Limiting the size of a singular set for 3D Navier-Stokes equations

Witold Sadowski

May 3, 2011

Seminar at Mathematics Institute, AS CR, Prague

KORK ERKER ADE YOUR

- **1** Navier-Stokes equations
- ² Hausdorff and the box-counting dimensions
- ³ Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

イロン イ部ン イ君ン イ君ンシ

B

 QQ

4 Navier-Stokes equations

- ² Hausdorff and the box-counting dimensions
- Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

 $(1 - 4)$ $(1 -$

 \Rightarrow

 $2Q$

- ¹ Navier-Stokes equations
- 2 Hausdorff and the box-counting dimensions
- Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

- ¹ Navier-Stokes equations
- 2 Hausdorff and the box-counting dimensions
- ³ Classical results
- Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

- ¹ Navier-Stokes equations
- 2 Hausdorff and the box-counting dimensions
- ³ Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

KORK STRAIN A BAR SHOP

- ¹ Navier-Stokes equations
- 2 Hausdorff and the box-counting dimensions
- ³ Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

KORK STRAIN A BAR SHOP

- ¹ Navier-Stokes equations
- 2 Hausdorff and the box-counting dimensions
- ³ Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

KORK STRAIN A BAR SHOP

- ¹ Navier-Stokes equations
- 2 Hausdorff and the box-counting dimensions
- ³ Classical results
- ⁴ Box-counting dimension of the set of singular times
- ⁵ Box-counting dimension of the singular set in space-time

KORK STRAIN A BAR SHOP

• The equations:

$$
\begin{cases}\n u_t - \triangle u + u \cdot \nabla u + \nabla p = 0 \\
\nabla \cdot u = 0\n\end{cases}
$$

• Standard regularity of weak solutions

$$
u\in L^2(0,\,T;\,V)\cap L^\infty(0,\,T;\,H)
$$

• Regularity in L^rL^s spaces: $u \in L^r(0, T; L^s(\Omega))$ for

$$
\frac{2}{r} + \frac{3}{s} \le \frac{3}{2}, \ 2 \le s \le 6
$$

for $s=r=\frac{10}{3}$ $\frac{10}{3}$ we have

$$
u \in L^{\frac{10}{3}}(\mathbb{Q}_T)
$$

• The equations:

$$
\begin{cases}\n u_t - \triangle u + u \cdot \nabla u + \nabla p = 0 \\
\nabla \cdot u = 0\n\end{cases}
$$

• Standard regularity of weak solutions

 $u \in L^2(0, T; V) \cap L^\infty(0, T; H)$

• Regularity in L^rL^s spaces: $u \in L^r(0, T; L^s(\Omega))$ for

$$
\frac{2}{r} + \frac{3}{s} \le \frac{3}{2}, \ 2 \le s \le 6
$$

 $u \in L^{\frac{10}{3}}(Q_{T})$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

for $s=r=\frac{10}{3}$ $\frac{10}{3}$ we have

• The equations:

$$
\begin{cases}\n u_t - \triangle u + u \cdot \nabla u + \nabla p = 0 \\
\nabla \cdot u = 0\n\end{cases}
$$

• Standard regularity of weak solutions

$$
u\in L^2(0,\,T;\,V)\cap L^\infty(0,\,T;\,H)
$$

• Regularity in L^rL^s spaces: $u \in L^r(0, T; L^s(\Omega))$ for

$$
\frac{2}{r}+\frac{3}{s}\leq\frac{3}{2},\ 2\leq s\leq6
$$

 $u \in L^{\frac{10}{3}}(Q_{T})$

for $s=r=\frac{10}{3}$ $\frac{10}{3}$ we have

• The equations:

$$
\begin{cases}\n u_t - \triangle u + u \cdot \nabla u + \nabla p = 0 \\
\nabla \cdot u = 0\n\end{cases}
$$

• Standard regularity of weak solutions

$$
u\in L^2(0,\,T;\,V)\cap L^\infty(0,\,T;\,H)
$$

• Regularity in L^rL^s spaces: $u \in L^r(0, T; L^s(\Omega))$ for

$$
\frac{2}{r}+\frac{3}{s}\leq\frac{3}{2},\ 2\leq s\leq6
$$

for $s=r=\frac{10}{3}$ $\frac{10}{3}$ we have

$$
u\in L^{\frac{10}{3}}(Q_T)
$$

More properties of weak solutions

• Foias et al. 1981: $u \in L^{2/3}(0, T; D(A)) \cap L^2(0, T; V)$ \Rightarrow $u \in L^1(0,\, T; L^\infty(\Omega))$

KORK ERKER ADE YOUR

More properties of weak solutions

• Foias et al. 1981: $u \in L^{2/3}(0, T; D(A)) \cap L^2(0, T; V)$ \Rightarrow $u \in L^1(0,\, T; L^\infty(\Omega))$

KORK ERKER ADE YOUR

More properties of weak solutions

• Foias et al. 1981: $u \in L^{2/3}(0, T; D(A)) \cap L^2(0, T; V)$ \Rightarrow $u \in L^1(0,\, T; L^\infty(\Omega))$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

$$
\bullet \ \ p \in L^{5/3}(Q_T)
$$

• Serrin's condition: If $u \in L^r(0, T; L^s(\Omega))$ with

$$
\frac{2}{r}+\frac{3}{s}\leq 1, s\geq 3
$$

then u is regular.

