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When infrared spectral data are used in classification and/or multivariate regression methods there can be
problems related to both chemical understanding and computation speed due to the large number of wavenumbers
in each spectrum. Here, it is shown that the Procrustes rotation technique can be used to select a minimum set of
spectral variables (wavenumbers) to perform classification and regression. Procrustes rotation was coupled to
several multivariate methods as PLS, SIMCA and potential curves (a maximum likelihood classification method).
The practical problem of implementing a screening methodology for classifying apple juice-based beverages
according to their contents of “pure” apple juice was addressed using attenuated total reflectance, mid-IR
spectroscopy. It is found that two of the original wavenumbers are almost as good predictors as all the 176 initial
ones.

Introduction

Mid infrared spectroscopy (mid-IR or FT-MIR) is an analytical
technique employed worldwide in industrial quality control.
Besides its “classical” qualitative purposes, its application to
quantitative studies rose during the last decade, propelled by its
straightforward and powerful linkage to chemometric (multi-
variate) methods which opened new quantitative alternatives.
Here, spectra need to be digitized and typical digitalizations
consider 1, 0.5, 0.25, 0.125 or 0.06925 data points per cm,
resulting in large data matrices, with drawbacks such as slow
computation speed, data storage capabilities and data update.
Despite the good results obtained in most cases when consider-
ing complete spectra, a relevant question is: are all spectral
variables (wavenumbers) really required to make a satisfactory
classification or some quantitation? Or, are the spectral
variables correlated and can their number be reduced? Would a
reduction of the number of spectral variables perhaps simplify
the chemical understanding of the problem? Moreover, variable
selection in spectral analysis constitutes an important issue to
develop simpler, portable equipment for routine/field analysis
in quality control applications (environment, food, beverages,
biosensors, etc.).1 Variable selection can also be useful to find
those variables in a large data set that have best discrimination
power.

Several multivariate techniques have been applied for
variable reduction. These include factor analysis2 and discrim-
ination methods,3 which have the disadvantage that although
the information is condensed into a few abstract factors, all the
initial variables are still implied. Another approach for variable
selection (in the sense of eliminating useless variables, not to
extract an small subset) was proposed, consisting of making a
preliminary regression with all variables, adding artificial
random noise and, then, selecting the experimental variables
that show more importance than the artificial ones (according to
a criterion based on the regression coefficients).4 Garrido-
Frenich et al.5 performed PLS (partial least squares) studies
where a threshold level was calculated for the loadings and the
variables with highest coefficients were selected. For compar-

ison they also considered the variables that gave highest
correlation with the concentrations of interest. Goicoechea and
Olivieri6 employed the error indicator derived from hybrid
linear analysis regression (HLA, described by Berger et al.7), to
search for the best linear fit among different spectral ranges (i.e.,
ranges of successive variables).

Elbergali et al.8 defined “resolvability indices” for 2-dimen-
sional matrices, using a variant of the evolving factor analysis to
select individual variables to resolve overlapping chromato-
graphic peaks. Ferré and Rius9 developed a graphical approach
to select the optimum set of variables for calibration. It is based
on considering the confidence region of the estimated concen-
trations and on optimizing five different criteria. The optimum
set is found by testing all possible combinations of variables.
Although quite successful, the approach may be time-consum-
ing when analyzing spectral data sets. Heise and Bittner1

proposed a pair-wise selection procedure of spectral variables
starting from the weights of the optimum PLS-regression
vector. Pairs of variables related to neighbouring minimum and
maximum regression vector coefficients were selected. They
studied the PLS performance with two, four, six, etc. wav-
enumbers as variables. Each additional pair introduced into the
model was given lower weights than the previous pair.

