Radiative transfer for Type Ia supernovae – bridging the gap between explosion models and observations

Markus Kromer

Stuart A. Sim, M. Fink, R. Pakmor, F. K. Röpke, W. Hillebrandt

Max-Planck-Institut für Astrophysik Garching

Radiative (magneto) hydrodynamic seminar Ondřejov 21.04.2010

Testing SN Ia explosion models

Testing explosion models

SUPERNOVAE

Astrophysical context

- Transient objects of high luminosity
- Explosive deaths of stars
- Important for chemical enrichment of the Universe
- Shock waves influence star formation
- Sources of the galactic component of the cosmic rays

SN 1994D in NGC 4526 (NASA/HST)

Introduction

adiative transfer for SNe la

Testing explosion models

Conclusions

SUPERNOVAE

Classification scheme (Turatto 2003)

TYPE IA SUPERNOVAE

Basic facts

- No H lines, strong Si II feature
- Thermonuclear explosions of degenerate white dwarf material (Hoyle & Fowler 1960)
- Cosmological distance indicators
- Light curves powered by γ -rays ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}$
- Luminosity $\propto M(^{56}\text{Ni})$

TYPE IA SUPERNOVAE

Problems

- Origin of observed diversity
- Explosion mechanisms
 - Deflagration
 - Detonation
- Progenitor systems
 - Accreting systems or mergers?
 - Chandrasekhar mass?

Testing explosion models

Conclusions

TYPE IA SUPERNOVAE

Solving the la puzzle by theoretical modelling

Progenitor evolution ($\sim 10^9$ years) \Rightarrow binary evolution, mass transfer

 $\begin{array}{l} \text{Explosion phase (} \sim \text{ seconds)} \\ \Rightarrow \text{hydrodynamics coupled to explosive} \\ \text{nucleosynthesis} \end{array}$

Formation of spectra and light curves $(\sim 10^2 \text{ days})$ \Rightarrow radiative transfer simulations

Outline of the problem

- Multi-wavelength
- Time-dependent

Outline of the problem

- Multi-wavelength
- Time-dependent
- Multi-dimensional

Röpke et al. 2007

Outline of the problem

- Multi-wavelength
- Time-dependent
- Multi-dimensional
- Opacity dominated by lines

Pinto & Eastman 2000

Outline of the problem

- Multi-wavelength
- Time-dependent
- Multi-dimensional
- Opacity dominated by lines
- Non-LTE effects important

Pinto & Eastman 2000

Outline of the problem

- Multi-wavelength
- Time-dependent
- Multi-dimensional
- Opacity dominated by lines
- Non-LTE effects important
- But some simplifications
 - Homologous expansion
 - Sobolev approximation
 - Statistical and thermal equilibrium

Pinto & Eastman 2000

NUMERICAL IMPLEMENTATION

Monte Carlo method

- Based on quantized energy flow: energy packets
- Follow the packets propagation through the ejecta
- Microphysical description of radiation/matter interactions
 - \Rightarrow Purely local
 - \Rightarrow Suitable for complex geometries & time-dependence
- Extract spectra and light curves by binning of escaping packets
- Use indivisible energy packets (Abbott & Lucy 1985; Mazzali & Lucy 1993; Lucy 1999, 2005)
 - \Rightarrow Implicit energy conservation
 - \Rightarrow Statistical and thermal equilibrium enforceable (Lucy 2002, 2003)

Introduction

Radiative transfer for SNe Ia

Testing explosion models

Conclusions

NUMERICAL IMPLEMENTATION

The framework of ARTIS (Kromer & Sim 2009)

Testing explosion models

Conclusions

NUMERICAL IMPLEMENTATION

Calculation of transition probabilities requires

Specification of atomic data

Population numbers (excitation/ionization state of the plasma)

NUMERICAL IMPLEMENTATION

Calculation of transition probabilities requires

Specification of atomic data

- CD23: 4×10^5 bound-bound transitions
- BIG: 8×10^6 bound-bound transitions
- Population numbers (excitation/ionization state of the plasma)

NUMERICAL IMPLEMENTATION

Calculation of transition probabilities requires

Specification of atomic data

- CD23: 4×10^5 bound-bound transitions
- BIG: 8×10^6 bound-bound transitions

Population numbers (excitation/ionization state of the plasma)

