the nonne- 
gative criterion is that the analysis is very sensitive to noise, 
which can always be negative, and methods to relax this 
criterion have been de~eloped .~  Another disadvantage is that 
spectra that may be negative, such as dichroism and difference 
spectra, cannot be analyzed. Finally, we recall that these 
methods do not provide a unique answer, but merely limit 
the number of solutions to those with nonnegative elements. 

For systems where two correlated spectra can be recorded 
on each sample, we have developed a method based on 
Procrustes rotation to determine the component spectral 
profiles and concentrations in all samp1es.j The Procrustes 
rotation approach is highly accurate6 and has been successfully 
applied to various systems (see, for example,ref 7 ) .  However, 
two suitably correlated spectra cannot always be recorded on 
the samples, and additional information is required to 
determine the component spectral profiles and concentrations. 

For components in a chemical equilibrium, this additional 
information may be the functional form of the equilibrium 
expression. In this paper we describe how knowledge of the 
equilibrium expression can be used to transform the result 
of a chemometric analysis into concentrations and spectral 
profiles of the components. The method is particularly 
powerful for systems of lower complexity such as protolytic 
equilibria, dimerization reactions and complex formation 
between two molecules. 

THEORY 
Spectral responses are in general linear, and the spectrum 

of a component mixture is the sum of the contributions from 
the components (scalars are shown in lower case letters, vectors 
in bold lower case letters, and matrices in bold upper case 
letters. Transpose of a matrix is indicated by ’): 

where a(X) is the sample spectrum, r is the number of 
components, c, is the concentration of component i ,  and v,(X) 
is its spectrum normalized to unit concentration. In a titration 
experiment a series of spectra are recorded: 

a,(h) = C r , , v , ( ~ )  = 1. n )  or A = cv (2) 

where a,(X) is the spectrum of sample, j ,  c,, is the concentration 
of component i in sample j, and n is the number of samples. 
In matrix notation A is an n X m matrix containing the n 
recorded spectra, each digitized into m data points, as rows. 
C is an n x r matrix containing the concentration profiles of 
the components as columns, and V is an r x m matrix 
containing the normalized spectral responses as rows. The 
problem is to determine the c,,’s. 

i = 1  
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Vectors Ct, (CH+Ct) and (CH+tl), and Ct, (cH+ct) and (cH+t2), 
respectively, where the product vectors are multiplied element 
by element, gives the regression coefficients rll, q&, -K, 
and rZ1, r22Ka, -K,. From these the four elements of matrix 
R and the equilibrium constant K, can be calculated. The 
fit is preferably made globally, ensuring that a unique value 
of K, is determined (see Appendix). 

The component concentrations and spectral profiles are 
then calculated using matrix R 

If the spectral responses of the pure components, the vi(h)’s, 
are known, which is the case when the titration end points 
are reached, the determination of the cli)s is trivial. However, 
if they are not known, the information in the recorded spectra 
is not sufficient to determine the concentrations. 

Matrix A can be decomposed into an orthonormal basis set 
using, for example, NIPALS (see Appendix): 

A = TP’+ E (3) 
T has the same dimensions as C; its columns are referred to 
as target vectors, and they are orthogonal linear combinations 
of the columns in C. P’ has the same dimensions as V its 
rows are referred to as projection vectors, and they are 
orthonormal linear combinations of the rows in V. Matrix 
E is a residual matrix containing the difference between the 
experimental data and the features accounted for by the first 
principle components (the number of principle components 
should be the number of spectroscopically distinguishable 
components in the samples). Provided that the spectral 
responses of the components dominate the recorded spectra 
(i.e., being significantly larger than the experimental noise 
and any base-line artifacts), matrix E contains only noise. I t  
is therefore discarded and not used in further analysis. 

The correlations between T and C and between P’ and V 
are related. Neglecting noise and experimental artifacts 

(4) 

T = C R  (5) 
p’ = R-’V (6) 

where R is a square r X r matrix. Its elements are unknown 
and cannot be determined without further information. 

