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Let−∞ < a < b < +∞, n be a natural number, f : ]a, b[×Rn → R be a function, satisfying
the local Carathéodory conditions, τi : ]a, b[→ ]a, b] (i = 1, . . . , n) be measurable functions,
and ρ : [a, b]→ [0,+∞[ be the (n− 1)-times continuously differentiable function such that

ρ(i−1)(a) = 0, ρ(i−1)(t) > 0 for a < t ≤ b (i = 1, . . . , n).

In the interval ]a, b[ consider the differential equation

u(n)(t) = f
(
t, u(τ1(t)), . . . , u

(n−1)(τn(t))
)

(1)

with the weighted initial conditions

lim sup
t→a

(
|u(i−1)(t)|
ρ(i−1)(t)

)
< +∞ (i = 1, . . . , n). (2)

Theorem 1. Let in the domain ]a, b[×Rn the condition

∣∣f(t, x1, . . . , xn)∣∣ ≤ n∑
i=1

hi(t)|xi|+ h0(t)

hold, where h0 ∈ L([a, b]) and hi ∈ Lloc(]a, b]) (i = 1, . . . , n) are nonnegative functions. Let,
moreover,

sup

{(∫ t

a

h0(s) ds

)/
ρ(n−1)(t) : a < t ≤ b

}
< +∞ (3)

and there exist a number γ ∈ ]0, 1[ such that

n∑
i=1

∫ t

a

ρ(i−1)(τi(s))hi(s) ds ≤ γρ(n−1)(t) for a < t ≤ b. (4)

Then the problem (1), (2) has at least one solution.



Theorem 2. Let in the domain ]a, b[×Rn the condition

∣∣f(t, x1, . . . , xn)− f(t, y1, . . . , yn)∣∣ ≤ n∑
i=1

hi(t)|xi − yi|

be fulfilled, where hi ∈ Lloc(]a, b]) (i = 1, . . . , n) are nonnegative functions. Let, moreover, the
inequalities (3) and (4) hold, where h0(t) = |f(t, 0, . . . , 0)| and γ ∈ ]0, 1[ . Then the problem (1), (2)
has one and only one solution.

Theorem 3. Let in the domain ]a, b[×Rn the inequality

f(t, x1, . . . , xn) ≥
n∑
i=1

hi(t)|xi|+ h0(t)

hold, where h0 ∈ L([a, b]) is a function satisfying the condition

inf

{(∫ t

a

h0(s) ds

)/
ρ(n−1)(t) : a < t ≤ b

}
> 0

and hi ∈ Lloc(]a, b]) (i = 1, . . . , n) are nonnegative functions such that

n∑
i=1

∫ t

a

ρ(i−1)(τi(s))hi(s) ds ≥ ρ(n−1)(t) for a < t ≤ b.

Then the problem (1), (2) has no solution.

The above-formulated theorems cover the case in which the equation (1) is strongly sin-
gular, i.e., the case, where ∫ b

a

(t− a)∗(t,x) dt=+∞ for µ≥0, x>0,

where

f ∗(t, x) = max
{∣∣f(t, x1, . . . , xn)∣∣ : n∑

i=1

|xi| ≤ x
}
.

On the other hand, from Theorem 3 follows that the condition γ ∈ ]0, 1[ in Theorems 1 and 2
is unimprovable and it cannot be replaced by the condition γ = 1.
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