- Complete set of NLTE rate equations too expensive
- Instead approximate NLTE treatment (detailed)
 - Consistent solution of photoionization and thermal balance
 - Boltzmann excitation formula
- For comparison: LTE treatment (simple)
 - Saha ionization formula
 - Boltzmann excitation formula
- Local radiation field $J_{
 u}$

Conclusions

NUMERICAL IMPLEMENTATION

Calculation of transition probabilities requires

Specification of atomic data

- CD23: 4×10^5 bound-bound transitions
- BIG: 8×10^6 bound-bound transitions

Population numbers (excitation/ionization state of the plasma)

- Complete set of NLTE rate equations too expensive
- Instead approximate NLTE treatment (detailed)
 - Consistent solution of photoionization and thermal balance
 - Boltzmann excitation formula
- For comparison: LTE treatment (simple)
 - Saha ionization formula
 - Boltzmann excitation formula
- Local radiation field J_{ν}
 - Extractable from MC simulation, but computationally prohibitive
 - Nebular approximation for detailed treatment: $J_{\nu} = WB_{\nu}(T_{\rm R})$
 - Black body approximation for simple treatment: $J_{\nu} = B_{\nu}(T_{\rm J})$

Introduction

Radiative transfer for SNe Ia

Testing explosion models

Conclusions

TESTING ARTIS

Spectral evolution of a standard model

Markus Kromer (MPA)

Testing SN Ia explosion models

Ondřejov, 21.04.2010

Introduction

Radiative transfer for SNe Ia

Testing explosion models

Conclusions

TESTING ARTIS

Influence of ionisation treatment

Testing explosion models

Conclusions

TESTING ARTIS

Influence of ionisation treatment

- circles: SN 2001el (Krisciunas 2003)
- CD23 simple
- CD23 detailed

Markus Kromer (MPA)

Testing explosion models

Conclusions

TESTING ARTIS

Influence of atomic data

- circles: SN 2001el (Krisciunas 2003)
- CD23 simple
- CD23 detailed
- BIG detailed

Testing explosion models

Conclusions

TESTING ARTIS

Influence of atomic data

Now apply ARTIS to study outcome of different progenitor scenarios and explosion mechanisms

- Single degenerate Chandrasekhar-mass model
- Double degenerate mergers
- Double detonation sub-Chandrasekhar-mass model

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

The basic picture

- CO WD accretes H
- Ignition at Chandrasekhar mass

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

The basic picture

- CO WD accretes H
- Ignition at Chandrasekhar mass
- How does the explosion work?
 - Detonation
 - Deflagration

Introduction	Radiative transfer for SNe Ia	Testing explosion models	Conclusions
SINGLE DEGENERAT	E CHANDRASEKHAR MASS MODEL		
Pure deto	nation		

- Flame driven by shock waves
- Burning at high densities

Pure detonation

- Flame driven by shock waves
- Burning at high densities
- Produce "purely" Fe-group material

Pure detonation

- Flame driven by shock waves
- Burning at high densities
- Produce "purely" Fe-group material
- ⇒ Cannot explain SNe Ia (Arnett 1969)

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Pure deflagration

- Flame driven by turbulent combustion
- 3D models unbind the WD

Röpke et al. 2007

Pure deflagration

- Flame driven by turbulent combustion
- 3D models unbind the WD
- Only weak explosions
- Strong mixing
- \Rightarrow Fail to explain normal SNe Ia

Fe-group; intermediate mass; C,O Model: solid SN 2002bo: dotted

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Pure deflagration

- Flame driven by turbulent combustion
- 3D models unbind the WD
- Only weak explosions
- Strong mixing
- \Rightarrow Fail to explain normal SNe Ia
- Are 2002cx-like objects pure deflagrations? (Branch et al. 2004)

2 6 7 8 9 101112131415161718192021222324252627282930

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Pure deflagration

- Flame driven by turbulent combustion
- 3D models unbind the WD
- Only weak explosions
- Strong mixing
- \Rightarrow Fail to explain normal SNe Ia
- Are 2002cx-like objects pure deflagrations? (Branch et al. 2004)

2 6 7 8 9 101112131415161718192021222324252627282930

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Pure deflagration

- Flame driven by turbulent combustion
- 3D models unbind the WD
- Only weak explosions
- Strong mixing
- \Rightarrow Fail to explain normal SNe Ia
- Are 2002cx-like objects pure deflagrations? (Branch et al. 2004)

 \Rightarrow Maybe

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

The basic picture revisited

- CO WD accretes H
- Ignition at Chandrasekhar mass
- Detonation ruled out
- Deflagration
 - Doesn't explain normal SNe Ia
 - But may be model for SN 2002cx-likes

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

The basic picture revisited

- CO WD accretes H
- Ignition at Chandrasekhar mass
- Detonation ruled out
- Deflagration
 - Doesn't explain normal SNe Ia
 - But may be model for SN 2002cx-likes

How to make normal SNe Ia?

