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Abstract Problems of identification of material parameters
(mostly parameters appearing in constitutive relations) have ap-
plications in many fields of engineering including investigation
of processes in a rock mass. This paper outlines the structure of
parameter identification problems, methods for their solution and
describes an identification (calibration) problem from geotech-
nics, which will serve as a realistic benchmark problem for il-
lustration of the behaviour of selected parameter identification
methods.
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1 Introduction
Generally, the identification problems appear in investiga-
tion of physical processes in material environment. The
processes are described by the state variablesu and driven
by the control variablesf . The material is characterized
by parametersκ ∈ K ⊂ Rp.

Direct problems focus on computation ofu = uh(κ) =
uh(κ,x, t), where (x, t) gives space and time localization,
if f and κ are known. On the opposite, identification
problems use the knowledge off and some partial apri-
ori knowledge on the state variableu for (partial or full)
determination ofκ .

If the apriori information about the state variableu is
given by the vectord = (di)∈ Rm of measured values, then
the search for the unknown material parameters can be for-
mulated as the following minimization problem

F(κ) =‖ M uh(κ)−d ‖−→ min
κ∈K

. (1)

Above,M is an observation operator, which computes
from uh values corresponding to the measured data from
d. In the simplest case, it just select the valuesu(xi, ti)
corresponding todi.

In contrary to direct problems, it is known that some
identification problems are not well posed [4], which
means that some of the following properties can be vio-
lated:

∗Email: blaheta@ugn.cas.cz
†Email: kohut@ugn.cas.cz
‡Email: jakl@ugn.cas.cz

• there exists a solution of the problem,

• the solution is unique,

• the solution is stable under small changes of input
data.

Although the properties of the minimization problems
can be difficult to analyse, a lot of different iterative tech-
niques can be used for the minimization (1) (mostly with-
out theoretical proof of convergence). The range of appli-
cable methods includes

• gradient methods, e.g. Gauss-Newton, Levenberg-
Marquardt, conjugate gradients, see [3], [4], [6], [7],

• gradient-free direct method, e.g. Nelder-Mead sim-
plex method [3],

• stochastic methods e.g. [5], genetic algorithms e.g.
[6], [9] and [8].

In this paper, we discuss the use of these methods also
from the point of view of parallelization. Some of the ap-
proaches are illustrated by numerical experiments, imple-
mentation of the other methods is in progress.

Note also that the identification problem is very close to
the calibration of a mathematical model. The difference
is if we stress the computed material parameters or coin-
cidence of values predicted by the model with measured
data.

2 A Benchmark Problem
The in-situÄspö Pillar Stability Experiment (APSE) has
been performed at SKBs̈Aspö Hard Rock Laboratory in
south eastern Sweden with the aid of investigation of gran-
ite mass damage due to mechanical and thermal load-
ing. The measured data are now used for validation of
mathematical models within the DECOVALEX 2011 in-
ternational project. APSE used electrical heaters to in-
crease temperatures and induce stresses in a rock pillar
between deposition holes (Fig. 1) until its partial failure.
To determine accurately the temperature changes, a heat
flow model is formulated and monitored temperatures are
used for identification of heat flow parameters (heat capac-
ity, heat conduction coefficient, heat convection into the
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holes). The identification should provide parameters tak-
ing into account water bearing fractures and water flow and
calibrate the model. More details and another approach to
the model calibration can be found in [1].

Figure 1: The APSE model - detail of the FE grid around the
pillar (GEM software [2]) and plan view on the pillar, holes,
location of heaters and points of temperature measurement

The exploited APSE model, realized by GEM soft-
ware [2], considers domain of 105× 125× 118 m and
99×105×59 nodes. The grid is refined around the pillar,
see Fig. 1. The heaters are producing heat which varies in
time. The model assumes original temperature 14.5◦C on
the outer boundaries, zero flux onto the tunnel and nonzero
flux given the convection onto the holes. The initial condi-
tion is given again by the temperature 14.5◦C.