Local version: *u* and its space derivatives are uniformly bounded on compact subsets of Q

• The gap is small but

$$
\frac{1}{2} = 1000000 \, \text{S}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

• Serrin's condition: If $u \in L^r(0,\,T;L^s(\Omega))$ with

$$
\frac{2}{r}+\frac{3}{s}\leq 1, s\geq 3
$$

then u is regular.

Local version: u and its space derivatives are uniformly bounded on compact subsets of Q

• The gap is small but

$$
\frac{1}{2} = 1000000 \, \text{S}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

• Serrin's condition: If $u \in L^r(0,\,T;L^s(\Omega))$ with

$$
\frac{2}{r}+\frac{3}{s}\leq 1, s\geq 3
$$

then u is regular.

Local version: *u* and its space derivatives are uniformly bounded on compact subsets of Q

• The gap is small but

$$
\frac{1}{2} = 1000000 \, \text{S}
$$

KORK STRAIN A BAR SHOP

• Serrin's condition: If $u \in L^r(0,\,T;L^s(\Omega))$ with

$$
\frac{2}{r}+\frac{3}{s}\leq 1, s\geq 3
$$

then u is regular.

Local version: u and its space derivatives are uniformly bounded on compact subsets of Q

• The gap is small but

1 2 $= 1000000$ \$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

• Serrin's condition: If $u \in L^r(0,\,T;L^s(\Omega))$ with

$$
\frac{2}{r}+\frac{3}{s}\leq 1, s\geq 3
$$

then u is regular.

Local version: u and its space derivatives are uniformly bounded on compact subsets of Q

• The gap is small but

1 2 $= 1000000$ \$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

• Serrin's condition: If $u \in L^r(0,\,T;L^s(\Omega))$ with

$$
\frac{2}{r}+\frac{3}{s}\leq 1, s\geq 3
$$

then u is regular.

Local version: u and its space derivatives are uniformly bounded on compact subsets of Q

• The gap is small but

$$
\frac{1}{2} = 1000000 \; \text{\AA}
$$

KORK STRAIN A BAR SHOP

• A time $t \in (0, T)$ is singular if

 $||Du(t)|| = \infty$

- A time t is regular if it is not singular
- A point (x, t) in space-time is regular if there exists a cylinder $Q_r(x,t)$ such that u is Hölder continuous on $Q_r(x,t)$

KORK ERKER ADE YOUR

• A time $t \in (0, T)$ is singular if

 $||Du(t)|| = \infty$

- A time t is regular if it is not singular
- A point (x, t) in space-time is regular if there exists a cylinder $Q_r(x,t)$ such that u is Hölder continuous on $Q_r(x,t)$

KORK ERKER ADE YOUR

• A time $t \in (0, T)$ is singular if

 $||Du(t)|| = \infty$

- A time t is regular if it is not singular
- A point (x, t) in space-time is regular if there exists a cylinder $Q_r(x,t)$ such that u is Hölder continuous on $Q_r(x,t)$

KORKAR KERKER EL VOLO

• A time $t \in (0, T)$ is singular if

 $||Du(t)|| = \infty$

- A time t is regular if it is not singular
- A point (x, t) in space-time is regular if there exists a cylinder $Q_r(x,t)$ such that u is Hölder continuous on $Q_r(x,t)$

KORKAR KERKER EL VOLO

How can one measure smallness of a set?

イロト イ御 トイミト イミト ニミー りんぴ

Hausdorff dimension

We define

$$
\mu^{s}(X) = \inf \left\{ \sum_{k=1}^{\infty} r_{k}^{s} : \text{ there exists a cover of } X \right\}
$$

by balls with radii r_{k} }

Then

$$
dim_H(X) = inf\{s : \mu^s(X) = 0\}
$$

イロト 不優 ト 不重 ト 不重 トー

重

Hausdorff dimension

We define

$$
\mu^{s}(X) = \inf \left\{ \sum_{k=1}^{\infty} r_k^{s} : \text{ there exists a cover of } X \text{ by balls with radii } r_k \right\}
$$

