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3D Navier-Stokes equations
• The equations:{

ut −4u + u · ∇u +∇p = 0
∇ · u = 0

• Standard regularity of weak solutions

u ∈ L2(0,T ; V ) ∩ L∞(0,T ; H)

• Regularity in LrLs spaces:u ∈ Lr (0,T ; Ls(Ω)) for

2

r
+

3

s
≤ 3

2
, 2 ≤ s ≤ 6

for s = r = 10
3

we have

u ∈ L
10
3 (QT )
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More properties of weak solutions

• Foias et al. 1981: u ∈ L2/3(0,T ; D(A)) ∩ L2(0,T ; V )

⇒ u ∈ L1(0,T ; L∞(Ω))

• p ∈ L5/3(QT )
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The gap

• Serrin’s condition:
If u ∈ Lr (0,T ; Ls(Ω)) with

2

r
+

3

s
≤ 1, s ≥ 3

then u is regular.
Local version: u and its space derivatives are uniformly
bounded on compact subsets of Q

• The gap is small but

1

2
= 1000000 $
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Singular times and singular points

• A time t ∈ (0,T ) is singular if

||Du(t)|| =∞

• A time t is regular if it is not singular

• A point (x , t) in space-time is regular if there exists a
cylinder Qr (x , t) such that u is Hölder continuous on
Qr (x , t)

• A point is singular if it is not regular
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How can one measure smallness of a set?
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Hausdorff dimension

We define

µs(X ) = inf

{
∞∑
k=1

r sk : there exists a cover of X

by balls with radii rk}
Then

dimH(X ) = inf {s : µs(X ) = 0}
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Box-counting dimension I

The upper box-counting dimension of a set X is given by

lim sup
ε→0

log N(X , ε)

−logε
.
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Box-counting dimension II

N(X , ε) can also be the maximum number of ε-separated
points in X .
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Box-counting dimension III

• Let dB(X ) = d and X ⊂ Rn. Then for any d ′ > d there
are ε0 and c > 0 such that for all 0 < ε < ε0 we have

µ(O(X , ε)) ≤ cεn−d
′

• We always have
dH(X ) ≤ dB(X )

and for some X : dH(X ) < dB(X ).

• Example: X = {n−1 : n ∈ N}.
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Classical results

Leray - 1934

1 The set T of singular times of a weak solution u has
1/2-dimensional Hausdorff measure zero.

CKN - 1982

The set S of singular points of a suitable weak solution u has
1-dimensional parabolic Hausdorff measure zero: for any n ∈ N
it can be covered by cylinders Qk = (tk , tk + r 2

k ) × B(xk , rk)
such that

∞∑
k=1

rk <
1

n
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Key ingredients

There is an absolute constant ε > 0 such that a point (x , t) is
regular if

• for some Qr (x , t) we have

1

r 2

∫
Qr (x ,t)

|u|3 + |p|3/2 ≤ ε,

or

• we have

lim sup
r→0

1

r

∫
Qr (x ,t)

||Du||2 ≤ ε
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The box-counting dimension of the set of singular

times

Theorem (James Robisnon and WS, 2007)

The upper box-counting dimension of a putative singular times
T is no greater than 1/2.
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Proof.

• For t > s we have

||Du(t)||2 ≤ ||Du(s)||2√
1− c(t − s)||Du(s)||4

• Therefore if there is blow-up at time t:

||Du(s)||2 ≥ 1√
c(t − s)

• So∫ T

0

||Du||2 ≥
∫ t1

t1−r
||Du||2+

∫ t2

t2−r
||Du||2+...+

∫ tN

tN−r
||Du||2

≥ CN(r)
√

r
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Box-counting dimension of a singular set

Theorem

The upper box-counting dimension of a putative singular set S
is less or equal 5/3.

