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Continuous Problem
Space semidiscretization

Let Ω⊂Rd be a bounded domain with a Lipschitz boundary ∂ Ω.

Continuous Problem
Find u : QT = Ω× (0,T )→ R such that

∂u
∂ t

+ div f(u) = 0 in QT,

u(x ,0) = u0(x), x ∈ Ω,

where f = (f1, · · · , fd ) and fs, s = 1, . . . ,d are Lipschitz-
continuous fluxes in the direction xs, s = 1, . . . ,d .
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Continuous Problem
Space semidiscretization

Let Th be a partition of the closure Ω into a finite number of
closed triangles K ∈Th.

By Fh we denote the set of all edges.
For each Γ ∈Fh we define a unit normal vector nΓ. For
each face Γ ∈F I

h there exist two neighbours
K (L)

Γ , K (R)
Γ ∈Th.

Over Th we define the broken Sobolev space

Hk (Ω,Th) = {v ;v |K ∈ Hk (K ) ∀K ∈Th}

and for v ∈ H1(Ω,Th) and Γ ∈F I
h we set

v |(L)
Γ = trace of v |

K (L)
Γ

on Γ, v |(R)
Γ = trace of v |

K (R)
Γ

on Γ,
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Continuous Problem
Space semidiscretization

Definition
We define the space of discontinuous piecewise polynomial
functions

Sn
h = {v ;v |K ∈ Pn(K ) ∀K ∈Th},

where Pn(K ) is the set of all polynomials on K of degree ≤ n.

S0
h - finite volume space,

Sn
h - discontinuous Galerkin space,

SN
h , N > n - Higher order DG reconstructions.
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Continuous Problem
Space semidiscretization

We integrate over K ∈Th and apply Green’s theorem

d
dt

∫
K

u(t)dx +
∫

∂K
f(u) ·ndS = 0.

We define
ūK (t) :=

1
|K |

∫
K

u(t)dx

and obtain
d
dt

ūK (t) +
1
|K |

∫
∂K

f(u) ·ndS = 0.

We assume, that there exists a piecewise polynomial function
UN

h (t) ∈ SN
h such that

UN
h (x , t) = u(x , t) + O(hN+1), ∀x ∈ Ω, ∀t ∈ (0,T ).
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Continuous Problem
Space semidiscretization

The boundary convective terms will be treated with the aid of a
numerical flux H(u,v ,n):∫

Γ
f(u) ·ndS ≈

∫
Γ

H(UN,(L)
h ,UN,(R)

h ,n)dS.

Lemma
The averages of the exact solution u satisfy

d
dt

ūK (t) +
1
|K |

∫
∂K

H(UN,(L)
h ,UN,(R)

h ,n)dS = O(hN).

Lipschitz continuity and consistency of H
u−UN

h = O(hN).
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ūK (t) +
1
|K |

∫
∂K

H(UN,(L)
h ,UN,(R)

h ,n)dS = O(hN).

Lipschitz continuity and consistency of H
u−UN

h = O(hN).
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Continuous Problem
Space semidiscretization

Definition (FV reconstruction problem)
Let v : Ω→ R be sufficiently regular. Given v̄K for all K ∈Th,
find vN

h ∈ SN
h such that v −vN

h = O(hN+1) in Ω.
We define the corresponding reconstruction operator
R : S0

h → SN
h by R v̄ := vN

h .

Definition (Reconstructed FV scheme)

We seek uh(t) ∈ S0
h such that

d
dt

uh,K (t) +
1
|K |

∫
∂K

H
(
(Ruh)(L),(Ruh)(R),n

)
dS = 0.

Lemma
The exact solution u satisfies

d
dt

ūK (t) +
1
|K |

∫
∂K

H
(
(Rū)(L),(Rū)(R),n

)
dS = O(hN).
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Continuous Problem
Space semidiscretization

Lemma
The exact solution u satisfies

d
dt

ūK (t) +
1
|K |

∫
∂K

H
(
(Rū)(L),(Rū)(R),n

)
dS = O(hN).