Today, efforts are being made on variable selection by
intensive computation and non-parametric methods using
artificial neural networks and genetic algorithms. Todeschini et
al.10 employed Kohonen artificial neural networks to select sets
of wavelengths for PLS calibration of mixtures of cresol
isomers by fluorescence spectrometry. The use of genetic
algorithms for variable selection prior to multivariate regression
was reviewed by Leardi.11 An interesting conclusion reached
was that many workers used different genetic structures,
suggesting it must be necessary to modify the algorithm for each
particular problem. As an example, Smith and Gemperline12

employed a “modified” genetic algorithm, where some genes
were preserved from crossover and/or mutations as they were
used to assess information either from the data themselves or
from the classification model developed. Recently, Guo et al.13

compared the performance of several methods, including a
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variant of Procrustes rotation coupled to genetic algorithms, to
select variables. They adapted the consensus concept from the
Generalized Procrustes Analyses to match the subspaces so that
the consensus configuration was searched by the genetic
algorithms.

A novel nonparametric approach for variable selection was
recently developed by Heberger and Rajko14,15 using a pair-
wise correlation method based on four criteria: both variables
should enhance correlation, one should enhance and the other
reduce correlation and vice versa, and finally both should
reduce the correlation between a dependent variable and two
independent parameters. Arranging the frequencies of the four
basic events in a contingency table, significant differences can
be determined by several nonparametric tests. This idea was
generalized to several variables and yielded promising results.

In our opinion, these methods, with the exception of Guo’s,
have serious drawbacks. They do not identify a minimum set of
original variables to analyze the problem. Some use trial and
error strategies that are computationally inefficient and do not
guarantee the best solutions. Some are also problem-specific.

In this work, the Procrustes rotation algorithm is applied to
mid-IR spectroscopic data to select a minimum set of wav-
enumbers that account for the main information in the total data
set. To the best of our knowledge, this is the first application of
Procrustes rotation to such a problem. The specific problem
addressed was to develop a fast procedure that is suitable for
screening to estimate the amount of “real” apple juice in
commercial apple juice-based beverages (soft drinks, “ener-
getic”-soft drinks, pure apple juices, etc.). The overall screening
was divided into a qualitative assessment of the mid-IR
attenuated total reflectance (ATR) spectral profile of a commer-
cial product and its classification into a set of predefined classes
with different percentages of pure apple juice. Here, only the
second step is considered. The results obtained using variables
selected by Procrustes rotation are compared to those obtained
with multivariate regression approaches using either complete
spectra or a reduced number of wavenumbers selected by
conventional approaches.

Variable selection by Procrustes rotation

Procrustes rotation is a general term for the mathematical
technique to match two data sets, each one considering different
variables for the same objects (samples).16 This objective is
achieved by minimizing the sum of squared differences between
the two spaces after rotation, translation and stretching of one of
the sets relative to the other. The approach has been applied
successfully to different problems, including environ-
mental,17–19 quality control of aviation fuels20,21 and spectral
analysis and analyte identification.22,23 Procrustes rotation-
based techniques can also be combined with thermodynamic
constraints to predict spectral profiles of imbedded species in
chemical equilibrium studies, such as monomer–dimer equili-
bria.24 The technique is unique in the sense that relative
quantitation is possible even without the use of “standards” in a
classical regression sense.25,26 Procrustes algorithms have also
been employed by González-Arjona et al.,27 as a computing
base for target factor analysis.

There are two main applications of Procrustes rotation:
comparing subspaces to correlate 2-dimensional data
sets22–26,28 and selecting representative variables. The goal of
the latter is to find a subset of original variables that conveys the
main structure of the data. The strategy is to identify the variable
that contributes with least information to the system and delete
it. The process can then be repeated to delete additional
variables until a small number remains, that containing all
essential information. This approach is related to other
multivariate techniques, such as rank annihilation analysis.29

The original Procrustes rotation is based on singular value
decomposition, svd, of data sets with more samples than
variables although the case of rank-deficient analysis has
already been studied.28,30,31 A brief summary of the approach is
presented below.

