-
Mathematical and computer analysis of the evolution processes in nonlinear viscoelastic fluid-like materials (201/09/0917)
from 01/01/2009
to 31/12/2013 investigator
-
This project proposal focuses on theoretical and computer analysis, and their mutual interplay, related to several classes of evolutionary models that have been recently designed to capture complex behavior of various fluid-like materials within the framework of nonlinear continuum mechanics. The characteristic keywords of these particular classes are implicit constitutive relations, nonlinear rate type fluids, nonlinear integral type fluid-like materials, inhomogeneous incompressible fluids, compressible non-Newtonian fluids, and chemically reacting fluids. Regarding specific applications, we intent to concentrate on unsteady flows of biological liquids and time-dependent processes in geophysical materials. The goal is to develop new methods and tools to solve initial boundary-value problems for large data, both theoretically and numerically.
-
-
-
The motion of rigid bodies in liquid: mathematical analysis, numerical simulation and related problems (IAA100190804)
from 01/01/2008
to 31/12/2010 investigator
-
In the framework of the project we will study the steady flow around bodies. We will consider the case when the direction of the angular velocity and of the velocity at infinity are or are not parallel. We will extend the results from the previous project, where the angular and tranlation velocities were parallel. We will study the linear cases and Navier-Stokes equations. We will investigate the existence of solution, asymptotic behaviour, resolvent and spectrum problem. Further, we will study the motion of several bodies in the fluid. We will consider the influence of boundary conditions and possibility of collisions. In this part we will study the existence of weak solution for steady and non-steady cases. We will investigate fluid flows described by Navier-Stokes equations as well as by non-Newtonian models. We will investigate the modeling of blood flow and related cardiovascular cases. Next to it the numerical simulation of severeal models will be performed.
-
-
-
Mathematical analysis of complex systems in the fluid mechanics (201/08/0315)
from 01/01/2008
to 31/12/2011 main investigator
-
The main goal of the project is to develop a rigorous mathematical theory of complex systems in fluid mechanics. Such problems arise in models of chemical reactions, astrophysics, biological models, atmosphere and geophysical fluid dynamics. The main challenge here is to handle problems with large data and without any restriction concerning the time scale. The main topics include: Multicomponent problems and mixtures. 2. Equations of magnetohydrodynamics. 3. Atmospheric and geophysical models. 4. Large time behavior of solutions and equilibrium states.
-
-
-
Nečas Center for Mathematical Modeling - part IM (LC06052)
from 01/01/2006
to 31/12/2011 main investigator
-
The general goal of the Nečas Center for Mathematical Modeling is to establish a significant scientific team in the field of mathematical properties of models in continuum mechanics and thermodynamics, developed by an intensive collaboration of five important research teams at three Prague affiliations and their goal-directed collaboration with top experts from abroad. The research projects of the center include: 1) Nonlinear theoretical, numerical and computer analysis of problems of continuum physics. 2) Heat-conductive and deforming processes in compressible fluids, incompressible substances of fluid type, and in linearly elastic matters. 3) Interaction of the substances. 4) Biochemical procedures in substances. 5) Passages between models, dimensional analysis.
-
-
-
Asymptotic analysis of infinite dimensional dynamical systems (IAA1001190606)
from 01/01/2006
to 31/12/2008 main investigator
-
The goal of the project is to obtain new qualitative results concerning the asymptotic behavior of infinite dimensional dynamical systems arising especially in the theory of viscous compressible fluids. The main topics include compactness of solutions, global existence, convergence towards equilibria and problems with rapidly oscillating boundaries.
-
-
-
Mathematical modelling of motion of bodies in Newtonian and non-Newtonian fluids and related mathematical problems (IAA100190505)
from 01/01/2005
to 01/12/2007 investigator
-
Investigation of properties of models describing motion of rigid bodies in viscous fluid. Existence of weak and strong solutions, asymptotic behaviour, attainability, numerical analysis and solution of selected models.
-
-
-
Mathematical analysis in the thermodynamics of fluids (201/05/0164)
from 01/01/2005
to 30/12/2007 main investigator
-
The aim of the present research project is to establish a coherent mathematical theory of viscous heat conducting fluids based on a suitable variational formulation of the problem consistent with the second law of thermodynamics. The main topics include: 1. The existence of solutions on arbitrarily large time intervals with no restriction on the size of data. 2. The questions of uniqueness, boundedness, and stability of solutions with respect to the initial conditions and other parameters as the case may be. 3. The long time behavior, convergence towards equilibria, and attractors. 4. Sensitivity analysis with respect to the shape of the underlying spatial domain.
-
-
-
Compatibility of dynamics and statics in multicomponent dissipative systems (IAA1019302)
from 01/01/2003
to 01/01/2005 main investigator
-
The main topics of the project is to study the asymptotic behaviour of solutions to partial differential equations arising in multicomponent systems modelling. The long time behaviour of solutions as well as the problem of stabilization towards stationary state will be investigated. Specifically, we shall investigate: 1. The equations describing the motion of one or several rigid bodies in a viscous fluid. 2. The solid-liquid phase fields models. 3. Dynamical solid-solid phase transition models.
-