This indicates, that we may expect

‖u(t)−R ūh(t)‖= O(hN),

although, in principle, we have only

‖u(t)− ūh(t)‖= O(h).

This is confirmed by numerical experiments
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Continuous Problem
Space semidiscretization

’Standard’ FV reconstruction operator

1

Reconstruction stencil
For each K ∈Th we choose the reconstruction stencil SK ⊂Th,
usually some neighborhood of K .

For each K ∈Th, we seek a polynomial pSK
∈ PN(SK ), s.t.

1
|K ′|

∫
K ′

pSK
dx = uh

∣∣
K ′ ∀K

′ ∈ SK .

Finally, we define (Ruh)|K := pSK
|K for all K ∈Th.
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Continuous Problem
Space semidiscretization

Spectral FV reconstruction operator=0(1,1)

Spectral and control volumes

Let T S
h be a partition of Ω into simplices S ∈T S

h , called
spectral volumes. The FV triangulation Th is formed by
subdividing each S ∈T S

h into so-called control volumes K ⊂ S.

For each spectral volume S ∈T S
h we seek pS ∈ PN(S), s.t.

1
|K |

∫
K

pS dx = uh
∣∣
K ∀K ⊂ S, K ∈Th.

Finally, we define (Ruh)|K := pS|K for all K ⊂ S.
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Discontinuous Galerkin method with reconstruction

Continuous Problem
Space semidiscretization

’Standard’ FV
R must be constructed (and stored) for each K ∈Th
independently (on unstructured meshes).
Stencil size impractical for N > 2.
Construction of stencils near ∂ Ω.
Explicit construction in 1D.

Spectral FV
All spectral volumes are affine equivalent⇒ R is
constructed and stored only on a reference configuration.
The construction of partitions of spectral volumes into
control volumes is not straightforward for higher N and 3D.
No problems near boundaries.
Explicit construction in 1D.
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Formulation
Theoretical results and numerical experiments

Definition

Let v ∈ L2(Ω). Define by Πn
hv the L2(Ω)-projection of v on Sn

h :

Πn
hv ∈ Sn

h ,
(
Πn

hv −v , ϕ
n
h
)

= 0, ∀ϕ
n
h ∈ Sn

h .

The basis of the FV schemes consisted of the identity

d
dt

ūK (t) +
1
|K |

∫
∂K

H
(
(Rū)(L),(Rū)(R),n

)
dS = O(hN)

Since ū(t) = Π0
hu(t), we may view this as an identity for Π0

hu(t).

We shall generalize this relation from Π0
hu(t) to Πn

hu(t).
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We multiply our problem by an arbitrary ϕn
h ∈ Sn

h , integrate over
an element K ∈Th and apply Green’s theorem

d
dt

∫
K

u(t)ϕ
n
h dx +

∫
∂K

f(u) ·nϕ
n
h
∣∣
K dS−

∫
K

f(u) ·∇ϕ
n
h dx = 0.

By summing over all K ∈Th and rearranging, we get

We assume, that there exists a piecewise polynomial function
UN

h (t) ∈ SN
h such that

UN
h (x , t) = u(x , t) + O(hN+1), ∀x ∈ Ω, ∀t ∈ (0,T ).
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Again, we introduce a numerical flux H(u,v ,n):∫
Γ

f(u) ·n [ϕn
h ]dS ≈

∫
Γ

H(u(L),u(R),n)[ϕn
h ]dS.

Definition

bh(u,ϕ) =
∫

Fh

H(u(L),u(R),n)[ϕ]dS− ∑
K∈Th

∫
K

f(u) ·∇ϕ dx .