ProtolyticEquilibria. Considertheprotolyticequilibrium: 

A + H+ F! AH+ (7) 
The elements of R, which in this case is a 2 X 2 matrix, can 
be determined by requiring that the concentrations should 
satisfy the equilibrium expression 

[AH+]/[Al[H+l = K = K;’ (8) 

Using the equilibrium relation, the concentrations of the two 
protolytic forms can be written 

TP’ = CV = A 
In matrix notation, the correlations are 

K 

[AI, 
1 + K[H+l 

[AI = 

[AH+] + KIH+l [A], 
1 + K[H+] 

where [AIt = [A] + [AH+] is the total concentration of A. 
Inserting the concentrations of the protolytic forms into eq 
5 

where tl and t z  are the first and second columns of matrix T 
and CH+ and ct are vectors containing the known proton 
concentrations and total concentrations of A, respectively. 
Equations 11 and 12 are rearranged to 

c = TR-~ 
V = RP’ 

(15) 
(16) 

Other Equilibria. For a general equilibrium the equi- 
librium expression may be more complex. Still, one can relate 
the component concentrations to total concentrations and 
the equilibrium constant and analyze the titration by the 
same approach. Consider the dimerization reaction 

KD 
2A e A, 

where 

EA21/[A12 = KD (18) 
The component concentrations expressed in terms of the total 
concentration of A, [AIt = [AI + ~ [ A z ] ,  and the equilibrium 
constant, are equations of second order: 

[AI = -(ND)-’ (’) ((ND)-’ + [ A l t / ~ ~ ) ’ ’ ~  (19) 

[A21 = 

[AI, + ( N D ) - l  (+) (([AI, + (4K,)-’)’ -- [y,Z)l’’ (20) 
2 

- 2 
The concentration vectors CA and C A ~  are inserted into eq 5 
to give 

(21) 

(22) 

The regression with respect to the total concentration is 
nonlinear, and KD is preferably determined by a stepwise 
search. Concentration vectors, CA and C A ~ ,  are calculated for 
different values of KD and fitted to the target vectors. The 
best value of KD will give the best fit, as determined by x2, 

and the elements of R are the regression coefficients for this 
value of KD. 

The same method can be applied when more components 
are involved in the equilibrium, though the number of linear 
equations to be solved increases. Consider the complex 
formation of two molecules: 

tl = r l l C A  + r12cA, 

t2 = ‘2lCA + r22cA, 

K 
(YA + BB F! A,B, 

where 

[A,B,I/[Ala[BIB = K (24) 
If the three components have overlapping spectra the relation 
between the target and concentration vectors are 

tl = rllCA + r12CAB + ‘13’B (25) 
t2 = ‘2lCA + ‘2ZCAB + r23cB (26) 

t3 = r31cA + r32CAB + r33cB (27) 
As previously, the concentration vectors are calculated from 
the equilibrium expression and the known total concentra- 
tions, [AIt = [AI + cu[A,Bpl and [Bit = [Bl + B[A,Bbl, for 
different values of the equilibrium constant and fitted to the 
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Figure 1. Absorption spectra of fluorescein at pH 5.56, 5.88, 6.19, 
6.60,6.84,7.12,7.46,7.78,8.09, and 8.93 (from low to highabsorption 
of the main peak around 490 nm). The total fluorescein concentration 
In ail samples was 1 1.7 FM, assuming a molar absorptivity of 87 600 
M-’ cm-I of the dianionic species.14 
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Figure 2. The three most significant projection vectors calculated by 
NIPALS for the titration data in Figure 1. The orthonormal projection 
vectors have been scaled with the lengths of the corresponding target 
vectors to obtain magnitudes that reflect their significance. The third 
projection vector is seen to be insignificant relative to the first two (it 
follows the base line), providing evidence that only two spectroscopically 
distinguishable components contribute to the absorption spectra. 

target vectors. The best fit determines K and the elements 
of R. 

It is worth noting that if there is a spectral region where 
only two components contribute, the problem will simplify 
to two linear equations if the analysis is restricted to this 
region. 

EXAMPLES 

Determination of a Protolytic Constant. As an example 
we determine the protolytic constant for the equilibrium 
between the fluorescein anion and dianion from absorption 
spectra of a protolytic titration. The protolytic forms of 
fluorescein in aqueous solution are the cation, neutral, anion, 
and dianion.* The different pK, values are rather close, and 
the neutral and anionic species cannot be obtained in pure 
forms. Consequently, in a titration attempting to determine 
the protolytic constant between the anionic and dianionic 
species, the lower titration end point cannot be reached. Figure 
1 shows absorption spectra of fluorescein measured between 
pH 5.56 and 8.93. In this pH range the concentration of the 
neutral species is negligible, as is evident from the many 
isosbestic points. 