Monitoring of the temperatures during two month heat-
ing phase of APSE is essential for calibration of the ther-
mal model. There are 14 temperature monitoring positions
and temperatures are measured in 12 time moments. Alto-
gether 168 values of temperature measurement (vectord)
are used for parameter identification, which according to
(1) can be written as follows

F = F(λ1,c1,λ2,c2,λ3,c3,H1,H2,H3)

= (∑
i
[uh(xi, ti)−di]

2)0.5 −→ min. (2)

The material parameters represent different conductivityλ
and heat capacityc for dry and wet side of model (accord-
ing to Fig. 1). The rock in the right hole had yielded from
a depth of approximately 0.5 m down to 3 m which moti-
vates to introduce a third type of material with different
λ andc for the damaged part of the pillar. We supposed
heat conduction between rock and air in excavated holes
determined by different values of the heat conduction co-
efficient H for individual holes with third coefficient cor-
responding to surface for the above mentioned damaged
part of the pillar. It gives 9 material parameters of the cost
functionalF in (2).

3 Nelder-Mead Optimization
The first optimization algorithm, which we describe in this
paper, is the Nelder-Mead algorithm, which maintains a
simplexS(k) in the space of parameter vectors. This sim-
plex locally approximates the objective functionF and
serves for getting information about its behaviour and get-
ting approximation to the optimal point. IfF = F(κ) and
κ ∈ Rp then the k-th step simplexS(k) is determined by
p + 1 vectors of parameters (vertices)κ(k,1), . . . ,κ(k, p+1).
We assume that the object function values are evaluated
and vertices are sorted, so that

F(κ(k,1)) ≤ F(κ(k,2)) ≤ . . . ≤ F(κ(k, p+1)).

Thek-th step then continues by evaluation of the stop cri-
terion and if the approximation is not found to be satisfac-
tory, then the worst vertexκ(k, p+1) is replaced by a new
one or, in a specific case, the whole simplex is shrunk.

In any case, first, the new vertex is sought in the form

κ(µ) = (1+ µ)κ̄ −µκ(k, p+1),

whereκ̄ =
(

(κ(k,1) + . . .+κ(k,m+1))/m
)

is the barycentre

andµ is equal toµr = 1 for reflection,µe = 2 for extension,
µoc = 1/2 for outer contraction andµic = −1/2 for inner
contraction.

The k-th step always begins with evaluation ofFr =
F(κ(µr). If F(κ(k,1))≤Fr < F(κ(k,m)) then we takeκ(µr)
as the new point, otherwise we gradually test for the ex-
pansion, outside and inside contraction and take the se-
lected case. It means that thek-th step typically contains
one or two evaluations of the object functions. In the case
of contractions, we can also decide for shrinking the sim-
plex, which is more expensive and costsp evaluations of
the object function. The details can be found in [3].

The optimization is stopped when both decrease of the
cost functionalF is small (belowε f ) and changes of pa-
rameters are small (belowεp) or if too many evaluations
of the cost function are required.

Our experience with the Nelder-Mead method is de-
scribed in the next Section.
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Figure 2: The convergence of the cost functionalF (left), parameterλ1 (center) andc1 (right)

As concerns the parallelization, the Nelder-Mead
method is in principle sequential, which means that par-
allelization can be involved only in evaluation of the cost
function and eventually in realization of the shrinking of
simplex in some steps.

4 Numerical Results

Let us consider numerical solution of the benchmark prob-
lem from Section 2, i.e. finding of various heat transfer co-
efficients, by the Nelder-Mead method. Note that we use
method of unconstrained optimization, but to guarantee the
positivity of the parameters, we use exponential transfor-
mation, i.e. findingx such thatκ = ex is the required pa-
rameter. As the parameters have quite different orders, we
scale the heat capacityc for having all parameters in order
of units.

The Nelder-Mead iterations are stopped when both de-
crease of the cost functionalF is small (belowεF ) and
changes of parameters are small (belowεp). To find very
accurate approximation of the parameters, we stop itera-
tions withεF = 0.001 andεp = 0.01. With a physical ini-
tial guess, the stop occurred after 764 iterations, for a non
physical initial guess surprisingly less iterations were re-
quired. The convergence behaviour is illustrated in Fig. 2.
But the stopping test could be fulfilled much earlier (say
after 100 iterations) if we weaken the requirement on small
changes in all parameters. This is also due to the fact that
the objective function depends only mildly on some of the
parameters, see [11].