Lemma
The projections Πn

hu(t) of the exact solution satisfy

d
dt
(
Πn

hu(t),ϕn
h
)

+bh
(
UN

h (t),ϕn
h
)

= O(hN+1)‖ϕn
h‖L2(Ω), ∀ϕn

h ∈Sn
h .
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Definition (DG Reconstruction problem)

Let v : Ω→ R be sufficiently regular. Given Πn
hv ∈ Sn

h , find
vN

h ∈ SN
h such that v −vN

h = O(hN+1) in Ω.
We define the corresponding reconstruction operator
R : Sn

h → SN
h by R Πn

hv := vN
h .

Definition (Reconstructed DG scheme)

We seek un
h ∈ Sn

h such that

d
dt
(
un

h(t),ϕn
h
)

+ bh
(
R un

h(t),ϕn
h
)

= 0, ∀ϕn
h ∈ Sn

h .

Lemma
The exact solution u satisfies

d
dt
(
Πn

hu(t),ϕn
h
)

+ bh
(
R Πn

hu(t),ϕn
h
)

= O(hN+1)‖ϕn
h‖L2(Ω).
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Václav Kučera A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems



Finite volume method with reconstruction
Discontinuous Galerkin method with reconstruction

Formulation
Theoretical results and numerical experiments

Definition (DG Reconstruction problem)

Let v : Ω→ R be sufficiently regular. Given Πn
hv ∈ Sn

h , find
vN

h ∈ SN
h such that v −vN

h = O(hN+1) in Ω.
We define the corresponding reconstruction operator
R : Sn

h → SN
h by R Πn

hv := vN
h .

Definition (Reconstructed DG scheme)

We seek un
h ∈ Sn

h such that

d
dt
(
un

h(t),ϕn
h
)

+ bh
(
R un

h(t),ϕn
h
)

= 0, ∀ϕn
h ∈ Sn

h .

Lemma
The exact solution u satisfies

d
dt
(
Πn

hu(t),ϕn
h
)

+ bh
(
R Πn

hu(t),ϕn
h
)

= O(hN+1)‖ϕn
h‖L2(Ω).
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Lemma
The exact solution u satisfies

d
dt
(
Πn

hu(t),ϕn
h
)

+ bh
(
R Πn

hu(t),ϕn
h
)

= O(hN+1)‖ϕn
h‖L2(Ω).

This indicates, that we may expect

‖u(t)−R un
h(t)‖= O(hN),

although, in principle, we have only

‖u(t)−un
h(t)‖= O(hn).

This is confirmed by numerical experiments.
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Analogy of ’standard’ FV reconstruction operator

1

Reconstruction stencil
For each K ∈Th we choose the reconstruction stencil SK ⊂Th,
usually some neighborhood of K .

For each K ∈Th, we seek a polynomial pSK
∈ PN(SK ), s.t.(

Πn
hpSK

)∣∣
K ′ = un

h
∣∣
K ′ ∀K

′ ∈ SK .

Finally, we define (Run
h)|K := pSK

|K for all K ∈Th.
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Analogy of ’spectral’ FV reconstruction operator

1

Spectral and control volumes

Let T S
h be a partition of Ω into simplices S ∈T S

h , called
spectral volumes. The DG triangulation Th is formed by
subdividing each S ∈T S

h into so-called control volumes K ⊂ S.

For each spectral volume S ∈T S
h we seek pS ∈ PN(S), s.t.(

Πn
hpS

)∣∣
K = un

h
∣∣
K , ∀K ⊂ S, K ∈Th.

Finally, we define (Run
h)|K := pS|K for all K ⊂ S.
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’Standard’ FV
Stencil size need not be increased! To obtain higher orders
we simply increase n.
R must be constructed (and stored) for each K ∈Th
independently (on unstructured meshes).
Construction of stencils near ∂ Ω.