Let X be the (n 3 p) original data matrix; if n 4 p, then the
data scores are US and the variable loadings are WT (T denotes
transposed matrix). By svd the equation X(n3 p) =
U(n3 q)S(q3 q)WT

(q3 p) is solved for US and WT. If p > n, a new
matrix B can be such that B = XT and B(p3 n) =
Û(p3 q)Ŝ(q3 q)ŴT

(q3 n) is solved by svd. If the original data
matrix is needed, for example for comparison, we only need to
compute X = BT = ŴŜÛT, where Ŵ(n3 q)Ŝ(q3 q) are the scores
and ÛT

(q3 p) are the loadings.
Procrustes rotation determines the sum of squared differences

between corresponding points of two (or more) spatial config-
urations after they have been aligned through translation,
rotation and reflection.16 The subspace with all variables is
fixed and the other subspaces with one or more variables deleted
are “Procrustes-matched”. It is more convenient to compare
score subspaces instead of whole data subspaces. For this we
must determine the significant dimensionality of the data set.
This can be known beforehand or it can be estimated by
statistical tests, the Wm one being strongly recommended.16 A
problem is an objective definition for “significant”, and there
will always be a degree of subjectivity in selecting the number
of PCs that are sufficient to account for all important features in
the data. Hereinafter, let q denote the significant dimensionality
of the data set.

Let T(n3 q) be the “true” target score-subspace, and let
R(n3 q) be the score-subspace calculated using the reduced
c(n3 q) data set. Translation matching is achieved by mean-
centering the data. The sum of squared differences, M2, is a
measure of the distance between the two spaces. It is obtained as
M2 = Trace{TTT + RRT2 2RATTT} where A is the orthogonal
matrix which defines the rotation to match R with T, and it is
obtained from the svd decomposition of RTT = CLZT as A =
ZCT. It is not practical to test all combinations of variables and,
therefore, the calculations are performed sequentially. In each
cycle M2 is calculated deleting one variable at a time and the one
that gives the lowest M2 is permanently deleted.

Although the svd approach works well, the algorithm can be
slow, which may be a drawback when large data matrices are
compared. An alternative (not applied here) to speed up the
calculation is to consider the NIPALS algorithms. Consider the
previous X and B matrices. NIPALS decomposition gives
X(n3 p) = T(n3 q)P(q3 p) and B(p3 n) = T̃(p3 q)P̃(q3 n) from
which the score matrices are obtained directly. The two
approaches are equivalent since T̃ = ÛŜ and P̃ = ŴT.

Experimental

Samples

Samples with known contents of pure apple juice were prepared
from Gloster, Golden, Granny Smith, Reineta, Royal Gala and
Starking varieties of apples in the laboratory. Juice was
squeezed out, centrifuged, filtered and immediately charac-
terized by FTMIR-ATR. This showed that the juice spectrum
did not depend on apple variety. Aliquots of pure apple juice
were then diluted with Milli-Q water (18.1 MW.cm resistivity,
Millipore, Barcelona, Spain) to produce 20 samples with 2%
apple juice, 20 samples with 4%, 31 samples with 6%, 27
samples with 8%, 27 samples with 10%, 27 samples with 16%,
27 samples with 20%, 39 samples with 25%, 32 samples with
50%, 19 samples with 70% and 26 samples of pure apple juice.
For practical purposes they can be termed “laboratory stan-
dards”.
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The European legislation distinguishes between soft drinks,
that contain at least 10% juice, nectars with at least 50% juice
and pure juices that should be 100% juice with no sugars added.
Comparison of commercial beverages with the above laboratory
standards is not possible because most commercial soft drinks
and “energetic” beverages have added sugar. In Europe it is not
necessary to declare the amount of sugar(s) added, which
complicates the analysis. But this will change soon owing to
new EU Directives.32 To account for the presence of the three
most important sugars of apple juice (glucose, fructose,
sucrose)33,34 in commercial beverages, an indirect strategy was
followed. The total amounts of sugars can be quantified either in
the beverages or in the laboratory standards by a matching stage
where their spectra are compared against those of standard
solutions of mixtures of the three sugars.

The laboratory standards were split into two groups with
different amount of juice. Further, each group was divided into
a training and a testing set. The first set contained 2–20% juice.
It had a total of 173 standard samples, of which 134 were
dedicated to train the model and 39 were used for validation.
The second set contained 25%–100% juice. It had 130 standard
samples of which 86 were used for training and 44 for
validation. The model was then used to classify 23 commercial
juice beverages available in Spain.

