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3D Navier-Stokes equations
e The equations:

ur—Au+u-Vu+Vp=0
V-u=0

e Standard regularity of weak solutions

ueL?0, T;V)NL>®(0,T;H)

e Regularity in L"L® spaces:u € L"(0, T; L°(Q2)) for
2
-+ § < §, 2<s<6
r s 2
for s = r =1 we have

ueL3(Qr)
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More properties of weak solutions

e Foias et al. 1981: u € L?/3(0, T; D(A)) N L2(0, T; V)
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More properties of weak solutions

e Foias et al. 1981: u € L?/3(0, T; D(A)) N L2(0, T; V)

= uec Y0, T;L=(Q)

o peL*(Qr)
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The gap
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Singular times and singular points

A time t € (0, T) is singular if

[|Du(t)]| = oo

A time t is regular if it is not singular

A point (x, t) in space-time is regular if there exists a
cylinder Q,(x, t) such that v is Holder continuous on
Qr(x, 1)

A point is singular if it is not regular
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How can one measure smallness of a set?
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Hausdorff dimension

We define
p*(X) = inf Zr,f: there exists a cover of X
k=1

by balls with radii ry}
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Hausdorff dimension

We define

(X)) = inf{z ry . there exists a cover of X
k=1
by balls with radii ry}
Then
dimy(X) = inf{s : p°(X) = 0}



Title Outline Navier-Stokes equations Dimensions Classical results Singular times Singular set in space-time Applications

Box-counting dimension |




Title Outline Navier-Stokes equations Dimensions Classical results Singular times Singular set in space-time Applications

Box-counting dimension |

The upper box-counting dimension of a set X is given by

_ log N(X,¢€)
limsup ————=.
0 —loge
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Box-counting dimension ||

N(X,¢€) can also be the maximum number of e-separated
points in X.
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Box-counting dimension Il

o Let dg(X) =d and X C R". Then for any d’ > d there
are €g and ¢ > 0 such that for all 0 < £ < ¢y we have

n(O(X,€)) < ce™
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Box-counting dimension Il

o Let dg(X) =d and X C R". Then for any d’ > d there
are €g and ¢ > 0 such that for all 0 < £ < ¢y we have

/

wO(X,e)) < ce"™*

e We always have
dn(X) < de(X)

and for some X: dy(X) < dg(X).
e Example: X ={n"': ne N}.
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Classical results

Leray - 1934

© The set T of singular times of a weak solution u has
1/2-dimensional Hausdorff measure zero.
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Classical results

Leray - 1934

© The set T of singular times of a weak solution u has
1/2-dimensional Hausdorff measure zero.

CKN - 1982

The set S of singular points of a suitable weak solution u has
1-dimensional parabolic Hausdorff measure zero: for any n € N
it can be covered by cylinders Qx = (tx, tx + r2) X B(x«, rx)

such that
(o)
1
Sn<lk
n
k=1

| A
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Key ingredients

There is an absolute constant € > 0 such that a point (x, t) is
regular if

e for some Q,(x,t) we have

1

- u* + |p|*? <,
r Qr(x,t)

or
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Key ingredients

There is an absolute constant € > 0 such that a point (x, t) is
regular if

e for some Q,(x,t) we have

1

- u* + |p|*? <,
r Qr(x,t)

or

e we have

1
Iimsup—/ |Du||? < e
r—0 I Qr(x,t)
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The box-counting dimension of the set of singular
times

Theorem (James Robisnon and WS, 2007)

The upper box-counting dimension of a putative singular times
T is no greater than 1/2.
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Proof.

e For t > s we have

: |Du(s)
Du
1= == s pu
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e For t > s we have

: |Du(s)
Du
1= == s pu

e Therefore if there is blow-up at time t:
1

Du(s)|* > ———
Du(s)| = — s
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Proof.

e For t > s we have

: |Du(s)
Du
1= == s pu

e Therefore if there is blow-up at time t:
1

Du(s)|* > ———
Du(s)| = — s

e So

T t1 tr ty
[Pz [ 0w [ paes [ 0wl
0 ti—r to—r tny—r

> CN(r)y/r
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Box-counting dimension of a singular set

The upper box-counting dimension of a putative singular set S
is less or equal 5/3.
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Box-counting dimension of a singular set

The upper box-counting dimension of a putative singular set S
is less or equal 5/3.

Proof. It is enough to deduce that at a singular point

/ |u|10/3 + |p|5/3 > cr5/3.
Qr(x,t)
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A better bound

e Igor Kukavica showed that:

135
< —
dp(S) < P,
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A better bound

e Igor Kukavica showed that:
135
< —
dg(S) < 82
e We have 135
— ~ 1.64
0 646
¢ Notice that 1
1000000 $ = 5 < 0.646
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Application: Lagrange trajectories

{ 22 = u(p(t), t)
©(0) =a
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Application: Lagrange trajectories

(#5e

© Question: Are the particle trajectories unique for almost
all a € Q7
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Foias et al 1985