Spectral FV
The number of control volumes need not be increased! To
obtain higher orders we simply increase n.
All spectral volumes are affine equivalent⇒ R is
constructed and stored only on a reference configuration.
No problems near boundaries.
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Václav Kučera A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems



Finite volume method with reconstruction
Discontinuous Galerkin method with reconstruction

Formulation
Theoretical results and numerical experiments

’Standard’ FV
Stencil size need not be increased! To obtain higher orders
we simply increase n.
R must be constructed (and stored) for each K ∈Th
independently (on unstructured meshes).
Construction of stencils near ∂ Ω.

Spectral FV
The number of control volumes need not be increased! To
obtain higher orders we simply increase n.
All spectral volumes are affine equivalent⇒ R is
constructed and stored only on a reference configuration.
No problems near boundaries.

Václav Kučera A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems



Finite volume method with reconstruction
Discontinuous Galerkin method with reconstruction

Formulation
Theoretical results and numerical experiments

’Standard’ FV
Stencil size need not be increased! To obtain higher orders
we simply increase n.
R must be constructed (and stored) for each K ∈Th
independently (on unstructured meshes).
Construction of stencils near ∂ Ω.

Spectral FV
The number of control volumes need not be increased! To
obtain higher orders we simply increase n.
All spectral volumes are affine equivalent⇒ R is
constructed and stored only on a reference configuration.
No problems near boundaries.
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Reconstructed DG vs Standard DG
Test functions only of order n as opposed to N.
Fewer quadrature points, flux evaluations.
CFL condition permits larger time steps. Mass matrices of
order n×n instead of N×N.
The reconstruction procedure is problem-independent.

The von Neumann neighborhood allows us to reconstruct:
1D: S3n+2

h from Sn
h .

2D: S2n+1
h from Sn

h .
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Václav Kučera A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems



Finite volume method with reconstruction
Discontinuous Galerkin method with reconstruction

Formulation
Theoretical results and numerical experiments

Reconstructed DG vs Standard DG
Test functions only of order n as opposed to N.
Fewer quadrature points, flux evaluations.
CFL condition permits larger time steps. Mass matrices of
order n×n instead of N×N.
The reconstruction procedure is problem-independent.

The von Neumann neighborhood allows us to reconstruct:
1D: S3n+2

h from Sn
h .

2D: S2n+1
h from Sn

h .
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1 Finite volume method with reconstruction
Continuous Problem
Space semidiscretization

2 Discontinuous Galerkin method with reconstruction
Formulation
Theoretical results and numerical experiments
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Definition (Reconstructed DG scheme)

We seek un,k
h ∈ Sn

h such that(
un,k+1

h −un,k
h

τk
,ϕn

h

)
+ bh

(
R un,k

h ,ϕn
h
)

= 0, ∀ϕn
h ∈ Sn

h .

Definition (Auxiliary DG scheme)

We seek uN,k
h ∈ SN

h such that(
uN,k+1

h −uN,k
h

τk
,ϕN

h

)
+ bh

(
RΠn

huN,k
h ,ϕN

h
)

= 0, ∀ϕN
h ∈ SN

h .

Lemma

un,k
h = Πn

huN,k
h
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Therefore, error estimates for the reconstructed DG scheme
may be derived from estimates for the auxiliary problem

Definition (Auxiliary DG scheme)

We seek uN,k
h ∈ SN

h such that(
uN,k+1

h −uN,k
h

τk
,ϕN

h

)
+ bh

(
RΠn

huN,k
h ,ϕN

h
)

= 0, ∀ϕN
h ∈ SN

h .

This is similar to the standard DG scheme

Definition (Standard DG scheme)

We seek ũN,k
h ∈ SN

h such that(
ũN,k+1

h − ũN,k
h

τk
,ϕN

h

)
+ bh

(
ũN,k

h ,ϕN
h
)

= 0, ∀ϕN
h ∈ SN
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Václav Kučera A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems



Finite volume method with reconstruction
Discontinuous Galerkin method with reconstruction

Formulation
Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme
may be derived from estimates for the auxiliary problem

Definition (Auxiliary DG scheme)

We seek uN,k
h ∈ SN

h such that(
uN,k+1

h −uN,k
h

τk
,ϕN

h

)
+ bh

(
RΠn

huN,k
h ,ϕN

h
)

= 0, ∀ϕN
h ∈ SN

h .