Then

$$
dim_H(X) = inf\{s : \mu^s(X) = 0\}
$$

イロト 不優 ト 不重 ト 不重 トー

重

Hausdorff dimension

We define

$$
\mu^{s}(X) = \inf \left\{ \sum_{k=1}^{\infty} r_{k}^{s} : \text{ there exists a cover of } X \right\}
$$

by balls with radii r_{k} }

Then

$$
dim_H(X) = inf\{s : \mu^s(X) = 0\}
$$

イロト 不優 ト 不重 ト 不重 トー

重

Box-counting dimension I

The upper box-counting dimension of a set X is given by

$$
\limsup_{\epsilon \to 0} \frac{\log N(X, \epsilon)}{-\log \epsilon}.
$$

メロト メ都 トメ 差 トメ 差 ト

Box-counting dimension I

The upper box-counting dimension of a set X is given by

$$
\limsup_{\epsilon \to 0} \frac{\log N(X, \epsilon)}{-\log \epsilon}.
$$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

一番

Box-counting dimension II

 $N(X, \epsilon)$ can also be the maximum number of ϵ -separated points in X.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Box-counting dimension III

• Let $d_B(X) = d$ and $X \subset \mathbb{R}^n$. Then for any $d' > d$ there are ϵ_0 and $c > 0$ such that for all $0 < \epsilon < \epsilon_0$ we have

$$
\mu(O(X,\varepsilon))\leq c\varepsilon^{n-d'}
$$

• We always have

 $d_H(X) \leq d_B(X)$

KORK ERKER ADE YOUR

and for some X: $d_H(X) < d_B(X)$.

• Example: $X = \{n^{-1} : n \in N\}.$

Box-counting dimension III

• Let $d_B(X) = d$ and $X \subset \mathbb{R}^n$. Then for any $d' > d$ there are ϵ_0 and $c > 0$ such that for all $0 < \epsilon < \epsilon_0$ we have

$$
\mu(O(X,\varepsilon))\leq c\varepsilon^{n-d'}
$$

• We always have

 $d_H(X) \leq d_B(X)$

KORK ERKER ADE YOUR

and for some X: $d_H(X) < d_B(X)$.

• Example: $X = \{n^{-1} : n \in N\}.$

Box-counting dimension III

• Let $d_B(X) = d$ and $X \subset \mathbb{R}^n$. Then for any $d' > d$ there are ϵ_0 and $c > 0$ such that for all $0 < \epsilon < \epsilon_0$ we have

$$
\mu(O(X,\varepsilon))\leq c\varepsilon^{n-d'}
$$

• We always have

$$
d_H(X)\leq d_B(X)
$$

KORK ERKER ADE YOUR

and for some X: $d_H(X) < d_B(X)$.

• Example: $X = \{n^{-1} : n \in N\}.$
Classical results

Leray - 1934

 \bullet The set τ of singular times of a weak solution u has 1/2-dimensional Hausdorff measure zero.

The set S of singular points of a suitable weak solution *has* 1-dimensional parabolic Hausdorff measure zero: for any $n \in N$ it can be covered by cylinders $Q_k \,=\, (t_k , t_k + r_k^2) \times B(x_k , r_k)$ such that ∞

$$
\sum_{k=1}^{\infty} r_k < \frac{1}{n}
$$

KOD KAR KED KED E YORA

Classical results

Leray - 1934

 \bullet The set τ of singular times of a weak solution u has 1/2-dimensional Hausdorff measure zero.

CKN - 1982

The set S of singular points of a suitable weak solution u has 1-dimensional parabolic Hausdorff measure zero: for any $n \in N$ it can be covered by cylinders $Q_k \,=\, (t_k , t_k + r_k^2) \times B(x_k , r_k)$ such that \sim

$$
\sum_{k=1}^{\infty} r_k < \frac{1}{n}
$$

KOD KAR KED KED E YORA

Key ingredients

There is an absolute constant $\varepsilon > 0$ such that a point (x, t) is regular if

• for some $Q_r(x, t)$ we have

$$
\frac{1}{r^2}\int_{Q_r(x,t)}|u|^3+|p|^{3/2}\leq\varepsilon,
$$

• we have

$$
\limsup_{r\to 0}\frac{1}{r}\int_{Q_r(x,t)}||Du||^2\leq \varepsilon
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Key ingredients

There is an absolute constant $\varepsilon > 0$ such that a point (x, t) is regular if

• for some $Q_r(x, t)$ we have

$$
\frac{1}{r^2}\int_{Q_r(x,t)}|u|^3+|p|^{3/2}\leq\varepsilon,
$$

or

• we have

$$
\limsup_{r\to 0}\frac{1}{r}\int_{Q_r(x,t)}||Du||^2\leq \varepsilon
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

The box-counting dimension of the set of singular times

Theorem (James Robisnon and WS, 2007)

The upper box-counting dimension of a putative singular times T is no greater than $1/2$.

KORK ERKER ADE YOUR

Proof.

