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Abstract

We develop canonical rules capable of axiomatizing all systems of multiple-conclusion
rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev
[37]. We use the framework to give an alternative proof of the known analysis of admissible
rules in basic transitive logics, which additionally yields the following dichotomy: any
canonical rule is either admissible in the logic, or it is equivalent to an assumption-free
rule. Other applications of canonical rules include a generalization of the Blok—Esakia
theorem and the theory of modal companions to systems of multiple-conclusion rules or
(finitary structural global) consequence relations, and a characterization of splittings in
the lattices of consequence relations over monomodal or superintuitionistic logics with the
finite model property.

1 Introduction

Investigation of propositional logics usually revolves around provability of formulas. When we
generalize the problem from formulas to inference rules, there arises an important distinction
between derivable and admissible rules, introduced by Lorenzen [26]. A rule
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is derivable if it can be derived from the postulated axioms and rules of the logic (such as
modus ponens, or necessitation) by composition (see Section 2 for definition of rule derivation);
and it is admissible if the set of theorems of the logic is closed under the rule. These two
notions coincide for the standard consequence relation of classical logic, but nonclassical logics
often admit rules which are not derivable. For example, all intermediate (superintuitionistic,
si) logics admit the Kreisel-Putnam rule

p—=qVr/(—p—=q)V(p—r),

*A part of the research was done while the author was visiting the Department of Computer Science of the
University of Toronto. Supported by grants IAA900090703 and TAA1019401 of GA AV CR, and grant 1M0545
of MSMT CR.



whereas many of these logics (such as IPC' itself) do not derive this rule.

An obvious application of admissible rules is to shorten and simplify derivations in a given
logic. An admissible rule applied to valid theorems of the logic again produces a valid theorem
of the logic, even if the rule itself may be invalid. Admissible rules are also a fundamental
structural property of the logic, as they form the largest consequence relation which yields
the logic (as a set of formulas). The prominence of this consequence relation is stressed by
the fact that it can be uniquely defined using only the set of theorems of the logic, unlike the
usual consequence relation of derivable rules. There are also some practical applications of
admissibility and its special case, unification, e.g., in description logics [1].

The research of admissible rules was stimulated by a question of H. Friedman [11], asking
whether admissibility of rules in IPC is decidable. The problem was extensively investigated
in a series of papers by Rybakov, who has shown that admissibility is decidable for a large class
of modal and intermediate logics, found semantic criteria for admissibility, and obtained other
results on various aspects of admissibility. His results on admissible rules in transitive modal
and si logics are summarized in the monograph [29]. He also applied his method to tense
logics [30, 31, 32]. Ghilardi [12, 13] discovered the connection of admissibility to projective
formulas and unification, which provided another criteria for admissibility in certain modal
and intermediate logics, and new decision procedures for admissibility in some modal and si
systems. Ghilardi’s results were utilized by Iemhoff [14, 15, 16] to construct an explicit basis
of admissible rules for IPC' and some other si logics, and to develop Kripke semantics for
admissible rules. These results were extended to modal logics by Jerabek [18]. We note that
decidability of admissibility is by no means automatic. An artificial decidable modal logic
with undecidable admissibility problem was constructed by Chagrov [5], and natural examples
of bimodal logics with undecidable admissibility (or even unification) problem were found by
Wolter and Zakharyaschev [35]. In terms of computational complexity, admissibility in basic
transitive logics is coNE-complete by Jerabek [20], in contrast to PSPACE-completeness of
derivability in these logics.

In short, there are two basic approaches to the analysis of admissible rules that have been
followed in the literature: one is the strategy of Rybakov, which relies on the combinatorics
of universal frames of finite rank; the other is the strategy of Ghilardi and Iemhoff, using
projectivity and extension properties of classes of finite frames. In this paper, we introduce a
new approach based on canonical rules.

The idea of axiomatization of logics using frame-based (or algebra-based) formulas® first
appeared in the frame formulas of Jankov [17] and Fine [9], and the subframe formulas of
Fine [10]. A systematic investigation was undertaken by Zakharyaschev, who discovered
canonical formulas which axiomatize all si logics, and all quasinormal extensions of K4 [37].
Canonical formulas for linear tense logics were found by Wolter [33]. Canonical formulas
proved to be a powerful general tool for the study of various properties of modal and si logics,
in particular the finite model property (cf. [38, 39, 6, 34]).

We will generalize this idea from formulas to rules. Following [18], we will actually work

T.e., a formula whose definition involves a finite Kripke frame (or a modal or Heyting algebra) which also
determines its semantical properties in a certain way.



with multiple-conclusion rules
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which considerably simplifies the presentation. (Multiple-conclusion rules were also suggested
by Kracht [24, 25].) We define certain frame-based multiple-conclusion rules, called the canon-
ical rules, and we establish that every system of rules extending (the global consequence
relation of) K4 or IPC can be axiomatized by canonical rules. We further define single-
conclusion canonical rules, which are certain combinations of canonical rules expressible as
one single-conclusion rule, and show that they axiomatize all single-conclusion rule systems
(i.e., finitary structural global consequence relations) extending K4 or IPC.

We apply the general machinery to admissible rules of basic transitive or linearly ordered
logics (K4, S4, GL, IPC, K4.3, S4.3, GL.3) as well as all logics inheriting their admissible
rules in Section 4. We will show that for these logics, there exists a simple combinatorial
criterion to recognize which canonical rules are admissible. In this way we obtain an alter-
native proof of decidability of admissibility in each of these systems, as well as a description
of a basis of admissible rules. Furthermore, the proof gives a new result about admissible
rules in these logics, a kind of dichotomy property: every canonical rule is either admissi-
ble, or equivalent to a rule without assumptions. Formulated without reference to canonical
rules, this means that every rule is equivalent to a set of admissible rules and assumption-free
rules. The single-conclusion version of the property also holds; note that assumption-free
single-conclusion rules are just axioms.

As another application, we use canonical rules to develop the theory of modal companions
of intuitionistic rule systems and consequence relations in Section 5. We show that the well-
known basic properties of modal companions of si logics (cf. [27, 3, 8, 36]), including the
Blok—Esakia theorem, generalize smoothly to rule systems.

In Section 6 we consider the generalization of canonical rules to nontransitive modal logics.
While we cannot get any completeness theorem, we are at least able to define canonical rules
so that they obey the expected refutation conditions (in contrast to canonical formulas). As
an application of nontransitive canonical rules (actually, frame rules) we give a description
of splittings in the lattices of rule systems or consequence relations extending a given rule
system with the finite model property, which is an analogue of some classical results on the
splittings in the lattice of normal modal logics (see e.g. [4, 28, 23]). Our final application
concerns the famous open problem of describing the admissible rules of the basic modal logic
K. This problem is important both theoretically, as K is the simplest and most fundamental
modal logic, yet its admissible rules are much harder to understand than for transitive logics
like K4, and practically, as K and its multimodal variants are among the most often used
modal logics in computer science. We characterize canonical rules admissible in K, and give
a simple set of axioms from which they are derivable. (We do not obtain any general result
on admissibility of rules in K though, as canonical rules are incomplete for nontransitive rule
systems.)



2 Preliminaries

Given a finite set C of propositional connectives, let Form¢ be the set of propositional formulas
built using connectives from C and countably many propositional variables p,, n < w. A
substitution is a mapping of propositional formulas to propositional formulas which commutes
with connectives. A single-conclusion rule is an expression of the form

L'/,

where I' is a finite subset of Forme, and ¢ € Formg. We will usually write I'y A for I' U A,
and omit curly brackets around sets of formulas. A set A of single-conclusion rules is a
(structural finitary) consequence relation (see e.g. [25]), if it satisfies the following conditions
for all formulas ¢, v, finite sets of formulas I', I/, and substitutions o:

(i) ¢/ peA,

(i) fI' /JpeAand ', /¢p € A, then T /¢ € A,
(iii) if ' /p € A, then I',)T" / ¢ € A,

(iv

If A is a consequence relation, we denote by Ext; A the complete lattice of all consequence

ifI' / ¢ € A, then oT' [ op € A.

relations extending A.
A (multiple-conclusion) rule is an expression of the form

T/ A,

where I" and A are finite sets of formulas. The intuitive meaning of I' / A is that if all formulas
from T" hold true, then some formula from A also holds true (for whatever meaning of “hold
true” appropriate in a given context). If o =T/ A, we call ¢% := T its set of assumptions,
and o° := A its set of conclusions. Thus a rule p is single-conclusion iff |p°| = 1. A rule p
is assumption-free if ¢ = @. Assumption-free single-conclusion rules are called axioms or
theorems, and are identified with formulas. We will sometimes write

r

A

instead of I' / A. A set A of rules is a rule system, if it satisfies the following conditions for
all formulas ¢, finite sets of formulas I'; A, TV, A’, and substitutions o

() o/ped
(i) if I' JA,pe Aand I',p / A€ A, then ' /| A € A,
(iii) if ' / A € A, then T, TV / A, A" € A,

)

(iv) if I' / A € A, then o' / 0A € A.



A set X of rules entails or derives a rule g, written as X F p, if ¢ belongs to the smallest rule
system A containing X. We also say that X is a basis of A, and that A is axiomatized by X.

Given a rule system A, a rule system over A is a rule system A’ O A. The complete lattice
of all rule systems over A is denoted by Ext,, A. If X is a set of rules, then A + X is the
smallest rule system over A which contains X. The set X is called a basis of A+ X over A,
and A+ X is axiomatized over A by X. If X consists of assumption-free (or single-conclusion)
rules, we will call A+ X an assumption-free (single-conclusion, resp.) rule system over A.

If A is a consequence relation, then

Ap ={T /A, p| A CForme,I' / ¢ € A}

is a rule system. Conversely, for any rule system A, the set A; of single-conclusion rules
in A is a consequence relation. Moreover, (A,,); = A for any consequence relation A, and
(A1) = A for any rule system axiomatized by single-conclusion rules. We will therefore
identify consequence relations with single-conclusion rule systems.

We assume that the reader is familiar with the theory of modal and superintuitionistic
logics. However, we introduce some of the basic notions below to fix the notation, and to
adapt it to the context of multiple-conclusion rule systems. We refer the reader to [6] for
concepts unexplained here.

A normal modal logic is a rule system using the connectives M = {—, L, O}, axiomatized
by the modus ponens and necessitation rules

(MP) psp—aq/q
(Nec) p/ Op,

and a set of axioms which includes classical propositional tautologies, and the axiom
D(p — ¢) — (Op — Og).

(I.e., we identify a normal modal logic with what is usually called its global consequence
relation, as opposed to the local consequence relation, which does not include the necessitation
rule.) If L is a logic, we will also write I" I, ¢ instead of I' / ¢ € L. The smallest normal
modal logic is denoted by K. Rule systems over K are called normal modal rule systems.
We may sometimes omit the qualifier “normal”. A quasinormal modal logic is a rule system
axiomatized by MP, and a set of axioms which includes all theorems of K. If A is a rule
system over K, let ¢A be the largest quasinormal logic contained in A.

Notice that as a consequence of these definitions, for any normal modal logic L and a
set of formulas X, we denote by L + X the normal closure of L and X (usually denoted by
L® X), whereas we denote the quasinormal closure of L and X (usually denoted by L+ X) by
gL+ X. We decided for this incompatibility with common usage because the @/+ distinction
does not seem to have a natural generalization to the context of rule systems.