There exists at least one function ® : Q x [0; T] — Q such that

© the function ¢,(-) = ®(a, -) satisfies

o(t)=a—+ /Ot u(o(s),s)ds

@ ¢,(1) € WH(0, T)
© the mapping a — ®(a, -) belongs to L>(Q; C([0, T],Q))
©Q & is volume-preserving: for any Borel set B C Q,
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Conditional result

Theorem 1. James Robinson and WS 2008

If uis a suitable weak solution with u € L%3(0, T; L) corre-
sponding to ug € H N HY2, then almost every initial condition

a € ) gives rise to a unique particle trajectory, which is C!
function of time.
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Idea of proof

Idea of the proof: show that particle trajectories " usually” avoid
points where u behaves badly

bad points

trajectory
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Avoiding " bad points”

If uis a suitable weak solution with u € L5/3(0, T; L) then
the set of initial conditions a € Q2 that give rise to trajectories
intersecting the singular set S is of Lebesgue measure zero.
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Proof of Theorem 2 - part one
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Proof of Theorem 2 - part two
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Proof of Theorem 2 - part two

@ using inequality:

’@a(t) - Spa(tk)’ < Rk

we prove that trajectories that do not meet @k at time
cannot enter cylinder Qy




Title Outline Navier-Stokes equations Dimensions Classical results Singular times Singular set in space-time Applications

Proof of Theorem 2 - part two

@ using inequality:

’@a(t) - Spa(tk)’ < Rk

we prove that trajectories that do not meet @k at time
cannot enter cylinder Qy

@ we estimate the volume of the family of balls By:

[e.9] [e.e]

D ouB) <D e+ RP<CD R+ Ri

k=1 k=1
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Proof of Theorem 2 - part two

@ using inequality:

’@a(t) - Spa(tk)’ < Rk

we prove that trajectories that do not meet @k at time
cannot enter cylinder Qy

@ we estimate the volume of the family of balls By:

D ouB) <D e+ RP<CD R+ Ri
k=1 k=1 k=1 k=1
© Proof

5/6

tek i 6/5 1/3
R < [ ) <o
ty

A
;\H
¥
=N
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@ since uy € HY/? trajectories are unique on some interval
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@ assume that for some t > 0 and x € Q (x, t) is not
singular and there are two trajectories passing through

(x;1)
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Theorem 3. (James Robinson and WS 2009)

If u is a suitable weak solution with p € L%/3((0, T') x Q) corre-
sponding to up € HNH?(Q) then almost every initial condition
a € Q gives rise to a unique particle trajectory, which is a C?!
function of time.
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Aizenman'’s result

Proposition

Let Q C RY, and let & : Q x [0, T] — Q be a volume-
preserving solution mapping corresponding to a vector field
u € L0, T;L>(Q)) for every T > 0. If X is a compact
subset of Q with dre(X) < d — 1 then for almost every initial
condition a € Q, ®(t, a) is not an element of X for all times t.

V.
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time
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Definition of deltas

tet1
O = |u(s)[|ocds

ty
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S 2—neigh bourhood of X

114
&;—neighbourhood of X
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Proposition

If X € R" has a box-counting dimension d, then for any d’ > d
there exists an ¢y > 0 such that

(O(X,€)) < cre™ 9 for all 0<e< e
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If X € R" has a box-counting dimension d, then for any d’ > d
there exists an ¢y > 0 such that

(O(X,€)) < cre™ 9 for all 0<e< e

Corollary

@ V4 = total volume of §;-neighbourhood of X < ¢,

.
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If X € R" has a box-counting dimension d, then for any d’ > d
there exists an ¢y > 0 such that

(O(X,€)) < cre™ 9 for all 0<e< e

Corollary

@ V4 = total volume of §;-neighbourhood of X < ¢,
@ V, = total volume of d,-neighbourhood of X < ¢,0%

.
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If X € R" has a box-counting dimension d, then for any d’ > d
there exists an ¢y > 0 such that

w(O(X, €)) < cre™ ¢ for all 0<e< e ]
@ V4 = total volume of §;-neighbourhood of X < ¢,
@ V, = total volume of d,-neighbourhood of X < ¢,0%
@ V5 = total volume of d3-neighbourhood of X < ¢,dj...

.
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If X € R" has a box-counting dimension d, then for any d’ > d
there exists an ¢y > 0 such that

(O(X,€)) < cre™ 9 for all 0<e< e

Corollary

@ V4 = total volume of §;-neighbourhood of X < ¢,
@ V, = total volume of d,-neighbourhood of X < ¢,0%
@ V5 = total volume of d3-neighbourhood of X < ¢,dj...

A
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W(K) < Va4 Vot Vst oo Viy < (65407 + 85 + ... +05) <

t1 [%) ty
Sc[ef-l/ |\ur|m+ef-1/ |ru|\oo+...+e’-1/ 6l]oc] <
to 5] tn—1

< CErilHU’ ’LI(O’T;LOO(Q))

it
-

DA
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WK) < Vi+ Vot Va+ ..+ Vy < c(6i+6]+65+...+dy) <

t1 to ty
Sc[ef-l/ ||u||oo+ef—1/ ||u||oo+...+e’-1/ 6l]oc] <

to t1 tny—1

< ce" ]ull o, 7510 (0)
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