• For $t > s$ we have

$$
||Du(t)||^2 \leq \frac{||Du(s)||^2}{\sqrt{1-c(t-s)||Du(s)||^4}}
$$

• Therefore if there is blow-up at time t :

$$
||Du(s)||^2 \geq \frac{1}{\sqrt{c(t-s)}}
$$

• So
\n
$$
\int_0^T ||Du||^2 \ge \int_{t_1-r}^{t_1} ||Du||^2 + \int_{t_2-r}^{t_2} ||Du||^2 + ... + \int_{t_N-r}^{t_N} ||Du||^2
$$
\n
$$
\ge CN(r)\sqrt{r}
$$

[Title](#page-0-0) [Outline](#page-1-0) [Navier-Stokes equations](#page-9-0) [Dimensions](#page-26-0) [Classical results](#page-36-0) [Singular times](#page-40-0) [Singular set in space-time](#page-44-0) [Applications](#page-50-0)

Proof.

• For $t > s$ we have

$$
||Du(t)||^2 \leq \frac{||Du(s)||^2}{\sqrt{1-c(t-s)||Du(s)||^4}}
$$

• Therefore if there is blow-up at time t :

$$
||Du(s)||^2 \geq \frac{1}{\sqrt{c(t-s)}}
$$

• So \int_0^T $||Du||^2 \ge \int^{t_1}$ $||Du||^2 + \int^{t_2}$ $||Du||^2 + ... + \int^{t_N}$ $||Du||^2$ t_1-r t_2-r t_N-t $\geq CN(r)$ r Proof.

• For $t > s$ we have

$$
||Du(t)||^2 \leq \frac{||Du(s)||^2}{\sqrt{1-c(t-s)||Du(s)||^4}}
$$

• Therefore if there is blow-up at time t :

$$
||Du(s)||^2 \geq \frac{1}{\sqrt{c(t-s)}}
$$

• So
\n
$$
\int_0^T ||Du||^2 \ge \int_{t_1-r}^{t_1} ||Du||^2 + \int_{t_2-r}^{t_2} ||Du||^2 + ... + \int_{t_N-r}^{t_N} ||Du||^2
$$
\n
$$
\ge CN(r)\sqrt{r}
$$

Box-counting dimension of a singular set

Theorem

The upper box-counting dimension of a putative singular set S is less or equal 5/3.

Proof. It is enough to deduce that at a singular point

$$
\int_{Q_r(x,t)} |u|^{10/3} + |p|^{5/3} > cr^{5/3}.
$$

KORK STRAIN A BAR SHOP

Box-counting dimension of a singular set

Theorem

The upper box-counting dimension of a putative singular set S is less or equal 5/3.

Proof. It is enough to deduce that at a singular point

$$
\int_{Q_r(x,t)}|u|^{10/3}+|p|^{5/3}>cr^{5/3}.
$$

KORK ERKER ADE YOUR

• Igor Kukavica showed that:

$$
d_{B}(\mathcal{S}) \leq \frac{135}{82}
$$

• We have

$$
\frac{135}{82} \approx 1.646
$$

• Notice that

$$
1000000 \; \text{\$} = \frac{1}{2} \leq 0.646
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• Igor Kukavica showed that:

$$
d_{B}(\mathcal{S}) \leq \frac{135}{82}
$$

• We have

$$
\frac{135}{82} \approx 1.646
$$

• Notice that

$$
1000000 \; \text{\$} = \frac{1}{2} \leq 0.646
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^

• Igor Kukavica showed that:

$$
d_{B}(\mathcal{S}) \leq \frac{135}{82}
$$

• We have

$$
\frac{135}{82} \approx 1.646
$$

• Notice that

$$
1000000 \; \text{\$} = \frac{1}{2} \leq 0.646
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Igor Kukavica showed that:

$$
d_{B}(\mathcal{S}) \leq \frac{135}{82}
$$

• We have

$$
\frac{135}{82} \approx 1.646
$$

2

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• Notice that 1000000 \$ $=\frac{1}{2}$ ≤ 0.646

Application: Lagrange trajectories

$$
\begin{cases} \frac{d\varphi}{dt} = u(\varphi(t), t) \\ \varphi(0) = a \end{cases}
$$

4 Question: Are the particle trajectories unique for almost all $a \in \Omega$?

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

Application: Lagrange trajectories

$$
\begin{cases} \frac{d\varphi}{dt} = u(\varphi(t), t) \\ \varphi(0) = a \end{cases}
$$

¹ Question: Are the particle trajectories unique for almost all $a \in \Omega$?

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 \Rightarrow

Application: Lagrange trajectories

$$
\begin{cases} \frac{d\varphi}{dt} = u(\varphi(t), t) \\ \varphi(0) = a \end{cases}
$$

1 Question: Are the particle trajectories unique for almost all $a \in \Omega$?

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

 \Rightarrow

There exists at least one function $\Phi : \Omega \times [0; T] \rightarrow \Omega$ such that

1 the function $\phi_a(\cdot) = \Phi(a, \cdot)$ satisfies

$$
\phi(t) = a + \int_0^t u(\phi(s), s) ds
$$

- φ φ $_{a}(\cdot)\in$ $\mathcal{W}^{1,1}(0,\,T)$
- \bullet the mapping $s\to \Phi(s,\cdot)$ belongs to $L^\infty(\Omega;\,C([0,\,T],\bar{\Omega}))$
- \bigcirc Φ is volume-preserving: for any Borel set $B \subset \Omega$.