FTMIR-ATR spectra (1250–900 cm21, 50 scans per spec-
trum, background substracted, Beer–Norton strong apodization,
4 cm21 nominal resolution) were measured using a 16PC-
FTMIR instrument (PerkinElmer, Überlingen, Germany) and
an ATR device (PerkinElmer, ZnSe crystal, 45° incidence
angle, 12 nominal reflections). The equipment was daily as well
as weekly assessed by routine quality control tests.35 The
spectra were baseline corrected, digitized (despite the resolution
being 4 cm21, PerkinElmer’s software gives one datum every 2
cm21) and exported to ASCII files which are input into the
statistical software (Matlab, The Mathworks Inc, Natick, MA,
v. 4.2c.1). All studies were made with mean centred data (using
the means of the calibration sets).

Classification models

Three multivariate classification techniques (PLS, SIMCA and
potential curves) were applied to the entire set of 176
wavenumbers and to the minimum subset selected by Procrustes
rotation. If the same results were obtained with the entire set of
variables and the reduced set it was concluded that the reduction
did not lose essential information.

PLS has become an standard methodology36,37 to regress an
X-block (spectra) on an Y block (type of juice). The Y data were
binary codes for each group of laboratory standards (class), e.g.
1000000 for class one (2% apple juice), 0100000 for class two
(4% apple juice), etc. Accordingly, after developing a model, a
new sample will be classified by its highest score in the PLS
output. As real outputs are not pure 0s or 1s (e.g. 0 0 0.998 1.014
0.054 0 0), all the figures for each sample should be closely
scrutinized in order to assess the final assignment (the sample
might even not be included in any class).

SIMCA (soft independent modelling of class analogy) and
simplified potential curves are pattern recognition techniques to
classify new samples according to the probability that the
sample belongs to each of a predefined set of classes. Although
SIMCA is an established method38,39 potential curves are still
not and is therefore briefly outlined here. “Potential curves” is
a maximum likelihood classification method and can be
exemplified as follows.40,41 Suppose that standard juices are
distributed along the PC1–PC2 subspace (or PC1–PC3, etc.).
Assume each group of juices (2%, 4%, etc.) is homogeneously
distributed and does not overlap with any other. An iso-
probability bivariate Gaussian region can be defined for each
group considering its scores (see eqn. (1) and (2)).

(1)

(2)

Where X and Y are the PC1 and PC2 sample scores; mX and mY,
the average scores for each group and sX and sY their respective
standard deviations; r is the calculated correlation coefficient
between the Xs and the Ys. Intercepting this curve with
horizontal parallel planes, elliptic sections are obtained which
represent the iso-probability sections. The equation defining the
iso-probability ellipses is: a = A(1/(12r2)), where a is a
positive constant. The area of each ellipse can be related to the
probability of a sample belonging to this group by means of the
expression: Area = exp(2a/2) = Prob (sample ñ group). If
new samples are to be classified, they must be projected on the
PC1–PC2 subspace, the constants recalculated and, then, the
samples will be classified according to the probability of
belonging to each class. It is worth note that (i) PCs are used
instead of original variables to avoid useless information and
take advantage of the sample grouping in the reduced PC-
subspace and (ii) eqn. (1) and (2) are a natural simplification of
the equivalent determinant method from Forina et al.40

Results and discussion

Classification using all the spectral variables

Table 1 summarizes the main characteristics and classification
results of the multivariate models for the 23 commercial
samples. Fig. 1 shows the iso-probability potential region
obtained for each class using the training samples. The PC1–
PC2 subspace accounted for slightly more than 95% of the
information. The contour of each isoprobability ellipse (on the
PC1–PC2 plane) represents a probability level (e.g., 85%, 90%,
95%, etc.). Despite the moderate overlap among several classes
in the 2–20% range the final results are quite satisfactory
considering the intrinsic simplicity of the algorithm. Moreover,
when an erroneous classification was made either in the
calibration or the validation step, the sample was almost always
assigned to an adjacent group. This was in fact the case for all
classification models.