The recorded spectra were digitized into 951 data points 
each and arranged in a data matrix A. The two most 
significant target (tl and t 2 )  and projection vectors (pl’ and 
p2’) were calculated by NIPALS (Figure 2). These vectors 
have no immediate physical significance, since they are 
unknown linear combinations of the component concentration 
and spectral profiles. 
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Figure 3. Calculated spectral profiles for fluorescein anion (--) and 
dianlon (-). 
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Figure 4. Best fit of calculated concentrations (normalized to unit total 
concentration) of fluorescein anion (0) and dianion (A) to the 
concentration dependence predicted by the protolytic equilibrium 
equation (solid lines, pK, = 6.44). 

The two target vectors were fitted globally to the vectors 
ct, (CHwt) ,  (CH+tl) ,  and (CH+t2) to give K, and the elements of 
matrix R (eqs 13 and 14). K, was determined to 3.6 X 
M-l, which corresponds to pK, = 6.44. Matrix R, 

was used to calculate the component spectral and concen- 
tration profiles (eqs 5 and 6). The spectrum of the dianionic 
species (Figure 3) was essentially identical to the spectrum 
recorded at  the highest pH of the titration, as expected, since 
the upper titration end point was reached in the experiment. 
This, however, was not assumed in the analysis, and the good 
correspondence is an indication of a successful result. The 
calculated spectrum of the monoanionic species is significantly 
different from the spectrum recorded at  the lowest pH of the 
titration, which was also expected, since the lower titration 
end point could not be reached. The calculated concentrations 
vary with pH, as expected for a protolytic equilibrium (Figure 
4). This comparison of calculated concentrations with those 
predicted by the equilibrium expression is a very sensitive 
control of the analysis. In Figure 4 the calculated concen- 
trations (for pKa = 6.44) deviate randomlyfrom the predicted 
ones. However, for a somewhat smaller (6.4) or larger pKa 
value (6.5), which give only a slightly larger x2, the deviations 
between calculated and predicted concentrations are sys- 
tematic (not shown). 

Determination of a Dimerization Constant. As a second 
example we determine the dimerization constant of benzoic 
acid in n-heptane at  30 OC. With standard equipment it is 
difficult to measure on samples that differ in concentration 
by more than a factor of - 100, and we were unable to record 
spectra of the benzoic acid in pure monomeric and pure 
dimeric forms without changing other factors, such as 
temperature or solvent. As we shall see, however, with this 
new method of analysis, the dimerization constant as well as (8) Zanker, V.; Peter, W. Chern. Ber. 1958,91, 572. 
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Figure 5. Absorptlon spectra of benzoic acid In +heptane at 30.0 O C .  
Total concentrations: 1.02 X 2.01 X 4.77 X 9.64 
X 2.01 X 5.11 X 1.01 X and 1.26 X M 
in the order of shift toward higher wavelengths. Cell lengths of 0.1-5 
cm were used. Spectra are expressed in molar absorptivities. 

the spectra of the two forms can readily be determined, even 
though the titration end points were not reached. 

Figure 5 shows absorption spectra of benzoic acid in 
n-heptane at  30 "C measured a t  total benzoic acid concen- 
trations between and M. With increasing concen- 
tration, both the charge-transfer band around 230 nm and 
the benzene Lb band around 275 nm shift to longer wave- 
lengths as a result of dimer formation.9 Several isosbestic 
points are observed in the spectra, indicating that no 
additional components but the monomer and dimer of benzoic 
acid are present in the samples. 

The spectra were digitized into 450 data points each, and 
the two most significant target and projection vectors were 
calculated. Concentration vectors CA and C A ~  were calculated 
for various values of the dimerization constant KD (eqs 19 
and 20) and fitted to eqs 29 and 3 0  

t, = rll( cA + cA 2cA2 ) + r12( (29) 

2cA2 ) (30) 
cA + 2cA2 

These differ from eqs 21 and 22 by being normalized to unit 
total concentration (the concentrations in eqs 21 and 22 are 
replaced by molar ratios). The reason for this modification 
is that the experimental spectra were recorded using different 
path lengths and they have similar signal-to-noise ratios when 
normalized (if compared in absorption units, the noise level 
of the most concentrated sample is of the same magnitude 
as the spectral responses of the most diluted samples, making 
the analysis unstable). 

