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Department of Applied Mathematics, Charles University, Malostranské nám. 25,
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1 Introduction

Let g : [0, 1] × R → R be a continuous function. We prove that functional

Φ(u) =
∫ 1

0
g
(

x, u(x)
)

dx

is weakly continuous on the Sobolev space W 1,p
0 (0, 1), 1 ≤ p < ∞, if and only

if g is linear in the second variable (i.e., there are continuous functions k1 and
k2 such that g(x, u(x)) = k1(x) + k2(x)u(x)). This essentially gives a negative
answer to Problem 1 in [2].

Let us note that classical results in the calculus of variations (see e.g. [1,3])
usually deal with weakly sequentially continuous (or semicontinuous) func-
tionals and therefore the results and techniques are different. In particular we
briefly (without assumptions) recall some facts from which our result does not

follow. First, every weakly continuous functional u 7→
∫ 1
0 g(x, u(x), u′(x)) dx

on W 1,p is sequentially weakly continuous on W 1,p, hence sequentially w∗-
continuous on W 1,∞, which is known to be equivalent to g being linear in
the third variable (i.e., in the derivative u′). Second, if u 7→

∫

g(x, u) dx is
weakly continuous on Lp, then it is sequentially weakly continuous and this is
equivalent to the linearity of g in u.

2 Preliminaries

We use the usual notation W 1,p
0 (0, 1) for the Sobolev space, i.e., the set of

all absolutely continuous functions on [0, 1] such that f(0) = f(1) = 0 and
‖f‖W 1,p

0

= (
∫ 1
0 |f ′|p)1/p < ∞.

We will also use the fact that for every continuous linear functional Λ on
W 1,p

0 (0, 1), 1 ≤ p < ∞, there is a function φ ∈ Lp′

(0, 1) such that Λ(f) =
∫ 1
0 f ′(x)φ(x) dx. Here p′ denotes the conjugate Hölder index, i.e., 1/p+1/p′ =

1.

Recall that a functional Φ is weakly continuous on W 1,p
0 (0, 1) if for every

ε > 0 and f0 ∈ W 1,p
0 (0, 1) there is a weak neighbourhood U of f0 such that

|Φ(f)−Φ(f0)| < ε for all f ∈ U . A set U ⊂ W 1,p
0 (0, 1) is a weak neighbourhood

of f0 if we can find k ∈ N and continuous linear functionals Λ1, . . . , Λk ∈
(W 1,p

0 (0, 1))∗ such that

{

f ∈ W 1,p
0 (0, 1) : |Λi(f − f0)| < 1 for every i ∈ {1, . . . , k}

}

⊂ U.
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We denote spt f = {x ∈ [0, 1] : f(x) 6= 0}. The integral average of a function
is denoted by

−
∫ b

a
f =

1

b − a

∫ b

a
f.

By [x] we denote the integer part of x > 0. We use the notation #M for the
number of elements of the set M . We write 2M for the set of all subsets of M .

3 A combinatorial lemma

Lemma 3.1. Let l ∈ N and M = {1, 2, . . . , 20l}. Then there is a system

A ⊂ 2M such that

(i) #A ≥ 2l, (ii) A ∈ A ⇒ #A = 2l, (1)

(iii) A1, A2 ∈ A, A1 6= A2 ⇒ #(A1 ∩ A2) ≤ l. (2)

PROOF. Let us denote by A0 the system of all subset of {1, . . . , 20l} of
cardinality 2l. We will use induction to show that, for every N = 1, . . . , 2l,
there exists A ⊂ A0 satisfying (ii), (iii) and #A ≥ N .

We select {A1} as a solution of the task for N = 1. If N = 2, we use the
elementary inequality

(

20l

2l

)

≥

(

18l

2l

)l (
18l

l

)

= 9l

(

18l

l

)

to show that

#{A ∈ A0 : #(A ∩ A1) > l} =
2l
∑

i=l+1

#{A ∈ A0 : #(A ∩ A1) = i}

=
2l
∑

i=l+1

(

2l

i

)(

18l

2l − i

)

≤

(

18l

l

)

2l
∑

i=0

(

2l

i

)

≤ 9−l

(

20l

2l

)

(1 + 1)2l = (4/9)l

(

20l

2l

)

,

so that there is enough space to choose A2. Now, let N ≤ 2l be arbitrary. By
the induction hypothesis we find a system {A1, . . . , AN−1} which solves the
task for N − 1. By the above estimate,

#
{

A ∈ A0 : #(A ∩ Ai) > l for an i = 1, . . . , N − 1
}

≤ (N − 1)
(

4

9

)l
(

20l

2l

)

<

(

20l

2l

)
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and thus there exits AN ∈ A0 such that the system {A1, . . . , AN} solves the
task for N .