We define other Boolean connectives as abbreviations in the obvious way. The symbols
O, B, ©p, O%p, and Oy, are respectively abbreviations for =O=p, ¢ A Op, ¢ V O,
O---Op, and /-, Ok .
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A superintuitionistic (si) or intermediate logic is a rule system using the connectives I =
{—=,A,V, L}, axiomatized by MP, and a set of axioms including all theorems of intuitionistic
propositional logic (IPC). Rule systems over IPC are called intuitionistic rule systems. Rule
Systems over

K4 =K + 0Op — 0O0Op

or over IPC' are called transitive rule systems.

Let L be a logic. A substitution o is an L-unifier of a formula ¢, if op € L. AruleI’ / A
is L-admissible, if every common L-unifier of the formulas in I' is also an L-unifier of some
formula in A. The set of all L-admissible rules forms a rule system over L, which we denote
by p. A basis of L-admissible rules is a basis of v, over L. The logic L is structurally
complete, if L = v .

A modal Kripke frame is a pair (W, R), where R is a binary relation on a set W (which
may be empty). We will most often work with transitive frames. In that case we will usually
denote the accessibility relation R by the ordering symbol <, and its reflexive closure by
<. (The notation < does not imply that the relation is irreflexive. In particular, if the
accessibility relation is already reflexive, then < = <.) For any X C W, we define

X1:=RX]={y|Fr e X(z Ry},
X|:=R'X]={y|3zeX(yRua)},
X1 =R[X]={y |3z € X (z R" y)},
XT:=(R)'X]={y |3z € X (y R v)},

where R* is the transitive reflexive closure of R. We will abbreviate {z}1 as z]. A modal
frame is a triple (W, R, P), where (W, R) is a Kripke frame, and P C P(W) is closed under
(finitary) Boolean operations, and the | operation (or the operation OX =W ~ (W \ X)]).
We will often denote the frame (W, R, P) by just W if there is no danger of confusion. A
Kripke frame (W, R) may be identified with the frame (W, R, P(W)). An admissible valuation
is a relation IF C W x Formj; which satisfies

zlkp—1y iff zWyporalky,
T L,

zlFOp iff Vyexlylk o,
IF(p) :={x|zlFp} P

for every x € W, ¢, € Form),, and every variable p. We will abbreviate the last condition
as IF € P; it implies I-(p) € P for all formulas ¢. A Kripke model is a pair (W, IF), where W
is a Kripke frame, and IF is a valuation in W.

An intuitionistic Kripke frame is a partially ordered set (W, <). An intuitionistic frame
is a triple (W, <, P), where (W, <) is a poset, and P is a set of upper subsets of W, closed
under monotone Boolean operations, and the operation

A—-B=W~NANB)|={zeW |Vy>z(yc A=yec B)}.



Admissible valuations are relations IF C W x Formj such that I € P, and

zlbp—y iff Yyeal(ylko=ylk),
zlFpnAy iff zlFeand x Ik,
zlFevy iff zlkgoraxlky,

¥ L,

for every x € W, and ¢, € Formj.

Let (W, R, P) be a modal or intuitionistic frame. A formula ¢ is satisfied by a valuation
Ik, if x IF ¢ for every x € W. A rule I' / A is satisfied by I, if some formula ¢ € A is satisfied
by IF, or some ¢ € I' is not satisfied by I-. A rule g is valid in (W, R, P), written as W F p, if
it is satisfied by all admissible valuations IF € P. A rule which is not valid in W is said to be
refuted in W. If A is a rule system, then W is called an A-frame if A (i.e., every rule from
A) is valid in W.

If C is a class of frames, then Th(C), Th,,(C), and Th;(C) are the sets of formulas, multiple-
conclusion rules, and single-conclusion rules (respectively) valid in all frames W € C. A rule
system A is Kripke complete, if A = Th,,(C) for a class C of Kripke frames, and it has the
finite model property (fmp), if A = Th,,(C) for a class of finite (Kripke, w.l.o.g.) frames.
Notice that a nontransitive logic may fail to have fmp as a rule system even though it has
fmp as a logic.

A pointed frame is a quadruple (W, R, P, z), where (W, R, P) is a modal frame, and = € W.
A formula is valid in (W, R, P, z), if z IF ¢ for every admissible valuation IF.

A frame (V,S,Q) is a generated subframe of a frame (W, R, P), if V. C W, V1 C V,
S=R|V,and Q ={ANV | A€ P}. We will denote generated subframes by V' C-W. The
frame W is generated by X C W, if W = X1 (i.e., if W is the only generated subframe of itself
which includes X.) If X = {z}, the frame W is rooted, and x is its root. If x € {e, 0}, we define
(W*, R*, P*) as the frame obtained from W by attaching a new root r below W, such that r
is reflexive if * = o and irreflexive if x = e (i.e., R®* = RU ({r} x W), R° = RU ({r} x W?)),
and P*={ACW*| AnW € P}.

Let (W, <) be a transitive Kripke frame. We put = ~ y iff x <y < z. Equivalence classes
of ~ are called clusters, and we denote the cluster of a point x by cl(z). A cluster is proper if
it has at least two points. Notice that every proper cluster is reflexive (i.e., all its points are).
A cluster is final if it is a generated subframe of W. Dually, a cluster ¢ is initial, if ¢| C c.
An irreflexive final cluster (i.e., a point x such that 1 = @) is called a dead end.

The disjoint union ), W; of frames (W;, R;, P;), i € I, is the frame (W, R, P) defined
as follows. We replace W; with their isomorphic copies so that they are disjoint, and put
W=U;Wi,R=,;Ri,and P={ACW |Vie I AnW; € P;}. (On the other hand, we will
denote disjoint union of sets by X UY".)

An onto mapping f: W — V is a p-morphism of (W, R, P) to (V, S, Q), if

(i) = Ry implies f(x) S f(y),

(ii) if f(x) S u, there exists y € W such that z Ry and f(y) = u,



(iii) f7[A] € P,

for every z,y e W, u eV, and A € Q.
A modal frame (W, R, P) is refined if

VXePreXeyeX)=x=y,
VXePzeOX=yeX)=>zRy,

for all z,y € F. An intuitionistic frame (W, <, P) is refined if
VXePlzeX=yeX)=z<y.

A frame is compact if every subset of P (resp. PU{W \ A | A € P} in the intuitionistic case)
with the finite intersection property (fip) has a nonempty intersection. A compact refined
frame is called descriptive.

A modal algebra (A,=-,0,0) is a Boolean algebra (A,=,0) with an additional unary
operator O which distributes over finite meets. A valuation v (i.e., a homomorphism of
Formy; to A) satisfies a rule p, if v(p) # 1 for some ¢ € %, or v(¢)) = 1 for some ) € p°. A
rule p is walid in A, if it is satisfied by every valuation in A. If (W, R, P) is a modal frame,
then its dual is the modal algebra (P, —, @, 0). A frame is finitely generated, or s-generated
for a cardinal s, if its dual is. The intuitionistic case is analogous, using Heyting algebras in
place of modal algebras.

We end this section with basic completeness and preservation results about rule systems.

Lemma 2.1 If L is a normal modal or intermediate logic, and C a class of L-frames, then
Th,,(C) is a rule system over L.

Proof: Immediate from the definition. O

Theorem 2.2 Let L be a normal modal or intermediate logic, A a rule system over L, and
o a rule. If o ¢ A, there is a descriptive L-frame W which validates A, and refutes o.

Proof: For any subsets I' C po* and A C ¢ the rule I' / A is not in A, by weakening. By
Zorn’s lemma, there exists a pair (z,y) of maximal sets of formulas such that ¢® C z, ¢o¢ C v,
and I' / A € A for no finite I' C x, A C y. Clearly x Ny = &. On the other hand, z Uy
contains all formulas, as A is closed under cut. It follows that x is closed under all rules from
Ajie,ifI' /A€ Aand T C z, then ANz # .

Let (C, R, P) be the canonical L-frame, and W := {u € C | u 2 z}. W is a generated
subframe of C': in the intuitionistic case it is obvious from the definition, in the modal case
it follows as x is closed under necessitation. As such, W is a refined L-frame, and it is easy
to see that it is compact as well.

An admissible valuation I in W, given by a substitution o, satisfies a formula ¢ iff op € 2:
the right-to-left implication is obvious. If @ ¢ z, the set © U {—o¢} is L-consistent, as A
includes L. Therefore there exists an L-MCS u O x such that op ¢ u, which means that
u € W, and u ¥ ¢. (The intuitionistic case is similar.)

Consequently, all rules from A are valid in W as A is closed under substitution, but g is
refuted by the valuation given by the identity substitution. O



Proposition 2.3 Let A be a modal or intuitionistic rule system.
(i) A is valid in a frame iff it is valid in its dual algebra.
(i1) Validity of A is preserved by p-morphisms.

Proof: (i) It is clear from the definition that validity of rules in a frame depends only on its
algebra of admissible sets.

(ii) Let f be a p-morphism of W E A onto U, o € A, and let IFy be an admissible
valuation in U. As f is a p-morphism, there exists an admissible valuation IFy in W such
that Ik (p) = f[IFy(@)] for every formula . If I satisfies 0% in U, then Iy satisfies o®
in W, hence it also satisfies some ¢ € p°, thus 1 is satisfied by Iy . O

Proposition 2.4 Let A be a modal or intuitionistic rule system. The following are equivalent.
(i) Validity of A is preserved under disjoint unions.
(ii) A has a single-conclusion basis.

(@i) For any rule o € A, there is ¢ € o¢ such that o* | ¢ € A.

Proof: (iii) — (ii) is trivial.

(ii) — (i): Let W; = A for each i € I, and put W = >, .; W;. Let o € A be a single-
conclusion rule, and I+ an admissible valuation in W which satisfies p®*. For each i € I, the
restriction of IF to W is an admissible valuation which satisfies % in W;, hence it also satisfies
o¢. It follows that I+ satisfies o¢ in W.

(i) — (iii): Assume that A is preserved under disjoint unions, and let ¢ be such that
oy = 0% /¢ € Afor no ) € o°. We may fix frames Wy, validating A and refuting o, by a
valuation I, for each ¢ € ¢°. Then the disjoint union W = Zd) Wy, validates A and refutes

o by the valuation Z?/) Ik, thus o ¢ A. O

Proposition 2.5 Let A be a modal or intuitionistic rule system. The following are equivalent.
(i) Validity of A is preserved by generated subframes.
(ii) A has an assumption-free basis over K or IPC.

(iit) For any rule o, 0 € A implies | {p — ¥ | ¥ € o°} € A, where ¢ = )\ o* in the
intuitionistic case, and ¢ = OS" A\ o* for some n € w in the modal case. (If A is

transitive modal, we can take n = 1.)

Proof: (iii) — (ii) is trivial.

(ii) — (i): Let W E A, U C-W, I an admissible valuation in U, and ¢ € A an assumption-
free rule. We can extend I to an admissible valuation in W. As IF satisfies some % € ¢ in
W, it also satisfies ¢ in U.

(i) — (iii): Assume that A is preserved by generated subframes, and / {p, — ¢ | ¥ €
o’} ¢ A for every n, where ¢, = OS" A\ 0% As Fx ¢, — ©ni1, we have / A ¢ A for every
finite subset A of S := {p, — ¥ | n € w, 9 € p°}. By the proof of Theorem 2.2, there exists



a descriptive frame (W, R, P) such that W F A, and a valuation |- in W which refutes all
formulas in S. For every ¢ € ¢, the set

Py = {IF=)} U{lF(pn) [n€w} C P

has fip, hence there exists zy, € (| Py. Then zy ¥ 9, and y I+ o for every y € x]. Let
U= {zy | ¢ € 0°}]. Then U, as a generated subframe of W, validates A, but refutes o by
the valuation I-.

