Location and multiplicity results for general nonlinear fourth order BVPs and applications

Feliz Minhós

Department of Mathematic. University of Évora Research Center in Mathematic and Applications of University of Évora PORTUGAL

Abstract

This work concerns to the existence, non-existence, multiplicity and location results for the problem composed by the fourth order fully nonlinear equation

$$u^{(4)}(x) + f(x, u(x), u'(x), u''(x), u'''(x)) = s p(x)$$
(E)

for $x \in [0,1]$, $f : [0,1] \times \mathbb{R}^4 \to \mathbb{R}$, $p : [0,1] \to \mathbb{R}^+$ continuous functions and s a real parameter, with the Lidstone boundary conditions

$$u(0) = u(1) = u''(0) = u''(1) = 0.$$
 (L)

It will be done an Ambrosetti-Prodi type discussion on s. That is, there are $s_0, s_1 \in \mathbb{R}$ such that:

- for $s < s_0$ or $(s > s_0)$ there is no solution of (E)-(L).
- · for $s = s_0$ problem (E)-(L) has at least a solution.
- for $s \in [s_0, s_1]$ (or $s \in [s_1, s_0[$) there are at least two solutions of (E)-(L).

The arguments used apply lower and upper solutions technique, *a priori* estimations and topological degree theory.

This method will be applied to more general boundary value problems, which include the equation

$$u^{(4)}(x) = f(x, u(x), u'(x), u''(x), u'''(x))$$
(1)

and the functional boundary conditions

$$L_{0}(u, u', u'', u''(0)) = 0 = L_{1}(u, u', u'', u''(0))$$

$$L_{2}(u, u', u'', u''(0), u'''(0)) = 0 = L_{3}(u, u', u'', u''(1), u'''(1))$$
(2)

where L_i , i = 0, 1, 2, 3, are continuous functions satisfying some monotonicity assumptions.

Some particular cases of problem (1)-(2), such as nonlocal and multipoint problems, will be considered.

An application to a continuous model of the human spine, used in aircraft ejections, vehicle crash situations and some forms of scoliosis, will be presented.