 $\mu(\Phi(\cdot,t)^{-1}(B)) = \mu(B)$

KOD KAR KED KED E YORA

There exists at least one function $\Phi : \Omega \times [0; T] \rightarrow \Omega$ such that

1 the function $\phi_a(\cdot) = \Phi(a, \cdot)$ satisfies

$$
\phi(t) = a + \int_0^t u(\phi(s), s) ds
$$

- φ φ $_{a}(\cdot)\in$ $\mathcal{W}^{1,1}(0,\,T)$
- \bullet the mapping $s\to \Phi(s,\cdot)$ belongs to $L^\infty(\Omega;\,C([0,\,T],\bar{\Omega}))$
- Θ Φ is volume-preserving: for any Borel set $B \subset \Omega$.

 $\mu(\Phi(\cdot,t)^{-1}(B)) = \mu(B)$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

There exists at least one function $\Phi : \Omega \times [0; T] \rightarrow \Omega$ such that

1 the function $\phi_a(\cdot) = \Phi(a, \cdot)$ satisfies

$$
\phi(t) = a + \int_0^t u(\phi(s), s)ds
$$

 φ a($\cdot) \in W^{1,1}(0,\,T)$

 \bullet the mapping $s\to \Phi(s,\cdot)$ belongs to $L^\infty(\Omega;\,C([0,\,T],\bar{\Omega}))$

 Θ Φ is volume-preserving: for any Borel set $B \subset \Omega$.

 $\mu(\Phi(\cdot,t)^{-1}(B)) = \mu(B)$

KOD KAR KED KED E YORA

There exists at least one function $\Phi : \Omega \times [0; T] \rightarrow \Omega$ such that

1 the function $\phi_a(\cdot) = \Phi(a, \cdot)$ satisfies

$$
\phi(t) = a + \int_0^t u(\phi(s), s)ds
$$

 φ a($\cdot) \in W^{1,1}(0,\,T)$ $\bullet\hspace{0.1cm}$ the mapping $s\to \Phi(s,\cdot)$ belongs to $L^{\infty}(\Omega; \, C([0,\,T], \bar{\Omega}))$ \bigcirc Φ is volume-preserving: for any Borel set $B \subset \Omega$. $\mu(\Phi(\cdot,t)^{-1}(B)) = \mu(B)$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

There exists at least one function $\Phi : \Omega \times [0; T] \rightarrow \Omega$ such that

1 the function $\phi_a(\cdot) = \Phi(a, \cdot)$ satisfies

$$
\phi(t) = a + \int_0^t u(\phi(s), s)ds
$$

- φ a($\cdot) \in W^{1,1}(0,\,T)$
- $\bullet\hspace{0.1cm}$ the mapping $s\to \Phi(s,\cdot)$ belongs to $L^{\infty}(\Omega; \, C([0,\,T], \bar{\Omega}))$
- \bullet Φ is volume-preserving: for any Borel set $B \subset \Omega$,

$$
\mu(\Phi(\cdot,t)^{-1}(B))=\mu(B)
$$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Conditional result

Theorem 1. James Robinson and WS 2008

If u is a suitable weak solution with $u \in L^{6/5}(0,\, T; L^{\infty})$ corresponding to $u_0\in H\cap H^{1/2}$, then almost every initial condition $a \in \Omega$ gives rise to a unique particle trajectory, which is C^1 function of time.

KORK ERKER ADE YOUR

Idea of proof

Idea of the proof: show that particle trajectories "usually" avoid points where u behaves badly

イロト イ押 トイヨト イヨト

 \Rightarrow

Idea of proof

Idea of the proof: show that particle trajectories "usually" avoid points where u behaves badly

 4 ロ) 4 \overline{P}) 4 \overline{B}) 4 \overline{B})

 \Rightarrow

Avoiding "bad points"

Theorem 2

If u is a suitable weak solution with $u \in L^{6/5}(0,\, T; L^\infty)$ then the set of initial conditions $a \in \Omega$ that give rise to trajectories intersecting the singular set S is of Lebesgue measure zero.