The intuitionistic case is similar. O

3 Canonical rules

In this section we will introduce our canonical rules (including their single-conclusion variants)

as well as their refutation criteria, and prove their completeness for transitive rule systems,

and some basic properties. We will discuss Zakharyaschev’s canonical formulas along the way.
All frames in this section are assumed to be transitive.

Definition 3.1 Let (W, <, P) be a modal frame, and (F, <) a finite Kripke frame. A partial
mapping f from W onto F is a subreduction of W to F, if for all x,y € W and u € F,
(i) = <y and z,y € dom(f) implies f(z) < f(y),

(i) if f(x) < u, there exists y € dom(f) such that z < y and f(y) = u,

(iii) f~'[u] € P.
Subreductions of intuitionistic frames are defined in a similar way, except that the last con-
dition is replaced with

(iii") W~ f~u]l € P.

A domain is an upper subset d C F. A subreduction f satisfies the global closed domain
condition (GCDC) for a domain d, if there is no x € W ~ dom(f) such that f[z]] = d. We
say that f is globally cofinal, if it satisfies GCDC for the empty domain, i.e., W = dom(f)].
If D is a set of domains, f satisfies GCDC for D if it satisfies GCDC for every d € D. If G
is a generated subframe of F, we put D [G:={d € D |d C G}.

Definition 3.2 Let (F, <) be a finite Kripke frame, and D a set of domains in F'. The modal
canonical rule y(F, D) in variables {p; | i € F'} is defined as

{pivp;li#i}ABp; —pili<j}{p:iVOp; !iiij}a{/\pi/\/\mpz’*\/mpi

i i¢d 1€d

deD}

{pi|ieF}
where ¢, j range over elements of F'. If I’ is an intuitionistic frame, the intuitionistic canonical

rule 0(F, D) is

{(/\pkﬁpj>—>pi iﬁj}v{/\m—’\/m dED’}
kZj i¢d i€d
{pilieF}
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where 7,7 € F, and D’ is the set of domains d € D which are not rooted.

Lemma 3.3 A modal (resp., intuitionistic) frame (W, <, P) refutes v(F, D) (resp., §(F, D))
iff there is a subreduction of W to F with GCDC for D.

Proof: Let (W, <, P) be a modal frame. Valuations |- to the variables {p; | ¢ € F'} in the
underlying Kripke frame (W, <) are in 1-1 correspondence to relations f C W x F, using

xlkp; it (z,i) & f.
Then we observe that

o |- is admissible in W iff f satisfies condition (iii) of Definition 3.1,

p; V p; is satisfied by I for all i # j iff f is a partial function,

pi V Op; is satisfied for all ¢ £ j iff f satisfies condition (i),

e Up; — p; is satisfied for all 7 < j iff f satisfies condition (ii),

® Nipi N Niga OPi — V,eq Opi is satisfied iff f satisfies GCDC for d,
e p; is refuted for all ¢ iff f is onto.

Hence |F refutes v(F, D) if and only if f is a subreduction of W to F' with GCDC for D.
In the intuitionistic case, we define a subreduction from a valuation refuting §(F, D) by

flz)y=14 iff W p,and z - /\pj.
J2i
Conversely, given a subreduction, we can refute §(F, D) by the valuation defined by
zl-p; iff xd U6
Details are left to the reader. O

We define Zakharyaschev’s canonical formulas and their refutation criteria below. We will
only need canonical formulas for quasinormal extensions of ¢/K'4, but we also include canonical
formulas axiomatizing normal extensions of K4 and si logics, for comparison with canonical
rules.

Definition 3.4 Let (W, <, P,r) be a pointed frame, and F' a finite rooted Kripke frame with
root 0 € F.

If the root 0 of F' is irreflexive, a quasisubreduction of W to F' is a partial mapping from F
onto W, which satisfies the conditions (ii) and (iii) from Definition 3.1, and for every z,y € W,

(i) z <y and z,y € dom(f) implies f(x) < f(y) or f(x) = f(y) =0.
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A subreduction or quasisubreduction f of W to F satisfies the actual world condition
(AWC), if f(r) is the root of F. For any domain d, f satisfies the local closed domain
condition (LCDC)) for d, if there is no x € dom(f)1 ~ dom(f) such that f[z]] = d. f is locally
cofinal, if it satisfies LCDC for d = @, i.e., if dom(f)T C dom(f)].

The (normal) canonical formula o(F, D) is defined as

i#j i<j itj deD i igd ied
where ¢, j range over elements of F. If 0 is irreflexive, the quasinormal canonical formula

a®(F, D) is defined by omitting the conjunct py V Opy from the antecedent of a(F, D). If F
is an intuitionistic frame, the intuitionistic canonical formula B(F, D) is defined as

/\((/\ Pk H]Oj> H]Di) N /\ (/\pz — \/pz) — Do,
i<j kzj deD’ i¢d 1€d
where i,7 € F, and D’ is the set of domains d € D which are not rooted. In other words,

a(F,D) =B A\(y(F,D))* — po, and 3(F, D) = \(6(F, D))" — po.

Lemma 3.5 (Zakharyaschev [37]) Let F be a finite rooted Kripke frame, and D a set of
domains in F.

(i) A modal frame W refutes the canonical formula o(F, D) iff there is a subreduction of
W to F with LCDC for D.

(it) If F is intuitionistic, then an intuitionistic frame W refutes B(F, D) iff there is a sub-
reduction of W to F with LCDC for D.

(#i) A pointed modal frame (W, r) refutes a(F, D) iff there is a subreduction of W to F with
AWC and LCDC for D.

If the root of F is irreflexive, then (W,r) refutes a®(F, D) iff there is a quasisubreduction
of W to F with AWC and LCDC for D.

Theorem 3.6 (Zakharyaschev [37])

(i) For any ¢ € Formys, there is a finite set A of normal canonical formulas such that
Ki+p=K4+A.

(it) For any ¢ € Formy, there is a finite set A of intuitionistic canonical formulas such that
IPC + ¢ =1IPC + A.

(iit) For any ¢ € Formyy, there is a finite set A of normal and quasinormal canonical
formulas such that gK4 + ¢ = qK4 + A.

Moreover, for each a(F, D) or o*(F, D) or 3(F, D) in A, we may assume that @ € D, F ¢ D,
andnod € D is generated by a reflexive point. There is an algorithm which, given @, computes
a suitable A. O
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Remark 3.7 We have deviated from the original Zakharyaschev’s presentation of canonical
formulas in several details. We define domains as upper subsets of F', whereas Zakharyaschev
uses antichains; we prefer the former as distinct antichains may generate the same subset
of F' (thus giving equivalent canonical formulas). We do not formally distinguish negation-
free canonical formulas «(F, D) from the “regular” canonical formulas «(F, D, 1), as the
latter is syntactically and semantically equivalent to the special case a(F, D U {@}) of the
former, using the empty domain (or antichain). (Zakharyaschev apparently does not allow
empty antichains in «a(F, D), though we failed to find it stated explicitly in [37, 6].) We
renamed Zakharyaschev’s closed domain condition to local closed domain condition, as we
also consider the global version thereof needed for canonical rules. (We actually find the
global closed domain condition to be the more natural and more fundamental of the two, but
we did not go so far as to call GCDC just “closed domain condition” to avoid confusion.)

The main result of this section is the completeness theorem below. We will split its
proof into a few lemmas. The basic idea is to embed modal rule systems in quasinormal
logics, use Zakharyaschev’s canonical formulas for quasinormal extensions of ¢K4, and reduce
intuitionistic rule systems to modal ones by Go6del’s translation.

Theorem 3.8

(i) If o is a modal rule, there is a finite set A of modal canonical rules such that K4+ o =
K4+ A.

(i) If o is an intuitionistic rule, there is a finite set A of intuitionistic canonical rules such

that IPC + o = IPC + A.

Moreover, for each v(F,D) or 6(F,D) in A, we may require that @ € D, and no d € D 1is
generated by a reflexive point. There is an algorithm which, given o, computes a suitable A.

Definition 3.9 The characteristic formula of a modal rule g is

x(e)= /\ Dp— \/ ov.
pep? PEp°
Recall the definition of W*. Notice that the pointed frame (W*®,r), where r is the root of
W, validates x(p) iff W validates p.
Lemma 3.10 ([18]) For any set R of modal rules,
K4+ R = x"'[¢K4+ x[R]).

Proof: The inclusion K4 + R C x![qK4 + x[R]] is clear, as x~![L] is a rule system for any
quasinormal logic L. Assume that ¢ ¢ K4 + R. By Theorem 2.2, there is a frame (W, <, P)
which validates R and refutes p. Then the pointed frame (W*,r) validates ¢K4 + x[R], and
refutes (o). O
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Lemma 3.11 Let (W, <, P) be a frame, r the root of W*, F' a finite Kripke frame, and D a
set of domains in F.

(i

(i

If F' has a reflexive root, then (W*,r) refutes a(F, D) iff W refutes v(F, D).
(We,r) refutes a(F*®, D) iff W refutes y(F, D).

If F ¢ D, then (W*,r) refutes a®(F*, D) iff W refutes v(F, D).

(ii

)
)
)
) If F € D does not have a reflexive root, then (W*®,r) refutes o®*(F*®, D) iff W refutes
+(F, D~ {F}).

(iv

Proof: 'We only indicate how to construct the (quasi)subreductions, leaving the details to the
reader.

Right-to-left: given a subreduction f of W to F', we extend it to W* by mapping r to the
root of F' or F'* (as appropriate) in cases (i)—(iii). In case (iv), we map all points x such that
f[zT] = F to the root of F*.

Left-to-right: given a (quasi)subreduction f of W* to F or F'*, we construct a subreduction
of W to F by taking f | W in cases (i) and (i), and f [ (W ~ f71[0]) in cases (iii) and (iv),
where 0 is the root of F'°. O

Definition 3.12 If ¢ is an intuitionistic formula, its Gédel-McKinsey—Tarski translation Ty
is obtained by prefixing O before each subformula of ¢ which is an implication or variable. If
0 is an intuitionistic rule, we define Tp as {Ty | ¢ € 0*} / {TY | ¢ € ¢°}.

If (W, <, P) is an intuitionistic frame, let cW be the modal frame (W, <, 0 P), where o P is
the Boolean closure of P. If (W, <, P) is a reflexive transitive (i.e., preordered) modal frame,
its skeleton oW is the intuitionistic frame (W/~, </~ oP) (i.e., the points of oW are the
clusters of W), where

oP={A/~| A€ P,A=0A}.

Recall that for any intuitionistic frame W, we have W ~ poW, and cW E Grz = K4 +
a(o—0) + a(e) [6] (hence cW E v(F, D) whenever F is not an intuitionistic frame).

Lemma 3.13 Let W be a preordered frame, m an intuitionistic rule, F' a finite intuitionistic
Kripke frame, and D a set of domains in F.

(i) oW Em iff WE Tn.
(i) oW k 8(F,D) iff W £ ~(F, D).

Proof: (i) On the one hand, assume W F T, and let |-, ;7 € oP. There exists a valuation
Ik € P such that
zlkw Op & x by p & cl(z) IFw p

for every variable p, and z € W. Then

(%) zlFw To & cl(z) Ik ¢
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for every ¢ € Form; by induction on its complexity (see [6, §8.3]), hence the validity of T
in W implies that 7 is satisfied by I, .