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

The basic picture revisited

- CO WD accretes H
- Ignition at Chandrasekhar mass
- Detonation ruled out
- Deflagration
 - Doesn't explain normal SNe la
 - But may be model for SN 2002cx-likes
- How to make normal SNe Ia?
 ⇒ Delayed-detonation

Röpke & Bruckschen 2008
Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Observational outcome of delayed detonations

Kasen, Röpke & Woosley 2009

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Observational outcome of delayed detonations

Kasen, Röpke & Woosley 2009

Testing explosion models

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

Observational outcome of delayed detonations

Kasen, Röpke & Woosley 2009

\Rightarrow Delayed-detonation Chandrasekhar mass models reproduce the observed diversity of normal SNe Ia

Markus Kromer (MPA)

Testing SN Ia explosion models

Introduction	Radiative transfer for SNe la	Testing explosion models	Conclusions				
SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL							
But not a	II is perfect						

- So far explosion models only 2D
- DDT physics not understood

But not all is perfect

- So far explosion models only 2D
- DDT physics not understood
- SN properties vary with host type (e.g. Gallagher et al. 2005)

But not all is perfect

- So far explosion models only 2D
- DDT physics not understood
- SN properties vary with host type (e.g. Gallagher et al. 2005)
- Observed X-ray luminosity from accreting WDs in early-type galaxies much below the expectations from SNe Ia rate (Gilfanov & Bogdan, 2010)

Conclusions

SINGLE DEGENERATE CHANDRASEKHAR MASS MODEL

But not all is perfect

- So far explosion models only 2D
- DDT physics not understood
- SN properties vary with host type (e.g. Gallagher et al. 2005)
- Observed X-ray luminosity from accreting WDs in early-type galaxies much below the expectations from SNe Ia rate (Gilfanov & Bogdan, 2010)
- Population synthesis predicts too few objects to explain SN Ia rate

Ruiter, Belczynski & Fryer 2009

DOUBLE DEGENERATE MERGERS

The basic picture

- Close WD binaries merge due to emission of gravitational waves
- Possible la progenitors if M₁ + M₂ > M_{Ch} (Iben & Tutukov 1984, Webbink 1984)
- Observationally very few objects known
- So far simulations yielded no explosions (e.g. Motl 2007, Yoon 2007)
- Fate depends strongly on $q = M_2/M_1$
 - *q* < *q*_{crit} stable mass transfer
 - *q*_{crit} < *q* < *q*_{merge} disruption of secondary
 - *q*_{merge} < *q* violent merger

Testing explosion models

Conclusions

DOUBLE DEGENERATE MERGERS

Merging two 0.9 M_{\odot} WDs (Pakmor et al. 2010)

- SPH simulation to model coalescence of WDs
- Trigger detonation
- Follow explosion with a grid code
- Energy release unbinds the object
- Nucleosynthesis postprocessing yields 0.1 M_☉ ⁵⁶Ni
- Similar evolution for 0.93 < q < 1 (q_{merge} ?)

Testing explosion models

Conclusions

DOUBLE DEGENERATE MERGERS

Synthetic light curves

Testing explosion models

DOUBLE DEGENERATE MERGERS

Synthetic light curves

- Faint
- Fast decline
- Do not follow Phillips relation
- Red colours
- No secondary maxima in NIR bands

Testing explosion models

DOUBLE DEGENERATE MERGERS

Synthetic light curves

- Faint
- Fast decline
- Do not follow Phillips relation
- Red colours
- No secondary maxima in NIR bands
- ⇒ Fit to subluminous 1991bg-like objects

DOUBLE DEGENERATE MERGERS

Other characteristics of 1991bg-like objects

- Spectroscopically peculiar
- "Strong" continuum polarization
- Occur predominantly in old stellar populations
- Contribute about 10% to the total SN Ia rate

