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SUMMARY 

The aim of this study was to test the hypothesis that allopurinol ingestion modifies the 

slow component of 


V O2 kinetics and changes plasma oxidative stress markers during severe 

intensity exercise. 

Six recreationally active male subjects were randomly assigned to receive a single 

dose of allopurinol (300 mg) or a placebo in a double-blind, placebo-controlled crossover 

design, with at least 7 days washout period between the two conditions.  Two hours following 

allopurinol or placebo intake, subjects completed a 6-min bout of cycle exercise with the 

power output corresponding to 75% 


V O2max.  Blood samples were taken prior to 

commencing the exercise and then 5 minutes upon completion.   

Allopurinol intake caused increase in resting xanthine and hypoxanthine plasma 

concentrations, however it did not affect the slow component of oxygen uptake during 

exercise.  Exercise elevated plasma inosine, hypoxanthine, and xanthine.  Moreover, exercise 

induced a decrease in total antioxidant status, and sulfhydryl groups.  However, no interaction 

treatment x time has been observed. 

Short term severe intensity exercise induces oxidative stress, but xanthine oxidase 

inhibition does not modify either the kinetics of oxygen consumption or reactive oxygen 

species overproduction.  

 

KEY WORDS: xanthine oxidase, total antioxidant status, reactive oxygen species 
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INTRODUCTION 

The increase in reactive oxygen species (ROS) production during skeletal muscle 

activity is well established.  Excess of endogenous oxidants is responsible for lipid 

peroxidation, protein oxidation and single strand breaks in DNA (Davies et al. 1982; Inayama 

et al. 1996; Wierzba et al. 2006).  Despite its damaging effect, recent evidence suggests that 

the acute increase in ROS during muscular contraction is directly involved in the up-regulated 

expression of endogenous antioxidants, the control of redox-sensitive transcription factors, 

and the stimulation of mitochondrial biogenesis (Ji et al. 2004; Kang et al. 2009; Silveira et 

al. 2006).  The ROS production during exercise can also influence muscle force and fatigue 

(Andrade et al. 2001; Gomez-Cabrera et al. 2010) 

Despite the initial indications that mitochondria are the predominant site for ROS 

generation during activity, a number of alternative potential sources are proposed (for review 

see Powers and Jackson 2008).  Strong evidences confirm a great impact of xanthine oxidase 

(XO) pathway in ROS generation during exercise.  Plasma hypoxanthine, xanthine, and uric 

acid increases dramatically in human subjects after intense exercise (Hellsten-Westing et al. 

1991; Sahlin et al. 1991).  Moreover, studies by Gomez-Cabrera and associates (Gomez-

Cabrera et al. 2003; Gomez-Cabrera et al. 2006) indicate that XO inhibition, by allopurinol 

intake, prevents the exercise-induced muscle damage, and ROS production.  Treatment of 

Tour de France and the Valencia Marathon participants by allopurinol, attenuated the increase 

of cytosolic enzymes activity, as well the concentration of malondialdehyde (the end product 

of lipid peroxidation) in plasma (Gomez-Cabrera et al. 2003; Gomez-Cabrera et al. 2006).  

However, recent study by Veskoukis et al. demonstrated, that allopurinol administration 

decreases time to exhaustion in swimming rats by 35% (Veskoukis et al. 2008).  The early 

fatigue in allopurinol group may be caused by the increased cost of work due to decreased 

ATP-producing systems efficiency and decrease in muscle contraction efficiency.  Both of the 
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factors may contribute to the slow component of oxygen uptake kinetics during exercise (for 

review see Zoladz and Korzeniewski 2001).  The slow component represents an increasing 

oxygen (and energy) cost during exercise, despite the rate of external work remaining 

constant, and may be implicated in the fatigue process.  The rising 


V O2 could project to 

maximal values, curtailing the ability to perform prolonged exercise.  Interventions that 

reduce the 


V O2 slow component amplitude have been reported to improve severe intensity 

exercise tolerance (Bailey et al. 2010; Lansley et al. 2011).   

Therefore the purpose of this study is to examine the effect of allopurinol ingestion on 

the 


V O2 slow component amplitude and plasma oxidative stress markers in healthy untrained 

subjects performing severe intensity exercise.   