Proof. It is enough to deduce that at a singular point∫
Qr (x ,t)

|u|10/3 + |p|5/3 > cr 5/3.
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A better bound

• Igor Kukavica showed that:

dB(S) ≤ 135

82

• We have
135

82
≈ 1.646

• Notice that

1000000 $ =
1

2
≤ 0.646
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Application: Lagrange trajectories

{
dϕ
dt

= u(ϕ(t), t)
ϕ(0) = a

1 Question: Are the particle trajectories unique for almost
all a ∈ Ω?
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Foias et al 1985

There exists at least one function Φ : Ω× [0; T ]→ Ω such that

1 the function φa(·) = Φ(a, ·) satisfies

φ(t) = a +

∫ t

0

u(φ(s), s)ds

2 ϕa(·) ∈ W 1,1(0,T )

3 the mapping a→ Φ(a, ·) belongs to L∞(Ω; C ([0,T ], Ω̄))

4 Φ is volume-preserving: for any Borel set B ⊂ Ω,

µ(Φ(·, t)−1(B)) = µ(B)
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Conditional result

Theorem 1. James Robinson and WS 2008

If u is a suitable weak solution with u ∈ L6/5(0,T ; L∞) corre-
sponding to u0 ∈ H ∩ H1/2, then almost every initial condition
a ∈ Ω gives rise to a unique particle trajectory, which is C 1

function of time.
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Idea of proof

Idea of the proof: show that particle trajectories ”usually” avoid
points where u behaves badly
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Avoiding ”bad points”

Theorem 2

If u is a suitable weak solution with u ∈ L6/5(0,T ; L∞) then
the set of initial conditions a ∈ Ω that give rise to trajectories
intersecting the singular set S is of Lebesgue measure zero.
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Proof of Theorem 2 - part one

1 We cover the singular set by cylinders Qk

2 We define the numbers Rk :

Rk =

∫ tk+r2
k

tk

||u||∞

3 Then we consider balls B̂k = (xk , rk + Rk)
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Proof of Theorem 2 - part two

1 using inequality:

|ϕa(t)− ϕa(tk)| ≤ Rk

we prove that trajectories that do not meet B̂k at time tk
cannot enter cylinder Qk

2 we estimate the volume of the family of balls B̂k :

∞∑
k=1

µ(B̂k) ≤
∞∑
k=1

c(rk + Rk)3 ≤ C [
∞∑
k=1

r 3
k +

∞∑
k=1

R3
k ]

3 Proof

Rk ≤

(∫ tk+r2
k

tk

ds

)1/6(∫ tk+r2
k

tk

||u||6/5
∞

)5/6

≤ Cr
1/3
k
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Theorem 2 implies Theorem 1

Proof

1 since u0 ∈ H1/2 trajectories are unique on some interval
[0, ε)

2 assume that for some t > 0 and x ∈ Ω (x , t) is not
singular and there are two trajectories passing through
(x , t)

3 now use Serrin’s result
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Theorem 3. (James Robinson and WS 2009)

If u is a suitable weak solution with p ∈ L5/3((0,T )×Ω) corre-
sponding to u0 ∈ H∩H1/2(Ω) then almost every initial condition
a ∈ Ω gives rise to a unique particle trajectory, which is a C 1

function of time.
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Aizenman’s result

Proposition

Let Ω ⊂ Rd , and let Φ : Ω × [0,T ] → Ω be a volume-
preserving solution mapping corresponding to a vector field
u ∈ L1(0,T ; L∞(Ω)) for every T > 0. If X is a compact
subset of Ω with dF (X ) < d − 1 then for almost every initial
condition a ∈ Ω, Φ(t, a) is not an element of X for all times t.
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Definition of deltas

δk =

∫ tk+1

tk

||u(s)||∞ds
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Proposition

If X ∈ Rn has a box-counting dimension d, then for any d ′ > d
there exists an ε0 > 0 such that

µ(O(X , ε)) ≤ cnε
n−d ′ for all 0 < ε < ε0

Corollary

1 V1 = total volume of δ1-neighbourhood of X ≤ cnδ
r
1

2 V2 = total volume of δ2-neighbourhood of X ≤ cnδ
r
2

3 V3 = total volume of δ3-neighbourhood of X ≤ cnδ
r
3...
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µ(K ) ≤ V1 + V2 + V3 + ...+ VN ≤ c(δr0 + δr1 + δr2 + ...+ δrN) ≤

≤ c[εr−1

∫ t1

t0

||u||∞+ εr−1

∫ t2

t1

||u||∞+ ...+ εr−1

∫ tN

tN−1

||u||∞] ≤

≤ cεr−1||u||L1(0,T ;L∞(Ω))
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