4 Construction of a suitable perturbation

Let 0 < ε ≤ 1/4 and n ∈ N. We will divide a given interval [x0, x0 + η] into
n subintervals Jn,j = [x0 + η j−1

n
, x0 + η j

n
], j ∈ {1, . . . , n}. We denote by

J1
ε,n,j =

[

x0 + η j−1
n

, x0 + η j−1+ε
n

]

and J2
ε,n,j =

[

x0 + η j−ε
n

, x0 + η j
n

]

the first and the last ε-part of these subintervals. Define a continuous piecewise
linear function

fε,n,j(x) =































n
εη

(

x − x0 − η j−1
n

)

for x ∈ J1
ε,n,j ,

1 for x ∈ Jn,j \ (J1
ε,n,j ∪ J2

ε,n,j) ,
n
εη

(

x0 + η j
n
− x

)

for x ∈ J2
ε,n,j ,

0 for x /∈ Jn,j .

(3)

Lemma 4.1. Let r > 0, 0 < ε ≤ 1/4 and k ∈ N. Suppose that x0 ∈ R, η > 0
and φi ∈ L1(0, 1) for i ∈ {1, . . . , k}. Then there is a continuous piecewise

linear function f1 : [0, 1] → [−r, r] such that spt f1 ⊂ [x0, x0 + η],

∣

∣

∣

∣

∫ 1

0
f ′

1φi

∣

∣

∣

∣

< 1 for every i ∈ {1, . . . , k}, (4)

meas f−1
1 ({−r, r}) ≥

η

40
and meas f−1

1 (R \ {−r, 0, r}) ≤ 2εη. (5)

(In fact, there are n ∈ N and numbers sj ∈ {−1, 0, 1} for j ∈ {1, . . . , n}
such that

#
{

j ∈ {1, . . . , n} : sj 6= 0
}

≥
n

20
(6)

and the function

f1(x) = r
n
∑

j=1

sjfε,n,j(x) (7)

satisfies the above properties.)

PROOF. Choose l ∈ N such that

([16rlK] + 1)k < 2l where K =
3

ηε

k
∑

i=1

‖φi‖L1. (8)

4



Set n = 30l and

B =
{

j ∈ {1, . . . , n} :

∣

∣

∣

∣

−
∫

Js
ε,n,j

φi

∣

∣

∣

∣

> K for some s ∈ {1, 2} and i ∈ {1, . . . , k}
}

.

(9)
Since the intervals Js

ε,n,j are disjoint, we have
∑k

i=1 ‖φi‖L1 ≥ #B Kηε/n and
hence #B ≤ n/3 = 10l.

We fix a set M ⊂ {1, . . . , n} \ B such that #M = 20l. In view of Lemma
3.1 we can choose a system A of subsets of M such that (1) and (2) are valid.
Consider the following set of functions

H =
{

hA : A ∈ A
}

where hA(x) = r
∑

j∈A

fε,n,j(x).

For every φ ∈ L1(0, 1) we have

∫ 1

0
rf ′

ε,n,j φ = r
(

−
∫

J1

ε,n,j

φ −−
∫

J2

ε,n,j

φ
)

.

Hence for every h = hA ∈ H and i ∈ {1, . . . , k} we obtain from (1) (ii),
M ∩ B = ∅ and (9) that

∣

∣

∣

∣

∫ 1

0
h′ φi

∣

∣

∣

∣

≤ r
∑

j∈A

(

−
∫

J1

ε,n,j

|φi| + −
∫

J2

ε,n,j

|φi|
)

≤ 4lrK.

We can divide the interval [−4lrK, 4lrK] into [16rlK] + 1 subintervals of
length at most 1/2 and therefore the cube [−4lrK, 4lrK]k can be covered by
N := ([16rlK] + 1)k translates of cube [0, 1/2]k. By (8), N < 2l. From (1)
we know that #H ≥ 2l and therefore by (8) there are two different functions
h1, h2 ∈ H such that the vectors (

∫ 1
0 h′

1φi)
k
i=1, (

∫ 1
0 h′

2φi)
k
i=1 lie in the same

translate of [0, 1/2]k, that is, for each i ∈ {1, . . . , k} we have

∣

∣

∣

∣

∫ 1

0
(h1 − h2)

′ φi

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ 1

0
h′

1 φi −
∫ 1

0
h′

2 φi

∣

∣

∣

∣

≤
1

2
. (10)

Set f1 = h1 − h2; this function is clearly of the form (7) with sj ∈ {−1, 0, 1}.
From (10) we obtain (4). It is not difficult to see from (1) (ii) and (2) that
among 2l intervals Jn,j where h1 is non-zero there are at least l intervals where
h2 is zero; we have sj = 1 on these intervals. Analogously we obtain at least l
intervals where sj = −1 and (6) and (5) follow.
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5 Main theorem

Theorem 5.1. Let 1 ≤ p < ∞ and let g : [0, 1] × R → R be a continuous

function. The functional

Φ(u) =
∫ 1

0
g
(

x, u(x)
)

dx

is weakly continuous on W 1,p
0 (0, 1) if and only if g(x, u(x)) = k1(x)+k2(x)u(x),

where k1(x) and k2(x) are continuous functions.