 

METHODS 

Subjects 

Six recreationally active, but non-specifically trained male subjects participated in the 

study (Table 1).  The study was approved by the Local Ethics Committee and all subjects 

gave their informed consent before the start of the study.  The subjects were asked to refrain 

from any physical activity or alcohol consumption for at least 24 hrs prior to testing. 

Aerobic and anaerobic power measurement 

To determine maximal oxygen uptake (


V O2max) participants performed a graded 

cycle ergometry test on an electromagnetically-braked, cycle ergometer (ER 900 Jaeger, 

Viasys Healthcare GmbH, Germany).  The ergometer seat height was individually adjusted 

and the participants were allowed a 5-min warm-up period at an intensity of 1.5 W·kg
-1

 with a 

pedaling cadence of 60 rpm.  After the warm-up period, work rate was increased by 25 

W·min
-1

 until volitional exhaustion.  Breath by breath pulmonary gas exchange was measured 
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by Oxycon-Pro analyzer (Viasys Healthcare GmbH, Germany) and the O2 and CO2 analyzers 

were calibrated prior to each test using standard gases of known concentrations in accordance 

with manufacturer guidelines (Ziemann et al. 2011).   

Experimental protocol 

The subjects were randomly assigned to receive a single dose of allopurinol or a 

placebo in a double-blind, placebo-controlled crossover design, with at least 7 days washout 

period between the two conditions.  On the day of the experiment, subjects reported to the 

laboratory in the morning, consumed a standard breakfast and then ingested either a placebo 

or 300 mg of allopurinol.  It has been indicated in a previous study that this dose is sufficient 

to effectively inhibit XO (Gomez-Cabrera et al. 2006).  After two hours resting, subjects 

performed a 6 min bout of exercise with the power output corresponding to 75% 


V O2max 

(Zoladz et al. 1998).  Respiratory gas analysis and volume measurements were performed 

breath by breath with a face-mask connected to the analyzer.   

Calculating the O2 slow component 

The difference in 


V O2 between minute 6 and minute 3 of each work bout was chosen 

to estimate the amplitude of the slow component of 


V O2 kinetics because exponential 

modeling using a single trial can be too noisy (Bearden and Moffatt 2001). 

Blood analysis 

Prior to commencing the exercise protocol and then 5 minutes upon completion, blood 

samples were taken from the antecubital vein.  Immediately after collection, the blood 

samples were divided into two parts.  One part was analyzed for hematocrit using an 

automated hematology analyzer (Sysmex XT 2000, Global Medical Instrumentation, Inc).  

The other part was centrifuged at 1000g for 10 minutes and separated plasma samples were 

frozen at –70°C for later analysis.  



6 

 

Biochemical assays 

High-performance liquid chromatography (HPLC) was utilized to measure plasma 

concentrations of inosine, hypoxanthine, xanthine, uric acid, allopurinol, and oxypurinol.  300 

µL of plasma was supplemented with 300 µL of 1.3 mol·L
-1

 perchloric acid, vortexed and 

centrifuged at 20000 g and 4°C for 5 min.  400 µL of the acid supernatant was removed and 

neutralized with 135 µL of 1 mol·L
-1

 potassium phosphate to pH 5-7. Centrifugation was 

repeated and the supernatant was withdrawn for HPLC.  Analyses were performed with 

Hewlett-Packard 1050 series chromatography system (Palo Alto, CA) consisting of a 

quaternary gradient pump with vacuum degassing and piston desalting modules, Rheodyne 

7125 manual injection valve with 20 µL loop, UV-VIS detector, and series 1100 

thermostatted column compartment.  Separations were achieved on Hypersil BDS 100 x 4.6 

mm, 3-µm particle size column (Thermo Scientific Inc.).  Modifications were introduced into 

the original method of Smolenski et al. (1990).  The mobile phase flowed at a rate of 1.0 

mL·min
-1

 and column temperature was 22.0°C.  Buffer composition remained unchanged (A: 

150 mmol·L
-1

 potassium phosphate buffer, pH 6.0, containing 150 mmol·L
-1

 potassium 

chloride; B: 15% acetonitrile in buffer A).  The gradient profile was modified to the following 

content of buffer B in the mobile phase: 0% at 0.00 min, 2% at 0.05 min, 7% at 2.45 min, 

50% at 5.05 min, 100% at 5.35 min, 100% at 7.00 min, 0% at 7.10 min.  Samples of 100 µL 

were injected every 12 min into the injection valve loop.  Absorbance was read at 254 nm.  