Note also that computation ofu = u(κ,x, t) represents
here the solution of an evolution parabolic heat transfer
problem, which is solved by linear finite element dis-
cretization in space and backward Euler method in time.
Linear systems appearing in each time step are solved it-
eratively by conjugate gradient method preconditioned by
one-level additive Schwarz method, which is efficient it
this case, see [10]. Of course the parallel computing can
be also used for assembling the finite element matrices.

5 Stochastic and Evolution Methods
To get a larger space for parallelization we shall consider
stochastic and evolution methods for optimization. In this
section, we shall consider a constrained search space for
parameters, i.e.κ ∈ K = ∏p

1 〈κi,min, κi,max〉. The the sim-
plest stochastic (Monte Carlo) algorithm is then as follows

MC algorithm with N = NMC individuals
(1) generateN random vectorsκ(i) ∈ K , i = 1, . . . ,N,
(2) evaluate (in parallel)F(κ(i)), i = 1, . . . ,N,
(3) selectκ = argmini F(κ(i)).

Genetic algorithms (GA) enrich the selection by opera-
tions of crossing and mutation. It provides the following
algorithm

GA with N = NGA individuals
(1) generateN random vectorsκ(i) ∈ K , i = 1, . . . ,N
(2) for given generation, evaluate (in parallel)

Fi = F(κ(i)), if Fi is not known yet,
(3) selectτN parameter vectorsκ(i) with smallest values

Fi; so called parents. Then create(1− τ)N new
vectors (childrens) by crossing randomly selected
parents,

(4) create a new generation by taking the selected
parents and created childrens with mutating some of
them,

(5) evaluate stopping test and GOTO (2) if results are
still not satisfactory.

In our case, the crossing and mutation acts on parameter
vectors and can be described as algebraic (not binary) rule,
see e.g. [8], [9]. For example:

Crossing of vectorsx andy is a new vectorz, which can
be given by

zi = xi +αi(yi − xi),

where for discrete crossingαi is selected from{0, 1} with
probability 1/2, but alsoαi can be selected randomly in the
range〈−δ , 1+δ 〉 for e.g.δ = 0.25,

Mutation of the vectorx concerns its componentsxi.
Each component is mutated with probability, which is usu-
ally 1/p. Mutation uses a range∆i, for xi ∈ 〈κi,min, κi,max〉



it is typically ∆i = 0.1(κi,max−κi,min). Mutation ofx then
gives a new vectorz, e.g.

zi = xi ±∆i2
−kα ,

whereα is choosen uniformly in〈0, 1〉 andk is so called
precision constant depending on the problem.

For more details on GA, we refer to [9] and [8]. The
method is attractive for a large space for parallelization and
still reasonable efficiency, see [6].

6 Conclusions
The paper describes the philosophy of the solution of the
identification problems and numerical realization of the
method. Optimization with the Nelder-Mead and genetic
algorithms are discussed in more detail. At present, we
have experience with numerical behaviour of the Nelder-
Mead optimization. The efficiency is increased by paral-
lelization of the solution of the embedded direct method as
well as by the gradual improvement of the discretization
accuracy during optimization. Implementation and testing
of the genetic methods are in progress now. We suppose
that parallel computations based on GA will be efficient
even on parallel systems with larger number of processing
elements.

In this paper, we omit the discussion on the gradient al-
gorithms, which can be efficient and involving some par-
allelism for computing the Jacobian by either finite differ-
ences or a semianalytic approach.

For the future, similar identification problems will be
applied to another geotechnical problems including the de-
velopment of in-situ rock mass tests and testing samples of
geocomposites in the laboratory scale. There are also an-
other aspects, which will be considered, such as selection
of parameters, regularization of the cost function, appli-
cation to nonlinear problems and automatic problem and
computer oriented choice of the optimization method.
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