KORK ERKER ADE YOUR

 \bullet We cover the singular set by cylinders Q_k \bullet We define the numbers R_k :

$$
R_k = \int_{t_k}^{t_k + r_k^2} ||u||_{\infty}
$$

 $\widehat{\mathcal{S}}$ Then we consider balls $\hat{B}_k = (x_k, r_k + R_k)$

- \bullet We cover the singular set by cylinders Q_k
- \bullet We define the numbers R_k :

$$
R_k = \int_{t_k}^{t_k + r_k^2} ||u||_{\infty}
$$

 $\widehat{\mathcal{S}}$ Then we consider balls $\hat{B}_k = (x_k, r_k + R_k)$

- \bullet We cover the singular set by cylinders Q_k
- \bullet We define the numbers R_k :

$$
R_k=\int_{t_k}^{t_k+r_k^2}||u||_{\infty}
$$

 $\widehat{\mathcal{S}}$ Then we consider balls $\hat{B}_k = (x_k, r_k + R_k)$

- \bullet We cover the singular set by cylinders Q_k
- \bullet We define the numbers R_k :

$$
R_k=\int_{t_k}^{t_k+r_k^2}||u||_{\infty}
$$

 \bullet Then we consider balls $\hat{B}_k = (x_k, r_k + R_k)$

- \bullet We cover the singular set by cylinders Q_k
- \bullet We define the numbers R_k :

$$
R_k=\int_{t_k}^{t_k+r_k^2}||u||_{\infty}
$$

 \bullet Then we consider balls $\hat{B}_k = (x_k, r_k + R_k)$

1 using inequality:

$$
|\varphi_a(t)-\varphi_a(t_k)|\leq R_k
$$

we prove that trajectories that do not meet \hat{B}_k at time t_k cannot enter cylinder Q_k

 \bullet we estimate the volume of the family of balls $\hat{B}_k\text{:}$

$$
\sum_{k=1}^\infty \mu(\hat{B}_k) \leq \sum_{k=1}^\infty c(r_k+R_k)^3 \leq C[\sum_{k=1}^\infty r_k^3 + \sum_{k=1}^\infty R_k^3]
$$

$$
R_k \leq \left(\int_{t_k}^{t_k + r_k^2} ds\right)^{1/6} \left(\int_{t_k}^{t_k + r_k^2} ||u||_{\infty}^{6/5}\right)^{5/6} \leq C r_k^{1/3}
$$

1 using inequality:

$$
|\varphi_a(t)-\varphi_a(t_k)|\leq R_k
$$

we prove that trajectories that do not meet \hat{B}_k at time t_k cannot enter cylinder Q_k

 \bullet we estimate the volume of the family of balls $\hat{B}_k\text{:}$

$$
R_k \leq \left(\int_{t_k}^{t_k + r_k^2} ds\right)^{1/6} \left(\int_{t_k}^{t_k + r_k^2} ||u||_{\infty}^{6/5}\right)^{5/6} \leq C r_k^{1/3}
$$

1 using inequality:

$$
|\varphi_a(t)-\varphi_a(t_k)|\leq R_k
$$

we prove that trajectories that do not meet \hat{B}_k at time t_k cannot enter cylinder Q_k

 $\hat{\boldsymbol{z}}$ we estimate the volume of the family of balls $\hat{B}_k\text{:}$

$$
\sum_{k=1}^{\infty}\mu(\hat{B}_k)\leq \sum_{k=1}^{\infty}c(r_k+R_k)^3\leq C[\sum_{k=1}^{\infty}r_k^3+\sum_{k=1}^{\infty}R_k^3]
$$

$$
R_k \leq \left(\int_{t_k}^{t_k + r_k^2} ds\right)^{1/6} \left(\int_{t_k}^{t_k + r_k^2} ||u||_{\infty}^{6/5}\right)^{5/6} \leq C r_k^{1/3}
$$

1 using inequality:

$$
|\varphi_a(t)-\varphi_a(t_k)|\leq R_k
$$

we prove that trajectories that do not meet \hat{B}_k at time t_k cannot enter cylinder Q_k

 $\hat{\boldsymbol{z}}$ we estimate the volume of the family of balls $\hat{B}_k\text{:}$

$$
\sum_{k=1}^{\infty}\mu(\hat{B}_k)\leq \sum_{k=1}^{\infty}c(r_k+R_k)^3\leq C[\sum_{k=1}^{\infty}r_k^3+\sum_{k=1}^{\infty}R_k^3]
$$

$$
R_k \leq \left(\int_{t_k}^{t_k + r_k^2} ds\right)^{1/6} \left(\int_{t_k}^{t_k + r_k^2} ||u||_{\infty}^{6/5}\right)^{5/6} \leq C r_k^{1/3}
$$

1 using inequality:

$$
|\varphi_a(t)-\varphi_a(t_k)|\leq R_k
$$

we prove that trajectories that do not meet \hat{B}_k at time t_k cannot enter cylinder Q_k

 $\hat{\boldsymbol{z}}$ we estimate the volume of the family of balls $\hat{B}_k\text{:}$

$$
\sum_{k=1}^{\infty}\mu(\hat{B}_k)\leq \sum_{k=1}^{\infty}c(r_k+R_k)^3\leq C[\sum_{k=1}^{\infty}r_k^3+\sum_{k=1}^{\infty}R_k^3]
$$

$$
R_k \leq \left(\int_{t_k}^{t_k + r_k^2} ds\right)^{1/6} \left(\int_{t_k}^{t_k + r_k^2} ||u||_{\infty}^{6/5}\right)^{5/6} \leq C r_k^{1/3}
$$
Proof