This is similar to the standard DG scheme

Definition (Standard DG scheme)

We seek ũN,k
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Therefore, error estimates for the reconstructed DG scheme
might possibly be derived from standard DG estimates and a
thorough understanding of the operator RΠn

h : L2(Ω)→ SN
h .

Lemma

Let v ∈ HN+1(Ω),vh ∈ SN
h . Then

‖v −RΠn
hv‖L2(Ω) ≤ ChN+1|v |HN+1(Ω),

‖vh−RΠn
hvh‖L2(Ω) ≤ C inf

w∈HN+1(Ω)

(
hN+1|w |HN+1(Ω) +‖vh−w‖L2(Ω)

)
.

Holds for the ”spectral volume” construction of R.
Holds for the ”standard” construction of R for special
(trivial) cases.
Based on a very general Bramble-Hilbert lemma.
Estimate #2 nice, but useless.

Václav Kučera A new reconstruction-enhanced discontinuous Galerkin method for time-dependent problems



Finite volume method with reconstruction
Discontinuous Galerkin method with reconstruction

Formulation
Theoretical results and numerical experiments

Therefore, error estimates for the reconstructed DG scheme
might possibly be derived from standard DG estimates and a
thorough understanding of the operator RΠn

h : L2(Ω)→ SN
h .

Lemma

Let v ∈ HN+1(Ω),vh ∈ SN
h . Then

‖v −RΠn
hv‖L2(Ω) ≤ ChN+1|v |HN+1(Ω),

‖vh−RΠn
hvh‖L2(Ω) ≤ C inf

w∈HN+1(Ω)

(
hN+1|w |HN+1(Ω) +‖vh−w‖L2(Ω)

)
.

Holds for the ”spectral volume” construction of R.
Holds for the ”standard” construction of R for special
(trivial) cases.
Based on a very general Bramble-Hilbert lemma.
Estimate #2 nice, but useless.
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Numerical experiments

N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 9.30E-01 – 6.23E-01 – 4.05E+00 –
8 2.22E-01 2.07 1.55E-01 2.00 1.29E+00 1.65
16 3.25E-02 2.77 2.21E-02 2.81 2.47E-01 2.38
32 4.09E-03 2.99 2.82E-03 2.97 4.63E-02 2.41
64 5.07E-04 3.01 3.53E-04 3.00 9.46E-03 2.29

128 6.31E-05 3.01 4.41E-05 3.00 2.10E-03 2.17
256 7.86E-06 3.00 5.50E-06 3.00 4.91E-04 2.10

Table: 1D advection of sine wave, P0 elements with P2

reconstruction.
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Numerical experiments

N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 5.82E-03 – 3.49E-03 – 3.65E-02 –
8 7.53E-05 6.27 4.43E-05 6,30 1.06E-03 5,11

16 9.07E-07 6.38 5.95E-07 6,22 3.58E-05 4,89
32 1.82E-08 5.64 8.70E-09 6,10 1.16E-06 4,95
64 3.41E-10 5.74 1.33E-10 6,03 3.67E-08 4,98

Table: 1D advection of sine wave, P1 elements with P5

reconstruction.
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Numerical experiments

N ||eh||L∞(Ω) α ||eh||L2(Ω) α |eh|H1(Ω,Th) α

4 2.90E-03 – 1.85E-03 – 1.63E-02 –
8 7.75E-06 8.55 3.56E-06 9.02 1.03E-04 7.30

16 2.10E-08 8.53 6.64E-09 9.07 4.34E-07 7.89
32 7.21E-11 8.18 4.02E-11 7.37 1.76E-09 7.94

Table: 1D advection of sine wave, P2 elements with P8

reconstruction.
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Thank you for your attention
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