The first conclusion that can be derived from Table 1 is that
all commercial samples but one of the pure (100%) juices were
classified according to manufacturers’ declaration. The outlier
sample had a quite different IR spectral profile, suggesting it
contained inappropriate amount of sugar(s) (Fig. 2). By PLS
and SIMCA it was classified as belonging to the 70% group,
while potential curves put it in the 100% group. Nevertheless,
this different classification is not crucial as the beverage was
identified in the first step of the screening methodology as a
suspicious beverage.

A second conclusion is that the 2%–20% range is more
difficult to model than the 25%–100%, most likely because the
former has more groups of juices, some of which partially
overlap. Accordingly, the models lead to some wrong classifica-
tions. Of course, overlap could be reduced by defining broader
groups (for example, by adding 2% + 4%, 8% + 10%, and 16%
+ 20% groups), but it was decided not to in order to better reflect
real situations where it might be interesting to differentiate
between similar juice contents.

SIMCA behaved very well on both the training and the
commercial samples, making only a single error. However it
performed worse on the validation samples. This was probably
due to the overlap among the classes, which were not
satisfactorily resolved by the local PC models of this tech-
nique.
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The PLS model yielded more errors during calibration and
validation than the others. But it performed well on the
commercial samples. It required only two latent variables (LV).
Noteworthy all errors corresponded to samples placed between
two classes which were assigned to an adjacent group. As the
assignments were not always definite, unclear classifications
should be further assessed before decision making (e.g.,
studying the spectrum of the sample or applying other
classification methods).

Three quality parameters40 were calculated for all the
classification methods: (i) efficiency: the percentage of objects
correctly classified, (ii) sensitivity: the percentage of objects
belonging to the class in which they are classified, and (iii)
specificity: the percentage of objects not belonging to a class

which are correctly classified outside such class. Table 2 shows
that PLS and potential curves performed almost the same
whereas SIMCA produced less good results. Overlap reveals
important among several groups of standards, namely, the 8%
and the 10%, the 10% and the 16% and (to some degree), the
16% and the 20%.

Classification using a minimum set of spectral variables

Two PCs were considered to retain most of the information of
the mean-centred spectra, as suggested by the eigenvalues and
Wm statistic. Therefore, the minimum number of variables (i.e.,
original wavenumbers) that can be selected by Procrustes

Table 1 Multivariate models and results using all the variablesa

Model Range Calibration Validation Commercial

PLS 2%–20% n = 134 n = 39 n = 2
# LV = 2; # errors = 29 # errors = 11 # errors = 0

25%–100% n = 86 n = 44 n = 21
# LV = 2; # errors = 11 # errors = 5 # errors = 1

SIMCA 2%–20% n = 134 n = 39 n = 2
# factors for each class: 2%: 1; 4%: 2; 6%: 3; 8%: 4;

10%: 2; 16%: 3; 20%: 4 # errors = 14 # errors = 0
# errors = 19

25%–100% n = 86 n = 44 n = 21
# factors for each class: 20%: 2; 25%: 2; 50%: 2; 70%:

3; 100%: 4 # errors = 12 # errors = 1
# errors = 15

Potential curves 2%–20% n = 134 n = 39 n = 2
factor subspace: PC1–PC2 # errors = 9 # errors = 0
# errors = 4

25%–100% n = 86 n = 44 n = 21
factor subspace: PC1–PC2 # errors = 6 # errors = 0
# errors = 4

a n = number of samples; # LV = number of latent variables.

Fig. 1 Iso-probability potential regions. Upper figures, bivariate Gaussian distributions (potential curves). Lower figures, iso-probability ellipses in the
PC1–PC2 subspace (the asterisks correspond to validation samples).
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rotation are two. These were 1064 cm21 and 1062 cm21, which
correspond to the highest spectral band in the 1290–900 cm21

region. The 1062 cm21 band has been assigned to fructose.42

Close examination of the spectra showed that a slight peak shift
occurred for some samples, and maybe this would be accounted
for by the two selected variables. Unfortunately, this issue could
not be ascertained fully because whenever data scaling is
changed the retained variables change, as expected. For
instance, when data were autoscaled 1074 cm21 and 1148 cm21

(2%–20% range) and 996 cm21 and 1158 cm21 (25–100%
range) were retained and, so, the eventual “peak-shift effect”
was not obvious. More research has to be done here.