- \Box since $u_0\in H^{1/2}$ trajectories are unique on some interval $[0, \varepsilon)$
- assume that for some $t > 0$ and $x \in \Omega$ (x, t) is not singular and there are two trajectories passing through (x,t)

KORK STRAIN A BAR SHOP

Proof

- \mathbf{D} since $u_0\in H^{1/2}$ trajectories are unique on some interval $[0, \varepsilon)$
- assume that for some $t > 0$ and $x \in \Omega$ (x, t) is not singular and there are two trajectories passing through (x,t)

KORK STRAIN A BAR SHOP

Proof

- \mathbf{D} since $u_0\in H^{1/2}$ trajectories are unique on some interval $[0, \varepsilon)$
- 2 assume that for some $t > 0$ and $x \in \Omega$ (x, t) is not singular and there are two trajectories passing through (x, t)

KOD KAR KED KED E YORA

Proof

- \mathbf{D} since $u_0\in H^{1/2}$ trajectories are unique on some interval $[0, \varepsilon)$
- 2 assume that for some $t > 0$ and $x \in \Omega$ (x, t) is not singular and there are two trajectories passing through (x, t)

KOD KAR KED KED E YORA

Proof

- \mathbf{D} since $u_0\in H^{1/2}$ trajectories are unique on some interval $[0, \varepsilon)$
- 2 assume that for some $t > 0$ and $x \in \Omega$ (x, t) is not singular and there are two trajectories passing through (x, t)

KOD KAR KED KED E YORA

Theorem 3. (James Robinson and WS 2009)

If u is a suitable weak solution with $p\in L^{5/3}((0,\,T)\times\Omega)$ corresponding to $\mu_0\in H\cap H^{1/2}(\Omega)$ then almost every initial condition $a \in \Omega$ gives rise to a unique particle trajectory, which is a C^1 function of time.

KORKA SERKER ORA

Aizenman's result

Proposition

Let $\Omega ~\subset ~\mathcal{R}^d$, and let $\Phi ~:~ \Omega \times [0, T] ~\to ~\Omega$ be a volumepreserving solution mapping corresponding to a vector field $u \in L^1(0,T; L^{\infty}(\Omega))$ for every $T > 0$. If X is a compact subset of Ω with $d_F(X) < d-1$ then for almost every initial condition $a \in \Omega$, $\Phi(t, a)$ is not an element of X for all times t.

KORKA SERKER ORA

Aizenman's result

Proposition

Let $\Omega ~\subset ~\mathcal{R}^d$, and let $\Phi ~:~ \Omega \times [0, T] ~\to ~\Omega$ be a volumepreserving solution mapping corresponding to a vector field $u \in L^1(0,T; L^{\infty}(\Omega))$ for every $T > 0$. If X is a compact subset of Ω with $d_F(X) < d-1$ then for almost every initial condition $a \in \Omega$, $\Phi(t, a)$ is not an element of X for all times t.

KORKA SERKER ORA

イロト イ部 トイ君 トイ君 トッ君 $\mathcal{O}Q$

イロン イ団ン イミン イミン 290 重

Definition of deltas

$$
\delta_k = \int_{t_k}^{t_{k+1}} ||u(s)||_{\infty} ds
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

イロト イ団 トイ 差 トイ 差 トー 290 ミー

If $X \in R^n$ has a box-counting dimension d, then for any $d' > d$ there exists an $\epsilon_0 > 0$ such that

$$
\mu(O(X,\epsilon))\leq c_n\epsilon^{n-d'}\ \, \text{for\ \, all}\ \, 0<\epsilon<\epsilon_0
$$

- $\bullet\; V_1 = \text{total volume of }\delta_1$ -neighbourhood of $X \leq \epsilon_n\delta_1^r$
- $2 \quad V_2 = \text{total volume of }\delta_2\text{-neighborhood of } X \leq c_n\delta_2^r$
- $\mathcal{V}_3 = \text{total volume of }\delta_3\text{-neighborhood of }X \leq c_n\delta_3'\dots$

KOD KAR KED KED E YORA

If $X \in R^n$ has a box-counting dimension d, then for any $d' > d$ there exists an $\epsilon_0 > 0$ such that

$$
\mu(O(X,\epsilon))\leq c_n\epsilon^{n-d'}\ \, \text{for\ \, all}\ \, 0<\epsilon<\epsilon_0
$$

Corollary

- $\bullet\; V_1 = \text{total volume of }\delta_1$ -neighbourhood of $X \leq c_n\delta_1^r$
- 2 V_2 $=$ total volume of δ_2 -neighbourhood of $X \leq \epsilon_n \delta_2^r$
- $\mathcal{S} \mid V_3 = \text{total volume of }\delta_3\text{-neighborhood of } X \leq c_n\delta_3'\dots$