On the other hand, let oW F 7, and Iy € P. There exits a valuation Ik, € oP such
that cl(z) IFow p < « Ik Op. Then again () holds, hence T is satisfied by IFyy.

(ii) On the one hand, let f be a subreduction of oW to F' with GCDC for D, and define
a partial function g: W — F' by

gle) =u iff d(x)e fHull £l
vzu

We have g~ ![u] € P, g(x) = f(cl(z)) whenever cl(x) € dom(f), and g[zT] = f[cl(x)1], whence
it is easy to see that ¢ is a subreduction of W to F' with GCDC for D.

On the other hand, let g be a subreduction of W to F' with GCDC for D. Notice that
g(x) = g(y) for every x,y € dom(g) such that x ~ y. We define a partial function f: oW — F
by

fle)=wu iff Fzecg(x)=u.
We have cl(z) ¢ f~1u]l iff Yy > =(g(y) = u), hence oW ~ f~1u]| = O(W \ g~ '[u]) € oP.
Also trivially f(cl(x)) = g(x) whenever z € dom(g), and we have f[cl(x)1] = g[z1], thus it is
easy to see that f is a subreduction of oW to F with GCDC for D. O

Proof (of Theorem 3.8): Consider the modal case first. Let
A= Ki+{y(F,D) | /(F,D) € K4+ o},

we need to show A = K4 + g. Clearly, A C K4 + p. Assume for contradiction that o ¢ A,
and let W be a frame validating A but refuting g, which exists by Theorem 2.2. Then the
pointed frame (W*, r) validates x[A] and refutes x (o). By Theorem 3.6, there exists a normal
or quasinormal canonical formula « € ¢K4 + x(o) which is refuted in (WW*,r). Let  be the
corresponding canonical rule as in Lemma 3.11. Then W refutes +, thus v ¢ A, and by the
definition of A, v ¢ K4 + p. By Theorem 2.2, there is a frame U validating o, and refuting
~v. Then (U*®,r) validates x(g) and refutes «, which contradicts o € ¢K4 + x(0).
The intuitionistic case can be reduced to the modal case as follows. Let

A={6(F,D) | ~v(F,D) e K4+ To}.
For any intuitionistic frame W, we have

WEp iff cWETp
it oW E{y(F,D)|d(F,D) e A}
ifft WE A,
where the first and last equivalence come from Lemma 3.13, and the second one from com-
pleteness of modal canonical rules which we have just established, using the fact that canonical

rules y(F, D) which are not based on an intuitionistic frame (i.e., F' contains an irreflexive
point or a proper cluster) are valid in ¢W. Thus, by Theorem 2.2, IPC' + o = IPC + A.
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We have shown that any rule p is equivalent to a set R of canonical rules. By definition,
this means that ¢ is derivable from R and finitely many initial rules using substitution, cut,
and weakening. As such a derivation is finitary, we may assume R to be finite. Moreover,
the derivation is checkable by an algorithm, thus the set of pairs (g, R) such that R is a
finite sequence of canonical rules equivalent to o is recursively enumerable. As every total
r.e. relation contains a graph of a recursive function, we can compute one such R from p.
(Alternatively, we may construct an algorithm using the effectiveness of Theorem 3.6 and
Lemma 3.11.) O

Most results below have a modal version and an intuitionistic version. Often the proofs of
both are essentially identical, except that we have to replace v(F, D), a(F, D) with §(F, D),
B(F, D), and omit [@’s. In such cases we will generally skip details of the proof of the intu-
itionistic part to avoid unnecessary cluttering of the text.

Theorem 3.8 implies that domains generated by a reflexive cluster are redundant. In more
detail, we have the following.

Proposition 3.14 If d is generated by a reflexive point, then K4 + v(F,D U {d}) = K4 +
+(F,D), and IPC + §(F, D U {d}) = IPC + 6(F, D).

Proof: Let f be a subreduction of W to F' with GCDC for D, and r a generator of d. Put

f(x), if z € dom(f),
g(x) = qr, if z ¢ dom(f), f[z1] =d,

undefined otherwise.

Then flx1] = g[z7] for any = € W, and it is easy to see that g is a subreduction of W to F'
with GCDC for D U {d}. O

Definition 3.15 We introduce shorthand notation for some common types of canonical rules
by analogy with Zakharyaschev’s notation for canonical formulas. We put ~(F, D, 1) :=
v(F,D U {@}). We define the subframe rules v(F) := ~(F, @), the cofinal-subframe rules
Y(F, 1) := y(F,{@}), the frame rules v*(F, L) := ~(F, F*), and the dense-subframe rules
VH(F) := y(F, Ft < {@}), where F* is the set of all domains in F. The intuitionistic variants
§(F), 8(F, 1), 6%(F), 6%(F, L) are defined similarly.

We will depict frames using e for irreflexive points, and o for reflexive points. We will
write % as a shorthand when we intend to include both the reflexive and irreflexive version,
for example

Y%, L) =~F (00, L) +~f (00, L) +~% (o0, L).

Definition 3.16 Let (F, <) be a finite Kripke frame, D a set of domains in F', and X C F.
We define the restricted modal canonical rule

7(F7D7X) = (W(FvD))a / {pl | (S X}7
and if F' is an intuitionistic frame, the restricted intuitionistic canonical rule

5(F.D,X) = (5(F.D))* / {p; | i € X}.
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Lemma 3.17 Let v(F, D, X) be a restricted modal canonical rule.

(i) A frame W refutes v(F, D, X) iff there is a subreduction of W to a generated subframe
G of F with GCDC for D, such that X C G.

(ii) Kd+~(F,D,X)=K4+{v(G,D|G)| X CG C-F}.
(@i) If Y C F is such that X1 =Y, then K4+ ~(F,D,X) = K4+ ~y(F,D,Y).
The same holds for intuitionistic rules with § in place of ~y.

Proof: (i) The proof of Lemma 3.3 shows that W ¥ ~v(F, D, X) iff there exists a subreduction
f into (not necessarily onto) F' with GCDC for D, such that rng(f) 2 X. By condition (ii) of
Definition 3.1, G = rng(f) is a generated subframe of F'. Notice that it makes no difference
whether we consider GCDC for D relative to F' or GG, as GCDC trivially holds for all domains
d such that d ¢ G. Thus, f is a subreduction of W to G with GCDC for D | G.

(ii) and (iii) follow from (i). The intuitionistic case is analogous. O

Theorem 3.18 Let A be a rule system over K4. The following are equivalent.
(i) A is equivalent to a set of single-conclusion rules.

(ii) For any v(F,D) € A, F is nonempty, and whenever Fy,Fy C- F are such that F =
Fy U F;, then v(Fy, D | F,) € A for some a = 1,2.

(@ii) A is equivalent to a set of restricted canonical rules of the form ~v(F,D,{i}), i € F.

Moreover, we may require in (iii) that D satisfies the conditions from Theorem 3.8, and i
belongs to an initial cluster of F.
The same holds for intuitionistic rules with & in place of 7.

Proof: (iii) — (i) is trivial.

(i) — (ii): The empty frame validates all single-conclusion rules, and refutes (&, D).

Assume that A ¥ v(F,, D) for each a. Let f, be a subreduction of a frame W, F A to F,
with GCDC for D. Put W = Wy + W, and f = f1 + fo. Then W E A by Proposition 2.4,
and f is a subreduction of W to F' with GCDC for D, hence A ¥ ~(F, D).

(ii) — (iii): By Theorem 3.8, A is axiomatized by canonical rules v(F, D). Let v(F, D) €
A, it suffices to show that v(F, D,{i}) € A for some i € F. Assume for contradiction that
there is no such i. By Lemma 3.17, for each ¢ there exists a generated subframe G; C- F
such that i € G;, and A¥ v(Gi, D | G;). As |, G; = F, we obtain A ¥ v(F, D) by repeated
application of (ii), which is a contradiction.

The intuitionistic case is analogous. O

Example 3.19 The introduction of restricted canonical rules is necessary, if we want to
axiomatize consequence relations (single-conclusion rule systems) by single-conclusion rules:
the set of single-conclusion canonical rules is not complete for such systems. First, notice
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that a canonical rule «(F, D) is single-conclusion iff F' is rooted (hint: if G C F', the frame G
separates v(G, D | G) from v(F, D)). Consider the logic

D4=K4+OT,
viewed as a rule system. We claim that
DAt ~(F,D) iff @ € F and F contains a dead end.

On the one hand, if W cofinally subreduces to an F' which contains a dead end, then W itself
contains a dead end, thus W ¥ D4. On the other hand, if F' contains no dead end, then F
is a D4-frame refuting v(F, D); if F' contains a dead end and @ ¢ D, we may put an extra
reflexive point above F.

If F'is a rooted frame with a dead end, and @ € D, then «(F, D) is valid in the two-element
frame e o, which is not a D4-frame. Thus, D4 cannot be axiomatized by single-conclusion
canonical rules.

Incidentally, we note that the above considerations show

D4=K4+ (oo, L, {e})=K4+ (e, L)+ (oo, L).

Example 3.20 Canonical rules rely on certain phenomena, which a reader familiar with
Zakharyaschev’s canonical formulas may find surprising. Apart from the fact (discussed
above) that frames are no longer rooted, we have rules v(F, D) where F' is empty, or where
F € D. Both are essential, as we explain below.

There are two canonical rules based on the empty frame, viz.

- = 7(®)7

1
Con := — =~vy(@,1).

The first one generates the inconsistent rule system, and by Theorem 3.8, it is redundant: we
can express it e.g. as

(@) = y(e0, L, @) =v(2, L) + () + (o).

On the other hand, the consistency rule?> Con, which is valid in a frame W iff W is nonempty,
cannot be written as a combination of other canonical rules, as it is the only consistent
canonical rule with empty conclusion. Such a rule cannot be derived from any set of rules
with nonempty conclusions. However, if we intend to deal only with rules with nonempty
conclusions, we can dispense with (&, L).

Rules vy(F, D) where F' € D can express “downwards unboundedness” conditions. As an

example, the unbozing rule

2Named as such because a logic L admits Con iff L is consistent.
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rule canonical form

/ v(2)

L/ v(2, L)
Op—p/p v(0)
ST/ L (o, L)
/Bp—p v(e)
o0l /1 (e, L)
Op/p 7¥(e)
0oL/L vi(e, L)
/OT, 0L (oo, 1)
/L 6(o)
/p—q,q—p|dco)
/ —p, = (oo, 1)
pVa/pq 8% (o o)
pV-p/p,—p (0o, 1)

Table 1: simple canonical rules

is valid in a Kripke frame W iff every irreflexive point x € W has a predecessor. We cannot
express Unb using only canonical rules v(F, D) such that F' ¢ D. In fact, no such rule is
derivable from Unb: the frame F° validates Unb, and refutes v(F, D).

Another interesting example is the weak disjunction property rule

9

which is valid in a Kripke frame (W, <) iff < is downwards directed (i.e., every pair of points
has a lower bound). The full disjunction property rule system axiomatized by

OpyVvV.--VvQO
(DP) L Pk kew,
b1, Pk

can be written as
DP = Con + Unb + WDP = ~v(@, L) + ~*() + (% *, {{* ¥}}).

Example 3.21 Some of the simplest canonical rules are listed in Table 1. For a more com-
plicated example, the Kreisel-Putnam rule can be expressed as

d d d
5(@?, (o,d}) + 5(%& (,)) + 0GP {2,a)).