New classification models were developed based on the two
selected variables (see Table 3). Again PLS and potential curves
performed better than SIMCA, which did not give a useful
model. This seems reasonable considering that three to four PCs
were required to model each class when all 176 variables were
employed. Since, only two PCs can be obtained from two
variables SIMCA fails. PLS and potential curves maintained
their good properties. The PLS model reduced the total number
of errors during calibration and validation, although their
behaviour remained almost unchanged. The potential curves
model increased the number of errors during training and
validation. Both methods classified commercial samples sat-
isfactory.

Table 4 presents the three quality parameters after variable
selection. The SIMCA models were excluded since they failed
for the reduced set. PLS maintained its properties and there are
even improvements in specificity for the 8%,10% and 16%
classes. Potential curves show somewhat less good results;
efficiency, sensitivity and specificity decreased for the 8%, 10%
and 16% classes. But the overall performance is good. The
isoprobability ellipses as well as the projection of the validation
samples can be seen in Fig. 1. The patterns are almost the same
as when using all variables. All models performed less well for
the 8%–10%, 10%–16% and to a less degree 16%–20% classes
with the reduced set. This is a consequence of the complexity of
the original problem where not all the different classes of
laboratory standard juices can be clearly discriminated because
of their similar IR spectra. Although the huge reduction in the
number of variables loses some information, the key question is
if the remaining information is sufficient for useful classifica-
tions and decision making. As the number of errors when

Fig. 2 Anomalous IR spectral profile of a commercial 100% juice,
suggesting inappropriate sugar addition.

Table 2 Efficiency (Eff), sensitivity (Sen) and specificity (Spe), expressed as % of total samples, for each of the multivariate models

Class: % of apple juice

2% 4% 6% 8% 10% 16% 20% 25% 50% 70% 100%

Eff PLS 100 100 100 50 55.6 60 62.5 80.9 92.3 100 100
SIMCA 100 50 100 37.5 40 83.3 83.3 76.2 83.3 25 57.1
Pot Ca 100 100 100 60 57.1 60 66.7 80.9 100 100 100

Sen PLS 100 100 84.6 33.3 83.3 50 83.3 94.4 100 100 100
SIMCA 100 0 46.2 50 66.7 83.3 83.3 88.9 76.9 100 83.3
Pot Ca 100 100 84.6 50 66.7 50 100 94.4 100 100 100

Spe PLS 100 100 100 93.9 87.9 93.9 90.9 84.6 96.8 100 100
SIMCA 100 97.4 100 84.9 81.8 97 97 80.8 93.6 93 92.1
Pot Ca 100 100 100 93.9 90.9 93.9 91 84.6 100 100 100

a Pot C = potential curves.

Table 3 Multivariate models and results using the minimum number of selected variablesa

Model Range Calibration Validation Commercial

PLS 2%–20% n = 134 n = 39 n = 2
# LV = 2 ; # errors = 29 # errors = 9 # errors = 0

25%–100% n = 86 n = 44 n = 21
# LV = 2 ; # errors = 6 # errors = 6 # errors = 1

SIMCA 2%–20% n = 134 n = 39 n = 2
# factors for each class: 2%: 2; 4%: 2; 6%: 2; 8%: 2;

10%: 2; 16%: 2; 20%: 2 # errors = 17 # errors = 0
# errors = 36

25%–100% n = 86 n = 44 n = 21
# factors for each class: 20%: 2; 25%: 2; 50%: 2; 70%:

2; 100%: 2 # errors = 27 # errors = 8
# errors = 44

Potential curves 2%–20% n = 134 n = 39 n = 2
factor subspace: PC1–PC2 # errors = 13 # errors = 0
# errors = 29

25%–100% n = 86 n = 44 n = 21
factor subspace: PC1–PC2 # errors = 6 # errors = 0
# errors = 5

a n = number of samples; # LV = number of latent variables.
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validating and, more importantly when classifying commercial
samples, does not increase (except for the SIMCA case) it
suggests that Procrustes rotation is a good procedure to reduce
large data sets to a minimum number of significant variables.