Plasma lactate was determined using a standard kit (Randox Laboratories Ltd.) based 

on the lactic acid oxidase method (LC2389).  

Plasma total antioxidant status (TAS) was determined using a standard test kit 

(Randox Laboratories Ltd.).  In this assay, ABTS (2,2′-azinobis(3- ethylbenzothiazoline-6-

sulfonate)) was incubated with metmyoglobin and hydrogen peroxide to produce ABTS
*+

.  

The change in absorbance of this species was measured at 600 nm.  Antioxidants present in 
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the sample caused a reduction in absorption proportional to their concentration.  TAS values 

of the samples tested were expressed as an equivalent of the millimolar concentration of 

standard Trolox solution (Miller et al. 1993).  Concentration of sulfhydryl groups (SH) was 

determined according to Ellman’s method (Ellman 1959).  Briefly, plasma samples were 

incubated with 100 µmol·L
-1

 DTNB (5,5’-dithiobis-(2-nitrobenzoic acid)) (Wako Pure 

Chemicals) at room temperature for 60 min.  Absorbance was determined at 412 nm.   

The spectrophotometric measurements were performed using Super Aquarius CE9200 

(Cecil Instruments Ltd.).  

Correction for plasma volume shifts 

Changes in plasma volume were calculated from measurements of haemoglobin and 

haematocrit and the concentration of all measured compounds was corrected according to the 

method described previously (Dill and Costill 1974). 

Statistical analysis 

To determine the existence of significant differences in the oxygen uptake, slow 

component amplitude and blood lactate between placebo and allopurinol trials paired t-tests 

were used.  Statistical significance was accepted at P < 0.05.  Two-way analysis of variance 

(ANOVA) with repeated measures was used to determine whether there were statistical 

differences in the blood data for time, treatment, and time x treatment variables.  All data are 

expressed as means ± SEM (standard error of mean).  

 

RESULTS 

A single oral allopurinol ingestion did not affect the pulmonary 


V O2 uptake and blood 

lactate during the exercise (Figure 1 & Table 2).   

Two hours following allopurinol administration, plasma allopurinol and oxypurinol 

reached 5.56 ± 0.35 and 19.92 ± 1.17 µmol·L
-1

 respectively, whereas after the placebo intake 
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they were not detectable.  Allopurinol intake caused ten-fold increase of xanthine (p < 0.001) 

and almost doubled hypoxanthine plasma concentrations.  Exercising muscles elevated 

plasma inosine (p < 0.01), hypoxanthine (p < 0.02), and xanthine (p = 0.14), however no 

interaction treatment x time was observed in the purine metabolites (Table 3).   

Exercise induced changes in ROS production (Table 4).  TAS decreased from 1.540 ± 

0.043 to 1.367 ± 0.060 mmol·L
-1

, whereas sulfhydryl groups from 544.7 ± 3.9 to 507.7 ± 16.3 

µmol·L
-1

 in the placebo trial.  Allopurinol intake did not affect these changes either in TAS (p 

= 0.415) nor in –SH groups (p = 0.671).  Moreover no interaction treatment x time has been 

observed (p = 0.157 and p = 0.868 in TAS and –SH groups respectively). 

 

DISCUSSION 

The main finding of this study is that a single oral allopurinol intake does not modify 

energy metabolism during 6 minutes of severe intensity exercise (Tables 2 & 3), and does not 

affect plasma oxidative stress markers (Table 4).  

No effect of allopurinol on time performance in cycling or running humans has been 

reported in the previous studies (Gomez-Cabrera et al. 2003; Gomez-Cabrera et al. 2006).  

However, these studies were performed on longer duration (Tour de France stage and 

Valencia Marathon), and thus lower intensity exercises compared to our study.  On the 

contrary, Veskoukis et al. reported that a single intraperitoneal dose of allopurinol given 1.5h 

before the exercise decreased swimming performance in rats (Veskoukis et al. 2008).  