Every intermediate logic or normal extension of K4 is a rule system, and thus can be
axiomatized by canonical rules. In general, we know of no simple method to convert a
canonical formula a(F, D) to a set of canonical rules. Roughly speaking, one has to consider
variants of v(F, D) where extra points are inserted in “harmless” places in F. However,
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cofinal-subframe logics can be axiomatized by cofinal-subframe canonical rules in an easy way.
We first check that Zakharyaschev’s proof of the finite model property for cofinal-subframe
logics [38] carries on to rule systems.

Lemma 3.22 A transitive rule system axiomatized by subframe and cofinal-subframe canon-
ical rules has the finite model property.

Proof: Let A be the rule system, and assume that ¢ ¢ A. By Theorem 3.8, there exists a
canonical rule 7 = y(F, D) (or 6(F, D), in the intuitionistic case) such that @ € D, o b m,
and m ¢ A. The latter implies that there exists a frame W E A, and a globally cofinal (i.e.,
with GCDC for @ € D) subreduction f of W to F. As F ¥ p, it suffices to show that F' F A.
Let 0 = v(G, E) € A, where E = @ or E = {@}. If we assume for contradiction that F' ¥ o,
there exists a (globally cofinal if E' # &) subreduction g of F' to G. Then go f is a (globally
cofinal if appropriate) subreduction of W to G, hence W ¥ o, a contradiction. O

Lemma 3.23 Let L be a transitive logic. If L has the finite model property as a logic, then
it also has the finite model property as a rule system.

Proof: Let L ¥ p. For each ¢ € ¢ L ¥ @A\ p® — 1, hence there exists a finite rooted
L-model Wy, which refutes & A ¢* — 4 in the root. Then W := Zz/) Wy E L, and W ¥ p.

The intuitionistic case is analogous. O

Proposition 3.24 Let F' be a finite rooted transitive frame.
(i) K4+ a(F)=K4+~(F), IPC + 3(F) = IPC + §(F),
(it) IPC + B(F, L) =IPC + o6(F, 1),

(iit) KA+ o(F,1L)=K4+~y(Feo, L, F).

Moreover, we may omit the extra e or o in (iit) if F' has an irreflexive or reflexive final

singleton cluster.

Proof: (i) is obvious from the refutation criteria.

(ii), (iii): By Lemmas 3.22 and 3.23, it suffices to show that both sides have the same
finite models. Given a locally cofinal subreduction of a finite frame to F', we extend it to a
globally cofinal subreduction to F e o by mapping all final clusters to a final singleton cluster,
reflexive or irreflexive as needed. On the other hand, if f a globally cofinal subreduction to
F e o, we pick a point = such that f(z) is the root of F, and we restrict f to z] to obtain a
locally cofinal subreduction to F'. O

For example, apart from the above mentioned D4 = K4 + (e o, 1, {e}), we have

K41 := K4+ 80p — &0p = K4 + y(o—0go e, L, {0}),
K4.2:= KA+ OBp — 06p = K4+ (%, L, {a}).
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4 Admissible rules

We are going to apply canonical rules to the analysis of admissible rules in some well-known
logics. The basic idea is that subreductions to frames with sufficiently many tight predecessors
(see below) can be lifted up from a generated subframe, which implies that the corresponding
canonical rule is assumption-free using Proposition 2.5. However, we begin with a few general
observations on admissibility and derivability of canonical rules.

Lemma 4.1 A normal extension L of K4 derives v(F, D) if and only if «(G,D | G) € L for
some rooted generated subframe G of F'.

A si logic L derives 0(F, D) if and only if B(G,D | G) € L for some rooted generated
subframe G of F.

Proof: Comparison of the refutation conditions shows immediately that K4 + o(G, D | G)
derives (F, D). Conversely, if L derives «v(F, D), then it also derives v(F, D, {i}) for some
i by Theorem 3.18. In particular, L - v(G,D | G) for G = i], hence L + a(G,D | G) =
O(y(G,D | G))* — (v(G,D | G))°¢ by Proposition 2.5.

The intuitionistic case is analogous. O

The following holds despite Example 3.19.

Proposition 4.2 A normal extension L of K4 is structurally complete if and only if for
every rooted F, if y(F,D) € ~;, then o(F,D) € L.

A si logic L is structurally complete if and only if for every rooted F, if §(F,D) € |,
then B(F,D) € L.

Proof: The left-to-right implication follows from Lemma 4.1. Assume that the RHS holds,
and L admits a single-conclusion rule p. By Theorem 3.18, we may assume ¢ = v(F, D, {i}).
Let G be the subframe of F' generated by i, and D' = D | G. As L admits v(G, D’), our
assumption gives «(G, D) € L, hence L derives ¢ by Lemma 4.1.

The intuitionistic case is analogous. O

Definition 4.3 A transitive logic L has the rule dichotomy property, if every rule is over L
equivalent to a set of rules which are either L-admissible or assumption-free.

L has the single-conclusion rule dichotomy property, if every single-conclusion rule is over
L equivalent to a set of single-conclusion rules which are either L-admissible or assumption-
free (i.e., formulas).

L has the strong rule dichotomy property, if every canonical rule is L-admissible or equiv-
alent over L to an assumption-free rule.

L has the strong single-conclusion rule dichotomy property, if every restricted canonical
rule y(F, D, {i}) (or 6(F, D, {i}) in the intuitionistic case) is L-admissible or equivalent over
L to a formula.

Observation 4.4 If L has the strong (single-conclusion) rule dichotomy property, then it
has the (single-conclusion) rule dichotomy property.
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If L has the (strong) rule dichotomy property, and M inherits L-admissible rules, then
M has the (strong) rule dichotomy property.

If L has the (strong) single-conclusion rule dichotomy, and M inherits L-admissible single-
conclusion rules, then M has the (strong) single-conclusion rule dichotomy. O

Corollary 4.5 If L has the (single-conclusion) rule dichotomy property, and M 2O L, then
(single-conclusion) M -admissible rules have a basis consisting of rules admissible in both L
and M.

Proof: M-admissible assumption-free rules are M-derivable, thus redundant in a basis. O

Proposition 4.6 If a logic L has the strong rule dichotomy property, then it has the single-
conclusion rule dichotomy property. In more detail, if o is a single-conclusion rule, there exists
a formula @, and restricted canonical rules o; = y(F;, Di,{ca;}), i < k (resp. 0(F;, D, {ci})
in the intuitionistic case), such that

L+o=L+p+{0|i<k},

and o; € vy for every i < k.

Proof: Let v(F,D) € L+ p. By Theorem 3.18, v(F,D,{a}) € L 4 ¢ for some « € F. If
v(F,D,{a}) € v, we are done. Otherwise Lemma 3.17 implies that there exists a G C- F'
such that « € G, and 7 := v(G, D | G) is assumption-free over L. We have

el
@ = ggeny "
by Proposition 2.5. As m € L 4+ ¢ by Lemma 3.17, we obtain L 4+ ¢ - ¢ := (7* — ) for
some ¢ € 7€ by Proposition 2.4. We have L + ¢ F ~v(F, D) by Lemma 4.1.
The intuitionistic case is analogous. O

Remark 4.7 It is not clear whether we can weaken the assumption of Proposition 4.6 to
the rule dichotomy property, or whether we can strengthen the conclusion to the strong
single-conclusion dichotomy property.

The rule dichotomy property, specifically Corollary 4.5, generalizes a property noticed by
Iemhoff [15], which states that Visser’s rules (i.e., a basis of admissible rules of IPC) are a
basis of admissible rules for any si logic where they are admissible. This follows easily from the
characterization of admissibility in terms of projective formulas, using the fact that projectiv-
ity is preserved in extensions (thus it also holds for modal logics where the projectivity-based
characterization works, see [18]). Corollary 4.5 shows that a similar property holds even for
extensions which do not inherit the admissible rules of the base logic.

We are going to establish rule dichotomy for several basic modal logics as well as intu-
itionistic logic. We obtain for free an alternative proof of decidability of admissibility in these
logics (originally due to Rybakov, see [29]), and an explicit description of bases (after lemhoff
[14] and Jetdbek [18, 21]). We first introduce some concepts from [14, 18].
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logic [ IPC| K4 [GL[S4] K43 [GL3[S543
basis | V| A® 4+ A° | A° [ A° [ ATy Aot [ asT | A40d

Table 2: bases of admissible rules

Definition 4.8 We define the sets of rules

(A°) Dqﬁvﬂpi/{mq—ﬂ%li<n},
i<n
(A°) B(g < Og) — \/Dpz/{ﬂq—>p¢!i<n},
<n
(V) ANwi—a4) — pi/{/\(pj_’Qj)_)pi i<n+m}7
j<n <n+m j<n

where n,m € w. Let A% and A*! be the restrictions of A° and A® to n < 1.

Let (W, <) be a Kripke frame, and X C W. A point ¢ € W is an irreflezive tight
predecessor (e-tp) of X, if t1 = X1, and it is a reflexive tight predecessor (o-tp) of X, if
t7 = {t} UX1. (Notice that if X is generated by a reflexive point r, then r is both a o-tp and
an e-tp of X; in particular, irreflexive tight predecessors do not have to be irreflexive points.)

Notice that a subframe logic L derives the rule v(F, D) iff F' ¥ L.

Theorem 4.9 If L is one of the logics IPC, K4, GL, S4, K4.3, 54.3, or GL.3, then L has
the strong rule dichotomy property. In more detail, the following are equivalent for modal L.

(i) v(F, D) is derivable in L, or it is not assumption-free over L.

)

(i) v(F, D) is admissible in L.

(#i) v(F, D) is derivable in the rule system axiomatized over L by the rules given in Table 2.
)

(i) F ¥ L, or there exists d € D and x € {®,0} such that d* = L, and d has no x-tp in F.

The same holds for IPC with 6(F, D) in place of v(F, D).

Proof: (ii) — (i): An admissible assumption-free rule is derivable by the definition of admis-
sibility.

(iii) — (ii): Let x € {o,0} be an L-frame, and n € w be such that n < 1if L O K4.3.
Consider a substitution o such that ¥y o(HBq — p;) for each i < n. Fix finite rooted Kripke
L-models W;, z; IF o(8g A —p;), and put W = (3>, W;)*, with r being its root. Then W E L,
W,r Ik o(Dg A \;=Op;) if * = e, and W,r IF 0(B(g < Og) A A, ~Op;) if * = o. The
intuitionistic case is similar.

(iv) — (iii): Let A be the rule system from Table 2, and assume that there exists a frame
W E L+ A, and a subreduction f of W to F' with GCDC for D. Clearly F' E L, as L is a
subframe logic. Let d € D, and * € {e,0} be such that d* F L, we will show that d has a *-tp

23



in F. Fix d' C d such that d'] = d, and |d'| < 1if L D K4.3. Let |- be the valuation such
that I-(p;) = W~ f~![i]. For each i € d’, there exists x; IF —p; A O N\jgapj as [ is onto.
If + = o, we can use the validity of A® (or A*!, as appropriate) in W to find x € W such

that
ol D/\pj/\ /\—\\jpi.
jed icd’
By the definition of IF, we obtain f[z1] = d. We have z € dom(f) by GCDC for d. If f(z) = 1,
then 7T = d, hence i is an e-tp of d.
If x = o, let S be a selector on the clusters of F', and define

zl-qg iff z¢dom(f)V f(x)edVvIi>flx)(igdniel).