KOD KAR KED KED E YORA

If $X \in R^n$ has a box-counting dimension d, then for any $d' > d$ there exists an $\epsilon_0 > 0$ such that

$$
\mu(O(X,\epsilon))\leq c_n\epsilon^{n-d'}\ \, \text{for\ \, all}\ \, 0<\epsilon<\epsilon_0
$$

Corollary

- $\bullet\; V_1 = \text{total volume of }\delta_1$ -neighbourhood of $X \leq c_n\delta_1^r$
- $2 \quad V_2 = \text{total volume of } \delta_2\text{-neighborhood of } X \leq c_n\delta_2^r$
- $\mathcal{S} \mid V_3 = \text{total volume of }\delta_3\text{-neighborhood of } X \leq c_n\delta_3'\dots$

KORKARYKERKE POLO

If $X \in R^n$ has a box-counting dimension d, then for any $d' > d$ there exists an $\epsilon_0 > 0$ such that

$$
\mu(O(X,\epsilon))\leq c_n\epsilon^{n-d'}\ \, \text{for\ \, all}\ \, 0<\epsilon<\epsilon_0
$$

Corollary

- $\bullet\; V_1 = \text{total volume of }\delta_1$ -neighbourhood of $X \leq c_n\delta_1^r$
- $2 \quad V_2 = \text{total volume of } \delta_2\text{-neighborhood of } X \leq c_n\delta_2^r$
- 3 $V_3 = \text{total volume of } \delta_3$ -neighbourhood of $X \leq c_n \delta_3' ...$

KORKARYKERKE POLO

If $X \in R^n$ has a box-counting dimension d, then for any $d' > d$ there exists an $\epsilon_0 > 0$ such that

$$
\mu(O(X,\epsilon))\leq c_n\epsilon^{n-d'}\ \, \text{for\ \, all}\ \, 0<\epsilon<\epsilon_0
$$

Corollary

- $\bullet\; V_1 = \text{total volume of }\delta_1$ -neighbourhood of $X \leq c_n\delta_1^r$
- $2 \quad V_2 = \text{total volume of } \delta_2\text{-neighborhood of } X \leq c_n\delta_2^r$
- 3 $V_3 = \text{total volume of } \delta_3$ -neighbourhood of $X \leq c_n \delta_3' ...$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

イロト イ部 トイ君 トイ君 トッ君 $\mathcal{O}Q$

$$
\mu(K) \le V_1 + V_2 + V_3 + \dots + V_N \le c(\delta_0^r + \delta_1^r + \delta_2^r + \dots + \delta_N^r) \le
$$
\n
$$
\le c[\epsilon^{r-1} \int_{t_0}^{t_1} ||u||_{\infty} + \epsilon^{r-1} \int_{t_1}^{t_2} ||u||_{\infty} + \dots + \epsilon^{r-1} \int_{t_{N-1}}^{t_N} ||u||_{\infty}] \le
$$
\n
$$
\le c\epsilon^{r-1} ||u||_{L^1(0,T;L^{\infty}(\Omega))}
$$

イロト イ御 トイミト イミト ニミー りんぴ

$$
\mu(K) \le V_1 + V_2 + V_3 + \dots + V_N \le c(\delta_0^r + \delta_1^r + \delta_2^r + \dots + \delta_N^r) \le
$$
\n
$$
\le c[\epsilon^{r-1} \int_{t_0}^{t_1} ||u||_{\infty} + \epsilon^{r-1} \int_{t_1}^{t_2} ||u||_{\infty} + \dots + \epsilon^{r-1} \int_{t_{N-1}}^{t_N} ||u||_{\infty}] \le
$$
\n
$$
\le c\epsilon^{r-1} ||u||_{L^1(0,T;L^{\infty}(\Omega))}
$$

K ロ > K @ ▶ K 할 > K 할 > 1 할 | X 9 Q @

- **1** Aizenman M. A sufficient condition for the avoidance of sets by measure preservng flows in Rⁿ, 1978
- 2 Caffarelli, Kohn and Nirenberg Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commu. Pure Appl. Math. 35 771-831, 1982
- ³ Foias, Guillope, Temam, Lagrangian representation of a flow, Journal of Differential Equations 57, 440-449 (1985)
- ⁴ Robinson, Sadowski Decay of weak solutions and the singular set of the 3D N-S equations, Nonlinearity, 2007
- **Robinson, Sadowski A criterion for uniqueness of** Lagrangian trajectories for weak solutions of the 3D Navier-Stokes equations, Commun. Math. Phys., 2009
- Robinson, Sadowski Almost everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three dimensional Navier-Stokes equations, Nonlinearity, 2009.

[Title](#page-0-0) [Outline](#page-1-0) [Navier-Stokes equations](#page-9-0) [Dimensions](#page-26-0) [Classical results](#page-36-0) [Singular times](#page-40-0) [Singular set in space-time](#page-44-0) [Applications](#page-50-0)

THANK YOU

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 ⊙ Q Q ^