The dependence of the goodness of fit, described by the 
sum of squared residuals, x2, on log K D  is shown in Figure 6. 
A distinct minimum is seen around log K D  = 4.20, which 
corresponds to K D  = 15.9 X lo3 M-l. The regression 
coefficients obtained with this value of K D  define matrix R, 
and the concentrations and spectral responses of the benzoic 
acid monomer and dimer are calculated from eqs 15 and 16. 
The value of K D  is somewhat larger than determined earlier 
by spectroscopic analysis (8.7 X lo3 M-1).9 Our value is likely 
to be more correct owing to the higher accuracy of the present 
analysis, and also we have analyzed more samples than in the 
previous study (eight, Figure 5, compared to only four in ref 
9). The calculated spectra of benzoic acid monomer and dimer 
(Figure 7) have very little noise owing to the relatively large 
number of samples analyzed. They are consistent with the 
spectral shifts in the experimental data, and they reveal 

(9) Hosoya, H.; Tanaka, J.; Nagakura, S. J. Mol. Spectrosc. 1962, 8, 
257-275. 
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Figure 6. x2 (squared residuals) of fitting Calculated molar ratlos of 
benzoic acid monomer and dimer using different values of KD to the 
two target vectors for the absorption spectra In Figure 5 (eqs 29 and 
30). Inset: enlargement of the region 4.17 C log KD C 4.24. 
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Figure 7. Calculated spectra of benzoic acid monomer (-) and dimer 
(-) in +heptane. 

particular spectral features of the components, such as the 
shoulder around 233 nm of the benzoic acid monomer. The 
calculated concentrations are in good agreement with those 
predicted by the equilibrium expression (not shown) and 
reveal that the molar ratios in the experimental spectra range 
from about 15 to 85%. Clearly, the analysis works well even 
though neither of the samples contained a pure component. 

DISCUSSION 

We have shown how knowledge of the functional form of 
the equilibrium expression can be utilized to determine the 
equilibrium constant and the concentrations and spectral 
profiles of the components in chemical equilibrium from 
spectroscopic titrations. As demonstrated with two examples, 
the approach works very well on data that can be obtained 
with standard instrumentation. 
Number of Components. A problem common to all 

chemometric methods is to determine the number of inde- 
pendent components, which here should be the number of 
principal components, r, retained from NIPALS.GJoJ1 For- 
tunately, this is rarely a problem for the systems considered 
here, since the number of components participating in the 
equilibrium is usually known beforehand. Still possible 
complications might be base-line variations, contributions 
from solvent, and formation of unexpected species. These 
problems can usually be recognized directly in the experi- 
mental data. For example, in systems with only two com- 
ponents, such as in the examples above, isosbestic points will 
appear in the spectra at  wavelengths where the components 

(10) Malinowski, E. R. Anal. Chem. 1977,49, 606-612. 
(11) Malinowski, E. R. Anal. Chem. 1977,49, 612-617. 
(12) Fisher, R.; MacKenzie, W. J. Agric. Sci. 1923, 13, 311-320. 
(13) Wold, H. Research Papers in Statistics; Daved, F., Ed.; Wiley: 

(14) Leonard, H.; Gordon, L.; Livingston, R. J. Phys. Chem. 1971, 75, 
New York, 1966; pp 411-444. 

245-249. 
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have identical spectral responses. Any spectrum that deviates 
from an isosbestic point must contain an additional compo- 
nent, either areal spectral contribution from a physical species 
or an artificial component, and should be discarded. For 
example, in the protolytic titration of fluorescein, spectra 
recorded at pH below 5.56 (not shown) deviated at the 
isosbestic points owing to significant contributions from an 
third protolytic form (the neutral species) and were omitted 
in the analysis. 