Reported time to exhaustion (36 ± 5 minutes) suggests that the exercise was performed at 

higher intensity.  Differences in the studies may be due to the use of animal and human 

models, but it seems more plausible that the amount of allopurinol administered may be 

responsible for this discrepancy (50 mg kg
–1

 body mass in rats (Veskoukis et al. 2008) vs. 

approximately 4 mg kg
–1

 body mass in our experiment).  Moreover, increased level of 
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oxidative stress markers suggests, that such high dose of allopurinol may induce oxidative 

stress before commencing the exercise, which may influence performance (Veskoukis et al. 

2008).  

The efficiency of the muscles to produce work has been related to reactive oxygen and 

nitrogen species (Ferreira and Reid 2008; Lamb and Westerblad 2011).  Recent studies 

indicated that a diet rich in the amino acid L-arginine and/or nitrate, which increases nitric 

oxide (NO) synthesis, reduces oxygen cost of exercise during low intensity work (Lansley et 

al. 2011; Larsen et al. 2007), and increases exercise tolerance during severe intensity exercise 

in healthy humans (Bailey et al. 2010; Larsen et al. 2010).  NO is synthesized by nitric oxide 

synthase, but can also be generated by XO catalyzing the reduction of nitrate to nitrite and 

nitrite to NO in the presence of NADH as electron donor (Zhang et al. 1998).  The XO 

reactions can be completely blocked by allopurinol.  We have not determined the nitrite / 

nitrate level in the blood, but obtained results suggests that XO plays a minor role in 

modification of energy metabolism during short term severe intensity exercise in healthy 

humans (Tables 2 & 3).  

The muscle fatigue accompanied by muscle metabolites accumulation is the most 

likely cause of an increase in oxygen cost of work i.e. a decrease in muscle efficiency, as 

demonstrated recently by Zoladz et al. (2008) and Cannon et al. (2011).  When during the 

work, expenditure of ATP exceeds the rate of ATP generation, part of the adenine nucleotide 

pool is deaminated to inosine monophosphate (IMP) and ammonia (NH3) by AMP deaminase 

(Parnas 1929).  IMP can either be reaminated back to AMP or degraded further to 

hypoxanthine, xanthine and urate.  The cellular membrane is permeable to NH3 and 

hypoxanthine but impermeable to phosphorylated compounds, which will remain in the 

cellular compartment.  Increases in the degradation products of ATP can be detected in blood 

(hypoxanthine and NH3) or muscle (IMP and NH3) and may be used as markers of energy 
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deficiency (Sahlin et al. 1998).  The direct correlation between plasma NH3 and the slow 

component has been recently shown (Malek et al. 2008; Sabapathy et al. 2005).  Moreover, 

Zhang et al. (1993) found that the slow component is related to a net increase in plasma 

hypoxanthine concentration.   

Two hours following allopurinol intake we noted the presence of allopurinol and 

oxypurinol, the major metabolite of allopurinol, in the plasma.  Both are structural analogs of 

hypoxanthine and xanthine, respectively and competitively bind to XO.  Thereby, they inhibit 

the conversion of hypoxanthine to xanthine and xanthine to uric acid.  Allopurinol induced an 

increase in resting xanthine but had no effect on plasma inosine or hypoxanthine 

concentrations (Table 3), which is consistent with previous studies (Heunks et al. 1999; 

Stathis et al. 2005).  Similar changes were observed in post-exercise plasma concentrations 

(Table 3).  Since allopurinol ingestion did not affect energy metabolism, no modification in 



V O2 slow component was noted (Figure 1). 

The change in plasma oxidative stress markers following exercise noted in our study 

(Table 4), is consistent with the previous studies indicating that ROS generation is observed 

after exercise with similar workloads (Ji et al. 1992; Lamprecht et al. 2009; Lovlin et al. 

1987; Wang and Huang 2005).  Recent studies, have suggested that XO is a relevant source of 

ROS during exercise (Gomez-Cabrera et al. 2003; Gomez-Cabrera et al. 2006; Vina et al. 