PLS regression

The problem we are considering can also be approached by
multivariate regression. Using PLS (“1-block”) with percentage
of apple juice as the predictand variable and either the 176 or the
2 selected wavenumbers as predictors gave the results summa-
rized in Table 5. In order to select the best model not only the
root mean squared error of calibration, RMSEC; root mean
squared error of prediction by cross-validation leave-one-out,
RMSEP-CV-LOO; and root mean squared error of prediction,
RMSEP were studied but the relative errors associated to each
group of samples (i.e., error 3 100/nominal percentage). Using
the two variables selected by Procrustes rotation the PLS model
performed as good as when using all 176 variables.

For comparison, a reduced set of variables was selected by
considering the wavenumbers related to the most important
regression coefficients of the full-spectra PLS regression. This
gave 76 wavenumbers for the 2%–20% range and 67 wav-

enumbers for the 25%–100% range. The PLS predictions using
these sets of variables are presented in Table 5. Although the
sets were fairly large they did not predict better than the two
variables selected by the Procrustes technique, in fact in some
cases they even predicted slightly worse.

Conclusions

It was shown that Procrustes rotation can be used to select an
small number of mid-IR wavenumbers (not spectral ranges, but
individual variables) intended to develop multivariate models
which can be used to deploy a screening methodology to
evaluate the amount of apple juice in commercial apple-based
beverages. Several classification models were implemented
considering the original (176 wavenumbers) and the Procrustes-
reduced (2 wavenumbers) data sets; namely, a simplified mode
of potential functions (termed potential curves), SIMCA and
discriminant PLS. Another study compared regression models
developed using the above two data sets and another reduced
data set obtained by a classical approach (selection of variables
with highest loadings/regression coefficients). Except for
SIMCA models, the small subset of variables selected by

Table 4 Minimum number of selected variables. Efficiency (Eff), Sensitivity (Sen) and Specificity (Spe), expressed as % of total samples, for each of the
multivariate models

Class: % of apple juice

2% 4% 6% 8% 10% 16% 20% 25% 50% 70% 100%

Eff PLS 100 100 100 66.7 55.6 75.5 66.7 80 92.9 100 100
SIMCA 50 100 100 40 57.1 50 50 85.7 100 52.6 57.1
Pot Ca 100 100 100 40 50 50 60 80 92.7 100 100

Sen PLS 100 100 92.3 33.3 83.3 50 100 88.9 100 100 100
SIMCA 100 0 53.9 66.7 66.7 33.3 66.7 33.3 15.4 100 66.7
Pot Ca 100 100 76.9 33.3 66.7 33.3 100 88.9 100 100 100

Spe PLS 100 100 100 97 87.9 97 90.9 84.6 96.8 100 100
SIMCA 50 100 100 84.9 90.9 93.9 87.9 96.2 100 60.5 92.1
Pot Ca 100 100 100 90.9 87.9 93.9 87.9 84.6 96.8 100 100

a Pot C = potential curves.

Table 5 Main characteristics of the PLS regression models developed considering all the spectral wavenumbers, the two Procrustes-selected and a reduced
set of variables considering the correlation coefficients (see text)

All variables Two selected variables Reduced range

Relative error Relative error Relative error

Range Calibration Validation Commercial Calibration Validation Commercial Calibration Validation Commercial

2%–20% 2% 18.7 10.0a 18.6 16.3a 27.3 10.4a

4% 14.0 10.0a 13.7 17.0a 14.8 13.6a

6% 12.3 11.4 10.8 10.6 12.0 11.6
8% 12.7 16.3 14.6 14.7 14.1 17.0

10% 11.0 18.2 13.5 13.8 13.4 18.8
16% 12.4 11.9 2.0a 13.3 11.9 1.0a 13.1 16.1 2.5a