If f(x) =1 ¢ d, let j > i be in a maximal cluster such that j ¢ d, and w.l.o.g. j € S. Then
y ¥ q for any y > = such that f(y) = j. It follows that

zlFBq iff flz]] Cd.
As z; IF —p; A Bq for each ¢ € d’, there exists an # € W such that

z - 8(q < Og) A /\ —0Op;
ied’
by validity of A° (or A>!) in W. Clearly f[z1] D d. If f[x]] C d, then = € dom(f) by GCDC,
hence f(x) € d is a o-tp of d. Otherwise x ¥ Hq, which implies x ¥ Og and x ¥ q. The latter
implies x € dom(f), thus let i = f(x). We have i ¢ d, thus let j > i be in a maximal cluster
such that j ¢ d, and j € S. If j # i, we have x I ¢, a contradiction. Thus j = 4, which means
that i7 = dUcl(7). If i is irreflexive, then z IF Og, a contradiction. If cl(i) is proper, then
y Ik g A =Oq for any y > z such that f(y) € cl(i) ~\ {¢}. Hence cl(i) is a reflexive singleton,
which means that 7 is a o-tp of d.

In the intuitionistic case, we consider W E V', a subreduction f of W to F with GCDC
for D, d € D, and the valuation I such that I-(p;) = W~ f~1[i]]. For each i € d, there exists
x; W /\jgdpj — p;, hence also z; ¥ Ajgéd,ked(pk — pj) — pi. Using V, we obtain an z € W
such that

(+) el Nk —pp), =¥ \/pi

jéd icd

ked
The latter implies f[z1] 2 d. If f[xz]] = d, then there exists an i such that f(z) =i by GCDC,
hence i is a o-tp of d = i]. Otherwise we can pick a maximal j € f[z1] \ d, and y > z such
that f(y) = j. We have y ¥ py for any k € D by (%), hence j1 = f[yT] 2 d. On the other
hand, jT C dU{j} by the choice of j, hence j is a o-tp of d.

(i) — (iv): assume that F' = L, and all d € D such that d* have a *-tp in F. The former
implies L ¥ v(F, D). We will show that v(F, D) is assumption-free over L using the criterion
of Proposition 2.5. Assume that W E L, U C- W, and f is a subreduction of U to F with
GCDC for D, we want to extend f to W. We may assume w.l.o.g. that no d € D is generated
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by a reflexive point. Let {d; | i < n} be an enumeration of D such that d; C d; only if
1 < j. By induction on k < n, we will construct a subreduction fi of W to F with GCDC for
Dy, :={d; | i < k} such that fx [ U = f, and the corresponding valuation I-; on W refuting
Y(F, Dy).

k= 0: Let IF? be a valuation in W such that

z K p & flz)=1
for every x € U. Define
zlkgp; & x |0 O(y(F)* — pi,
fo(z) =i zlFopi.

Then fp is a subreduction, and f = fo [ U as (v(F))® is valid in U under I-.

k+— k+1: Let t be an e-tp of di, in F' if one exists, otherwise we adjoin a new point ¢ to F
which makes an e-tp of di, and extend Ik to make p; true everywhere in W. Let s be a o-tp
of dj constructed in a similar way. As dj does not have a reflexive root, we have t,s ¢ d,

and t £ s £ t. Put F* = FU{t,s},

Pk :/\pz'/\ /\ Up; — \/ Up,
7

idy i€dy
lekk Di, { ?é t787
z IFFH p ez kg pi A (D — o), i=1t,

z b ps A (B0 — 0r) — ¢r), @ =5,
rlhpiipiex (R E(fy(F*))“ — i,

Jrp1(z) =i & 2 Wppq pi

Clearly, fx+1 is a subreduction of W to rng(fx+1). L is a subframe logic, hence rng(fx+1) F L.
As dj, has a *-tp in F whenever dj F L, we must have rng(fr+1) € F, and we may forget
about the extra points. For any x € W, fir41 coincides with fi on x] unless there exists y > x
such that y Iy, p; and y ¥*+1 p;, where i € {t,s}. In particular, y ¥y ox, whence it is easy to
see that y IFF+1 B(y(F*))?, and

felyTl =di, y ¢ dom(fi), frr1(y) € {t,s}.

In particular, fri1 [U = fr [ U = f, as f satisfies GCDC for D. As rng(fx) = F, frs1 is a
subreduction to F.

We need to show that fiy1 satisfies GCDC for Dji1. Assume for contradiction that
x ¢ dom(fr+1), and fry1[z]] = d; for some x € W, and i < k. As d; is not a proper superset
of d,, we have t, s ¢ fr+1[zT], thus fri1 2] = fi[2]. Therefore fx[z]] = d;, and = ¢ dom(fy).
If ¢+ < k, this contradicts GCDC of f, for d;. If ¢ = k, then x ¥ ¢r. Either y ¥ Opr — @i
for some y > x, in which case fy11(y) =t, or = Iy I(0Opr — @), in which case fri1(z) = s.
Both possibilities contradict either fxi1[z1] = di or x ¢ dom(fr11).
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In the intuitionistic case, we take IF0 such that IF9(p;) NU = U ~ f~![i]], and define

folx) =i & z WO p;, x IFO (6(F))* A /\pj,
JFi
xlhopi < x -0 (6(F))* — p;.

In the step from k to k + 1, we take s to be a o-tp of di, and define

or=N\pi— \ i

iddy icdy,
x Ik, pi, 1 # 8,
Rl gy o { T TR P 7
x”_kpz/\SDka ’i:S,
fer1(x) =i e x W p o FEHL (5(F))2 A /\pj,
jti
2 lbpyr pi & o IFFTL(5(F)® — p.
Verification of the properties of fj, is then analogous to the modal case. O

We formulated Theorem 4.9 for seven basic logics for convenience, nevertheless Observa-
tion 4.4 immediately gives a generalization to all so-called extensible and linear extensible
logics [18, 19] (including, e.g., Grz, S4.1, and all extensions of S4.3):

Corollary 4.10 If a logic L inherits multiple-conclusion rules admissible in Lo = IPC, K4,
GL, 54, K4.3, 54.3, or GL.3, then L has the strong rule dichotomy property, and a recursive
basis of admissible multiple-conclusion rules consisting of the basis for Lo from Table 2. O

It is easy to see from the definition that admissibility in any decidable logic L is TI9. If
furthermore L has a %Y basis of admissible rules, then admissibility in L is X9, hence it is
decidable. Thus admissibility of multiple-conclusion rules in decidable logics L meeting the
assumption of Corollary 4.10 is decidable. We can give a more concrete algorithm as follows.
Given a rule g, we first compute a set of canonical rules {v(F;, D;) | i < n} equivalent to g over
Ly by Theorem 3.8. Then L admits g iff it admits all y(F;, D;). Using (iv) of Theorem 4.9,
we see that v(F;, D;) is L-admissible iff there is d € D; and x € {e, 0} such that d* F Ly and
d has no *-tp in F;, or y(F;, D;) is derivable in L. By Lemma 4.1, the latter is equivalent
to Fr a(G, D; | G) for some rooted generated subframe G of F;, which we can check using
a decision algorithm for L. However, this algorithm is only of theoretical interest because of
its prohibitive complexity: already the first step (expressing o in terms of canonical rules) is
nonelementary.

The above mentioned logics have the single-conclusion rule dichotomy property by Propo-
sition 4.6. We can do better by a direct proof:

Theorem 4.11 If a logic L inherits single-conclusion admissible rules of IPC, K4, GL, 54,
K4.3, 54.3, or GL.3, then L has the strong single-conclusion rule dichotomy property.
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Proof: By Observation 4.4, we may assume L to be one of the seven basic systems named in
the theorem. We will concentrate on the modal cases, the intuitionistic case is analogous.

Consider a restricted canonical rule v(F, D, {i}). If all the rules v(G, D | G) such that
i € G C-F are L-admissible, then v(F, D, {i}) is also L-admissible. Otherwise there exists a
G such that i € G C- F, and v(G, D | G) is assumption-free over L, and nonderivable in L.
Fix an L-frame V', and a subreduction g of V to G with GCDC for D. We will show that
~v(F, D,{i}) is assumption-free over L, using Proposition 2.5.

Let W be an L-frame, and U C-W such that U ¥ ~(F, D, {i}). Fix a subreduction f of
UtoHC-F,ie H, with GCDC for D. The restriction of f to

U'={zeU]| flz]] C G}

is a subreduction of U’ C-W to GN H with GCDC for D, thus we may assume H C G w.l.o.g.
Then f + g is a subreduction of U 4+ V to G with GCDC for D. By the proof of Theorem 4.9,
there exists a subreduction h of W 4+ V to G with GCDC for D such that h O f + g. The
restriction h [ W is a subreduction of W to K C. F with GCDC for D. As h O f, we have
i € K, thus W refutes v(F, D, {i}). O

Similar to Corollary 4.10, we can extend the proof of Theorem 4.11 to provide explicit
bases, which also implies decidability of admissibility of single-conclusion rules in decidable
logics meeting the assumption of the theorem.

Notice that Corollary 4.10 and Theorem 4.11 cover the known analysis (constructions of
explicit bases of admissible rules and proofs of decidability) of admissible rules following the
strategy of projective formulas, as given in [14, 15, 16, 18]. The methods of Rybakov [29]
show decidability of admissibility for a larger class of logics, however no bases of admissible
rules are known for these logics. Just like with the projectivity-based approach, it is not clear
whether we can generalize the analysis of admissibility based on canonical rules to a wider
class of logics. Presumably more refined techniques might be needed, as the rule dichotomy
is a very strong property which is unlikely to hold for a substantial class of logics.

5 Blok—Esakia isomorphism

In this section we investigate modal companions of intuitionistic rule systems. We will show
that every rule system has the smallest and the largest modal companion (the latter being the
former plus Grz), we establish a Blok—Esakia isomorphism of Ext,, I[PC and Ext,, Grz, and
we describe the companion maps in terms of their frames, and their canonical form. Recall
that the Grzegorczyk logic is
Grz = K +0(0(p — Op) —p) = p=S4+0(0(p — Up) = p) = p
— K4+ a(o—0) + a(s) = K4 + 7(0—0) + ().

Definition 5.1 If A is a rule system over S4, we define

oA ={m|Tr e A}.
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We say that A is a modal companion of pA. If B is an intuitionistic rule system, we put

TB =54+ {Tn|me B},
oB = Grz+1B.

Lemma 5.2 ¢o: Ext,, S4 — Ext,, IPC, 7: Ext,, IPC — Ext,, S4, and o: Ext,, IPC —
Ext,, Grz are monotone maps.

Proof: We observe that pA is a rule system. The rest follows trivially from the definition.
O

Lemma 5.3 If F' is a finite intuitionistic frame, and D a set of domains in F', then S4 +
To(F,D) = S4+ ~(F, D).

Proof: Follows from Lemma 3.13, as S4 is complete wrt preordered frames. O

Lemma 5.4
(i) If B is a rule system over IPC, then otB = oo B = B.
(i) If A is a rule system over S4, then ToA C A C opA.

Proof: (i) B C otB C poB is obvious. If 7 ¢ B, there exists a frame W F B such that
W E 7, thus oW E 0B and oW ¥ Tm by Lemma 3.13. Consequently Tw ¢ o B, thus 7 ¢ goB.