PROOF. Let g(x, u(x)) = k1(x) + k2(x)u(x), where k1(x) and k2(x) are
continuous functions. Then u 7→ Φ(u) − Φ(0) =

∫ 1
0 k2(x)u(x) dx is obviously

continuous linear functional on Lp(0, 1) and hence on W 1,p
0 (0, 1). Therefore it

is weakly continuous.

We will prove the reverse implication by contradiction. Suppose that Φ is
weakly continuous and that g is not linear in the second variable. Then we
can find x0 ∈ (0, 1), a ∈ R and r > 0 such that

2g(x0, a) 6= g(x0, a − r) + g(x0, a + r).

Replacing g by g̃(x, y) = ±g(x, y) + cy will not change the weak continuity of
Φ and therefore we can assume without loss of generality that

g(x0, a − r) > g(x0, a) and g(x0, a + r) > g(x0, a).

Since g is continuous there are η > 0 and A > 0 such that [x0, x0 + η] ⊂ (0, 1)
and for x ∈ [x0, x0 + η] we have

g(x, a − r) > g(x, a) + A and g(x, a + r) > g(x, a) + A. (11)

Let f0 be a smooth function on [0, 1] with f0(0) = f0(1) = 0 and f0(x) = a
for every x ∈ [x0, x0 + η]. By the continuity of Φ we can find a weak neigh-
bourhood U of the function f0 such that

∣

∣

∣

∣

∫ 1

0
g
(

x, f(x)
)

− g(x, f0(x)) dx

∣

∣

∣

∣

<
η

200
A (12)

for every f ∈ U . From the properties of the weak topology (see Preliminaries)
we can find k ∈ N and functions φi ∈ Lp′

(0, 1) for i ∈ {1, . . . , k} such that

{

f ∈ W 1,p
0 (0, 1) :

∣

∣

∣

∣

∫ 1

0
(f − f0)

′φi

∣

∣

∣

∣

< 1 for i ∈ {1, . . . , k}
}

⊂ U. (13)
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We set

K = max
x∈[0,1]

t∈[a−r,a+r]

|g(x, t)|, ε = min
{

A

320K
,
1

4

}

(14)

and find a function f1 as in Lemma 4.1. From (4) and (13) we obtain f1 +f0 ∈
U , thus (12) implies

∣

∣

∣

∣

∫ 1

0
g(x, f1(x) + f0(x)) − g(x, f0(x)) dx

∣

∣

∣

∣

<
η

200
A. (15)

Denote Z = f−1
1 (R \ {−r, 0, r}). By (5) we have meas Z ≤ 2εη. In view of (5),

(11) and (14) we get

∣

∣

∣

∣

∫ 1

0
g(x, f0(x) + f1(x)) − g(x, f0(x))

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

spt f1

g(x, a + f1(x)) − g(x, a)
∣

∣

∣

∣

≥

≥
∫

{f1=r}
(g(x, a + r) − g(x, a)) +

∫

{f1=−r}
(g(x, a − r) − g(x, a))−

−
∫

Z
|g(x, a + f1(x)) − g(x, a)| ≥

η

40
A − 2K meas Z ≥

η

80
A.

This contradicts (15).

Remark 5.2. In Theorem 5.1, the hypotheses on the weak continuity of Φ on
the whole space can be replaced by its weak continuity at the zero function.
(The proof is similar, we only have to choose f0 in the corresponding weak
neighbourhood of the zero function. This can be obtained by an additional
use of Lemma 4.1 with r := |a|; the interval [x0, x0 + η] must be changed
afterwards accordingly.)

Remark 5.3. The continuity assumption on g can be replaced by the following
one: g is a Carathéodory function, bounded on bounded sets. The conclusion
of the theorem is that g(x, ·) is linear for almost every x ∈ [0, 1].
The proof is to be modified as follows. If, for a fixed x, the function g(x, ·) is
not linear, then we get, by its continuity, s ∈ {−1, 1} and rational numbers
A > 0, a, r such that

(

g(x, a − r) + g(x, a + r) − 2g(x, a)
)

s > 2A. (16)

Hence there are A, a, r and s such that G := {x ∈ [0, 1] : (16) is true} has
positive measure. We let x0 ∈ (0, 1) be a point of density of G and η so small
that meas([x0, x0+η]\G) < ηA

800(2K+A)
. For the rest of the proof we again replace

g with g̃(x, y) = (g(x, y)− c(x)y)s, where c(x) = (g(x, a+ r)− g(x, a− r))/2r,
which does not change the weak continuity of Φ and makes (16) equivalent
to (11). By the choice of η, the inequalities at the end of the proof are not
disturbed too much and still give a contradiction with (15).
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