Conclusions

DOUBLE DEGENERATE MERGERS

Other characteristics of 1991bg-like objects

- Spectroscopically peculiar
- "Strong" continuum polarization
- Occur predominantly in old stellar populations
- Contribute about 10% to the total SN Ia rate

6 7 8 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27 28 29 30

Conclusions

DOUBLE DEGENERATE MERGERS

Other characteristics of 1991bg-like objects

- Spectroscopically peculiar
- "Strong" continuum polarization (√)
- Occur predominantly in old stellar populations
- Contribute about 10% to the total SN Ia rate

Conclusions

DOUBLE DEGENERATE MERGERS

Other characteristics of 1991bg-like objects

- Spectroscopically peculiar
- "Strong" continuum polarization (√)
- Occur predominantly in old stellar populations √
- Contribute about 10% to the total SN Ia rate √

DOUBLE DEGENERATE MERGERS

What about other mergers?

- Less massive WDs will not explode
- More massive WDs are very rare

DOUBLE DEGENERATE MERGERS

What about other mergers?

- Less massive WDs will not explode
- More massive WDs are very rare
- \Rightarrow Violent mergers ($q > q_{merge}$) lead to 1991bg-like objects

How to make the bulk of normal SNe Ia?

Markus Kromer (MPA)

Testing SN Ia explosion models

Ondřejov, 21.04.2010

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

The basic picture

- CO WD accretes $\sim 0.2 M_{\odot}$ He from a He-rich companion star
- Primary detonation triggers in the He-shell

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

The basic picture

- CO WD accretes $\sim 0.2 M_{\odot}$ He from a He-rich companion star
- Primary detonation triggers in the He-shell
- Shock-compression ignites a secondary detonation in the core (Woosley & Weaver 1994, Fink et al. 2007)
- Core densities lower than in M_{Ch} models

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

The basic picture

- CO WD accretes $\sim 0.2 M_{\odot}$ He from a He-rich companion star
- Primary detonation triggers in the He-shell
- Shock-compression ignites a secondary detonation in the core (Woosley & Weaver 1994, Fink et al. 2007)
- Core densities lower than in M_{Ch} models
- Robustness of core ignition?
- Problems in fitting observational data

(Höflich & Khokhlov 1996, Nugent et al. 1997)

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

New hydro simulations (Fink et al., in press)

 Set of minimum shell mass models (Bildsten et al. 2007)

Model	$M_{\rm tot}/M_{\odot}$	$M_{\rm core}/M_{\odot}$	$M_{\rm shell}/M_{\odot}$
1	0.936	0.810	0.126
2	1.004	0.920	0.084
3	1.080	1.025	0.055
4	1.164	1.125	0.039
5	1.293	1.280	0.013
6	1.389	1.385	0.004

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

New hydro simulations (Fink et al., in press)

 Set of minimum shell mass models (Bildsten et al. 2007)

Model	$M_{\rm tot}/M_{\odot}$	$M_{\rm core}/M_{\odot}$	$M_{\rm shell}/M_{\odot}$
1	0.936	0.810	0.126
2	1.004	0.920	0.084
3	1.080	1.025	0.055
4	1.164	1.125	0.039
5	1.293	1.280	0.013
6	1.389	1.385	0.004

 All models successfully ignite the core detonation

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

- + Populate a large range in brightness
- + Despite low mass, time-evolution OK

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

- + Populate a large range in brightness
- + Despite low mass, time-evolution OK
- Colours too red
- Peculiar light curves

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

- + Populate a large range in brightness
- + Despite low mass, time-evolution OK
- Colours too red
- Peculiar light curves
- Can we understand this?

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

- + Populate a large range in brightness
- Despite low mass, time-evolution OK
- Colours too red
- Peculiar light curves
- Can we understand this?