(ii) ToA C A is trivial from the definition. Assume that v(F,D) € A. If F is not an
intuitionistic frame (i.e., it contains an irreflexive point, or a proper cluster), then ~(F, D) €
Grz C opA. Otherwise To(F,D) € A by Lemma 5.3, hence 0(F,D) € pA and Té(F,D) €
7oA, which implies v(F, D) € 79A C opA. It follows that A C 0pA using Theorem 3.8. O

Theorem 5.5

(i) A € Exty, S4 is a modal companion of B € Exty, IPC if and only if TB C A C 0B.

(it) The mappings o and o | Ext,, Grz are mutually inverse isomorphisms of the lattices
Ext,, IPC and Ext,, Grz.

Proof: (i) On the one hand, any rule system between 7B and 0B is a companion of B by
Lemma 5.4 (i). On the other hand, if pA = B, then 7B C A C ¢ B by Lemma 5.4 (ii).

(ii) We have poB = B, and 0pA = Grz + 70A C A C 0pA by Lemma 5.4, whenever
A D Grz. Thus ¢ and p | Ext,, Grz are mutually inverse bijections. Being monotone, they
are also order isomorphisms, hence lattice isomorphisms. O
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Theorem 5.6 Let {F; | i € I} be a sequence of finite intuitionistic frames, {F; | i € J} a
sequence of finite transitive frames which are not intuitionistic frames, and {D; | i € I U J}
an appropriate sequence of sets of domains. Then

(i) oS4+ Y WF, D)) = IPC+ Y 8(F,, D),
eluJ i€l
(i) r(1PC + Y 0(F. D)) = S4+ > 4(F, Dy),
el el
(i) a([PC—kZé(FZ-,Di)) = Grz +Y_(F,, Dy).
el el

Proof: (i): On the one hand, §(F;, D;) € o(S4 + v(F;, D;)) by Lemma 5.3. On the other
hand, the same Lemma implies

S4+ 3" (F D) € Grz+ 3B, Di) C o (IPC+ " 8(F;, D)),
ieluJ iel icl
hence using Lemma 5.4,
o(81+ 3 4(F D)) € oo (IPC+ 3" 6(F;, Di)) = IPC + Y 6(F;, Dy).
i€lug icl icl
(ii): We have v(F;, D;) € 7(IPC + §(F;, D;)) by Lemma 5.3. On the other hand,
r(1PC + 3" 6(F, D)) = 7o(84+ 3 2(F, D) € S44 3 A(F, Dy)
iel iel icl
by (i), and Lemma 5.4.

(iii) follows from (ii). O

Definition 5.7 Let (W, <, P) be an intuitionistic frame, and 0 < k < w. We define the
modal frame 7, W = (kW, k<, kP), where kW =W x k, (x,i) k< (y,j) iff x <y, and

kP = {U(Xi x {i}) ’ Vi<kX; e aP}.
i<k
Notice that mW ~ oW, and W ~ o1, W.
Lemma 5.8 If F' is a finite preordered frame with clusters of size at most k < w, and
oW ¥ ~(oF, oD), then ;W ¥ ~(F, D).

Proof: Let f be a subreduction of oW to F with GCDC for D. Enumerate (not necessarily
injectively) each cluster ¢ € pF as ¢ = {uc; | i < k}. Define a partial function g: ;W — F
by

g(x,z') = Uc,i iff f(.’L‘) =C.

Then it is easy to see that g is a subreduction of W to F with GCDC for D. O
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Theorem 5.9 Let C be a class of preordered frames, D a class of intuitionistic frames, A €
Ext,, S4, and B € Ext,, IPC.

(i) If A= Th,,(C), then pA = Th,{oW | W € C}).
(i7) If B = Thy(D), then 0B = Thy({oW | W € D}).
(#i) If B = Thy,(D), then 7B = Thy,,{7xW | W € D,0 < k < w}).

Proof: The inclusion C in all three cases follows from Lemma 3.13, using oo W =~ o7, W ~ W.
We will to show the other inclusion.

(i) If ¢ oA, then Tm ¢ A, hence there exists W € C such that W ¥ Tr, thus oW ¥ 7 by
Lemma 3.13.

(ii) If v(F, D) ¢ 0B, then F is an intuitionistic frame, as 0B O Grz. Thus 6(F, D) ¢ B by
Lemma 5.3, therefore there exists W € D such that W ¥ §(F, D). We obtain ¢W ¥ ~v(F, D).

(iii) Assume that v(F,D) ¢ 7B. Any subreduction to F' with GCDC for D can be
composed with the cluster quotient map to give a subreduction to oF', hence v(oF, oD) ¢ 7B.
We have §(oF, D) ¢ B by Lemma 5.3, thus there exists W € D such that W £ §(oF, oD).
We have oW ¥ ~(oF, oD), thus 7, W ¥ ~(F, D) for sufficiently large k£ by Lemma 5.8. O

Theorem 5.10 The mappings o: Exty,, S4 — Ext,, IPC and 7: Exty,, IPC — Ext,, S4 are
complete lattice homomorphisms such that oo 7 = id.

Proof: We have po7 = id from Lemma 5.4. It is obvious from the definition that g preserves
(finite or infinite) meets, and 7 preserves joins. Theorem 5.6 implies that ¢ preserves joins
as well. If {B; | i € I} C Ext,, IPC, we have (), 7B; 2 7(), B; by monotony, we will
show the other inclusion. If v(F,D) ¢ 7(), B;, then also vy(oF, oD) ¢ 7(); B; by the proof
of Theorem 5.9, thus 6(oF, 0D) ¢ (), Bi, and we may fix i € I such that §(oF, oD) ¢ B;.
There exists a frame W F B; such that W ¥ §(oF,0D). Then oW E ~(oF, oD), hence
T,W ¥ ~v(F, D) for some k by Lemma 5.8. However, 7, W £ 7B; D (), 7B;. O

Remark 5.11 p, 7, and ¢ map single-conclusion rule systems to single-conclusion rule sys-
tems, hence the results above also hold for Ext; in place of Ext,,.
6 The nontransitive case

In this section, we take a look on the possibility of using canonical rules also in the context
of nontransitive modal logics. We first observe that the definition of canonical rules and their

basic properties readily generalize to K.

Definition 6.1 Let (F, R) be a finite Kripke frame, D a set of arbitrary subsets of F', and
X a subset of F. We define the canonical rules v(F, D) and «(F, D, X) as in Definitions 3.2
and 3.16.

Lemma 6.2 Let W be a frame.
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(i) W refutes v(F, D) iff there exists a subreduction of W to F with GCDC for D.

(ii) W refutes v(F, D, X) iff there exists a subreduction of W to a generated subframe G of
F with GCDC for D, such that X C G.

In particular, W refutes v*(F, L) iff F is a p-morphic image of W.
Proof: As in Lemmas 3.3 and 3.17. o

Thus unlike canonical formulas, we can define canonical rules in a straightforward way
even for nontransitive frames while preserving the refutation conditions. Nevertheless, their
usefulness is considerably limited by their incompleteness:

Example 6.3 The modal logic D = K + T is not equivalent to any set of canonical rules
over K.

Proof: We start with a characterization of canonical rules valid in D:

Claim 1 D+ ~(F, D) if and only if F contains a dead end (i.e., F ¥ OT), and D = F*.

Proof: “«7: Clearly, any logic derives the frame rules of all finite frames which do not
validate it.

“—=7: If F contains no dead end, then F' E D, and F ¥ v(F,D). If d ¢ D, we define a
frame G = F U {a} by making z R a R u for every x € G, and u € d. We have G E D, and
the identity mapping from F' C G to F'is a subreduction with GCDC for D. O (Claim 1)

To finish the proof, consider the Kripke frame W = (w, >). On the one hand, W ¥ D. On the
other hand, every point of W is definable by a variable-free formula, hence W has no finite
p-morphic image. In particular, all frame rules v*(F, 1) are valid in W. O

The main application we have for nontransitive canonical rules is a description of splittings
in the lattice of rule systems.

Definition 6.4 A splitting pair in a lattice L is a pair (a,b) of elements of L such that
L = a| Ub]. If this holds, then b is uniquely determined by a and vice versa. We write
b = L/a, and we say that a splits L, and b is a splitting companion of a. We will usually
write A/B instead of Ext,, A/B or Ext; A/B. See [6, 25] for more details on splittings. In
particular, observe that if a splits L, then it is strongly meet-prime: if X C L is such that
A X < a, then z < a for some z € X.

Theorem 6.5 Let A be a rule system over K.

(i) If F = A is a finite Kripke frame, then (Th,,(F), A+ ~%(F, 1)) is a splitting pair in
Ext,, A.

(ii) If A has the finite model property, then all splittings of Ext,, A are of the form given

The same holds for intuitionistic rule systems, with & in place of .
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Proof: (i) Clearly F' ¥ ~#(F, L), hence A C Th,,(F) and A+~#(F, L) ¢ Th,,(F). Let B2 A
be a rule system such that B # ~*(F, 1). By Theorem 2.2, there exists a frame W E B
such that W ¥ ~#(F, L). By Lemma 6.2 F is a p-morphic image of W, hence F' F B, i.e.,
B C Thy,(F).

(ii) Let (B, A/B) be a splitting pair. By assumption

B2 A=({Thn(F) | FF A,F finite},

hence B D Th,,(F) for some finite F' as B is strongly meet-prime. If n = |F|, then F validates
the rule

Size, = .
P0,P0 = P1,P0 ADPL = P2, s Nicp Pi = Pn

On the other hand, any refined frame validating Size, is easily seen to have at most n points,
hence B is complete with respect to a set of Kripke frames of size at most n. This means

B =({Thn(F) | F & B, F finite},

thus using once again its meet-primality we obtain B = Th,,(F) for some finite frame F.
Clearly F ' F A, as A C B. By (i) and the uniqueness of splitting companions, we must have
A/B=A+~%F,1).

The intuitionistic case is analogous (and indeed follows from the modal case by the results
of Section 5). O

Remark 6.6 Theorem 6.5, stating that every finite frame splits Ext,, K, should be con-
trasted with the result of Blok [4] that only acyclic rooted frames split the lattice NExt K
of normal modal logics. (As we will see below, not all finite frames split the lattice Extq K
of consequence relations, nevertheless every rooted finite frame still does, with no acyclicity
condition.)

Lemma 6.7 Let F' be a finite Kripke frame, A a consequence relation extending K, and
r € F. Then the following conditions are equivalent:

(i) For every s € F and every W C-F such that r € W and W E A, there exists a U C- F
such that s € U and U s a p-morphic image of W.

(i) For every W C-F such that r € W and W E A, we have F' E Thy(W).
(iii) For every s € F, A+~%(F, L, {s}) F~*F, L, {r}).
The same holds for intuitionistic rule systems, with & in place of 7.

Proof: (i) — (ii): If F' ¥ p, and p is single-conclusion, there exists a valuation IF in F' such
that F'IF o® and F, s ¥ o° for some s € F'. By (i), there exists U C- F such that s € U and U
is a p-morphic image of W. We have U ¥ o, hence W ¥ p.

(ii) — (iii): If V is a frame such that V F A+ ~%(F, L, {s}) and V ¥ +*(F, L, {r}), there
exists W C- F' such that r € W and W is a p-morphic image of V' by Lemma 6.2. In particular,
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W E A, thus F' = Thy(W) by (ii). However, F' ¥ ~#(F, L, {s}) and W E ~*(F, L,{s}), a
contradiction.

(iii) — (i): We have W E A and W ¥ +#(F, L, {r}), thus W ¥ ~+4(F, L, {s}) by (iii), which
implies the existence of U by Lemma 6.2.