If the two components do not have identical responses at 
any wavelength, or in systems with more than two components, 
isosbestic points will not appear. In such cases it is wise to 
calculate a few additional pairs of target and score vectors 
and inspect them: only those that contribute substantially 
and have spectral features, in contrast torandom noise, should 
be used. As illustrated in Figure 2, where the third nonrel- 
evant projection vector can hardly be distinguished from the 
base line, the decision of how many components to use is 
usually unambiguous. 

Stability of the Method. The stability of the approach 
depends on several factors: the number of spectra analyzed, 
the number of data points in each spectrum, the degree of 
spectral overlap between the components, the signal-to-noise 
ratios of the spectra, and how close to the titration end points 
one can reach. The effect of these factors was recently 
extensively investigated for the related Procrustes rotation 
method,6 and the general conclusions should also be valid for 
this approach: (i) the errors in calculated concentrations and 
spectral profiles increase linearly with increasing noise; (ii) 
increasing the number of samples increases mainly the 
accuracy in the calculated spectral profiles, and increasing 
the number of data points per spectrum increases the accuracy 
in the determined concentrations; (iii) the analysis is very 
sensitive to changes in spectral profiles, and the experiments 
should be designed to minimize artificial spectral shifts; (iv) 
the larger the spread in relative concentrations the better. 
Simulations of the latter dependence (not shown) indicate 
that the analysis in general is very stable; if the degree of 
spectral overlap is not too extensive and the experimental 
signal-to-noise ratio is high, reasonable estimates of, for 
example, a protolytic constant can be obtained in a pH range 
as narrow as 2 units, even if the range does not include the 
pK, value. 

Applications of the Met hod. Essentially any equilibrium 
system should be possible to analyze by the proposed method. 
When the equilibrium expression is not known, the approach 
can be used to test different models. The only requirement 
is that the spectral response is linear, and the approach is 
therefore applicable to most spectroscopic techniques. The 
analysis is also fast; even when the equilibrium constant must 
be determined by stepwise search, complete analysis is made 
in a few minutes on an standard personal computer. The 
used algorithms are a standard iteration (NIPALS) and a 
linear least-squares fit (linear regression), requiring neither 
advanced programming nor access to mathematical libraries. 
A program for the analysis in ASYST code can be obtained 
from the authors. 
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APPENDIX 
NIPALS. Since only the first few most significant target 

and projection vectors are required for the analysis, the 
NIPALS method is the optimum choice. The NIPALS 
algorithm is as follows:12J3 
(1) Chose the column in matrix A with the largest variance 
as a starting value for tl. 
(2) Calculate the corresponding projection vector as 

p,’ = t,’A/t,’t, (31) 
(3) Normalize p1 to unit length by multiplying with c 

c = l/(P1’P$ (32) 

t, = AP, (33) 

(4) Calculate a new target vector as 

( 5 )  Check for convergence. If convergence has been achieved 
go on with step 6; otherwise repeat from step 2. (6) Form the 
residual matrix 

(34) 
Use E as a new A and calculate the next pair of target and 

projection vectors by repeating the procedure. It is recom- 
mended to calculate an extra pair of vectors than required 
by the analysis to check the validity of the assumed equi- 
librium reaction. If the extra projection vector contains 
spectral features, it is a strong indication that an additional 
spectroscopic component is present in significant amounts 
and the assumed equilibrium may be incorrect. 

Global Analysis. Some of the linear equations encoun- 
tered in the analysis have common parameters and are 
preferably solved simultaneously. A simple approach is to 
suitably catenate the vectors to obtain a single linear equation. 
The equation system below is equivalent to eqs 13 and 14: 

Y1 = C1,Xl + C12X2 + c,x:j (35) 

Y2 = c21x1 + c22x2 + c,xq (36) 

E = A - t,p’, 

The vectors are catenated as follows: 

(Y1:Yz) = 

where 0 is the null vector. This equation can be written in 
matrix form as 

y = xc (38) 
where y is the catenated vector ( Y I : Y ~ ) ,  c is a vector containing 
the coefficients C I I ,  c12, c21, c22, and c,. and X is amatrix having 
the vectors (x1:0), ( X Z : ~ ) ,  (O:XI) ,  (O:XZ), and (x3:xq) as columns. 
The matrix equation is solved for c:  

c1,(x1:0) + c*2(x2:o) + c21(o:xl) + c,,(0:x2) + c,(x3:xq) (37) 

c = (X’X)-’X’y (39) 
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