2000).  Allopurinol administration attenuates ROS production and tissue damage induced by 

prolonged aerobic exercise (Gomez-Cabrera et al. 2003; Gomez-Cabrera et al. 2006).  It has 

also been reported that plasma XO activity increased 10-fold after a single bout of exhaustive 

exercise (Radak et al. 1995).  However, in that study, Radak et al. (1995) demonstrated that 

superoxide dismutase derivative administration before the start of exercise, effectively inhibits 

the increase of XO activity.  Since xanthine dehydrogenase can be converted to xanthine 

oxidase by reversible sulfhydryl oxidation (Enroth et al. 2000), it seems plausible that another 
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source of ROS is necessary to activate XO.  In our study we observed decreased post-exercise 

concentration of plasma sulfhydryl groups, possibly caused by their increased oxidation, 

which is consistent with ROS-mediated XO activation induced by exercise.   

In conclusion, the results from this study have established that XO inhibition does not 

modify energy metabolism during short term severe intensity exercise in healthy humans.  

Moreover, short term exercise at 75% 


V O2max induces oxidative stress, whereas allopurinol 

intake does not influence ROS overproduction. 
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 TABLE 1 Subjects characteristics.  

Variable Mean ± SEM 

Age (yr) 22.5 ± 0.2 

Height (cm) 185.7 ± 2.8 

Weight (kg) 79.7 ± 2.6 

VO2 max (mlO2·min
-1

) 3957 ± 171 

Power max. (W) 335.8 ± 13.1 

 



19 

 

TABLE 2 Oxygen uptake and blood lactate in placebo and allopurinol trials. Values are means 

± SEM. 

 Placebo Allopurinol Paired t-test   

p-value 

Oxygen uptake     

Pre-exercise (mlO2·min
-1

) 319 ± 26 335 ± 22 0.741 

End of exercise (mlO2·min
-1

)  2933 ± 79 3064 ± 95 0.231 

Slow component amplitude (mlO2·min
-1

) 315 ± 36 322 ± 18 0.733 

Blood lactate     

Rest (mmol·L
-1

) 1.3 ± 0.2 1.1 ± 0.2 0.311 

End of exercise (mmol·L
-1

) 6.4 ± 0.9 6.4 ± 0.6 0.912 

∆ (mmol·L
-1

) 5.0 ± 0.8 5.4 ± 0.4 0.628 
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TABLE 3 Plasma concentrations of purines. Values are means ± SEM.  

 

 Placebo Allopurinol ANOVA p-value 

prior exercise post exercise prior exercise post exercise treatment time treatment 

x time 

Inosine  

(µmol·L
-1

) 

 

0.044 ± 0.012 

 

0.106 ± 0.020 

 

0.047 ± 0.009 

 

0.099 ± 0.011 

 

0.869 

 

0.008* 

 

0.615 

Hypoxanthine 

(µmol·L
-1

) 

 

0.247 ± 0.040  

 

3.246 ± 1.018 

 

0.404 ± 0.083 

 

3.453 ± 0.630 

 

0.643 

 

0.013* 

 

0.936 

Xanthine 

(µmol·L
-1

) 

 

0.260 ± 0.020  

 

0.318 ± 0.027 

 

2.703 ± 0.208 

 

2.834 ± 0.189 

 

<0.001* 

 

0.142 

 

0.463 

Uric acid 

(µmol·L
-1

) 

 

253.6 ± 12.3 

 

220.5 ± 9.7 

 

246.1 ± 14.9 

 

218.7 ± 15.0 

 

0.653 

 

0.001* 

 

0.474 

 * statistically significant 
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TABLE 4 Plasma oxidative stress markers. Values are means ± SEM.  

 

 Placebo Allopurinol ANOVA p-value 

prior exercise post exercise prior exercise post exercise treatment time treatment 

x time 

TAS 

(mmol·L
-1

) 

 

1.540 ± 0.043 

 

1.367 ± 0.060 

 

1.537 ± 0.027 

 

1.458 ± 0.029 

 

0.415 

 

0.011* 

 

0.157 

SH 

(µmol·L
-1

) 

 

544.7 ± 3.9 

 

507.7 ± 16.3 

 

538.5 ± 12.7 

 

495.9 ± 19.2 

 

0.671 

 

0.003* 

 

0.868 

 * statistically significant 
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FIGURE LEGEND 

FIGURE 1 Pulmonary 


V O2 during cycling at the power output corresponding to ~75% 


V O2 

max. after ingestion of allopurinol (■) or placebo (○).  Data are averaged every 5 seconds 

(mean ± SEM).   

 