The intuitionistic case is analogous. O

Remark 6.8 Let us say that a coroot® of a finite Kripke frame (F, R) is a point € F
belonging to an initial cluster of the transitive closure of R; in other words, if y € 7 for every
y such that x € y]. In conditions (i) and (iii), it obviously suffices to consider only points s
which are coroots (and we only need to check one coroot in every initial cluster).

Theorem 6.9 Let A be a consequence relation extending K.

(i) If F E A is a finite Kripke frame, r € F, and the condition of Lemma 6.7 holds, then
(Thy(F), A +~4F, L, {r})) is a splitting pair in Ext; A.

(it) If A has the finite model property, then all splittings of the lattice Exty A are of the form

given in (7).

Moreover, we may assume that r is a coroot of F'. The same holds for intuitionistic rule
systems, with § in place of .

Proof: (i) Clearly A C Thy(F) and ~*(F, L,{r}) ¢ Thy(F). Let B O A be a consequence
relation such that v*(F, L, {r}) ¢ B. By Lemma 6.2, there exists W C- F such that » € W
and W E B. In particular, W E A, hence F'F B by (ii) of Lemma 6.7.

(ii) Let (B, A/B) be a splitting pair. As B is strongly meet-prime and

B2 A=({Thy(F) | FF A,F finite},

we have B D Th;(F') for some finite frame F'. In particular, Th(B) is a locally tabular logic;
as B is complete wrt a class of finitely generated descriptive Th(B)-frames, it has the finite
model property. Using its meet-primality again, we obtain B = Th;(F') for some finite F'.

For every s € F, we have F ¥ ~*(F, 1, {s}), hence A+~%(F, L,{s}) D A/B. Pick a single-
conclusion rule 9 € A/B such that F' ¥ p. Clearly A/B = A+ p. There exists a valuation
Ik in F and v' € F such that F' |- p%, and F,r’ ¥ o°. Let r be any coroot of F' such that
' € 1. Then W ¥ o for every W C-F such that r € F, hence A/B = A+ o+ ~%(F, L, {r}).
Consequently, condition (iii) of Lemma 6.7 holds, and A/B = A +~%(F, L, {r}).

The intuitionistic case is analogous. O

Remark 6.10 We may have Th;(F) = Th;(G) even if F' and G are nonisomorphic frames,
and in principle it could happen that only one of them satisfies the conditions of Lemma 6.7.
However, the proof of Theorem 6.9 actually shows that B = Th; (F') splits Ext; A iff I’ satisfies

the conditions of Lemma 6.7, hence we do not have to worry about alternative representations
of B.

3Think cochairman, not coproduct.
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Figure 1: see Remark 6.11

Remark 6.11 Condition (i) of Lemma 6.7 is implied by the simpler condition

(i’) For every s € F' there exists a p-morphism f of F' onto its generated subframe such
that s € f(r)].

Furthermore, it suffices to check only coroots s. However, condition (i’) is strictly stronger
than (i), as exemplified by the frame in Figure 1, which satisfies (i) but not (i’).

Our final task is to characterize the canonical rules admissible in K, in the spirit of
Theorem 4.9.

Definition 6.12 Let LR denote Lob’s rule

Op —p/p.

We introduce the sequences of rules
(E°) N (4 < Ogj) — \/Dpi/{/\ a4 — pi
j<m <n j<m

(E*) Dq—>\/Dpi/{q—>pi|i<n}-

i<n},

In nontransitive context, we redefine a reflexive (irreflexive) tight predecessor of a subset X
of a frame W to be a point ¢ such that ¢] = {t} U X (¢tT = X, respectively).

We will need the following combinatorial principle used in the theory of the Rudin—Keisler
ordering [7], known as Katétov’s lemma on three sets:

Theorem 6.13 (Katétov [22]) If f: X — X has no fizpoints, we can partition X into
three disjoint sets X;, i = 0,1,2, such that f[X;] N X; = @ for every i. O

The following lemma is somewhat stronger than what we really need, but we find it
instructive to know the frame conditions corresponding to the rules we deal with. Recall that
a frame (W, R) is converse well-founded, if every nonempty subset X C W has an R-maximal
element (i.e., an z € X such that z R y for no y € X). In particular, every converse well-
founded frame is irreflexive. A finite frame is converse well-founded iff it contains no cycle: a
sequence of points {z; | i <n} C W such that 2o Rx1 R -+ R x, = xo for some n > 1.
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Lemma 6.14
(i) LR is admissible in K, and corresponds to converse well-founded Kripke frames.

(ii) E° is admissible in K. It is d-persistent, and corresponds to frames where every finite
subset has a reflerive tight predecessor.

(iit) E® is admissible in K. It is d-persistent, and corresponds to frames where every finite
subset has an irreflexive tight predecessor.

Proof: (i) If LR fails in W under a valuation I, then {x | x ¥ p} is a nonempty set without
an R-maximal element, and vice versa. The rule is K-admissible, as K is complete wrt finite
irreflexive intransitive trees, which are converse well-founded.

(ii) Assume that ¥ /\j Y; — @; for every i < n, and pick Kripke models (Fj,IF) such
that F;,x; I /\j Yj N —; for some x;. Define a new model F' by taking the disjoint union
of F; together with a new reflexive point a, which sees exactly the points z;. Then F,a I-
N; (i = Oj) A \; 7D

Let W be a frame which has o-tp of all finite subsets, and I a valuation which refutes
(E£°)¢. Pick points z; I= A\; qj A —p;, and let ¢ be a o-tp of {z; | i < n}. Then ¢ |- A;(g; <
Og;) A N\; ~Op;, thus W E E°.

Conversely, let W be a Kripke frame of size at least 2 (the other cases are easy) which
validates E°, and let X = {z; | ¢ < n} be its finite subset. Choose a function f on W such
that

f(z)#x, f(x) ¢ X,z R f(x) if possible,
flx) #x otherwise.

By Katétov’s lemma, there exists a partitioning W = WoUW;UW; such that f[W;]NW; = @.
We define a valuation IF by

ulk p; & u # a,
ulkgj & uweW;uX.

As x; IF /\j qj N\ —p; for every i, and W validates E°, there exists a t € W such that ¢ I-
N;(g; < Ogj) AN \; ~Op;. Clearly t R x; for every i. We claim that ¢] C X U {t}: if not, then
f(t) € tT ~ (X U{t}). However, let j be such that t € W;. As t Ik g;, we have t IF Og;, thus
f(t) IF g, and f(t) € X UWj, a contradiction. Finally, if ¢ is not reflexive, then t7 C X, hence
t - /\j Ogj, thus ¢ I /\j qj. This is only possible for ¢ € X, but then ¢ R ¢, a contradiction.
Thus t is a o-tp of X.

Let (W, R, P) be a descriptive frame validating E°, let X = {x; | i < n} be its finite
subset, and consider the set

S={-0A|AcP,X¢ AlU{A—DOA|Ac P, X C A}.

The set {A € P | x; € A} is a filter for any . If S’ is a finite subset of S such that (.5’ = &,
we thus have

((B; < 0B;) €| JD4A;

J
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for some A; € P such that z; ¢ A;, and B; € P such that X C B;. By W E E°, we obtain
; Bj € A; for some i. However, z; € [; Bj \ A;, a contradiction. We have thus verified
that S has fip.

By compactness of W, there exists a point ¢t € (S. If t € OA, we havet € A and X C A,
hence t R X, t by refinement of W. On the other hand, if z # t and z ¢ X, we can find A € P
such that z ¢ A and {t} UX C A as W is refined. Then t € (A < OA) € S, hence t € OA,
which implies —(¢ R z). Consequently ¢ is a o-tp of X.

(iii) is similar to (ii), but easier. O

Incidentally, we observe that fv, is “Kripke inconsistent”:

Corollary 6.15 No Kripke frame validates simultaneously the special case

=(p < Op) /
of E°, and Lob’s rule.

Proof: If W E LR, then W is converse well-founded by Lemma 6.14. We can define a set
X C W satisfying
reX iff Jy(RyANy¢gX)

by well-founded recursion, hence =(p < Op) / fails in W. O

Theorem 6.16 The following are equivalent for any canonical rule o = vy(F, D):
(i) K admits o.

(ii) o is derivable in K + LR or K + E°.

(iit) F contains a cycle, or D is nonempty.

Proof: (ii) — (i) follows from Lemma 6.14.
(iii) — (ii): If F contains a cycle xg R 1 R -+ R z, = x¢, then the assumptions of
v(F, D) contain the formulas Op,, ., — ps, for each i < n. Putting a = A, p,, we obtain

(v(F,D))* bk Oa — a kg a bk pey € (7(F, D))"

Assume that F' is acyclic, and d € D, we will show that v(F,D) € K + E°. Assume for
contradiction that W F E° is a descriptive frame which refutes v(F, D), and let f be the
induced subreduction of W to F with GCDC for D. We can pick x, € f~![a] for each a € d.
By Lemma 6.14, there exists a o-tp ¢ of the set {z, | a € d}. As F is irreflexive, we have
t ¢ dom(f). Then f[t7] = d contradicts GCDC.

(i) — (iil): Let F be a finite acyclic (i.e., converse well-founded) Kripke frame, and D = @.
As F is descriptive and finitely generated, it is (isomorphic to) a generated subframe of a
canonical frame C' = C,,(K) for some n < w (cf. [6, Thm. 8.60]). We have F O | for some
k < w. The subset of C defined by OF L is finite, and C' is refined, hence F as well as all its
elements are definable in C'. It follows that the identity mapping on F' C C' is a subreduction
of C to F, thus C ¥ v(F') = v(F, D), and v(F, D) ¢ . O
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The easiness of the proof of Theorem 6.16 suggests that rather than being a progress
towards the solution of the long-standing problem of admissibility in K, it is just a further
testimony that nontransitive canonical rules are plagued with incompleteness. We can indeed
supply a specific counterexample:

Example 6.17 K + LR+ E° does not derive E*, hence no rule system between K + E*® and
rj is axiomatizable by canonical rules.

Proof (sketch): Let F be any finite acyclic frame. We construct a new frame by repeating
the following procedure: we take its finite subset X, and expand the frame by new points
{zxn | n € w}, where zx is a dead end, and zx,+17 = X U {2x,}. We can arrange the
order of the steps so that the frame F*° we obtain as the union after w steps has all its finite
subsets taken care of. It is easy to see that F'*° is converse well-founded, hence F*>° E LR.
Let P be the set of subsets A C F'*° such that for each X, {n | zx, € A} is finite or cofinite.
One can check that the chain {zx, | n < w} behaves essentially as a o-tp of X wrt valuations
from P, hence the frame (F'*°, P) validates E°.

Now, take F' = {a} to be the irreflexive singleton, and let |- be the valuation on F*° such
that w IF p iff w = a. Then IF makes Op — OL true in F*°, but p — L fails in a, hence
(F>, P) ¥ E*. O

As we have seen, canonical rules, and specifically frame rules, can be applied in nontran-
sitive context to a certain extent mimicking the behaviour of frame formulas in the transitive
case. While this gives us more power than what we can achieve in similar situations with
canonical formulas, we cannot expect serious progress with admissible rules and other areas
comparable to the transitive case without a completeness theorem for canonical rules. It
remains open whether we can generalize canonical rules to obtain complete axiomatization
of rule systems over K. In principle, it could be easier to devise such complete canonical
rules than canonical formulas, nevertheless both seem to meet similar serious combinatorial
obstacles, and the goal remains elusive.
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