20% 10.4 14.9 3.8a 11.2 11.7 11.0a 10.4 14.4 6.9a

General features LV = 2; % of EI in X = 99.7; % of
EI in Y = 94.8; RMSEC = 1.4;
RMSEPCV = 1.4; RMSEP = 1.9;
F-test = 3.6b

LV = 2; % of EI in X = 100; % of
EI in Y = 94.3; RMSEC = 1.4;
RMSEPCV = 1.5; RMSEP = 1.8;
F-test = 3.9b

LV = 2; % of EI in X = 99.9; % of
EI in Y = 94.6; RMSEC = 1.4;
RMSEPCV = 1.4; RMSEP = 1.9;
F-test = 3.7b

25%–100% 25% 10.8 11.3 15.3 13.8 12.9 15.1 16.4 24.3 15.5
50% 9.0 8.5 8.7 8.5 9.1 8.6
70% 8.6 1.1a 8.8 2.2a 8.6 1.7a

100% 10.3 16.6 8.3 11.0 12.1 8.5 10.2 16.7 9.1
General features LV = 2; % of EI in X = 99.9; % of

EI in Y = 96.0; RMSEC = 6.0;
RMSEPCV = 6.3; RMSEP = 7.4;
F-test = 1.7b

LV = 2; % of EI in X = 100; % of
EI in Y = 95.6; RMSEC = 6.3;
RMSEPCV = 6.6; RMSEP = 7.3;
F-test = 1.9b

LV = 2; % of EI in X = 99.9; % of
EI in Y = 96.0; RMSEC = 6.0;
RMSEPCV = 6.3; RMSEP = 7.5;
F-test = 1.7b

a Only one sample available. b EI = explained information; RMSEC = root mean squared error of calibration; RMSEPCV = root mean squared error of
prediction by cross-validation leave-one-out calculated from the calibration set; RMSEP = root mean squared error of prediction calculated from the
validation set; F-test is the joint test for the slope and the intercept (real vs. predicted values); F(tabulated, 95%) = 3.1, F(tabulated, 99%) = 4.8.
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Procrustes rotation yielded similar results than the other options
assayed in this work and, so, it can be concluded that Procrustes
rotation is an efficient procedure for variable selection for
classification and regression methods.

Appendix, notation

In this paper bold italic lower case denote vectors whereas bold
italic upper case denote matrices, (T) means a transposed
matrix.

n = number of samples.
p = number of variables in the original data set (X).
q = number of the optimum principal components (latent

variable) which is also the number of variables that will be
retained by Procrustes rotation.

Wm = statistic developed to evaluate the q optimum number
of principal components which take account of the main
information in the data set (see ref. 16 for details).

T = subspace of the first q (“optimum”) principal component
scores, this is the true (or target) matrix to which any other
principal component subspace will be compared by Procrustes
rotation.

R = subspace of the first q principal component scores
obtained after deleting a given variable.

M2 = statistic representing the sum of the squared differ-
ences amongst T and R, it corresponds to the “Procrustes
match” after translation, rotation and stretching (data was mean
centred before starting calculations; if not, the equations are a
bit more complex).

A = matrix defining the orthogonal rotation to match R with
T.

Matrix decomposition is typically made by two well-known
methods:

A.—Singular Value Decomposition (svd) decomposes a data
matrix (X) into three matrices, svd(X) = USWT. The decom-
position is generally done using the Householder diagonaliza-
tion. The columns of the matrix W correspond to the basis set
vectors (loadings), the columns of the matrix US correspond to
the sample scores.

B.—NIPALS decompositon ( = Nonlinear Iterative Partial
Least Squares) is performed by calculating two new matrices
such as X = TPT (the loadings being the columns of P and the
scores correspond to the columns of T). T and P are calculated
from iterative algorithms which have been described elsewhere
(e.g. refs. 36,37,43).

PLS studies were carried out using the PLS-Toolbox for
Matlab, v. 1.5.2, Eigenvector Technologies, Manson, WA,
USA.

Procrustes rotation, potential curves and SIMCA studies
were performed by in-house Matlab programs.
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