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

- + Populate a large range in brightness
- + Despite low mass, time-evolution OK
- Colours too red
- Peculiar light curves
- Can we understand this?
 - $\Rightarrow \ \mbox{Fe-rich shell material} \\ \ \mbox{redistributes flux} \\$

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

- + Populate a large range in brightness
- + Despite low mass, time-evolution OK
- Colours too red
- Peculiar light curves
- Can we understand this?
 - $\Rightarrow \mbox{ Fe-rich shell material } redistributes flux \label{eq:Fe-rich}$
- As they stand these models are bad

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

Nucleosynthesis in the shell depends strongly on

- Initial composition
- Density
- Better understanding of progenitor evolution needed to pin down those

Testing explosion models

Conclusions

SUB-CHANDRESEKHAR-MASS DOUBLE DETONATIONS

Nucleosynthesis in the shell depends strongly on

- Initial composition
- Density
- Better understanding of progenitor evolution needed to pin down those
- But modified model looks promising
- This is pure speculation

2 6 7 8 9 101112131415161718192021222324252627282930

SUMMARY

New MC RT code (ARTIS, Kromer & Sim 2009)

- Parameter-free
- Time-dependent
- Fully 3D
- Multi-wavelength: γ to NIR
- Detailed solution of ionisation and thermal balance equation (crucial to match observations)
- Detailed treatment of radiation/matter interactions
- Need extensive line list to simulate redistribution properly
- Prediction of synthetic observables from explosion models possible
- We just began to do detailed comparison of models and observations

SUMMARY

Status on different explosion models

- Pure detonations: ruled out
- Pure deflagrations: ruled out for normal SNe Ia, but maybe realized in 2002cx-likes
- Delayed detonations: synthetic observables match normal SNe Ia, but rate problems
- Mergers: violent mergers do work and explain 91bg-like events
- Sub-Chandras: give "healthy" explosions, but peculiar observables (strongly dependent on shell composition)
- How to explain the bulk of normal SNe Ia?
- How to explain the diversity?
- Progenitors?

OUTLOOK

Where to go in the future?

- Pure deflagrations: detailed comparison to 2002cx-like objects
- Delayed detonations: improve understanding of DDT physics
- Mergers: explore parameter space
- Sub-Chandras: can we avoid the shell effects?
- Nucleosynthesis in the regime of incomplete burning
- Influence of multi-dimensional effects on observables
- Late-time spectra and polarization

IMPLEMENTATION

Selecting the next event

IMPLEMENTATION

Macro atom formalism

IMPLEMENTATION

Excitation/ionisation treatment

- detailed solution of the ionisation balance
 - assume photoionisation equilibrium

$$\frac{N_{j,k}}{N_{j+1,k}n_{\rm e}} = \frac{\alpha_{j,k}^{\rm sp}}{\Gamma_{j,k}}$$

derive Γ_{j,k} from Monte Carlo simulation

$$\Gamma_{j,k} \equiv \frac{g_{0,j,k}}{U_{j,k}n_{0,j,k}} \cdot \sum_{i=0}^{\mathcal{N}_{j,k}} n_{i,j,k} \gamma_{i,j,k}$$

- simultaneous solution of the thermal balance equation $\Rightarrow T_e$
 - heating rates from Monte Carlo simulation
 - cooling rates evaluated at T_e
- use Boltzmann formula evaluated at $T_{\rm J} = \frac{\pi}{\sigma^4} \langle J \rangle$ for excitation

IMPLEMENTATION

Radiation field

exact radiation field extractable by Monte Carlo estimators

$$J_{\nu}\mathrm{d}
u = rac{1}{4\pi\Delta tV}\sum_{\mathrm{d}
u}\epsilon_{
u}^{\mathrm{cmf}}\mathrm{d}s$$

- but: computationally prohibitive
- ⇒ parameterise local radiation field in nebular approximation

$$J_{\nu} = W \cdot B_{\nu} \left(T_{R} \right)$$

dilution factor W and radiation temperature $T_{\rm R}$ defined as

$$W = \frac{\pi}{\sigma T_{\rm R}^4} \langle J \rangle \qquad T_{\rm R} = \frac{h \langle \nu \rangle}{3.832 k_{\rm B}}$$

TESTING THE CODE

Influence of ionisation treatment

Ionisation fractions of Fe I, II, III, IV, V versus radial velocity

Markus Kromer (MPA)

Testing SN Ia explosion models

TESTING THE CODE

Influence of ionisation treatment

Ionisation fractions of Fe I, II, III, IV, V versus radial velocity

versus time

Markus Kromer (MPA)

TESTING THE CODE

Broad-band light curves

- blue: big detailed
- red: CD23 detailed
- green: CD23 simple
- dashed: STELLA (Blinnikov 1998)
- dotted: SEDONA (Kasen 2006)
- circles: SN 2001el (Krisciunas 2003)

Markus Kromer (MPA)

Radiative transfer for SNe Ia

TESTING THE CODE

Flux redistribution

